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I. INTRODUCTION

The formulation of two-dimensional quantum chromody-
namics~QCD2! of massless fermions in terms of decoupled
fermions, ghosts, and positive and negative level Wess-
Zumino fields @1,2,3# has provided interesting insight into
some nonperturbative properties of this theory. Two repre-
sentations of the corresponding decoupled partition function,
referred to as ‘‘local’’ and ‘‘nonlocal’’ representations@2,3#,
have been considered. In the ‘‘local’’ formulation, the origi-
nal restriction of the ‘‘observables’’ to the gauge-invariant
subspace of the Hilbert space is replaced in the light-cone
gaugeA1[A01A150 by the requirement that ‘‘observ-
ables’’ commute with two Becchi-Rouet-Stora-Tyutin
~BRST! charges@4,5#.

When passing to the ‘‘nonlocal’’ formulation, one expects
to pick up one additional BRST condition associated with the
change of variable involved in the transition. De facto one
finds, however, more than three nilpotent charges, which are
moreover noncommuting. This raises the question as to
which of these charges are required to annihilate the physical
states. This question has recently been addressed in the con-
text of quantum mechanical toy models and thelocal decou-
pled formulation of QCD2, in Ref. @5#, where criteria have
also been given for establishing which BRST conditions
should actually be imposed.

The primary aim of the present paper is to examine this
question for the case of QCD2 in the nonlocal decoupled
formulation. As we show in Sec. II, not all of the nilpotent
charges obtained in Ref.@4# are required to vanish on the
physical Hilbert spaceHphys. In Sec. III, we solve the corre-
sponding cohomology problem in the ghost number zero sec-
tor by showing that the BRST conditions which are actually
to be imposed are implemented by the gauge invariant ob-
servables of the theory.

In Sec IV, we then discuss the conformal ‘‘sector’’ of the
factorized nonlocal partition function. In Ref.@6# the QCD2
ground state was taken to lie in this sector. It was thereby
concluded that in the case of one flavor and gauge group
SU~2! the QCD2 ground state is twofold degenerate. We gen-
eralize this statement to the case of SU(N) color. Section V
summarizes our results.

II. BRST CONSTRAINTS

We reconsider here the BRST analysis of Ref.@4#. We
discuss separately the ‘‘local’’@1,2# and ‘‘nonlocal’’ formu-
lations @2,3#.

A. Local formulation

The QCD2 partition function is given by

Z5E DAmE DcDc̄ expS 2 i E 1

4
tr FmnF

mnD
3expF i E c̄~ i ]”1eA” !c G , ~2.1!

whereFmn is the chromoelectric field strength tensor. Going
to the light-cone gaugeA150, parametrizingA2 as

eA25Vi]2V
21, ~2.2!

and performing a chiral rotation,c25Vc 2
~0! , one arrives at

the decoupled partition function~for details see for instance
Ref. @4#!

Z5ZF
~0!Zgh

~0!ZV , ~2.3!

whereZ F
(0), Zgh

~0! are the partition functions of massless free
fermions and ghosts, respectively:

ZF
~0!5E DcDc̄ expF i E c̄~0!i ]”c~0!G ,

Zgh
~0!5E D~ghosts!expH i E tr @b1

~0!i ]2c1
~0!1b2

~0!i ]1c2
~0!#J
~2.4!

and

ZV5E DV expH 2 i ~11cV!G@V#

1
i

8e2 E d2x tr@]1~Vi]2V
21!#2J . ~2.5!

HereG[V] is the usual Wess-Zumino-Witten~WZW! func-
tional @7# andcV is the Casimir of the gauge group.
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As shown in Ref.@4# this decoupled partition function
exhibits two BRST symmetries implying the existence of
two nilpotent Noether charges. The corresponding BRST
currents are@4#

J65tr c6
~0!FV62

1

2
$b6

~0! ,c6
~0!%G , ~2.6!

where

V252
1

4e2
D2~V!]1~Vi]2V

21!2~11cV!J2~V!1 j2 ,

V152
1

4e2
D1~V!]2~V21i ]1V!2~11cV!J1~V!1 j1 .

~2.7!

HereD6(V) are the covariant derivatives

D1~V!5]11@V21]1V, #,

D2~V!5]21@V]2V
21, # ~2.8!

and use has been made of the identity

V21@]1
2 ~V]2V

21!#V5D1~V!]2~V21]1V!, ~2.9!

in order to write the BRST currents of Ref.@4# in symmetri-
cal form.J6(V) and j6 are the currents

J1~V!5
1

4p
V21i ]1V,

J2~V!5
1

4p
Vi]2V

21,

j25c1
~0!c1

~0!†1$b2
~0! ,c2

~0!%,

j15c2
~0!c2

~0!†1$b1
~0! ,c1

~0!%. ~2.10!

The gauge invariance of the observables in the original
formulation~2.1! is replaced in the decoupled picture by the
requirement that the physical operators commute with the
BRST chargesQ6 associated withJ6 ~see@5# for proof!. In
the ghost number zero sector this implies thatV6 defined by
Eq. ~2.7! are constrained to vanish on the physical subspace:

V6'0. ~2.11!

As shown in Ref.@8#, this property can independently be
established by appropriately gauging the action in the decou-
pled partition function.

B. Nonlocal formulation

The main objective of this paper is to trace the fate of the
BRST conditions of the local formulation, when going over
to the so-called@2# ‘‘nonlocal’’ formulation and to establish
from first principles further BRST conditions that may have
to be imposed in order to ensure equivalence of this formu-
lation with the local one.

In order to make the discussion self-contained, we repeat
here the essential steps leading to the nonlocal formulation

@2,3,4#. We rewrite the partition functionZV given in Eq.
~2.5! by making use of the identity

expH 1

4e2 E tr
1

2
@]1~Vi]2V

21!#2J
5E DE expH 2 i E trF12 E21

E

2e
]1~Vi]2V

21!G J .
~2.12!

Making the change of variable

]1E5lb21i ]1b, l5S 11cV
2p De, ~2.13!

we have for the corresponding change in the integration
measure1

DE5det iD1~b!Db. ~2.14!

Making use of the Polyakov-Wiegmann identity@9#

G@gh#5G@g#1G@h#1
1

4p E d2x tr~g21]1gh]2h
21!,

~2.15!

defining the new variable

Ṽ5bV, ~2.16!

and representing the functional determinant in Eq.~2.14! in
terms of ghostsb̂2

(0), ĉ2
(0) and the WZW actionG@b#, one

then arrives at a decoupled nonlocal form of the partition
function @2,4#:

Z5ZF
~0!Zgh

~0!Ẑgh2
~0! ZṼZb , ~2.17!

where

ZṼ5E DṼe2 i ~11cV!G@Ṽ#,

Ẑgh2
~0! 5E Db̂2

~0!Dĉ2
~0!eiE tr b̂2

~0!i ]1ĉ2
~0! ~2.18!

and

Zb5E DbeiG@b#1 il2*~1/2!tr@]1
21

~b21]1b!#2. ~2.19!

We now investigate the BRST conditions to be imposed on
the physical states in this formulation.

~a! BRST condition associated with the change of variable
E→b

We begin by showing that the change of variable~2.13!
leads to a BRST condition on the physical states. We follow
the procedure outlined in Ref.@10#. In order to implement
the change of variable~2.13!, we introduce in Eq.~2.12! the
identity

1We suppress the constant det]1 arising from the left-hand side
in Eq. ~2.13!, as it plays no role int he forthcoming discussion.
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E Db detD1~b!d@]1E2lb21i ]1b#51, ~2.20!

in order to rewrite Eq.~2.5! in the form

ZV5E DVE DEDbE DrE D~ghosts!eiS@E,V#

3eiDS@E,b,r,ghosts#, ~2.21!

where

S@E,V#52~11cV!G@V#

2E d2x trF12 E21
E

2e
]1~Vi]2V

21!G
~2.22!

and

DS@E,b,r,ghosts#5E d2x tr$r~]1E2lb21i ]1b!

1b̂2iD1~b!ĉ2%. ~2.23!

Here we have made use of the Fourier representation of thed
functional in Eq.~2.20! and the representation of the adjoint
determinant detD1~b! in terms of ghosts:

detD1~b!5E Db̂Dĉei* tr b̂i2 iD1~b!ĉ2. ~2.24!

The effective action is seen to be invariant under the trans-
formation

dV50, dE50, dr50,

db̂25lr, d ĉ252
1

2
$ĉ2 ,ĉ2%,

b21db5 ĉ2 . ~2.25!

One readily checks that these transformations are off-shell
nilpotent. We further observe thatDS in Eq. ~2.23! can be
written as

DS5
1

l
d tr@ b̂2~]1E2lb21i ]1b!#. ~2.26!

HenceDS is BRST exact. From here we infer that the ac-
tions S[E,V] and S[E,V]1DS are equivalent on the func-
tionals which are invariant under the nilpotent transforma-
tions ~2.25!. Hence physical states must be invariant under
the transformations~2.25!.

In order to obtain the transformation laws~2.25! in terms
of the variables of the nonlocal formulation, we make use of
the equations of motion forr and E. The transformations
~2.25! then reduce to

dV50,

db̂252l2]1
22~b21i ]1b!2

l

2e
~Vi]2V

21!,

d ĉ252
1

2
$ĉ2 ,ĉ2%,

b21db5 ĉ2 . ~2.27!

We next decouple the ghosts by performing the change of
variable

b̂2→bb̂2b215:b̂2
~0! ,

ĉ2→b ĉ2b215: ĉ2
~0!. ~2.28!

In terms of Ṽ5bV and the decoupled ghosts, the trans-
formation laws then read

dṼṼ215 ĉ2
~0! ,

dbb215 ĉ2
~0! ,

d ĉ2
~0!5

1

2
$ĉ2

~0! ,ĉ2
~0!%,

db̂2
~0!52l2b]1

22~b21i ]1b!b212S 11cV
4p D @~Ṽi ]2Ṽ

21!

2b i ]2b21#1$b̂2
~0! ,ĉ2

~0!%1~db̂2
~0!!anom, ~2.29!

where the anomalous term

~db̂2
~0!!anom52

cV
4p

b i ]2b21 ~2.30!

needs to be added to the semiclassical result in order to make
the transformation an invariance of the quantum action. As
has been shown in Ref.@4#, the transformation laws~2.29!
lead to the~right-moving! BRST current

Ĵ25tr ĉ2
~0!S V̂22

1

2
$b̂2

~0! ,ĉ2
~0!% D , ~2.31!

with

V̂252l2b@]1
22~b21i ]1b!#b211J2~b!2~11cV!J2~Ṽ!

1$b̂2
~0! ,ĉ2

~0!%. ~2.32!

Our deductive procedure shows that the corresponding nil-
potent chargeQ̂2 must annihilate the physical states:

Q̂250 on Hphys. ~2.33!

~b! Fate of the BRST condition Q1'0
Making use of the identity~2.9!, we may rewriteV1 in

Eq. ~2.7! as

V152
1

4e2
V21@]1

2 ~Vi]2V
21!#V2~11cV!J1~V!1 j1 .

~2.34!

Using the equation of motion forE following from Eq.
~2.12!,
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E52
1

2e
]1~Vi]2V

21!, ~2.35!

V1 takes the form

V15
1

2
V21~]1E!V2~11cV!J1~V!1 j1 . ~2.36!

Making the change of variable~2.13! and ~2.16!, we then
obtain2

V152~11cV!J1~Ṽ!1 j1 , ~2.37!

where Ṽ5bV. Comparing with Eq.~3.13! of Ref. @4#, we
see that this is justṼ1 of Ref. @4#. We conclude that the
corresponding nilpotent charge

Q15E dx1trc1
~0!F2~11cV!J1~Ṽ!1 j12

1

2
$b1

~0!,c1
~0!%G ,
~2.38!

must annihilate the physical states, as was also required in
Ref. @4#.

~c! Fate of the BRST condition Q2'0
In the case of the BRST chargeQ1 , the symmetry trans-

formations in theV-fermion-ghost space giving rise to this
conserved charge could be trivially extended to theE2V-
fermion-ghost space. This is no longer true in the case of
Q2 , where the BRST symmetry forE off-shell is maintained
only at the expense of the addition of a~commutator! term
~which vanishes forE ‘‘on shell’’ !. One is thereby led to a
fairly complicated expression forQ2 when expressed in
terms of the variablesb, Ṽ of the nonlocal formulation.

A more transparent result is obtained by performing the
similarity transformation

E852V21EV, ~2.39!

and making the change of variables

]2E85lb8i ]2b821. ~2.40!

Going through the same steps as outlined before, one arrives
at an alternative representation of the partition function
~2.17!,

Z5ZF
~0!Zgh

~0!Ẑgh1

~0! ZṼ8Zb8 , ~2.41!

where

ZṼ85E DṼ8e2 i ~11CV!G@Ṽ8#, ~2.42!

Ẑgh1

~0! 5E Db̂1
~0!Dĉ1

~0!eiE tr b̂1
~0!i ]2ĉ1

~0!,

Zb85E Db8expS G@b8#1 il2E 1

2
tr@]2

21~b8]2b821!#2D ,
~2.43!

and

Ṽ85Vb8. ~2.44!

Note thatb8 satisfies a different dynamics thanb introduced
previously.

It is convenient to rewriteV2 in Eq. ~2.7! in the form

V252
1

4e2
V]2~V21@]1~Vi]2V

21!#V!V21

2~11cV!J2~V!1 j2 . ~2.45!

RewritingV2 in terms ofE8 by making use of the equation
of motion

E852
1

2e
]2~V21i ]1V! ~2.46!

and making use of Eqs.~2.40! and ~2.44!, one arrives at

V252~11cV!J2~Ṽ8!1 j2 . ~2.47!

We conclude that the corresponding BRST charge

Q25E dx1trc2
~0!@2~11cV!J2~Ṽ8!1 j22 1

2 $b2
~0! ,c2

~0!%#

~2.48!

must annihilate the physical states.
Notice that expression~2.47! formally resemblesṼ2 of

Ref. @4#. AlthoughṼ in Eq. ~2.38! andṼ8 in Eq. ~2.48! obey
the same dynamics, they are, however, vinculated by differ-
ent constraints to the ‘‘massive’’ sector described in terms of
the group-valued fieldsb andb8, respectively, which in turn
obey a different dynamics. The constraintV̂1'0 associated
with the change of variableE8→b8 is again obtained follow-
ing the previous systematic procedure and one finds

V̂152l2b821@]2
22~b8i ]2b821!#b81J1~b8!

2~11cV!J1~Ṽ8!1$b̂1
~0! ,ĉ1

~0!%. ~2.49!

For similar reasons as before, the corresponding Noether
charge

Q̂15E dx1trĉ1
~0!@V̂12 1

2 $b̂1
~0! ,ĉ1

~0!%# ~2.50!

must annihilate the physical states.
On the ghost number zero sector, the BRST conditions to

be imposed on the physical states are equivalent to requiring

V6'0, V̂6'0, ~2.51!

with V̂6 andV6 given by Eqs.~2.32!, ~2.37!, ~2.47!, and
~2.49!.

III. THE PHYSICAL HILBERT SPACE

In order to address the cohomology problem defining the
physical Hilbert space, we must express the constraints in
terms of canonically conjugate variables. To this end we first
rewrite the partition functionZb in Eq. ~2.19! in terms of an
auxiliary fieldB as

2For the sake of clarity we continue to use the same notation for
the constraints when expressed in terms of the new variables.
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Zb5E DBDbeiS@b,B#, ~3.1!

where

S@b,B#5G@b#1E tr@ 1
2 ~]1B!21lBb21i ]1b#. ~3.2!

Correspondingly we have, forZb8 in Eq. ~2.43!,

Zb85E DB8Db8eiS8@b8,B8#, ~3.3!

with

S8@b8,B8#5G@b8#1E tr@ 1
2 ~]2B8!21lB8b8i ]2b821#.

~3.4!

We may then rewrite the constraintsV̂6'0 in Eqs.~2.32!
and ~2.49! as

V̂25lbBb211
1

4p
b i ]2b212

~11cV!

4p
Ṽi ]2Ṽ

21

1$b̂2
~0! ,ĉ2

~0!%, ~3.5!

V̂15lb821B8b81
1

4p
b821i ]1b82

~11cV!

4p
Ṽ821i ]1Ṽ8

1$b̂1
~0! ,ĉ1

~0!%. ~3.6!

Define ~tilde stands for ‘‘transpose’’!

P̂̃~b!5
1

4p
]0b

211 ilBb21,

P̂̃~b8!5
1

4p
]0b8212 ilb821B8,

P̂̃~ Ṽ!52
11cV
4p

]0Ṽ
21,

P̃̂~ Ṽ8!52
11cV
4p

]0Ṽ821. ~3.7!

Canonical quantization then implies the Poisson algebra~see,
Refs. @11,12# for derivation;g stands for a generic WZW
field of leveln!

$gi j ~x!,P̂kl
~g!~y!%P5d ikd j ld~x12y1!,

$P̂i j
~g!~x!,P̂kl

~g!~y!%P52
n

4p
~]1gjk

21gli
212gjk

21]1gli
21!

3d~x12y1!. ~3.8!

In terms of canonical variables, we have, for the constraints
~2.37!, ~2.47!,

V152 i P̂̃~ Ṽ!Ṽ2
~11cV!

4p
Ṽ21i ]1Ṽ1 j1 ,

V25 iṼ8P̂̃~ Ṽ8!1
~11cV!

4p
Ṽ8i ]1Ṽ8211 j2 ~3.9!

and, for the constraints~3.5!, ~3.6!,

V̂25 ibP̂̃~b!1 iṼ P̂̃~ Ṽ!2
1

4p
b i ]1b

211
11cV
4p

Ṽi ]1Ṽ
21

1$b̂2
~0! ,ĉ2

~0!%, ~3.10!

V̂152 i P̂̃~b8!b82 i P̂̃~ Ṽ8!Ṽ81
1

4p
b821i ]1b8

2
~11cV!

4p
Ṽ821i ]1Ṽ81$b̂1

~0! ,ĉ1
~0!%. ~3.11!

With the aid of the Poisson brackets~3.8! it is straightfor-
ward to verify thatV̂ 1

a 5tr(V̂ta) andV̂ 2
a 5tr(V̂ta) are first

class:

$V̂6
a ~x!,V̂6

b ~y!%P52 f abcV̂6
c d~x12y1!. ~3.12!

Hence, the corresponding BRST charges are nilpotent. Simi-
lar properties are readily established for the remaining opera-
torsV6 . Furthermore,

$V1~x!,V̂2~y!%P50,

$V2~x!,V̂1~y!%P50. ~3.13!

The physical Hilbert space of the nonlocal formulation of
QCD2 is now obtained by solving the cohomology problem
associated with the BRST chargesQ6 ,Q̂6 in the ghost-
number zero sector. The solution of this problem is sug-
gested by identifying this space with the space of gauge-
invariant observables of the original theory defined by Eq.
~2.1!. It is interesting to note that the constraintsV̂6'0 are
implemented by any functional ofV ~and the fermions!, thus
implying that Ṽ,b(Ṽ8,b8) can only occur in the combina-
tions b21Ṽ(Ṽ8b821). Indeed, making use of the Poisson
brackets~3.8!, we have

$V̂2
a ~x!,b21~y!%P5 i @b21~x!ta#d~x12y1!,

$V̂2
a ~x!,Ṽ~y!%P52 i @ taṼ~y!#d~x12y1!,

$V̂1
a ~x!,Ṽ8~y!%P51 i @Ṽ8~x!ta#d~x12y1!,

$V̂1
a ~x!,b821~y!%P52 i @ tab821~y!#d~x12y1!.

~3.14!

As for the other two constraints,V1'0 andV2'0 link-
ing the bosonic to the free fermion sector, they tell us in
particular, that local fermionic bilinears should be con-
structed in terms of free fermions and the bosonic fields as

~c1
~0!†b21Ṽc2

~0!!5~c1
~0!†Ṽ8b821c2

~0!!

5~c1
~0!†Vc2

~0!!

5~c1
†c2!. ~3.15!

This is in agreement with our expectations.
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IV. THE QCD 2 VACUUM REVISITED

The constraints,V1'0 and V2'0, link the Ṽ-free
fermions-ghosts andṼ8-free fermions-ghosts sectors respec-
tively. They operate in the topological sector associated with
the coset U(N)1/SU(N)1.

Before proceeding to the solution of the cohomology
problem in this sector, one comment is in order concerning
the factorization of the U~1! degree of freedom. In fact, the
factor Zcoset5ZF

(0)Zgh
(0)ZṼ in Eq. ~2.17!, corresponds to the

partition function of the coset U(N)/SU(N)15U~1!
3SU(N)1/SU(N)1 @13#. By bosonizing the free fermions@7#
one can factorize the U~1! degree of freedom, which shows
that it merely acts as a spectator.@This factorization can no
longer be done in the case of more than one flavor, leading to
higher level SU(N) affine Lie algebras.#

The solution of the cohomology problem for the topologi-
cal coset SU(N)1/SU(N)1 leads to the existence ofN in-
equivalent vacua@14#. Each of these can be associated with a
SU(N)1 primary field. There areN such primary fields in the
SU(N)1 conformal quantum field theory, each one corre-
sponding to a so-called integrable representation. The restric-
tion in the number of the allowed representations arises from
the affine~Kac-Moody! selection rules@15#. The construc-
tion of such primaries in the SU(N)15U(N)/U~1! fermionic
coset theory has been carried out in Ref.@13#.

By further gauging the SU(N)1 group we can show that
these primaries are mapped into primaries of the coset
SU(N)1/SU(N)1 of conformal dimension zero. These prima-
ries, acting on the Fock vacuum, create the different in-
equivalent vacua of the topological coset theory. For the
U(N)/SU(N)1 coset the conformal dimension of the prima-
ries is different from zero and is determined by the extra
U~1! factor. They are given in terms of the properly antisym-
metrized product ofp fermionic bilinears,p51,...,N, which
in terms of the decoupled fields read

Fp~z,z̄!5:e2pif<c2
~0!†i p•••c2

~0!†i1<c1
~0! j 1•••

3c1
~0! j p<VA

21i1 j 1••• i pj p:, ~4.1!

where

VA
i1 j 1••• i r j r[@ :v i1 j 1•••v i r j r:#A . ~4.2!

Herev stands forṼ or Ṽ8 ~depending on the coset in ques-
tion! and the subscriptA means antisymmetrization in the
left and right indices, separately. The conformal dimension
of VA is the conformal dimension of an SU(N)1 primary
field in the representationLp whose Young diagram hasp
vertical boxes, as given by@16#

hLp
5h̄Lp

5
cLp

cV1k
, ~4.3!

wherecV5N for SU(N), k51 andcLp
5(p/2N)(N11)(N

2p), is the Casimir of the representationLp . The additional
vertex operator :e2pif: is a result of the factorization of the

U~1! spectator as explained above. It should be stressed that
this vertex operator~with conformal dimensions given by
h5h̄52p2/2N!, is crucial to obtain the correct dimensions
of the primaries. They are the intertwining operators linking
theN vacua of the conformal sector, referred to above.

In the nonconformal sector the primaries~4.1! are re-
placed by the properly antisymmetrized product ofp fermi-
onic bilinears,

Fp~z,z̄!5TrA~ :c2
†c1c2

†c1•••c2
†c1 : !, p51,...,N,

~4.4!

which in terms of the decoupled fields are given by Eq.~4.1!
with the replacementv→V in Eq. ~4.2!. The primaries~4.4!
implement the constraintsV6'0 and thus create physical
states.

If we assume the QCD2 vacuum to lie in the conformal
~b51! sector, then we must conclude that there exists an
N-fold degeneracy of the QCD2 ground state. This general-
izes the conclusion of Ref.@6#, where this degeneracy has
been discussed in some detail for the case ofN52.

V. CONCLUSION

The main objective of this paper was to clarify the role of
the various BRST symmetries and associated nilpotent
charges present in the decoupled formulation of QCD2. Our
analysis has shown that of the three nilpotent charges ob-
tained in Ref.@4# in the nonlocal formulation, only two are
required to vanish onHphys. They correspond toṼ1'0 and
V'0 as given by Eqs.~3.13! and~3.18! of that reference, or
V1'0 andV̂2'0 in the notation of this paper. These con-
straints are first class. We have further shown that the con-
straintṼ2 in Eq. ~3.13! of @4# is to be replaced by the con-
straintsV2'0, V̂1'0 in the present notation. These again
represent a first-class system. All these constraints were
found to be implemented consistently by suitable products of
fermion bilinears, corresponding to gauge invariant observ-
ables of the original partition function~2.1!. This solves the
corresponding cohomology problem in the ghost number
zero sector.

The constraintsV̂1'0 andV̂2'0 couple the conformal
sector of the theory to the sector of massive excitationsb and
b8, whose dynamics is described by the partition functionZb
and Zb8 in Eqs. ~2.19! and ~2.43!, respectively. Assuming
that the QCD2 ground state lies in the zero mass, conformal
sector, one is led to the conclusion that it isN-fold degener-
ate in the case of an SU(N) gauge symmetry with one flavor.
This is in accordance with the conclusion reached in Ref.@6#,
but is valid only, providedb andb8 act as identity operators
in this sector.
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