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We consider the two-dimensional QCD patrtition function in the nonlocal, decoupled formulation and sys-
tematically establish which subset of the nilpotent Noether charges is required to vanish on the physical states.
The implications for the Hilbert space structure are also exam[i8556-282(97)04002-2

PACS numbes): 11.10.Kk, 11.15.Tk

I. INTRODUCTION II. BRST CONSTRAINTS

We reconsider here the BRST analysis of Hdf. We
The formulation of two-dimensional quantum chromody- discuss separately the “local’1,2] and “nonlocal” formu-
namics(QCD,) of massless fermions in terms of decoupledlations[2,3].
fermions, ghosts, and positive and negative level Wess-
Zumino fields[1,2,3 has provided interesting insight into A. Local formulation
some .nonperturbative prope.rties of this theory_..Two repre-  The QCD, partition function is given by
sentations of the corresponding decoupled partition function,
referred to as “local” and “nonlocal” representatiof2,3], — (1
have been considered. In the “local” formulation, the origi- Z:f DA#J DyDys ex;{ —IJ’ 1 tr FWFMV>
nal restriction of the “observables” to the gauge-invariant
subspace of the Hilbert space is replaced in the light-cone N
gauge A, =A,+A;=0 by the requirement that “observ- ><ex+f pidreny

ables” commute with two Becchi-Rouet-Stora-Tyutin ) o )
(BRST) charged4,5]. whereF ,, is the chromoelectric field strength tensor. Going

to the light-cone gaug@& =0, parametrizindA_ as

: 2.1

When passing to the “nonlocal” formulation, one expects
to pick up one additional BRST condition associated with the eA =Vig_ VL 2.2)
change of variable involved in the transition. De facto one
finds, however, more than three nilpotent charges, which arand performing a chiral rotationp2=vw(2°), one arrives at
moreover noncommuting. This raises the question as tthe decoupled partition functioffor details see for instance
which of these charges are required to annihilate the physicdtef. [4])
states. This question has recently been addressed in the con-
text of quantum mechanical toy models and libeal decou-
pled formulation of QCB, in Ref. [5], where criteria have whereZ (), {9 are the partition functions of massless free
also been given fgr establishing which BRST condltlonsfermiOnS and ghosts, respectively:
should actually be imposed.

The primary aim of the present paper is to examine this ©)_ — (=) a0
question for the case of QGOn the nonlocal decoupled Zg _J DyDyr ex 'J’ Py,
formulation. As we show in Sec. Il, not all of the nilpotent
charges obtained in Ref4] are required to vanish on the , i i
physical Hilbert spacé{,,s. In Sec. lll, we solve the corre- Zg%):f D(ghosts}exp{J tr [b(f’)lﬁc(f’)+b“’)|(9+c(°)]]
sponding cohomology problem in the ghost number zero sec- (2.9
tor by showing that the BRST conditions which are actually
to be imposed are implemented by the gauge invariant obé-md
servables of the theory.

In Sec IV, we then discuss the conformal “sector” of the Zv=f DV exp{ —i(1+cy)I'[V]
factorized nonlocal partition function. In Rd6] the QCD,
ground state was taken to lie in this sector. It was thereby [ ) i P
concluded that in the case of one flavor and gauge group *8e? J dx ta . (Vie_V=)]%. (2.9
SU(2) the QCD ground state is twofold degenerate. We gen-
eralize this statement to the case of SlY(color. Section V' HereI'[V] is the usual Wess-Zumino-WittefWZW) func-
summarizes our results. tional [7] andc,, is the Casimir of the gauge group.

z=20207,, (2.3
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As shown in Ref.[4] this decoupled partition function [2,3,4. We rewrite the partition functiorZ,, given in Eq.
exhibits two BRST symmetries implying the existence of(2.5 by making use of the identity
two nilpotent Noether charges. The corresponding BRST

currents arg¢4] i f 1 : —1y72
) exp{ 182 tr 5 [0+ (Vid_V™ )]
Jo=tr ¥ Qi—i{b(f),c(f)} , (2.6) . 1, E o
=f DE exp[—|ftr[§E +£a+(v|a_v )“
where (2.12
1 . .
O =— P D_(V)d,(Via_V H—(1+cy)I_(V)+j_, Making the change of variable
L 1+cy
1 L _ d,E=NB Nd. B, N= 5 e, (2.13
Q+:_EZD+(V)5—(V 10,V)=(1+cy)d (V) +].. .

(2.77  we have for the corresponding change in the integration

measure
HereD. (V) are the covariant derivatives
DE=detiD . (8)DB. (2.14
D+(V):5’++[V715+V' 1y
Making use of the Polyakov-Wiegmann identf§]

D_(V)=d_+[Vo_V1 ] (2.9 L
— 2 -1 -1
and use has been made of the identity Ilgh]=TTg]+TTh]+ — f d* tr(g~"d+gha_h""),
2.1
Va2 (Va_V HIV=D, (V)d_(V 13,V), (2.9 219
defining the new variable
in order to write the BRST currents of Ré#l] in symmetri- _
cal form.J. (V) andj. are the currents V=24V, (2.1
1 . and representing the functional determinant in E414) in
I (V)= 7V iV, terms of ghostd©, ¢© and the WZW actiorl[3], one
then arrives at a decoupled nonlocal form of the partition
1 function[2,4]:
J,(V)=4—Via,v*1, 012(01500
™ 2=2078073) 732, (2.17
i-= 20T+ e}, where
= OOt (b Oy, (2.10 Z\N/:f DV 1 (1+eurIV],

The gauge invariance of the observables in the original
formulation (2.2) is replaced in the decoupled picture by the - - o - .
requirement that the physical operators commute with the ZE;%LZJ Db@DC@e'f trb@is.c® (218
BRST charge®).. associated with7.. (see[5] for proof). In
the ghost number zero sector this implies thatdefined by  and
Eq. (2.7) are constrained to vanish on the physical subspace:

Q. ~0. (2.1]) ZB:J DBeiF[ﬂ]Jri)\2f(1/2)tr[a;1(,8—1(7+B)]2. (2.19)

As shown in Ref.[8], this property can independently be \we now investigate the BRST conditions to be imposed on
established by appropriately gauging the action in the decoyne physical states in this formulation.

pled partition function. (a) BRST condition associated with the change of variable
E—pB
B. Nonlocal formulation We begin by showing that the change of variat#el3

deads to a BRST condition on the physical states. We follow

The main objective of this paper is to trace the fate of th , . )
the procedure outlined in Ref10]. In order to implement

BRST conditions of the local formulation, when going over ) ) .
to the so-called2] “nonlocal” formulation and to establish e change of variable.13), we introduce in Eq(2.12) the
from first principles further BRST conditions that may have 'dentity
to be imposed in order to ensure equivalence of this formu-
lation with the local one.

In order to make the discussion self-contained, we repeatwe suppress the constant det arising from the left-hand side
here the essential steps leading to the nonlocal formulatiom Eq. (2.13), as it plays no role int he forthcoming discussion.
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. - 1. .
j DB detD, (B)S[d,E—AB tia,B]=1, (2.20 5c,=—§{c,,c,},
in order to rewrite Eq(2.5) in the form B leg=¢_. (2.27)
Zv:f DVJ DED,BJ’ Dpf D(ghostge'S(EV] We next decouple the ghosts by performing the change of
variable
iASE,B,p,ghost3 ~ ~ ~
xe ’ (221 b_—pb_p t=:b?,
where A A "
c_—pc_pt=:¢9. (2.28

SE,\V]=—=(1+cy)I'[V] ~
In terms of V=8V and the decoupled ghosts, the trans-

_f d2x tr % E2+ % ﬂ(vmvl)} formation laws then read
0.2 SN 1=20),
and 5,8,8_1=f:(_0),
AS[E.B.p.ghosty= | &% t{p(7, E-\p 17, B 50— 2 (&0 50,
+b_iD,(B)E ). (2.23

. . sb©0=—-\?gs 4B o, B)B 1~ <ﬂ> [(Vio_V ™1
Here we have made use of the Fourier representation af the * 41
functional in Eq.(2.20 and the representation of the adjoint

determinant d€®_ (B) in terms of ghosts: = Bia_p 1+ {0 e} + (80 anom, (2.29

A . where the anomalous term
detD, (B)= J DbDeelJt Pi-iP+(B)e- (2.24

R c
(0) —_ 2V -1
The effective action is seen to be invariant under the trans- (8D=")anons 41 pio-p (230

formation
needs to be added to the semiclassical result in order to make

ovV=0, O6E=0, 6p=0, the transformation an invariance of the quantum action. As
has been shown in Ref4], the transformation law§2.29

~ . 1. . lead to the(right-moving BRST current
Sb_=\p, 5c_=—§{c_,c_}, elrig 9

- - 1 .
—tr o0 —_ Zp0® a0
Blop=¢. . (2.29 J_=trc| Q_ 5 {b™,c™} ], (2.3)
One readily checks that these transformations are off-shelith
nilpotent. We further observe thatS in Eq. (2.23 can be _
written as Q_=—N\?B[3;2%B o, BB +I_(B)—(1+cy)I_(V)
+{b©® &y, (2.32

1 -
AS= 50 t{b_(9,.E—\B tida,.B)]. (2.26
Our deductive procedure shows that the corresponding nil-

HenceAS is BRST exact. From here we infer that the ac-potent charg&) _ must annihilate the physical states:
tions S E,V] and S[E,V]+AS are equivalent on the func-

tionals which are invariant under the nilpotent transforma- (g_=o on  Hppys- (2.33
tions (2.25. Hence physical states must be invariant under
the transformation$2.25). (b) Fate of the BRST condition Q<0

In order to obtain the transformation lay&.25 in terms Making use of the identity2.9), we may rewrite), in

of the variables of the nonlocal formulation, we make use ofEqg. (2.7) as
the equations of motion fop and E. The transformations
(2.29 then reduce to

1 o .
Q=—72 VU2 (Via_V HIV—(1+cy)d (V) +j, .

oV=0, (2.39

5b,:—)\2(912(/3*1ia+,8)—£(Via,V*l), Using the equation of motion foE following from Eq.

(2.12,



55 PHYSICAL HILBERT SPACE OF TWO-DIMENSIONA . .. 2243

1 1
E=—2—ea+(vm,v—1), (2.39 zB,=JDﬁ'exp(r[/3']+i>\2J Etr[a:l(ﬁ'a,/s“-l)]z ,
(2.43

Q. takes the form and

1 . V'=Vg'. 2.4
Q=5V Y9, E)V=—(1+cy)d (V) +j,. (2.36 B (249
Note thatg’ satisfies a different dynamics thghintroduced

previously.

Making the change of variable.13 and (2.16, we then It is convenient to rewrit€)_ in Eq. (2.7) in the form

obtairf
1
~ = -1 : -1 -1
Q,=—(1+ond, (V) +., (2.37 -7 g Vo-(V 1 Vie VIV
where V= 8V. Comparing with Eq(3.13 of Ref. [4], we —(1+ey)I-(V)+j-. (2.49
see that this is jusf), of Ref. [4]. We conclude that the RewritingQ_ in terms ofE’ by making use of the equation
corresponding nilpotent charge of motion

~ 1 1 .y
—<1+cV>J+<V)+J+—E{b&‘”,c&‘”}}, = e -V TI0Y) (249

Q+=J dx'trc'?

(2.39 and making use of Eq$2.40 and(2.44), one arrives at

mufst[ e%]nnihilate the physical states, as was also required in Q_=—(1+ CV)J_(T/')H . (2.47)
Ref. [4].
(c) Fate of the BRST condition Q=0 We conclude that the corresponding BRST charge

In the case of the BRST charg@g, , the symmetry trans- _

formations in theV-fermion-ghost space giving rise to this Q,=f dxttre 9l — (1+cy)I_ (V) +j_— b9 ¢
conserved charge could be trivially extended to Ehe V- (2.48
fermion-ghost space. This is no longer true in the case of ’
Q_, where the BRST symmetry fd off-shell is maintained must annihilate the physical states. _
only at the expense of the addition ofl@mmutatoy term Notice that expressiof2.47) formally resembled) _ of
(which vanishes foE “on shell”). One is thereby led to a Ref.[4]. AlthoughV in Eq.(2.38 andV' in Eq. (2.48 obey
fairly complicated expression fof)_ when expressed in the same dynamics, they are, however, vinculated by differ-

terms of the variableg, V of the nonlocal formulation. ent constraints to t_he “massive” sector_describe_d in_ terms of
A more transparent result is obtained by performing thethe group-valued fields and 8’, respectively, which in turn
similarity transformation obey a different dynamics. The constrafdit ~0 associated
with the change of variable’'— g’ is again obtained follow-
E'=—VlEV (2.39 ing the previous systematic procedure and one finds
Qu=—N*B' "o %(B'ia-B " H]B +I.(B")

and making the change of variables ~ ~
—(1+cy) 3 (V) +{b? e}, (249
J_E'=\B'io_B' L (2.40 . .
For similar reasons as before, the corresponding Noether
Going through the same steps as outlined before, one arrivé%1arge

at an alternative representation of the partition function R AL A 11R0) A)
217, Q.= [ &xME10, ~3BO &0 (250

Z=Z(F°)Z(?1)2(%) Z3:Zg, (2.41)  must annihilate the physical states.
gnany On the ghost number zero sector, the BRST conditions to
be imposed on the physical states are equivalent to requiring

where R
0.~0, 0.~0, (2.51)
Z5 = f DV'e ((1HCVITV'], (2.42  with Q. and Q. given by Egs.(2.32, (2.37), (2.47), and
(2.49.
25%)+:f DB@D&@e‘f r 5O 60, Ill. THE PHYSICAL HILBERT SPACE

In order to address the cohomology problem defining the
physical Hilbert space, we must express the constraints in
terms of canonically conjugate variables. To this end we first

2For the sake of clarity we continue to use the same notation forewrite the partition functioZz in Eq. (2.19 in terms of an
the constraints when expressed in terms of the new variables.  auxiliary field B as
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Zg= f DBDBeSIAE], (3.0
where
S[ﬁ,B]IF[B]+f tr[3(d.B)*+\BB 'id, B]. (3.2
Correspondingly we have, fatg in Eq. (2.43,
zﬁ,zf DB'Dp'e/S'1F" 8], (3.9
with

S’[B',B’]zr[ﬁ']Jrf t[2(9_B")?>+AB'B'id_B 1]
(3.4

We may then rewrite the constrainﬁst~0 in Egs.(2.32
and(2.49 as

1 (1+cy) ~. ~
— -1 i -1 27 TV i -1
Q_=\BBg +47T Bid_B ype Vid_V
+{b©@ &y, (3.5
1 (1+cy) ~ ~
— r=1p'’ ! r—1; [ SR V72 1 ’
Q,=\p'"'B'B +—47T,B 9.8 yp V' 7V
+{b@ g (3.6
Define (tilde stands for “transpose”
> 1
B =_—__ 14 -1
P =— 0B *+iNBE ™,
6= gop 1-ing 8"
40 70 '
= 1+CV ~
V) = _ -1
1 4 oV
==, 1+CV ~
(V' _ r—1
II yp= V' ™. (3.7

Canonical quantization then implies the Poisson algé&i®a,
Refs.[11,12 for derivation;g stands for a generic WZW

field of leveln)

{9ij x), TP (y)}p= Sy o(xt—yh,

~ =, 1+c
Q_=iv'TVvi+ (4V)v|av' 14j_ (39

and, for the constraints3.5), (3.6),

~ = ~= = 1 1+Cy ~ ~
Q=i +IVIV)— = gia '+ Y Vig V1
+{b@ g}, (3.10
A 'T(ﬂ’) ’ 'T(\~/’)~r 1 r—1; ’
Q,=—ill'*’g’'—iIl V+EB 1918
(1+ V) r—1; (0) A
i Vi V/+{b@ e (3.1

With the aid of the Poisson brackef3.8) it is straightfor-
ward to verify thatQ & =tr(Qt%*) andQ 2 =tr(Qt?) are first
class:

{0200,02(Ntp=~fapd 50X -yh). (312
Hence, the corresponding BRST charges are nilpotent. Simi-
lar properties are readily established for the remaining opera-
tors Q). . Furthermore,

{Q,(0,9_(y)}p=0,

{Q_(0,9, (y)}p=0.

The physical Hilbert space of the nonlocal formulation of
QCD, is now obtained by solving the cohomology problem
associated with the BRST charg€s. ,Q. in the ghost-
number zero sector. The solution of this problem is sug-
gested by identifying this space with the space of gauge-
invariant observables of the original theory defined by Eg.
(2.2). It is interesting to note that the constranﬂa 0 are
implemented by any functional &f (and the fermions thus
implying thatV,8(V’',B’) can only occur in the combina-
tions B~ V(V'B’'1). Indeed, making use of the Poisson
brackets(3.8), we have

(3.13

{02 (%), 8~ Xy)}p=i[ B~ 100t S(x ~yY),

{02 (0, V(y)}p=—i[t2V(y)]8(x  ~yb),

{02,V (y)}p=+i[V' ()t S(x —yY),

{02 (x),8 ~Xy)}p=—i[t2B'~Xy)]8(x—yY).
(3.19

As for the other two constraint$), ~0 and(}_~0 link-
ing the bosonic to the free fermion sector, they tell us in

~ ~ n . . . .

9(x), 9 (y) o= — — (319195 *— g a0 ) particular, that local fermionic bilinears should be con-

I d (V=" g7 (105G~ G i structed in terms of free fermions and the bosonic fields as

X 8(xt—yh). (3.9 (OB V) = (V' B )
In terms of canonical variables, we have, for the constraints =y PVvyY)
(2.37), (2.47),
= (Y1) (3.19
o~ (ltey) ~ .~
Q,=—invVv- V7 %lioV+ij,,

This is in agreement with our expectations.
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IV. THE QCD , VACUUM REVISITED U(1) spectator as explained above. It should be stressed that
this_vertex operatofwith conformal dimensions given by

f er;?gnsﬁoﬂzggn;il&gffzoe fzrr]gigni:oﬁogtr; kségfor\s/-zaese ec-h: h=—p?/2N), is crucial to obtain the correct dimensions
9 9 PEC ot the primaries. They are the intertwining operators linking

tively. They operate in the topological sector associated Witl}he N vacua of the conformal sector. referred to above.

the coset UN),/SU(N); . In the nonconformal sector the primarié4.1) are re-

Before_ pro_ceeding to the solution_ O.f the cohomology laced by the properly antisymmetrized productpofiermi-
problem in this sector, one comment is in order concernin nic bilinears

the factorization of the (1) degree of freedom. In fact, the
factor Zgese= 22§25 in Eq. (2.17), corresponds to the D(2,2) =TrACYM g ¥hn:),  p=1,...N,
partition function of the coset W)/SU(N),;=U(1) (4.9

XSU(N)4/SU(N), [13]. By bosonizing the free fermiorig] o i )
one can factorize the @) degree of freedom, which shows Which in terms of the decoupled fields are given by &qD)

that it merely acts as a spectatfFhis factorization can no With the replacement —V in Eq. (4.2). The primaries4.4)
longer be done in the case of more than one flavor, leading th"Plement the constraint®.~0 and thus create physical
higher level SUN) affine Lie algebrag. states.

The solution of the cohomology problem for the topologi- T we assume the QCDvacuum to lie in the conformal
cal coset SUQ),/SU(N), leads to the existence df in- (B=1) sector, then we must conclude that there exists an

equivalent vacufl4]. Each of these can be associated with al\-fold degeneracy of the QCyround state. This general-
SU(N), primary field. There ar&l such primary fields in the 128S the conclusion of Ref6], where this degeneracy has
SU(N); conformal quantum field theory, each one corre-P&en discussed in some detail for the casélef2.

sponding to a so-called integrable representation. The restric-
tion in the number of the allowed representations arises from
the affine(Kac-Moody) selection ruleg15]. The construc-

tion of such primaries in the SB);=U(N)/U(1) fermionic The main objective of this paper was to clarify the role of
coset theory has been carried out in Ra8. the various BRST symmetries and associated nilpotent
By further gauging the SU{), group we can show that charges present in the decoupled formulation of QCDur
these primaries are mapped into primaries of the coseinalysis has shown that of the three nilpotent charges ob-
SU(N)/SU(N), of conformal dimension zero. These prima- tained in Ref[4] in the nonlocal formulation, only two are
ries, acting on the Fock vacuum, create the different in‘required to vanish oftt,y,,s. They correspond t6) , ~0 and
equivalent vacua of the topological coset theory. For thep~q as given by Eq¥(3.13 and(3.18 of that reference, or
U(N)/SU(N), coset the conformal dimension of the prima- ), ~0 and() _~0 in the notation of this paper. These con-
ries is different from zero and is determined by the extrastraints are first class. We have further shown that the con-
U(1) factor. They are given in terms of the properly antisym-straint() _ in Eq, (3.13 of [4] is to be replaced by the con-
metrized product op fermionic bilinearsp=1,... N, which  graintsQ_~0, (), ~0 in the present notation. These again

V. CONCLUSION

in terms of the decoupled fields read represent a first-class system. All these constraints were
_ . ; - i found to be implemented consistently by suitable products of
. n2picp.. (OFip  (OFig.. (0)j1, ‘ o~ > , i
Pp(z,2) =181y Py fermion bilinears, corresponding to gauge invariant observ-
g Olp 7 Binis i @.1) ables of the original partition functio2.1). This solves the
1 A ' corresponding cohomology problem in the ghost number

zero sector. ) .
The constraint€) , ~0 and() _~0 couple the conformal
Viljl“‘irer[:viljl. cpirdn] (4.2) sector of the theory to the sector of massive excitatipasd
A B', whose dynamics is described by the partition functign
Herev stands forV or V' (depending on the coset in ques- @1d Zg' in Egs. (2.19 and (2.43, respectively. Assuming
tion) and the subscriptd means antisymmetrization in the that the QCL) ground state lies in the zero mass, conformal
left and right indices, separately. The conformal dimensiorP€CtOr, one is led to the conclusion that iNsfold degener-
of V4, is the conformal dimension of an SNJ, primary ~ &€in the case of an SN gauge symmetry with one flavor.

field in the representatio, whose Young diagram hgs  This is in accordance with the conclusion reached in F&f.
vertical boxes, as given tﬁﬁ] but is valid only, provideg3 and 8’ act as identity operators
’ in this sector.

where

_ CAp
h, =h, = , 4.3
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