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Radiative transitions of the D states of charmonium in potential models
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We derive expressions for the radiative multipole amplitudes and the total decay rates of heavy quarkonia in
the transitions #D,—13P;+y (J=2,1,0, 1°D,—n S+ y (n=1,2), 1'D,—1P;+ v, 1'D,—~n 35+ y
(n=1,2), and 13D;—1°%P;+ vy (J=2,1,0, in an arbitrary potential model correct to ordet/c?. We also
numerically evaluate these expressions for charmonium in the nonsingular potential model of Gupta, Johnson,
Repko, and SuchytdS0556-282(97)04201-X]

PACS numbgs): 13.20.Gd, 13.25.Gv, 13.40.Hq

[. INTRODUCTION gives a summary and concluding remarks. Even though the
radiative decays of 1D, was treated by one of u¥.J.S)

The D states of charmonium are quite interesting. Evenpreviously[5], we redo the calculations here to correct some
though they are all above the charm threshold, tiils,-and  errors in the expressions given th¢gg. Also, we reevaluate
the 1°D, states are expected to have narrow widths sincéhe expressions in the new nonsingular potential model of
their strong decays tB+ D are forbidden by parity conser- GJRS where the energy spectrum and the wave functions are
vation and their predicted masses are such that their decagglculated in a nonperturbative way using a variational cal-
into D+D* or D* +D are forbidden by energy conserva- culation of the full Hamiltonian.
tion. These states can be directly formedom collisions of
the proposed experiments at Fermilab by the E760 group. 1. MULTIPOLE AMPLITUDES AND THE DECAY RATES

Recently one of the autho(K.J.S) together with Ridener IN THE PARITY-ODD TRANSITIONS 1 3D,—13%P;+ 1,

[1,2] has derived model-independent expressions for the an-  1°D;—1°%P;+y (J=2,1,0, AND 1'D,—1'P;+y

gular distributions of the decay products of thestates pro- o —

duced as resonances pp collisions. These expressions VW€ assume that the heavy quarkonigot or bb) to a
[1,2] give the angular distribution in terms of the radiative 900d approximation can be thought of as the bound state of
multipole amplitudes. They are independent of any dynami& duark and an antiquark bound by an arbitrary potential. In
cal model and are based only on the general principles dhe usual model the potential will have a confining piece as
quantum mechanics and symmetry. When these angular di¥.€!l as & perturbative QCD part. In any such model we have
tributions are measured experimentally, our expresgibg ~ SNOWn previously5-7] that the parity-odd transition ampli-
will enable one to extract the radiative multipole amplitudestUde of the one-photon radiative transitién-B+y could
from the measured angular distribution and we can thefP€ Written[5,6] as

compare them with the predictions of various theoretical

models. In this paper we derive expressions for these multi- & | - Lo > o P
pole amplitudes in an arbitrary potential model, correct to To(t)= Ve wap(Bleq | F- 4mk[(k'r) p—i(k-Nk

orderv?/c?. We give our expressions in terms of the inte-
grals involving the radial wave functions of the states. We +2(K-F)(SXK) (14 x) —k%(SXT)
also calculate the total decay rates of these radiative transi-
tions in terms of the multipole amplitudes. We then evaluate
our expressions in the nonsingular potential model of Gupta,
Johnson, Repko, and Suchyi@JRS [3], which has been

quite successful in predicting the energy spectrum of charghere the statefA), and|B), are eigenstates of the internal
monium and thée1 decay rates in the transitiogé—x;+y  Hamiltonian[5—7] with energiesE  and E b, respectively.
and x;—¢+7y (J=2,1,0. The numerical results in the GJRS The internal Hamiltoniar is related to the Hamiltoniahi,
model are given in Tables I-V. The format of the rest of theyt the isolated quarkonium by the relation

paper is as follows. In Sec. Il we derive expressions for the

multipole amplitudes and the total decay rates in the parity- _ 2L p2

odd transitions £D,—13%P;+vy, 1°D;—13P;+y (J Ho=vh™+P%, @
=2,1,0, and 1'D,—1'P;+y. In Sec. Il we consider the -

corresponding problem for the parity-even radiative transiWhereP is the overall or center-of-mass momentum of the
tions 13D,—n 'Sy+y, and 1'D,—n 3S,+y (n=1,2. In  quarkonium and

Sec. IV we numerically evaluate the multipole amplitudes | | |

and the total decay rates in the GIJRS md8ed]. Section V wag=Ea—Eg, )

X(1+ k)] |A>|fotei(“’—wAB)t’dt’, Q)
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TABLE |. Multipole amplitudes and the decay rates in the radiative transitiot3,1-1 3P;+y (J=2,1,0 in charmonium using the
GJRS mode[3]. |, andl, are the radial integrals; , a;, anda; are the multipole amplitudes. We also give the multipole amplitude

relative strength$aj/a;| and|as/a;].

Photon Decay
energy I4 I» a; a ag rate
Decay (MeV) (GeV™Y (GeV™) (GeV™H (GeV™H (GeV™Y EVEH lag/aj| (keV)
3 1.014 .
1°Do—xoty 255 2.72 —4.00 _i0.007 —i10.025 0.014 0.025 0.014 59.4
0.844 0.029
3 _ —_
13D,y +y 294 2.44 3.18 0009  —i0.039 0.005 0.058 0.006 148
13D,—x0ty 383 2.27 —-2.74 0.062 0.86
+i0.037
r=1lim(ry—ry), (4 potential A(F, ,t) we replacee* "« by 1. Recall that the
P=0 commutator term in the interaction Hamiltonian includes all
p=lim Py=lim(—p,), (5 terms linear inA(F, ,t) ,9obtained from the minimal replace-
P—0 P—0 _mgntﬁﬂ—> 54—(eM/c)A(Fﬂzt). So this _inc_ludes all relativ- _
. istic correction terms which are spin independent. This
S=§,+5,, (6)  would mean that - F includes most of the relativistic cor-

. rections when we substitute far the experimental energy
wheres, ands, are the spirg operators of the quark and the difference, and fofA), and|B),, we use the eigenfunctions

antiquark. Equatioril) takes into account the full effect of .t the fyIl Hamiltonian including the relativistic corrections.

the recoil of the quarkonium after the emission of the photonirhe second and third terms also come from the commutator
to orderv?/c®. So there is a difference betweeng and "

. 'k-F .
whg. Here why is just the energy difference of EqQ3), term., when the exponential™'« is expande;dl o s.econd or-
where as thew,g is the energy of the emitted photon includ- der in (k-r,). These are the so-called “finite size correc-

ing the recoil effect. When energy conservation holds as itions.” The fourth and fifth terms in E¢1) come from the
will for large t, spin-dependent relativistic correction terms in the interaction
Hamiltonian.
k=w=wpg=E,—Eg, (7) Let us apply Eq(2) to calculate the multipole amplitudes
) . and the decay rates of the parity-odd transitions
vyhereI'EA andEg are the energiefs—-7] of the quarkomym 1°D,—-1°%P;+y, 1°D;—1°%P;+y (J=2,10, and
(including the energy due to the center-of-mass mgtion  11p,—1'P,+y.
the statesA andB. The symbols,, m, andx represent the
charge, the mass, and the anomalous magnetic moment pa-
rameter of the quark. We péit=c=1 throughout this paper. A.13D,—1°%P;+y (3=2,1,0
Since we use the relativistic center-of-mass variables in the Let us assume that the3D. state of charmonium is
interaction Hamiltonian, the low energy theorem in Comptonformed at rest inop collisions 2Let they,(1°P,) and the
scattering and the Drell-Hearn-Gerasimov sum rule for com- hot b 'rt?pd N thetz and — )é.J i J i
posite systems will be satisfied and Et). takes into account photony be emitted I Z ang —z directions, Tespec
all first order(of orderv?/c?) relativistic corrections. In Eq. tively. Th_e co_mpc_ment of the angula_lr_momentum OQD]E in
! . . . the +z direction is calledv. The helicities ofy; and y are
(1) the first termi” is the dominant term which comes from

- ) ) called o and u, respectively:
the commutator ternf, ,Ho]-A(F, ,t) (1=1,2) in the in-
teraction Hamiltonian where in the expansion of the vector u==x1, o=-3,—-J3+1,0,...+J. (8

TABLE II. Multipole amplitudes and the decay rates in the radiative transitiot3,1-1 3P;+ y (J=2,1,0 in charmonium using the
GJRS mode[3]. |4, I,, I3, andl, are the radial integrals.a;, a;, anda; are the multipole amplitudes. We also give the multipole
amplitude relative strengttaj/a;| and|aj/a;|.

Photon Decay
energy I I, I3 l4 a; a; aj rate
Decay (MeV) (GeV'l (Gev'l (Gevh (Gevl (Gevl (Gevl (Gevl) |ayaj |azal (keV)
3 0.019
1°Di—xoty 228 —-2.19 2.72 2.04 —-4.20 0.296 _i0.014 0.014 0.080 0.047 4.64
3 0.024
1°D1—x1ty 267 —-1.84 2.46 1.15 —3.38 —0.964 —i0.026 0.037 79.5

1%D,—xo+y 357  —1.63 2.29 071 —2.94 1.042 225
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TABLE IlI. Multipole amplitudes and the decay rate in the radiative transitid® 43— 1 *P; + v in charmonium using the GJRS model
[3]. G; andG, are the radial integrals.a;, a;, andaj are the multipole amplitudes. We also give the multipole amplitude relative

strengthdaj/a;| and|aj/a;].

Photon Decay
energy G, G, a; a, ag rate
Decay (MeV) (GeV™Y (GeV™H (GeV™) (GeV™Y (GeV'Y laj/a] EVWEH (keV)
1'D,—1'P;+y 281 2.67 -3.64 2.190 -i0.017 0.012 0.008 0.005 288
By angular momentum conservation in the direction, The angular momentum helicity amplitu@éai is indepen-
dent of all angles, and all the dynamics of the problem is
v=0—pu. (99  contained in it. Obviously, the expression fAf,fL will de-

pend on the dynamical model.
The matrix element of Eq(l) in this particular kinematic By parity invariance[9] of the transition operator, we

configuration is called the helicity amplitud&) =A%, _, obtain

and the transition amplitude of E¢L) in this configuration

1) __q\J+1prd
can be written as As=(—1)""A (14

—o—p-

t We will label the linearly independent helicity amplitudes as
e , ,
TO,z(t): q w,IA\BA;—iLJOeI(w—wAB)t dt’. (10)

V2Vw

In general, if they; is moving with momentum+p in the
(6,¢) direction andy with momentum—p, the correspond-
ing transition amplitude can be written E&9] —2sv=0—pus+2 andu==1 (16)

AP=AN=(—1)"AY, , o=-J,-J+1,.. .+,
(15

with the restriction
This would mean that fod=2, o cannot take the value 2.

e
_ q ’ * . . ..
To(t)= Ve wpgAuD2 L (6,0,— ¢) So forJ=2 there are four linearly independent helicity am-

plitudes, forJ=1 three, and fod=0 only one. These inde-

o wpmt! o7 pendent helicity amplitudes are related to the multipole am-
X foe et dt’, (1D plitudesa,’ by an orthogonal linear transformation
= 2k+1| 12
whereD (a,B,7) is the WignerD? function[10] defined A= > a{(J<_> (k—1;d0|2,0—1).
by the equation Max(k=T2-J];1) 5 a
N _ I
(ImMUg(a,B,7)[Im")=D;, ., (@, B,7), (120 since the relation in Eq7) is orthogonal,
whereUy, is the unitary rotation operator ard 8, andy are '3 '3
the Euler angles of rotatiof10]. Equation(11) leads to Eq. ; A, |2:Ek |lag’|. (18)
(10) since
3 Using Eg.(1), we can write an expression for this helicity
Do u(0.00=6,, . (13 amplitude in an arbitrary potential model. We get

A'd =<J0-|+i(x+iy)_i_k222+i(p *ip )_Z_i(_kz) +i ()“(+i§/)~(§><I2)(1+;<)+i—k2 +i
ou==1= (3012 (XElY) = 2 K272 (PR ipy) = gy T amk "\ Tz

X(X£i¥)- (SXF)(1+ k)| 2v). (19

In writing Eq. (19) we assumed that the photon is moving in  In order to write the helicity amplitude in Eq19) in
the —z direction with helicity=1, so that the momentum and terms of the multipole amplitudes using EG7), we should
polarization vectors of the photon become express the operators in the matrix element of @@) in
terms of irreducible spherical tensor operator components.
A 1 For this purpose we define the following highest weight

(= — g =+— (X*+iv =+
K kz, eq== ) (x=iy) for p==1. (20 spherical tensor components:
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TABLE IV. Multipole amplitudes and the decay rates in the radiative transitiot3,1-n 3S;+ (n=1,2) in charmonium using the
GJRS mode[3]. Jg, J1, I, J3, andJ, are the radial integrals.a; , a;, andaj are the multipole amplitudes. We also give the multipole

amplitude relative strengthaj/a;| and|aj/a;|.

Photon Decay
energy Jo Jq J, Js Ja a; a, ag rate
Decay (MeV) (GeV'l (Gev'd (Gevl (Gevl (Gevl (Gevl (Gevl (Gevh laya; |ai/aj| (keV)

1D,—yty 639 —-0.207 0.215 -0.233 -0.193 0.093 i0.004 —i0.029 —i0.010 6.64 241 0.699
1D,—¢/+y 132 -0.084 —0.027 0.025 —-0.162 -0.156 i0.002 i0.000 i0.000 0.016 0.164 0.001

Tas=X5ps, Ta=X (XXP)4,

A=2 (Jolk1;2v)(I|R2). (26)
SH=X: Sy, X=Xy, k

Comparing Eqgs(26) and (17) through the use of the sym-

Tu= \/grzm ;o T1= \/§X+(>?' p), metry relationg10] among Clebsch-Gordon coefficients, we
Su=S:, Su=(XxS),, @ & "
where a’=(—1k" sir1) CIRd2) (27)
1 . whereR can be read off from Eq24) for various values of
As= +5 (AxEiAy). 22\ The explicit expressions for the multipole amplitudes ob-

tained from Eqs(27) and(24) are given below for the three

The other components of the spherical tensors can be ol525€8J=2,1,0.
tained from the commutation relation 3
[, Tygl= Vk(k+ 1+a(1-q) Ty q-1- (23 There are four multipole amplitudes in this cag4, M2,
E3, andM4 oray, a;, a3, anda,, respectively:
Using Egs.(21)—(23), we can write the helicity amplitude of
aj=-\%

Eqg. (19) as ik

2/10m

(x2lX4|1°D )~ (x2lT1113D5)

AR=A=(Jo| =X+ k (T 1T’)+ikT
=A% =(Jo|— Xyt ——— (T2 =
ol o 11 Zm\/l—O 11 2711 m 21

ik ik
+ —— (x2 T11°Dy) - >m (1+k)

4/10m
+ik 1T+ k (1+K)S,
oM e 31T K)o21
2m 15 = 2vam X(xallSil1°D5) .
ik
+ﬁ(1+K)Sil|2V>- (29 . .
i i
=— o [ (X2l T2l1°D2) = — (1+ k) (X2l S:lI1°D2) |,
The Wigner-Eckart theoreffl0] tells us that 2 2m V2
(Jo|Ri|2v)=(JIa|k1;2v)(J|R2), (25 , \F( ik) 1 (T30,
A=\ 7|55 T=WXalls 2)s
where Ry, stands forXy;, Tq1, T11, To1, T31, Sp1, OF Spy, 712m/ |15
multiplied by the appropriate factors. Using E@5), Eq. ,
(24) becomes a,=0. (28)

TABLE V. Multipole amplitudes and the decay rates in the radiative transitiof®,3>n *Sy+y
(n=1,2) in charmonium using the GJRS mod8]. J;, J;, J;, andJ, are the radial integrals.a; is the
multipole amplitude.

Photon Decay

energy Ji J; J; J, a, rate
Decay (MeV)  (GevhH (GevhH (Gevl (Gevl  (Gevh  (keV)
13Dy ety 716 0211 —-0.227 -0.221 0.078 —i0.038 221

1%D,—pl+y 193 —0.056 0.050 —0.143 —0.159 10.002 0.001
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It is interesting to notice that thiel , amplitudea, is identi-  As before, the reduced matrix elements are given in terms of
cally zero in any potential model correct to ordéfc? since  the radial integrald; andl,, but this timeRysp, (1) is re-
in this approximation there is no fourth rank tensor compo-placed byR13p (r) in their definitions:
nent in the transition operator.
Using the definitions of the spherical tensor components 1
given by Eq.(21) and constructing the 'D,, and 1°P;, (x1X1]13D,) = —=1,,
states in terms of the radial and angular momentum wave V2
functions, we can derive expressions for the reduced matrix
elements in terms of the following radial integralsandl ,:

i
<X1||T1||13D2>:_E(3|1+|2)-
|1:f R13P2(r)R13DZ(|’)f3df,
0
1
Ti1%D,)=—1,,
dR13D (r) <Xl|| 1” 2> \/g 2

|2:f Rysp,(1) —— r'dr. (29
’ xSy = —ivaly,
We obtain

L1 GalTle® D2>— [(12= D1+ (V3-1
(xallXq1 D2>=E|1,

1
(x1llS2113D )= —— 14,

i
<X2||T1||13D2>:§(|2+3|1), V3
13 _1 i 2
(el Till1°D2) =312, (aall Tsl1%D2) =~ 3 \5—5<811+3|2>. (32

(x2llS1l11°D2)=0,
3.J=0 (1°Dy—xo+7)
(X2l 12D =~ 3 Va1, + &1 ), There is only one multipole amplitude in this case,
5 namely, theM2 ora;:
(X2 S:[1°D2)=0,

ik 1 i
a;=— 5|3 (xalT2l1°Dz) — — (1+k)
(X2l T3l 13D,) = ——= (81,+31,). (30) 277 2m g |3 WOlT2lS s
f
2.3=1 (1°D,—x1+7) X{xollS]|1°Dy) | (33)

There are three multipole amplitudes in this case, namely, _ S
the E1, M2, andE3 ora;, a;, andaj: The reduced matrix elements are again given in terms of the

corresponding radial integralg and|, of Egs.(29), where
Ri3p, is now replaced b)Rlspoz

ik

=- Xq[1°D,)— T,[1°D

(xallXall 2) 2\/1—0m xall T4l 2) , i \/E . L \/?
(Xol T2ll1°D)=(3V5+ 21+ (F—35VF)l2. (39

i ik
+ 4Tom (x1|T11°D2)— om (15 Next we derive the expressions for the decay rates. Using

4v10m Eq. (11), the probability of transition after timeto the spe-

cific final helicity stateso, u is given by
X(xalSill1°D2) |,

2
e
PLon(D=To(D[? =5y = (wpp) )AL

V(r,u
ik [3 (alTal17D) i (14 4) inP[ ( )/2]t
ik L o « Sl -

2m V5|3 \tiz Y x|D3 - M(¢'0'_¢)|2 [(wi)w:)BA)/Bz]z

!

a2:_

X(x1lIS)11°Dy) |, (35

The transition probability integrated over all the directions of
the out-going photon and over a small but finite energy
spread of the photon and summed over the final helicity
stateso and u is

L T,/1°D 31
az= 2m\/—5<X1H 3 2)- (31)
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2

e
P~ gy ohol” [ | 3 A7 0%, (00—
1 sirf[(o—wap)/2]t  V
> (0—wnp)2  (2m)° w’dw dQ. (36)
Using the fact thaf10]
[ 1D2o0-oa0= 1T @
mm’ L (2J+1)°
Eq. (36) for larget (t>1/w,g) becomes
eZ
(t)_ (2 )3 (Q))IA\B)Z (2 |A )(wAB)Wta
(38)

where

> ALP=2 |
ou a

A+ A

=23 [A3P=23 |72 [
(39)

So the transition probability per unit time for largbecomes

P(t) 24
WJ:T (E _a(wAB) wABE la;’|?, (40
where« is the fine-structure constant:
= ¢ 41
a_47T' (4D

In Eq. (40), whg is the energy difference between the two
states andw,g is the energy of the actual emitted photon
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2 (e \?
W(13D,—13%P;+ )= 3 (;q) a(wpp)’wap

2 kK
x| 13- g 14(1o+31y)

(43

2k ,
- (1)1

W(13D,—13P,+ y) is nonzero only to ordek?/m?, and it
is equal to

W(13D,—1°%Py+7y)

_4(eq 2

2 | 2 112
== a
5| %e a“(wpp) wAB| 2|

4 2 k2
:2—5(%> a(w!’-\B)ZwABW[%(l"_K)ZI%
RGN+ E-E)1,2. 49

B. ¢/(3770—13%P;+y

Let us assume that/(3770) and |/ (3689) are a linear
combination ofl1°D,) and |2 3S)) states. That is,

|y"(3770)=a’|13D,)—b'[23S,),

|'(3689)=a’|23S,)+Db’'|13D,), (453
wherea’ andb’ are real coefficients with
a'’+b'?=1 (45Db)

We should expeca’~1 and |b’|<1. Using a calculation
similar to what we used for 4D,— 1 3P;+ y, we obtain the
following results.
1. /(3770)-1°P,y+y
There are three multiple amplitudes in this cdsg, M2,

which takes into account the recon energy of the quarko-@ndE3. We will call thema;, a;, anday:

nium. In potential modelsa anda are of orderk/m or

v?/c? compared t@;’ when it is nonzero. So to first order in

k/m or v?/c? we only need to keep;’
mation

. So in this approxi-
4 (e,\?
W(1°D,—1%P,+7)=¢ (;q) a(wpg)?waplag|®

2 [e4\?
=1—5(€q) a(wIAB)ZwAB

X |§+5Lm |l(|2+3|1)}, (42)

correct to first order irk/m. In the same approximation,

5[ a
aiz\/—— — I,+b'l;
5v2

3

k (a'/5v2)(1,+615)+b'l]
20m  (a'/5v2)15+b'l;

, ik fa" i v2a' | .-
ay=— | == s+ 5 —— 1p=b'1 |,

2m |10 2(
2 k ! ! !
gaa (3l4+815).

1+ k)

a3=75 (46)

The radial integrald;, 15, 15, andl, are defined as
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I k v2a'(1,+615)+b'l}
Il=f r3drRysg (r)Ry3p (1), a'=Lvza'll+b'1)| 1— 4 2 3|
0 1 J 1 3( 2 l) 20m \/?a.,lé"f‘b,Ii
(51)
I’=Jwr3drR 3p.(NRy3p (1),
2 Jo 1 1R The decay rate to ordédd/m is given by
, o0 4 dR23Sl(r) 4 e 2
|3= jo redr —dr R13PJ(r). W((//"—>XO+ .},):2_7 Eq a(wlAB)ZwAB(‘fzarlé_i_brli)z
o dRy3p. (1) k v2a'(l,+615)+b'l;
= 4qp —+ ° x| 1—- . 52
|4 J’O r dl’ dr Rl3pj(r). (47) 10.n \/Qa’lé-}—b’li ( )

To first order in k/m, the decay rate for the process L L
J/'—13P,+yis given by the expression C.1Dy—17Pity

From angular momentum and parity conservation, there
are three multipole amplitudes in this cagd,, M2, andE3

W(" = x2t+7) e ) : : o
ora;, a,, andas. Applying Eq.(1) to this specific case, we
20 [ e 2 o a’ 2 have the following expressions for them:
=57\ a(wap)“wap 5_‘/2|2+b'|1
. \F k G,
Kk (a'/5v2)(14+615)+b'l} = V3 G 1t 55, 10735, )|
X|1— . (48
10m  (a'/5v2)1,+b'l;
, ik
2. Y/(3770)>1%P, +y &=~ 50m G
There are only two multipole amplitudes in this case,
namely,E1 andM2 ora; anda;: 1 K
a;=——= — (3G,+8G,). (53
3 35\/1_0 m ( 2 1
1 !
ay=- ‘73 (5 I,—b '1) The decay rate to first order kim is given by
Kk (a'V2)(1,+61p)—Db'1] in 41 8 (ea)” |,
x| 1— 4 2 3 W(l D2*>1 P1+’y):l_5 E CY((,UAB) wABG:L
20m  (a'Iv2)I,—b'l}
x| 1+ 3k G
, ik R v2 o m  10m G;
azz—ﬂﬁ a'l,+i(1+«k) Ta|2—§b|l . (54)
49
“9 The radial integral$s; and G, are defined as
To first order ink/m, the decay rate is given by o 3
Gl: JO Rllpl(r)RllDz(r)r dl’,
W("—x1+7)
2 2 o delDz(r) 4
4 eq I \2 a’ , , GZZJ Rllpl(r) d— redr. (55)
=9l ®(@rs)@as 5'2_b,|1 0 '
k (a'/vV2)(1,+615)—Db'l} Il. MULTIPOLE AMPLITUDES AND THE DECAY
X1 1-— 10m ; ; — . (50 RATES IN THE PARITY-EVEN TRANSITIONS
(a'v2)l=b'ly 1'D,—n 3S;+y and 13D,—n 1S+ y (n=1,2)

3. /(3770)1 %P+ Following the treatment given previous[$—7], we can
' oTY write the parity-even transition amplitude of the one-photon
There is only one multipole amplitude, namely, tB&  transition of quarkonium between spin-singlet and triplet
amplitude ora’. It is a pureE1 transition: states as
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1 p2 1 . . a
e(t) \/T |<A| — (kXSa) S 1+ — om R—g (k r) +ik — 4m (k~r)8a-(8>< p)
€ 1 U@ R i(0—wap)t’ 447
—WFT(k I') (SXI’)+2 3 (8 p)k (SXp |B>|j At dt’, (56)
|
where By angular momentum conservation,
c§:§1_§2 (57)

V=0— MW, (60)

and$; ands, are the spin operators of the quark and anti-
quark in the center-of-mass frame where the total momenturwhere

P is zero. In Eq.(56) we have only retained terms propor-

tional toS=§; —$, as they alone can connect the spin singlet o=+10-1, u==*1 (61)
and triplet states. The only nonrelativistic term in the transi-

tion operator of Eq(56) is the term involving “1” in the  gecause of parity invariance,

first term. Obviously, this term does not contribute between

the D and S states since the spatial wave functions are or-

thogonal. But if there is mixing betweeis; and®D; states, Av=A, (62)
it can contribute. All the other terms in the transition opera-
tor are of relative ordev?/c?. So to the extent we can ne-
glect the mixing betweeRS,; and®D, states, all the nonva-
nishing multipole amplitudesM1, E2, and M3 in the
transition 1'D,—n 3S,+vy (n=1,2 are of relative order
v2/c®. Also, the E2 amplitudes in £D,—n 1S+ 7y (n A=A, =+A
=1,2) are also of ordev?/c?.

We will call the three independent helicity amplituda$,
Al, andAj:

A 1'DP-n 384 y(n) (n=1,2) A1=Ao-1= T Aoy,
As before, let us assume that thé0l, state is formed at
rest inpp collisions. Let then 3S; state(y or /) and the
photon y be emitted in thetz and —z directions, respec-
tively. The component of the angular momentum'df, in ~ These helicity amplitudes are related kb1, E2, andM3
the direction ofz is calledr. The helicities ifn 3S; andyare ~ multipole amplitudesa;, a;, and a; by the orthogonal
calledo and u, respectively. The matrix element of the tran- transformation
sition amplitude of the process!D,(v)—n 3S;(o) + y(x)

Ag=Al;1=+Ay. (63)

in Eq. (56) in this kinematical configuration is calleél,,,, 8 2k+1 12
whereo=+1,0,-1 and u==*1. Equation(56) in this kine- E (Ly—1lk—1;2v)
matical configuration can be written as k=
3
t ) = —1)%*"ra(k1|1,1- v;2v). 64
e i(w—wpp)t dt’. (58) IZl ( ) k< | v V> ( )

ez(t) \/_ ()',u

If charmonium in then 351 state is moving in an arbitrary
direction (6,¢) with momentumg( 6, ¢) and y in the oppo- )
site direction with momentum- 3, the transition amplitude A/l 2

in this general case will then become Z 2 lal® 69

As before, since the relation in E@4) is orthogonal,

Te()=

D7, (¢ 0,_¢)ftei<wwAB>t'dt/' In any potential model, to order*/c? we have an explicit
0 expression for the helicity amplitude, which can be obtained
(59  from Eq.(56) by putting

eq
W ou

R R A 1 .
k=—kz and g,=&_,;=—— (Xx—iy), (66)
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2

A=A’ =(1v—1 I8k 'O——Ek2 2 +ik2 0 J(3x SX
v V*l,*l_< 14 |‘/2 X ) 2m 2m 8 z ‘/_ 4m2 Z[( p)x I( p)y]
eqk 1au<°> 2 3 gk 3 , ]
T AT H(SXO)=H(SXP)y}+ 5 (P 1Py (SXP)el2v). (67)

In order to write the helicity amplitude in Eg67) in terms of the multipole amplitudes using E4), we will express the
operators in the matrix element of E@7) in terms of the irreducible spherical tensor componéh@. For this purpose we
define the following highest weight spherical tensor components:

M=p. (SXP)s, Qu=X(SXT),,

k p? -
Mp=| 1+ om W) Sty Qa=Xi XSy L= X (SXP) s,
Liu={(SXP)xX},, Qu=r%S., Qu=[(Sxd)xd],. (69)

The other components of the above eight spherical tensor operators can be obtained by meaf@3pfIEderms of these
spherical tensor components, the helicity amplitude of (@) takes the form

11 M N ik3 ik® . k? . ik 19U T
A,=(lr— | 1-1 40’nQ -17 ﬁQlfl m 11t 8v/Im A2 T ar Q1-1 m 1-1|2v)
b1 S, K L M a1 g, on),
v—1l —— g = _ v v— v
o3 2 4amE T ar 2-17 5am 214\/?m 2-1 \/— 3-1
(69
|
Using the Wigner-Eckart theorem {4 ik iK3 iK3 , K2 ]
a‘l_ — + 4(]“ Ql_ an Ql+ 8\/§m2 1
(1r=1|Re12vy=(Lr— 1]k, ~1;20)(1|R?), (70) K 14U ik
+ - 1_ Hl 2 y
8v2m2r or 4v2m
we can write Eq(69) as
, \F Ak g k 15’U(0)Q fszQ
a = — j— — —
3 2 N5 2v2m® 2 4vam?r ar <% 24m <?
Al =k§:‘,l (Ly—1lk,—1;2v)(1|R{|2), (72) 2
+ L,(2),
4v2m?
whereRy is the appropriate symbol for eakhwhich can be _
read off from Eq.(69). Comparing Eq(71) with Eq. (64), ol \ﬁ 10— ik3 Qi 2 73
we obtain 3 7 4\/1_5m 3 '
172 By explicitly calculating the matrix elements of specific
a{<=(— (1|RJ2), k=1,2,3. (72) spherical tensor components using explicit wave functions
2k+1 for the 1'D,, andn %S, states and then using the Wigner-

Eckart theorem, we can evaluate the different reduced matrix

elements in terms of integrals involving the radial wave
We have the following explicit expressions for the three mul-functions of the D, and then 3S; states. In this way we
tipole amplitudesM 1, E2, andM3 ora;, a5, andaj: obtain
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!

ik
~ 1om (J1+ 35+ I3+ 3,—12b]y),

a1:
tk > Ji+ ! J ! Js+ ! J
aH=—7— | — —— e —— ,
2 2m 6\/§ 1 \/6 2 \/E 3 \/F) 4
o ik
a3=—6—mJ1, (74)

where b is the mixing coefficient between the 3S; and
1°D, states in the physical states of charmonium, which ar
identified asn S, states. The dimensionless integrals
(i=0,1, .., are given by the expressions
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1 (= dan 3Sl(r) 1 dR, 3Sl(r) R 2
Jer‘Wfo arzZ dr 11p,(r)redr,
1 (= U@
Ja=5 fo Ry, (1) —— Ryp,(Nridr. (79

Since the radial integral is quite large compared to other

J;, even a small mixing betwean®S, and 1°D, can lead to

a significant contribution frond, to the M1 amplitudea; .
Next, we derive the expression for the decay rate. Using

Eq. (59), the probability of transition after timeto the spe-

Sific final helicity stateqo,u) is given by the expression

2

e
i} Pou()=[Te()?=50= A, %D, .(8,6,~ $)|?
Jo= | Rysp,(NRy1p (r)r&dr,
0 1 2 t , 2
X fe'(“”“’AB)t dt’ (76
V2 (= . 0
lef) k f R 3s (M) Ry1p,(r)ridr,
0 The transition probabilityafter timet) integrated over all the
K e dR,3s(r) directions of the outgoing photon and over a small but finite
Jo=o— f s Ry 1. (r)ridr, energy spread of the photon and summed over the final he-
2m Jo dr 2 licity stateso and u is
|
2 .
e 1 sif[(w—wap)/2]t V
=_9d 1 12]1p2 _gy]2 = 2
P05y | (2 A )'DV'“‘“(¢'6’ O o w2 (2mp @ % 40
2 . .
e (4w 1 Sin[ (w— wap)/2]t 47\ 1 Sir?(xt)
L N i 12 — a2l 12
2 ( 5 ) 2y 2 A / [(o—wp2Z 3 e‘*< 10> 2y 22 1A | S @ anmx

2

5

<

1 e
WZEV |A;|2Wt(wAB):%zk lag|4(wap)t.

(77

So the decay rate or the transition probability per unit time is

given by the expression

PO)_4

W(11D2—>n331+y)=t 5

eq)?
(E) awABik: |a|2|21

(78)

where a=e?/4r is the fine-structure constant. Using Eq.
(74), this becomes

B. 1°D,—n Sy+y
By angular momentum and parity conservation, there is

only one radiative multipole amplitude in this case, namely,
the E2 amplitude. We will call itay :

1

1k
3v2

2 _Eﬁ

! !

5= —

>
6 V2

,_
1

1
Ji+—J5|, (80
3T 5 Ve (80)

where the dimensionless integrdls (i=1,2,3,9 can be ob-

tained from Eq.(75) with the replacement®; 1s — R 15

W(1'D,—n 35+ y)

2 2
1 (e ki1 )
:% E awap E §|J1+J2+J3+J4_123J0|
+185J+1J 1J+1J2+2|J|2
6v3 1 \/6 2 \/H) 3 \/E 4 1l |-
(79

In Eq. (79), k is the same as,g.

and Ry1p,—R13p,. The decay rate is given by the formula

W(13D,—n 1S+ y)

2
—g(% awpplaj|®
1 (e4)? k\2
:2_5<E) awg m)
! I ! 1 !
X 6\]1_3%\]2_5\]34_5\]4 . (81)

In Eqg. (81), k is the same asw,g, the photon energy.
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IV. NUMERICAL EVALUATION OF THE MULTIPOLE TABLE VI. Predicted energy levels of charmonium in the GJRS
AMPLITUDES AND THE DECAY RATES IN THE potential mode[3]. Parameters used ane.=2.208 GeV,u=2.58
NONSINGULAR POTENTIAL MODEL OF GUPTA, GeV, a;=0.313,A=0.181 GeV}, andB=0.245. The experimental

JOHNSON, REPKO, AND SUCHYTA data are taken from Ref12].

The nonsingular potential model of Gupta, Johnsongiate Predicted Experiment
Repko, and Suchyt4dGJRS has been quite successful in energy(MeV) data(MeV)
predicting the energy spectrum of charmonium andEie .
decay rates o/’ and they; states. The nonsingular nature of 1 S1 3097 3096.88:0.04
the potential makes it possible to obtain the wave functiong “So 2987 2078.81.9
by a nonperturbative treatment. This is important for the2 S, 3686 3686.06:0.09
evaluation of multipole transition rates, since in these calcu2'So 3620 3594.:5.0
lations the relativistic corrections to the wave functions arel *P, 3554 3556.170.13
usually more significant than that to the transition operatord *P, 3512 3510.530.12
except in the case when the nonrelativistic transition operatat 3P, 3412 3415.+1.0
is zero. The details of the model and the specific form of thel 'p, 3527 3526.140.24
Hamiltonian used is given in Ref3]. We solved for the 1°%p, 3843
eigenvalue problem of the full Hamiltonian, except for the 13p, 3819
tensor term, by a variational calculation, with the trial radial 1 3p, 3789 3769.9+ 2.5
wave function as 11p, 3820

9 n+/ ;
r 3 New result announced by the E760 gro[48] is 2987.9-3.1
R(r)=nz0 Cn(ﬁ) e "R, @82 Mev.

they are detected as resonancepjfncollisions, from their
branching ratios and angular distributions of decay products
we can measure the decay rates and the multipole amplitudes
of the various radiative transitions. In previous wofs2]

- _/re one of the authorgK.J.S) together with Ridener has shown
(B-VpH)=(r-VH). (83) how one can obtain the radiative multipole amplitudes from

The coefficients,,'s were determined by minimizing the en- the experimentally measurable qngular distributions. In this
ergy in the appropriate way. We used the same values for tHe@per we have derived expressions for the decay rates and
parameters in the Hamiltonian as GJF& We were able to  thé multipole amplitudes which are valid in any potential
reproduce more or less their predicted energy spectrum, theifodel and which are correct to relative ordéfc?. In po-
values for theE1 decay rates off’ and y;(J=2,1,0), and teznu;al models the higher ml_JItlpole amplitudes are of order
the leptonic decay rates gfandy’. Our predicted results for v°/c” relative to theE1 amplitudes and hence are expected
the multipole amplitudes and the decay rates for the decay®® be smaller. In particular, thi4 amplitude in the decay
13D,—1%P;+y (3=2,1,0, 13D,—nSy+y (n=1,2, 1°D,—=1°P+y §h02uldz vanish in any potential model cor-
1'D,—»1'P;+y, 1'D,—n3%S;+y (=12, and Tectto first order i /c. This result is due to the fact t_hat
1°D;—1°%P,+y (J=2,1,0 are given in Tables I-V, re- th|_s_order there is no fourth rank tensor component in the
spectively. The predicted energy spectrum, including thos&ansition operator. . . _
of the D states, are given in Table VI. In Tables I-IV we We have also numerically evaluated our expressions in
also give the relative strengths of the higher multipole amihe successful nonsingular potential model of Gupta,
plitudes compared to the predomindft amplitude, which Johnson, Repko, and Suchy&. Our_results are tabulated in
is nonzero even in the extreme nonrelativistic limit. Tables 1-V. From Tables 1-V we find that the most promi-
In calculating the photon energies in the tables, we use@ent decays of iDzl&md 1'D, are the one-photon transi-
the experimental values of the masses of the states whene®ns into 1°P, and 1 P, states respectively. The transitions
they are availablg12]. When the masses are not known INto the 1'S, and 1°S, states also have significant rates.
experimentally we used the predicted values in the GJRESPecially the transition of 3D, into 1S, is worth noting.

where/ is the orbital quantum number. The coefficients
and the parameteR are variational parameters. The param-
eterR was determined by satisfying the virial theorem

model[3]. It is a pureE2 transition which has a rather large rate and
hence a significant branching ratio.
V. SUMMARY AND CONCLUDING REMARKS We have also corrected some errors in the decay-rate for-

mulas of Refs[5] and[11]. Our numerical estimate for the
If the potential models are at least approximately right intransition rate for the decay’D,— 1 3S; + y is now signifi-
predicting the energy spectrum of charmonium, th’eD; cantly smaller than the value of about 62 keV we reported in
and 1°D, states should have a narrow width. If and whenRef. [5].
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