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We derive expressions for the radiative multipole amplitudes and the total decay rates of heavy quarkonia in
the transitions 13D2→1 3PJ1g ~J52,1,0!, 1 3D2→n 1S01g ~n51,2!, 1 1D2→1 1P11g, 1 1D2→n 3S11g
~n51,2!, and 13D1→1 3PJ1g ~J52,1,0!, in an arbitrary potential model correct to orderv2/c2. We also
numerically evaluate these expressions for charmonium in the nonsingular potential model of Gupta, Johnson,
Repko, and Suchyta.@S0556-2821~97!04201-X#

PACS number~s!: 13.20.Gd, 13.25.Gv, 13.40.Hq

I. INTRODUCTION

The D states of charmonium are quite interesting. Even
though they are all above the charm threshold, the 1D2 and
the 13D2 states are expected to have narrow widths since
their strong decays toD1D̄ are forbidden by parity conser-
vation and their predicted masses are such that their decays
into D1D̄* or D*1D̄ are forbidden by energy conserva-
tion. These states can be directly formed inp̄p collisions of
the proposed experiments at Fermilab by the E760 group.

Recently one of the authors~K.J.S.! together with Ridener
@1,2# has derived model-independent expressions for the an-
gular distributions of the decay products of theD states pro-
duced as resonances inp̄p collisions. These expressions
@1,2# give the angular distribution in terms of the radiative
multipole amplitudes. They are independent of any dynami-
cal model and are based only on the general principles of
quantum mechanics and symmetry. When these angular dis-
tributions are measured experimentally, our expressions@1,2#
will enable one to extract the radiative multipole amplitudes
from the measured angular distribution and we can then
compare them with the predictions of various theoretical
models. In this paper we derive expressions for these multi-
pole amplitudes in an arbitrary potential model, correct to
order v2/c2. We give our expressions in terms of the inte-
grals involving the radial wave functions of the states. We
also calculate the total decay rates of these radiative transi-
tions in terms of the multipole amplitudes. We then evaluate
our expressions in the nonsingular potential model of Gupta,
Johnson, Repko, and Suchyta~GJRS! @3#, which has been
quite successful in predicting the energy spectrum of char-
monium and theE1 decay rates in the transitionsc8→xJ1g
andxJ→c1g ~J52,1,0!. The numerical results in the GJRS
model are given in Tables I–V. The format of the rest of the
paper is as follows. In Sec. II we derive expressions for the
multipole amplitudes and the total decay rates in the parity-
odd transitions 13D2→1 3PJ1g, 1 3D1→1 3PJ1g ~J
52,1,0!, and 11D2→1 1P11g. In Sec. III we consider the
corresponding problem for the parity-even radiative transi-
tions 13D2→n 1S01g, and 11D2→n 3S11g ~n51,2!. In
Sec. IV we numerically evaluate the multipole amplitudes
and the total decay rates in the GJRS model@3,4#. Section V

gives a summary and concluding remarks. Even though the
radiative decays of 11D2 was treated by one of us~K.J.S.!
previously@5#, we redo the calculations here to correct some
errors in the expressions given there@5#. Also, we reevaluate
the expressions in the new nonsingular potential model of
GJRS where the energy spectrum and the wave functions are
calculated in a nonperturbative way using a variational cal-
culation of the full Hamiltonian.

II. MULTIPOLE AMPLITUDES AND THE DECAY RATES
IN THE PARITY-ODD TRANSITIONS 1 3D2˜1 3PJ1g,

1 3D1˜1 3PJ1g „J52,1,0…, AND 1 1D2˜1 1P11g

We assume that the heavy quarkonium~cc̄ or bb̄! to a
good approximation can be thought of as the bound state of
a quark and an antiquark bound by an arbitrary potential. In
the usual model the potential will have a confining piece as
well as a perturbative QCD part. In any such model we have
shown previously@5–7# that the parity-odd transition ampli-
tude of the one-photon radiative transitionA→B1g could
be written@5,6# as

T0~ t !5
eq

A2Vv
vABI
I ^Bu«̂a •H rW2

i

4mk
@~kW•rW !2pW 2 i ~kW•rW !kW

12~kW•rW !~SW 3kW !~11k!2k2~SW 3rW !

3~11k!#J uA& IE
0

t

ei ~v2vAB!t8dt8, ~1!

where the statesuA& I and uB& I are eigenstates of the internal
Hamiltonian @5–7# with energiesEA

I andEB
I , respectively.

The internal Hamiltonianh is related to the HamiltonianH0
of the isolated quarkonium by the relation

H05Ah21P2, ~2!

wherePW is the overall or center-of-mass momentum of the
quarkonium and

vAB
I 5EA

I 2EB
I , ~3!
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rW5 lim
P→0

~rW12rW2!, ~4!

pW 5 lim
P→0

pW 15 lim
P→0

~2pW 2!, ~5!

SW 5sW11sW2 , ~6!

wheres1 ands2 are the spin-
1
2 operators of the quark and the

antiquark. Equation~1! takes into account the full effect of
the recoil of the quarkonium after the emission of the photon,
to order v2/c2. So there is a difference betweenvAB and
vAB
I . Here vAB

I is just the energy difference of Eq.~3!,
where as thevAB is the energy of the emitted photon includ-
ing the recoil effect. When energy conservation holds as it
will for large t,

k5v5vAB5EA2EB , ~7!

whereEA andEB are the energies@5–7# of the quarkonium
~including the energy due to the center-of-mass motion! in
the statesA andB. The symbolseq , m, andk represent the
charge, the mass, and the anomalous magnetic moment pa-
rameter of the quark. We put\5c51 throughout this paper.
Since we use the relativistic center-of-mass variables in the
interaction Hamiltonian, the low energy theorem in Compton
scattering and the Drell-Hearn-Gerasimov sum rule for com-
posite systems will be satisfied and Eq.~1! takes into account
all first order~of orderv2/c2! relativistic corrections. In Eq.
~1! the first termrW is the dominant term which comes from

the commutator term@rWm ,H0#•AW (rWm ,t) ~m51,2! in the in-
teraction Hamiltonian where in the expansion of the vector

potential AW (rWm ,t) we replaceeik
W
•rWm by 1. Recall that the

commutator term in the interaction Hamiltonian includes all

terms linear inAW (rWm ,t), obtained from the minimal replace-

mentpW m→pW m2(em /c)AW (rWm ,t). So this includes all relativ-
istic correction terms which are spin independent. This
would mean thatvAB

I
•rW includes most of the relativistic cor-

rections when we substitute forvAB
I the experimental energy

difference, and foruA& I and uB& I , we use the eigenfunctions
of the full Hamiltonian including the relativistic corrections.
The second and third terms also come from the commutator

term, when the exponentialeik
W
•rWm is expanded to second or-

der in (kW•rWm). These are the so-called ‘‘finite size correc-
tions.’’ The fourth and fifth terms in Eq.~1! come from the
spin-dependent relativistic correction terms in the interaction
Hamiltonian.

Let us apply Eq.~1! to calculate the multipole amplitudes
and the decay rates of the parity-odd transitions
1 3D2→1 3PJ1g, 1 3D1→1 3PJ1g ~J52,1,0!, and
1 1D2→1 1P11g.

A. 1 3D2˜1 3PJ1g „J52,1,0…

Let us assume that the 13D2 state of charmonium is
formed at rest inp̄p collisions. Let thexJ(1

3PJ) and the
photong be emitted in the1z and2z directions, respec-
tively. The component of the angular momentum of 13D2 in
the 1z direction is calledn. The helicities ofxJ andg are
calleds andm, respectively:

m561, s52J,2J11,0,...,1J. ~8!

TABLE I. Multipole amplitudes and the decay rates in the radiative transitions 13D2→1 3PJ1g ~J52,1,0! in charmonium using the
GJRS model@3#. I 1 and I 2 are the radial integrals.a18 , a28 , anda38 are the multipole amplitudes. We also give the multipole amplitude
relative strengthsua28/a18u and ua38/a18u.

Decay

Photon
energy
~MeV!

I 1
~GeV21!

I 2
~GeV21!

a18
~GeV21!

a28
~GeV21!

a38
~GeV21! ua28/a18u ua38/a18u

Decay
rate

~keV!

1 3D2→x21g 255 2.72 24.00
1.014

2i0.025 0.014 0.025 0.014 59.4
2i0.007

1 3D2→x11g 294 2.44 23.18
0.844 0.029

20.005 0.058 0.006 148
2i0.009 2i0.039

1 3D2→x01g 383 2.27 22.74 0.062 0.86
1i0.037

TABLE II. Multipole amplitudes and the decay rates in the radiative transitions 13D1→1 3PJ1g ~J52,1,0! in charmonium using the
GJRS model@3#. I 1, I 2, I 3, and I 4 are the radial integrals.a18 , a28 , anda38 are the multipole amplitudes. We also give the multipole
amplitude relative strengthsua28/a18u and ua38/a18u.

Decay

Photon
energy
~MeV!

I 1
~GeV21!

I 2
~GeV21!

I 3
~GeV21!

I 4
~GeV21!

a18
~GeV21!

a28
~GeV21!

a38
~GeV21! ua28/a18u ua38/a18u

Decay
rate

~keV!

1 3D1→x21g 228 22.19 2.72 2.04 24.20 0.296
0.019

0.014 0.080 0.047 4.64
2i0.014

1 3D1→x11g 267 21.84 2.46 1.15 23.38 20.964
0.024

0.037 79.5
2i0.026

1 3D1→x01g 357 21.63 2.29 0.71 22.94 1.042 225
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By angular momentum conservation in the1z direction,

n5s2m. ~9!

The matrix element of Eq.~1! in this particular kinematic
configuration is called the helicity amplitudeAsm8J 5As,s2n8J

and the transition amplitude of Eq.~1! in this configuration
can be written as

T0,z~ t !5
eq

A2Vv
vAB
I Asm8J E

0

t

ei ~v2vAB!t8dt8. ~10!

In general, if thexJ is moving with momentum1pW in the
~u,f! direction andg with momentum2pW , the correspond-
ing transition amplitude can be written as@8,9#

T0~ t !5
eq

A2Vv
vAB
I Asm8J Dn,s2m

2* ~f,u,2f!

3E
0

t

ei ~v2vAB!t8dt8, ~11!

whereDmm8
J (a,b,g) is the WignerDJ function @10# defined

by the equation

^JmuUR~a,b,g!uJm8&5Dmm8
J

~a,b,g!, ~12!

whereUR is the unitary rotation operator anda, b, andg are
the Euler angles of rotation@10#. Equation~11! leads to Eq.
~10! since

Dn,s2m
J ~0,0,0!5dn,s2m . ~13!

The angular momentum helicity amplitudeAsm8J is indepen-
dent of all angles, and all the dynamics of the problem is
contained in it. Obviously, the expression forAsm8J will de-
pend on the dynamical model.

By parity invariance@9# of the transition operator, we
obtain

Asm8J 5~21!J11A2s2m8J . ~14!

We will label the linearly independent helicity amplitudes as

As8
J5As18J5~21!J11A2s218J , s52J,2J11,...,1J,

~15!

with the restriction

22<n5s2m<12 and m561. ~16!

This would mean that forJ52, s cannot take the value22.
So for J52 there are four linearly independent helicity am-
plitudes, forJ51 three, and forJ50 only one. These inde-
pendent helicity amplitudes are related to the multipole am-
plitudesak8

J by an orthogonal linear transformation

As8
J5 (

Max~k5u22Ju;1!

J12

ak8
JS 2k11

5 D 1/2^k21;Jsu2,s21&.

~17!

Since the relation in Eq.~17! is orthogonal,

(
s

uAs8
Ju25(

k
uak8

Ju2. ~18!

Using Eq.~1!, we can write an expression for this helicity
amplitude in an arbitrary potential model. We get

As,m5618J 5^Jsu6
1

&
~x6 iy !2

i

4mk
k2z26

1

&
~px6 ipy!2

2i

4mk
~2kz!S 6

1

&
D ~ x̂6 i ŷ !•~SW 3kW !~11k!1

i

4mk
k2S 6

1

&
D

3~ x̂6 i ŷ !•~SW 3rW !~11k!u2n&. ~19!

In writing Eq. ~19! we assumed that the photon is moving in
the2z direction with helicity61, so that the momentum and
polarization vectors of the photon become

kW52kẑ, «̂a56
1

&
~ x̂6 i ŷ ! for m561. ~20!

In order to write the helicity amplitude in Eq.~19! in
terms of the multipole amplitudes using Eq.~17!, we should
express the operators in the matrix element of Eq.~19! in
terms of irreducible spherical tensor operator components.
For this purpose we define the following highest weight
spherical tensor components:

TABLE III. Multipole amplitudes and the decay rate in the radiative transition 11D2→1 1P11g in charmonium using the GJRS model
@3#. G1 andG2 are the radial integrals.a18 , a28 , anda38 are the multipole amplitudes. We also give the multipole amplitude relative
strengthsua28/a18u and ua38/a18u.

Decay

Photon
energy
~MeV!

G1
~GeV21!

G2
~GeV21!

a18
~GeV21!

a28
~GeV21!

a38
~GeV21! ua28/a18u ua38/a18u

Decay
rate

~keV!

1 1D2→1 1P11g 281 2.67 23.64 2.190 2i0.017 0.012 0.008 0.005 288
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T335x1
2 p1 , T225x1~xW3pW !1 ,

S225x1S1 , x115X1 ,

T115A 2
5 r

2p1 , T118 5A2
5x1~xW•pW !,

S115S1 , S118 5~xW3SW !1 , ~21!

where

A657
1

&
~Ax6 iAy!. ~22!

The other components of the spherical tensors can be ob-
tained from the commutation relation

@J2 ,Tkq#5Ak~k11!1q~12q!Tk,q21 . ~23!

Using Eqs.~21!–~23!, we can write the helicity amplitude of
Eq. ~19! as

As18J5As8
J5^Jsu2X111

ik

2mA10
~T112

1
2T118 !1

ik

m
T21

1
ik

2m

1

A15
T311

k

2&m
~11k!S21

1
ik

2m
~11k!S118 u2n&. ~24!

The Wigner-Eckart theorem@10# tells us that

^JsuRk1u2n&5^Jsuk1;2n&^JiRki2&, ~25!

whereRk1 stands forX11, T11, T118 , T21, T31, S21, or S118 ,
multiplied by the appropriate factors. Using Eq.~25!, Eq.
~24! becomes

As8
J5(

k
^Jsuk1;2n&^JiRki2&. ~26!

Comparing Eqs.~26! and ~17! through the use of the sym-
metry relations@10# among Clebsch-Gordon coefficients, we
get

ak8
J5~21!k11S 2J11

2k11D
1/2

^JiRki2& ~27!

whereRk can be read off from Eq.~24! for various values of
k. The explicit expressions for the multipole amplitudes ob-
tained from Eqs.~27! and~24! are given below for the three
casesJ52,1,0.

1. J52 (1 3D2˜x21g)

There are four multipole amplitudes in this case,E1,M2,
E3, andM4 or a18 , a28 , a38 , anda48 , respectively:

a1852A 5
3 F ^x2iX1i1 3D2&2

ik

2A10m
^x2iT1i1 3D2&

1
ik

4A10m
^x2iT18i1 3D2&2

ik

2m
~11k!

3^x2iS18i1 3D2&G ,
a2852

ik

2m F ^x2iT2i1 3D2&2
i

&
~11k!^x2iS2i1 3D2&G ,

a385A5

7 S ik2mD 1

A15
^x2iT3i1 3D2&,

a4850. ~28!

TABLE IV. Multipole amplitudes and the decay rates in the radiative transitions 11D2→n 3S11g ~n51,2! in charmonium using the
GJRS model@3#. J0, J1, J2, J3, andJ4 are the radial integrals.a18 , a28 , anda38 are the multipole amplitudes. We also give the multipole
amplitude relative strengthsua28/a18u and ua38/a18u.

Decay

Photon
energy
~MeV!

J0
~GeV21!

J1
~GeV21!

J2
~GeV21!

J3
~GeV21!

J4
~GeV21!

a18
~GeV21!

a28
~GeV21!

a38
~GeV21! ua28/a18u ua38/a18u

Decay
rate

~keV!

1 1D2→c1g 639 20.207 0.215 20.233 20.193 0.093 i0.004 2i0.029 2i0.010 6.64 2.41 0.699
1 1D2→c81g 132 20.084 20.027 0.025 20.162 20.156 i0.002 i0.000 i0.000 0.016 0.164 0.001

TABLE V. Multipole amplitudes and the decay rates in the radiative transitions 13D2→n 1S01g
~n51,2! in charmonium using the GJRS model@3#. J18 , J28 , J38 , andJ48 are the radial integrals.a28 is the
multipole amplitude.

Decay

Photon
energy
~MeV!

J18
~GeV21!

J28
~GeV21!

J38
~GeV21!

J48
~GeV21!

a28
~GeV21!

Decay
rate

~keV!

1 3D2→hc1g 716 0.211 20.227 20.221 0.078 2i0.038 2.21
1 3D2→hc81g 193 20.056 0.050 20.143 20.159 i0.002 0.001
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It is interesting to notice that theM4 amplitudea48 is identi-
cally zero in any potential model correct to orderv2/c2 since
in this approximation there is no fourth rank tensor compo-
nent in the transition operator.

Using the definitions of the spherical tensor components
given by Eq.~21! and constructing the 11D2n and 13PJs
states in terms of the radial and angular momentum wave
functions, we can derive expressions for the reduced matrix
elements in terms of the following radial integralsI 1 andI 2:

I 15E
0

`

R1 3P2
~r !R1 3D2

~r !r 3dr,

I 25E
0

`

R1 3P2
~r !

dR1 3D2
~r !

dr
r 4dr. ~29!

We obtain

^x2iX1i1 3D2&5
1

A10
I 1 ,

^x2iT1i1 3D2&5
i

5
~ I 213I 1!,

^x2iT18i1 3D2&5 1
5 I 2 ,

^x2iS18i1 3D2&50,

^x2iT2i1 3D2&52 1
2A 7

5 ~ I 11
1
14 I 2!,

^x2iS2i1 3D2&50,

^x2iT3i1 3D2&5
2i

7A5
~8I 113I 2!. ~30!

2. J51 (1 3D2˜x11g)

There are three multipole amplitudes in this case, namely,
theE1, M2, andE3 or a18 , a28 , anda38 :

a1852F ^x1iX1i1 3D2&2
ik

2A10m
^x1iT1i1 3D2&

1
ik

4A10m
^x1iT18i1 3D2&2

ik

2m
~11k!

3^x1iS18i1 3D2&G ,
a2852

ik

2m
A3

5 F13 ^x1iT2i1 3D2&2
i

&
~11k!

3^x1iS2i1 3D2&G ,
a385

ik

2m

1

A35
^x1iT3i1 3D2&. ~31!

As before, the reduced matrix elements are given in terms of
the radial integralsI 1 and I 2, but this timeR1 3P2

(r ) is re-

placed byR1 3P1
(r ) in their definitions:

^x1iX1i1 3D2&5
1

&
I 1 ,

^x1iT1i1 3D2&52
i

A5
~3I 11I 2!,

^x1iT18i1 3D2&5
1

A5
I 2 ,

^x1iS18i1 3D2&52 i&I 1 ,

^x1iT2i1 3D2&5
1

A42
@~122A 7

2 !I 11~A 2
721!I 2#,

^x1iS2i1 3D2&52
1

)
I 1 ,

^x1iT3i1 3D2&52
i

3
A 2

35
~8I 113I 2!. ~32!

3. J50 (1 3D2˜x01g)

There is only one multipole amplitude in this case,
namely, theM2 or a28 :

a2852
ik

2m

1

A5 F13 ^x0iT2i1 3D2&2
i

&
~11k!

3^x0iS2i1 3D2&G . ~33!

The reduced matrix elements are again given in terms of the
corresponding radial integralsI 1 and I 2 of Eqs. ~29!, where
R1 3P2

is now replaced byR1 3P0
:

^x0iT2i1 3D2&5~ 2
3A 2

71 17
21 !I 11~ 2

212 1
3A 2

7 !I 2 . ~34!

Next we derive the expressions for the decay rates. Using
Eq. ~11!, the probability of transition after timet to the spe-
cific final helicity statess, m is given by

Pn,sm
J ~ t !5uT0~ t !u25

eq
2

2Vv
~vAB

I !2uAsm8J u2

3uDn,s2m
2 ~f,u,2f!u2

sin2@~v2vAB!/2#t

@~v2vAB!/2#2
.

~35!

The transition probability integrated over all the directions of
the out-going photon and over a small but finite energy
spread of the photon and summed over the final helicity
statess andm is
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PJ~ t !5
eq
2

2V
~vAB

I !2E S (
sm

uAsm8J u2D uDn,s2m
2 ~f,u,2f!u2

3
1

v

sin2@~v2vAB!/2#t

@~v2vAB!/2#2
V

~2p!3
v2dv dV. ~36!

Using the fact that@10#

E uDmm8
J

~f,u,2f!u2dV5
4p

~2J11!
, ~37!

Eq. ~36! for large t (t@1/vAB) becomes

PJ~ t !5
eq
2

~2p!3
~vAB

I !2
4p

5 S (
sm

uAsm8J u2D ~vAB!pt,

~38!

where

(
sm

uAsm8J u25(
s

uAs18J u21(
s

uAs218J u2

52(
s

uAs18J u252(
s

uAs8
Ju252(

k
uak8

Ju2.

~39!

So the transition probability per unit time for larget becomes

WJ5
PJ~ t !

t
5S eqe D 2 45 a~vAB

I !2vAB(
k

uak8
Ju2, ~40!

wherea is the fine-structure constant:

a5
e2

4p
. ~41!

In Eq. ~40!, vAB
I is the energy difference between the two

states andvAB is the energy of the actual emitted photon
which takes into account the recoil energy of the quarko-
nium. In potential models,a28

J anda38
J are of orderk/m or

v2/c2 compared toa18
J when it is nonzero. So to first order in

k/m or v2/c2 we only need to keepa18
J . So in this approxi-

mation

W~1 3D2→1 3P21g!5
4

5 S eqe D 2a~vAB
I !2vABua18u

2

5
2

15 S eqe D 2a~vAB
I !2vAB

3F I 121 k

5m
I 1~ I 213I 1!G , ~42!

correct to first order ink/m. In the same approximation,

W~1 3D2→1 3P11g!5
2

5 S eqe D 2a~vAB
I !2vAB

3F I 122 k

5m
I 1~ I 213I 1!

2
2k

m
~11k!I 1

2G . ~43!

W(1 3D2→1 3P01g) is nonzero only to orderk2/m2, and it
is equal to

W~1 3D2→1 3P01g!

5
4

5 S eqe D 2a2~vAB
I !2vABua28u

2

5
4

25 S eqe D 2a~vAB
I !2vAB

k2

m2 @ 1
8 ~11k!2I 1

2

1u 16 ~ 2
3A 2

71 17
21 !I 11

1
6 ~ 2

212 1
3A 2

7 !I 2u2#. ~44!

B. c9„3770…˜1 3PJ1g

Let us assume thatuc9~3770!& and uc8~3685!& are a linear
combination ofu1 3D1& and u2 3S1& states. That is,

uc9~3770!&5a8u1 3D1&2b8u2 3S1&,

uc8~3685!&5a8u2 3S1&1b8u1 3D1&, ~45a!

wherea8 andb8 are real coefficients with

a821b8251. ~45b!

We should expecta8'1 and ub8u!1. Using a calculation
similar to what we used for 13D2→1 3PJ1g, we obtain the
following results.

1. c9(3770)̃ 1 3P21g

There are three multiple amplitudes in this case,E1,M2,
andE3. We will call thema18 , a28 , anda38 :

a185
A5
3 S a8

5&
I 281b8I 18D

3F12
k

20m

~a8/5& !~ I 4816I 28!1b8I 38

~a8/5& !I 281b8I 18
G ,

a2852
ik

2m Fa8

10
I 281

i

2
~11k!S&a8

5
I 282b8I 18D G ,

a385
1

70
A2

5

k

m
a8~3I 4818I 28!. ~46!

The radial integralsI 18 , I 28 , I 38 , andI 48 are defined as
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I 185E
0

`

r 3drR2 3S1
~r !R1 3PJ

~r !,

I 285E
0

`

r 3drR1 3D1
~r !R1 3PJ

~r !,

I 385E
0

`

r 4dr
dR2 3S1~r !

dr
R1 3PJ

~r !,

I 485E
0

`

r 4dr
dR1 3D1

~r !

dr
R1 3PJ

~r !. ~47!

To first order in k/m, the decay rate for the process
c9→1 3P21g is given by the expression

w~c9→x21g!

5
20

27 S eqe D 2a~vAB
I !2vABS a8

5&
I 281b8I 18D 2

3F12
k

10m

~a8/5& !~ I 4816I 28!1b8I 38

~a8/5& !I 281b8I 18
G . ~48!

2. c9(3770)̃ 1 3P11g

There are only two multipole amplitudes in this case,
namely,E1 andM2 or a18 anda28 :

a1852
1

)
S a8

&
I 282b8I 18D

3F12
k

20m

~a8/& !~ I 4816I 28!2b8I 38

~a8/& !I 282b8I 18
G ,

a2852)
ik

20m Fa8I 281 i ~11k!S 2&3 a8I 282
5

3
b8I 18D G .

~49!

To first order ink/m, the decay rate is given by

w~c9→x11g!

5
4

9 S eqe D 2a~vAB
I !2vABS a8

&
I 282b8I 18D 2

3F12
k

10m

~a8/& !~ I 4816I 28!2b8I 38

~a8/& !I 282b8I 18
G . ~50!

3. c9(3770)̃ 1 3P01g

There is only one multipole amplitude, namely, theE1
amplitude ora8. It is a pureE1 transition:

a185 1
3 ~&a8I 281b8I 18!F12

k

20m

&a8~ I 4816I 28!1b8I 38

&a8I 281b8I 18
G .
~51!

The decay rate to orderk/m is given by

W~c9→x01g!5
4

27 S eqe D 2a~vAB
I !2vAB~&a8I 281b8I 18!2

3F12
k

10m

&a8~ I 4816I 28!1b8I 38

&a8I 281b8I 18
G . ~52!

C. 1 1D2˜1 1P11g

From angular momentum and parity conservation, there
are three multipole amplitudes in this case,E1,M2, andE3
or a18 , a28 , anda38 . Applying Eq.~1! to this specific case, we
have the following expressions for them:

a185A2

3
G1F11

k

20m S 1013
G2

G1
D G ,

a2852
i

20

k

m
G1 ,

a385
1

35A10
k

m
~3G218G1!. ~53!

The decay rate to first order ink/m is given by

W~1 1D2→1 1P11g!5
8

15 S eqe D 2a~vAB
I !2vABG1

2

3F11
k

m
1

3k

10m

G2

G1
G .

~54!

The radial integralsG1 andG2 are defined as

G15E
0

`

R1 1P1
~r !R1 1D2

~r !r 3dr,

G25E
0

`

R1 1P1
~r !

dR1 1D2
~r !

dr
r 4dr. ~55!

III. MULTIPOLE AMPLITUDES AND THE DECAY
RATES IN THE PARITY-EVEN TRANSITIONS
1 1D2˜n 3S11g and 13D2˜n 1S01g „n51,2…

Following the treatment given previously@5–7#, we can
write the parity-even transition amplitude of the one-photon
transition of quarkonium between spin-singlet and triplet
states as
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Te~ t !5
1

A2Vv
I^Au

eq
m

~kW3 «̂a!•SW F11
k

2m
2

p2

2m22
1

8
~kW•rW !2G1 ik

eq
4m2 ~kW•rW !«̂a•~SW3pW !

2
eq
4m2

1

r

]U ~0!

]r
~kW•rW !«̂a•~SW3rW !1

eq
2m3 ~ «̂a•pW !kW•~SW3pW !uB& IE

0

t

ei ~v2vAB!t8dt8, ~56!

where

SW5sW12sW2 ~57!

and sW1 and sW2 are the spin operators of the quark and anti-
quark in the center-of-mass frame where the total momentum

PW is zero. In Eq.~56! we have only retained terms propor-

tional toSW5sW12sW2 as they alone can connect the spin singlet
and triplet states. The only nonrelativistic term in the transi-
tion operator of Eq.~56! is the term involving ‘‘1’’ in the
first term. Obviously, this term does not contribute between
theD andS states since the spatial wave functions are or-
thogonal. But if there is mixing between3S1 and

3D1 states,
it can contribute. All the other terms in the transition opera-
tor are of relative orderv2/c2. So to the extent we can ne-
glect the mixing between3S1 and

3D1 states, all the nonva-
nishing multipole amplitudesM1, E2, and M3 in the
transition 11D2→n 3S11g ~n51,2! are of relative order
v2/c2. Also, the E2 amplitudes in 13D2→n 1S01g ~n
51,2! are also of orderv2/c2.

A. 1 1D 2
„n…
˜n 3S1

„s…1g„µ… „n51,2…

As before, let us assume that the 11D2 state is formed at
rest in p̄p collisions. Let then 3S1 state~c or c8! and the
photong be emitted in the1z and2z directions, respec-
tively. The component of the angular momentum of1D2 in
the direction ofz is calledn. The helicities ifn 3S1 andg are
calleds andm, respectively. The matrix element of the tran-
sition amplitude of the process 11D2(n)→n 3S1(s)1g(m)
in Eq. ~56! in this kinematical configuration is calledAsm ,
wheres511,0,21 andm561. Equation~56! in this kine-
matical configuration can be written as

Te,z~ t !5
eq

A2Vv
Asm8 E

0

t

ei ~v2vAB!t8dt8. ~58!

If charmonium in then 3S1 state is moving in an arbitrary
direction ~u,f! with momentumpW (u,f) andg in the oppo-
site direction with momentum2pW , the transition amplitude
in this general case will then become

Te~ t !5
eq

A2Vv
Asm8 Dn,s2m

2* ~f,u,2f!E
0

t

ei ~v2vAB!t8dt8.

~59!

By angular momentum conservation,

n5s2m, ~60!

where

s511,0,21, m561. ~61!

Because of parity invariance,

Asm8 5A2s,2m8 . ~62!

We will call the three independent helicity amplitudesA28 ,
A18 , andA08 :

A285A1218 51A2118 ,

A185A0218 51A018 ,

A085A21218 51A118 . ~63!

These helicity amplitudes are related toM1, E2, andM3
multipole amplitudesa18 , a28 , and a38 by the orthogonal
transformation

An85 (
k51

3

ak8S 2k11

3 D 1/2^1,n21uk21;2n&

5 (
k51

3

~21!21nak8^k1u1,12n;2n&. ~64!

As before, since the relation in Eq.~64! is orthogonal,

(
n50

2

uAn8u
25 (

k51

3

uak8u
2. ~65!

In any potential model, to orderv2/c2, we have an explicit
expression for the helicity amplitude, which can be obtained
from Eq. ~56! by putting

kW52kẑ and «̂a5 «̂2152
1

&
~ x̂2 i ŷ !, ~66!
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An85An21,218 5^1,n21u
ieqk

&m
~Sx2 iSy!S 11

k

2m
2

p2

2m22
1

8
k2z2D1

ik2

&

eq
4m2 z@~SW3pW !x2 i ~SW3pW !y#

2
eqk

4&m2

1

r

]U ~0!

]r
z$~SW3rW !x2 i ~SW3rW !y%1

eqk

2&m3
~px2 ipy!~SW3pW !zu2n&. ~67!

In order to write the helicity amplitude in Eq.~67! in terms of the multipole amplitudes using Eq.~64!, we will express the
operators in the matrix element of Eq.~67! in terms of the irreducible spherical tensor components@10#. For this purpose we
define the following highest weight spherical tensor components:

P225p1~SW3pW !1 , Q225x1~SW3rW !1 ,

M115S 11
k

2m
2

p2

2m2DS1 , Q335x1x1S1 , L225x1~SW3pW !1 ,

L115$~SW3pW !3xW%1 , Q118 5r 2S1 , Q115@~SW3qW !3qW #1 . ~68!

The other components of the above eight spherical tensor operators can be obtained by means of Eq.~23!. In terms of these
spherical tensor components, the helicity amplitude of Eq.~67! takes the form

An85^1,n21u
ik

m
M1211

ik3

40m
Q1212

ik3

20m
Q1218 1

k2

8&m2
L1211

ik

8&m2

1

r

]U ~0!

]r
Q1212

ik

4&m3
P121u2n&

1^1,n21u
k

2&m3
P2212

k

4&m2

1

r

]U ~0!

]r
Q2212

&k3

24m
Q2211

ik2

4&m2
L221u2n&1^1,n21u

2 ik3

4A15m
Q321u2n&.

~69!

Using the Wigner-Eckart theorem

^1,n21uRk21u2n&5^1,n21uk,21;2n&^1iRki2&, ~70!

we can write Eq.~69! as

An85 (
k51

3

^1,n21uk,21;2n&^1iRki2&, ~71!

whereRk is the appropriate symbol for eachk, which can be
read off from Eq.~69!. Comparing Eq.~71! with Eq. ~64!,
we obtain

ak85S 3

2k11D
1/2

^1iRki2&, k51,2,3. ~72!

We have the following explicit expressions for the three mul-
tipole amplitudesM1, E2, andM3 or a18 , a28 , anda38 :

a185K 1I ik

m
M11

ik3

40m
Q12

ik3

20m
Q181

k2

8&m2
L1

1
ik

8&m2

1

r

]U ~0!

]r
Q12

ik

4&m3
P1I 2L ,

a285A3

5 K 1I k

2&m3
P22

k

4&m2

1

r

]U ~0!

]r
Q22

&k3

24m
Q2

1
ik2

4&m2
L2I 2L ,

a385A3

7 K 1I2
ik3

4A15m
Q3I 2L . ~73!

By explicitly calculating the matrix elements of specific
spherical tensor components using explicit wave functions
for the 11D2n andn

3S1s states and then using the Wigner-
Eckart theorem, we can evaluate the different reduced matrix
elements in terms of integrals involving the radial wave
functions of the 11D2 and then 3S1 states. In this way we
obtain
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a1852
ik

12m
~J11J21J31J4212bJ0!,

a2852
ik

2m S 5

6)
J11

1

A6
J22

1

A10
J31

1

A10
J4D ,

a3852
ik

6m
J1 , ~74!

where b is the mixing coefficient between then 3S1 and
1 3D1 states in the physical states of charmonium, which are
identified asn 3S1 states. The dimensionless integralsJi
~i50,1,. . . ,4! are given by the expressions

J05E
0

`

R1 3D1
~r !R1 1D2

~r !r 2dr,

J15
&

10
k2E

0

`

Rn 3S1
~r !R1 1D2

~r !r 4dr,

J25
k

2m E
0

` dRn 3S1
~r !

dr
R1 1D2

~r !r 3dr,

J352
1

m2 E
0

`S d2Rn 3S1
~r !

dr2
2
1

r

dRn 3S1
~r !

dr
DR1 1D2

~r !r 2dr,

J45
1

2m E
0

`

Rn 3S1
~r !

]U ~0!

]r
R1 1D2

~r !r 3dr. ~75!

Since the radial integralJ0 is quite large compared to other
Ji , even a small mixing betweenn

3S1 and 1
3D1 can lead to

a significant contribution fromJ0 to theM1 amplitudea18 .
Next, we derive the expression for the decay rate. Using

Eq. ~59!, the probability of transition after timet to the spe-
cific final helicity states~s,m! is given by the expression

Psm~ t !5uTe~ t !u25
eq
2

2Vv
uAsm8 u2uDn,s2m

2 ~f,u,2f!u2

3U E
0

t

ei ~v2vAB!t8dt8U2. ~76!

The transition probability~after timet! integrated over all the
directions of the outgoing photon and over a small but finite
energy spread of the photon and summed over the final he-
licity statess andm is

P~ t !5
eq
2

2V E S (
sm

uAsm8 u2D uDn,s2m
2 ~f,u,2f!u2

1

v

sin2@~v2vAB!/2#t

@~v2vAB!/2#2
V

~2p!3
v2dv dV

5
eq
2

2 S 4p

5 D 1

~2p!3 (
sm

uAsm8 u2E sin2@~v2vAB!/2#t

@~v2vAB!/2#2
v dv5eq

2S 4p

10D 1

~2p!3
2(

sm
uAsm8 u2E sin2~xt!

x2
~2x1vAB!dx

5eq
2S 4p

5 D 1

~2p!3
2(

n
uAn8u

2pt~vAB!5
eq
2

5p (
k

uak8u
2~vAB!t. ~77!

So the decay rate or the transition probability per unit time is
given by the expression

W~1 1D2→n 3S11g!5
P~ t !

t
5
4

5 S eqe D 2avAB(
k

uak8u
2,

~78!

where a5e2/4p is the fine-structure constant. Using Eq.
~74!, this becomes

W~1 1D2→n 3S11g!

5
1

90 S eqe D 2avABS kmD 2F12 uJ11J21J31J4212bJ0u2

118U 5

6)
J11

1

A6
J22

1

A10
J31

1

A10
J4U212uJ1u2G .

~79!

In Eq. ~79!, k is the same asvAB .

B. 1 3D2˜n 1S01g

By angular momentum and parity conservation, there is
only one radiative multipole amplitude in this case, namely,
theE2 amplitude. We will call ita28 :

a2852
1

A5
ik

2m F56 J182
1

3&
J282

1

&
J381

1

&
J48G , ~80!

where the dimensionless integralsJi8 ~i51,2,3,4! can be ob-
tained from Eq.~75! with the replacementsRn 1S1

→Rn 1S0
andR1 1D2

→R1 3D2
. The decay rate is given by the formula

W~1 3D2→n 1S01g!

5
4

5 S eqe D 2avABua28u
2

5
1

25 S eqe D 2avABS kmD 2
3U56 J182

1

3&
J282

1

&
J381

1

&
J48U2. ~81!

In Eq. ~81!, k is the same asvAB , the photon energy.
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IV. NUMERICAL EVALUATION OF THE MULTIPOLE
AMPLITUDES AND THE DECAY RATES IN THE
NONSINGULAR POTENTIAL MODEL OF GUPTA,

JOHNSON, REPKO, AND SUCHYTA

The nonsingular potential model of Gupta, Johnson,
Repko, and Suchyta~GJRS! has been quite successful in
predicting the energy spectrum of charmonium and theE1
decay rates ofc8 and thexJ states. The nonsingular nature of
the potential makes it possible to obtain the wave functions
by a nonperturbative treatment. This is important for the
evaluation of multipole transition rates, since in these calcu-
lations the relativistic corrections to the wave functions are
usually more significant than that to the transition operators
except in the case when the nonrelativistic transition operator
is zero. The details of the model and the specific form of the
Hamiltonian used is given in Ref.@3#. We solved for the
eigenvalue problem of the full Hamiltonian, except for the
tensor term, by a variational calculation, with the trial radial
wave function as

R~r !5 (
n50

9

cnS rRD n1l

e2r /R, ~82!

wherel is the orbital quantum number. The coefficientscn
and the parameterR are variational parameters. The param-
eterR was determined by satisfying the virial theorem

^pW •¹W pH&5^rW•¹W H&. ~83!

The coefficientscn’s were determined by minimizing the en-
ergy in the appropriate way. We used the same values for the
parameters in the Hamiltonian as GJRS@3#. We were able to
reproduce more or less their predicted energy spectrum, their
values for theE1 decay rates ofc8 and xJ(J52,1,0), and
the leptonic decay rates ofc andc8. Our predicted results for
the multipole amplitudes and the decay rates for the decays
1 3D2→1 3PJ1g ~J52,1,0!, 1 3D2→n 1S01g ~n51,2!,
1 1D2→1 1P11g, 1 1D2→n 3S11g ~n51,2!, and
1 3D1→1 3PJ1g ~J52,1,0! are given in Tables I–V, re-
spectively. The predicted energy spectrum, including those
of the D states, are given in Table VI. In Tables I–IV we
also give the relative strengths of the higher multipole am-
plitudes compared to the predominantE1 amplitude, which
is nonzero even in the extreme nonrelativistic limit.

In calculating the photon energies in the tables, we used
the experimental values of the masses of the states whenever
they are available@12#. When the masses are not known
experimentally we used the predicted values in the GJRS
model @3#.

V. SUMMARY AND CONCLUDING REMARKS

If the potential models are at least approximately right in
predicting the energy spectrum of charmonium, the 11D2
and 13D2 states should have a narrow width. If and when

they are detected as resonances inp̄p collisions, from their
branching ratios and angular distributions of decay products
we can measure the decay rates and the multipole amplitudes
of the various radiative transitions. In previous works@1,2#
one of the authors~K.J.S.! together with Ridener has shown
how one can obtain the radiative multipole amplitudes from
the experimentally measurable angular distributions. In this
paper we have derived expressions for the decay rates and
the multipole amplitudes which are valid in any potential
model and which are correct to relative orderv2/c2. In po-
tential models the higher multipole amplitudes are of order
v2/c2 relative to theE1 amplitudes and hence are expected
to be smaller. In particular, theM4 amplitude in the decay
1 3D2→1 3P21g should vanish in any potential model cor-
rect to first order inv2/c2. This result is due to the fact that
to this order there is no fourth rank tensor component in the
transition operator.

We have also numerically evaluated our expressions in
the successful nonsingular potential model of Gupta,
Johnson, Repko, and Suchyta@3#. Our results are tabulated in
Tables I–V. From Tables I–V we find that the most promi-
nent decays of 13D2 and 11D2 are the one-photon transi-
tions into 13PJ and 1

1P1 states respectively. The transitions
into the 11S0 and 13S1 states also have significant rates.
Especially the transition of 13D2 into 1 1S0 is worth noting.
It is a pureE2 transition which has a rather large rate and
hence a significant branching ratio.

We have also corrected some errors in the decay-rate for-
mulas of Refs.@5# and @11#. Our numerical estimate for the
transition rate for the decay 11D2→1 3S11g is now signifi-
cantly smaller than the value of about 62 keV we reported in
Ref. @5#.
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