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Quantum description of anyons: Role of contact terms
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We make an all-order analysis to establish the precise correspondence between nonrelativistic Chern-Simons
quantum field theory and an appropriate first-quantized description. The physical role of the field-theoretic
contact term in the context of renormalized perturbation theory is clarified through their connection to the
self-adjoint extension of the Hamiltonian in the first-quantized approach. Our analysis provides a firm theo-
retical foundation on quantum field theories of nonrelativistic anyp®8556-282(97)07804-1

PACS numbdps): 11.10.Kk, 71.10.Pm

I. INTRODUCTION of suitable strengtii11], the role of which is to secure a
. - . finite (and corredgt perturbation theory. The second-
Itis generally understood that for every Sofiirgger (i.e., guantized description has a certain ambiguity also. Naively,

ryonrelanstu) quantum f'e.ld theory with the cqnserved Pa” the field theory for anyons can be obtained if the Sdhnger
ticle number, there exists a corresponding quantums

. ) : o L2 field is coupled to a Chern-Simons gauge figl@,13. But,
m_echamca[or flrst-q_uannzeydescr||c_)t|or[1]._Th|s will cer- once one terl)kes renormalization intogacc%unt, one is forced to
tamly be the case Wlth nonsmgula_r interactions, but becomegnow the [ #7(x) #(x)]>-type local interaction also in the
quite upcertaln if §|ngular _mteracnons, such as the tWO'b9d¥heory[14]. Needless to say, it should be important to under-
é-function potential, are involved. In two or more spatial siang the physical role of such contact interaction term and
dimensions, thes-function potentials lead to nontrivial.e.,  giso its significance within the first-quantized approach. This
interacting SyStemS Only when infinite renormalization or is especia”y so in view of possib|e relevance of the Chern-
self-adjoint extension of the Hamiltonian is taken into con-Simons field theory in some of most remarkable phenomena
sideration[2—-4]. Using the language of Schiimger field in planar physics such as the quantum Hall effect.
theory, on the other hand, th&function potential between A serious study on the above issue was made recently by
particles is formally represented by a local or contact interAmelino-Camelia and Bak15]. They showed that lower-
action of the fornm ¢'(x) #(x)]%. The Dyson-Feynman per- order field theory calculations of the scattering amplitudes
turbation theory is then beset with ultraviolet divergencesagree with the corresponding quantum-mechanical results
and to make sense out of this field theory one must regularizebtained using the method of self-adjoint extension, pro-
and renormalize the amplitudes. Because of these complicaided the strength of thg¢'(x) ¢(x)]%-interaction is suit-
tions it is not so easy to make a direct comparison betweeably related to the self-adjoint extension parameter. Note that
the first- and second-quantized approaches even for this relthis situation is entirely analogous to the pusdunction
tively simple system. But, Bergmalb] demonstrated re- case mentioned earlier. A new feature is that, if the strength
cently that the two approaches are, in fact, completelyof the[ ¢'(x)#(x)]?-interaction is equal to the critical value
equivalent once the renormalized strength of theappropriate to the so-called self-dual linjit3], the field
[ ¢T(x) ¢(x)]? interaction is chosen to be related in a specifictheory turns out to be ultraviolet finitgl4] and yields the
way to the self-adjoint extension parameter entering thenyon scattering amplitude consistent with the scale-
guantum-mechanical approach. invariant boundary conditions. This last fact has now been

In two spatial dimensions, we have another kind of sys-confirmed by one of us tall orders in perturbation theory
tem where similar problems arise naturally, those involving[16]. With these developments it should be useful to have a
anyons[6]. Quantum mechanically, anyons can be regardedelf-contained account on quantum description of anyons
as flux-charge composites and so the relative dynamics of thehich takes contact terms properly into consideration, in
two anyon system is essentially the Aharonov-Bohm scatterboth first- and second-quantized formulations. This will,
ing problem[7]. The latter problem has a certain ambiguity above all, serve to show the essential equivalence of the two
as regards the choice of boundary condition at the singuldiormulations and illuminate the physical significance of the
point of the Aharonov-Bohm potential, namely, at the loca-contact term entering either formulation. The present work
tion of the flux line. According to the theory of self-adjoint has been written precisely for this purpose.
extension, it is known that there exists a one-parameter fam- This paper is organized as follows. In Sec. Il we recon-
ily of acceptable boundary conditiori8,8], including as a sider quantum-mechanical description of anyons and explain,
special case the often-assumed hard-core boundary conditiém particular, how the boundary condition, needed at the co-
(appropriate to an impenetrable flux lif€]. In perturbative incidence point of two anyons, can be implemented through
treatments, however, this boundary condition is not easilyhe introduction of appropriate contact terms in the Hamil-
incorporated and without paying due attention to it one endsonian. Note that we here consider not just the hard-core
up with a divergent perturbation serif$|. Among various boundary condition but the general boundary condition al-
proposals made to amend this situatid®], a particularly lowed by the self-adjoint extension meth@te correspond-
interesting one is to introduce an extfafunction potential ing anyons were called “colliding anyons” in Ref15]).
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Section 1l is concerned with the Chern-Simons field theory 1
description of anyons, with theg'(x) ¢(x)]?-type contact HreFE(p—aA)Z*- u(r), 2.3
terms included for the sake of renormalizability. In this field

theory context we elaborate on the all-order analysis of the eixi

two-anyons-wave scattering amplitude, a brief account of Al=—— (r=|r]), (2.9
which was given for the first time in Rdf16]. Based on this r

nalysis, we then clarify th nnection between the field- . .
analysis, we then clarify the connection betwee © eOlWhererz(xl,xz) andp denote relative position and momen-

theoretic formulation and the quantum-mechanical descrip'Eum Furthermore, since the boundary condition to be chosen
tion. Section IV contains the summary and discussions. ) ' y conarti )
atr=0 has an effect on the wave only, it will suffice to

consider thes-wave Hamiltonian. Throughout this paper, we

Il. FIRST-QUANTIZED DESCRIPTIONS OF ANYONS also seti =1. The corresponding Scldimger equation reads
WITH BOUNDARY CONDITION IMPLEMENTING
CONTACT TERMS 1d d a?

— = —r—+—+mU(r) |g(r)=K2y(r) (r>0),
Anyons, which are realized only in planar physics, can be rdrodr r
described using either bosonic or fermionic description. Tak- 29

ing bosonic description, one may specify quantum dynamic§vhiCh has the general solution of the foffior o+ 0)
of a system of anyons by the particle Hamiltonian
P(r)=AJ)o(Kr)+BJT- 4 (Kr), (2.9

1 1
_ 2, = _
H_; ﬁ(pn ahn)™+ n n%n) U([ra=ral), (2.2) whereA, B are arbitrary constants. Herg. |, (kr) repre-
' sent two linearly independent solutions of Eg.5 with the
following small+ behavior:

o XL —xJ +|af
i i o Xm 1 r
RPN e (22 Jm<kr>~—(7) [1+0(N], r—o0.

I(1*|al)
1,2 . ; (2.7)

wherer,=(x;,X;) denotes the position of theth particle,
andU(|r,—ry|) a nonsingular two-body potential included Note that we have assumed a sufficient regularity 6f) at
for generality. The vector potentidl,=(A%,A%), seen by =0, and the functiong7., (kr) have been normalized in
particle n, is that of point vortices carried by all the other such a way that they reduce to ordinary Bessel functions, i.e.,
particles, and it is the resulting Aharonov-Bohm-type inter-J|4((kr) if U(r) is taken to vanish. The wave function in
ference effect that is responsible for the anyonic behavior oEd. (2.6) is not regular atr =0, but still square integrable
particles. The parameter characterizes the type of anyons (with |«|<1) for arbitrary finite values oA andB. This is
and without loss of generality may be restricted to the in marked contrast with the case of higher partial waves
interval (—1,1). where only one type of solution is square integralgiote

But, due to the singular nature of the vector poteri@a®) ~ that, due to the Bose symmetry of the two-particle wave
at pointsr,=r,,, the information given above doesot function, there is ng-wave state.In the present case we
specify the system completely and a suitable boundary corih@y pick an appropriate boundary condition at the origin in
dition at locations of singularity must be posited. There ex-accordance with the method of self-adjoint extension of the
ists a class of boundary conditiofsee below all of which Hamiltonian. This leads to a one-parameter family of bound-
are in fact realizable with the help of suitable regularizationary conditiond3,8]:
procedures. Thus, anyons are further classified by the nature
of the boundary condition chosen at two-anyon intersection; -, Flely(r)— tang I'(1+[al) d [rlely (r)]}:o
points. Also, this extra specification is something thas to o w?I T (1—|al) d(r?lel 0 '
be madeand should be taken into account, say, in all ap- (2.9
proximate treatments. Divergences encountered in naive per-
turbation theory(with |«|<1) for the anyon system can be with the corresponding solution given as
ascribed to the ill-defined nature of the problem caused by |2l
not fixing the boundary conditiopl0]. Under the circum- “
stance tﬁat the bounda);y condition cannot be ignored, it will ~ #¢(")=(consd| Jjy (kr)+tand ;) jla(kr)}’
then be natural to ask whether the boundary condition in (2.9
guestion may be implemented by having instead an appro-
priate contact interaction term in the Hamiltonian. That iswhered is a dimensionless real parameter ana reference
possible, as we will show below. This entirely Hamiltonian scale. The hard-core boundary conditipire., (0)=0],
description for anyons will allow a straightforward applica- which is often assumed in the literature, corresponds to the
tion of perturbation theory and also serve as a bridge to thehoice #=0 but, clearly, there is na priori reason to favor
field-theoretic description. this particular case.

To study the boundary condition problem mentioned We now discuss how we can implement the boundary
above, we may concentrate on the relative dynamics in theondition (2.8) dynamically viz., by introducing a contact
two-anyon sector. It will be governed by the Hamiltonian interaction term of the form
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He=N,(r)8%(r) (2.10 here replace the vector potenti@l4) by the regularized ex-
pression
in the Hamiltonian[In the notation of Eq(2.1), this contact L
term translates into two-body interaction of the fok= A9 1 (euxl @14
ZamEnNo([Tn—Tm) 8%(ra—rm).] In Eq. (2.10 we have Crte\ r :
written a § function multiplied by arr-dependent function,
an apparently redundant expression. But, as we shall send thes-function 6°(r) by the regularized one
soon, it has a reasdnlf we form the new relative Hamil-
tonian 82(r;€)= iV2|n(r te)=———, (219
: 27 27t (r+¢€)?’

Hie=HretHe, (2.1
with e—0+ understood if there is no further dangerous ma-
the functiony, given in Eq.(2.9 will then have to be its nipulation left. Our regularization procedure is simply to re-
eigenstatgwhen all ill-behaved quantities are interpreted in placer by r+ e, while leaving all angular dependences in-
a suitably regularized sensé&his demands especially that tact. Then, it is possible to show that the functions obtained
from J. |, (kr) by the simple substitution—r+ € satisfy

~ k2 i
(ol )= (1) (2.1  the equationsfor r=0)
! i (€)y2 k?
or E(—lv—aA ) +U(r)—m jt|a\(k(r+€))
1 k2 2 2
d"‘r¢*<r>{—(—iV—aA>2+U<r>+A <r>62<r>——] I e . I _K
f m ’ m m rdrrdr+(r+e)2 U= 4
X ipg(r)=0, (2.13 in‘a‘(k(r-i-e))
where (r) can be an arbitrary function of the for(2.6). k(r+e)]*lel
One must choose ,(r) such that Eq(2.13 may hold. In |l 2 €
using the condition(2.13) it is to be noted that, since both =¥

T 2
J1(r) and ,(r) are in general not regular at=0, the op- m T(1le]) r(r+e

eration with the s-function term demands much care and
especially one may not inseN,(0) for \,(r). Actually,

there are other ill-behaved contributions in Eg.13 also. K(r+e)] =1l
See below. 27|« 2 .
To give a precise meaning to E(2.13 and also to the = Tm T(zla) o(rse). (2.16

Schralinger equation wittH ., (in the range =0), we must

introduce a suitable regularization procedure as regards thEhese follow readily from the behaviok2.7) and the fact
singularity atr=0. This involves two distinct aspects, viz., that 7., (kr) solve the differential equatiof2.5. Using
regularizing the Hamiltonian suitably and then finding theEg. (2.16 we may thus conclude that the function
corresponding eigenfunction which can be viewed as thely(r + €), given by the expressiof2.9) with the substitution
regularized form of the functiog,(r) given above. We may r—r + €, satisfies the relation

i(—iV—aA“))zﬂLU(r)—k—z}l//a(“ﬁ)
m m
1 wu(r+e)ll 1 u(r+e)]ld
2nlal | Tt 2 _tanar(1—|a|){ 2 ,
- m 1 ,u(r-l—e) [af 1 ,LL(I""E) —Ja] o (r;E)lﬂg(l’"Ff). (217)
Ti+la)| 2 thalr“gr(1—|a|){ 2

IThis is related to the fact that strength of thefunction in our case needs renormalizati@xcept for the special cases 6&0 or
7/2). Thesituation here is analogous to the case of a plifenction potential problem, as discussed in Rg#s:-4].



2230 SANG-JUN KIM AND CHOONKYU LEE 55

The functiony,(r + €), being indistinguishable frong:,(r) for r> €, can naturally be regarded as the regularized eigenfunc-
tion. But note that, on the right-hand side of E&.17), we have a certain expression giving a nontrivial contribution, say, to
the matrix element formed with the general state given in(Bd).

From Eg.(2.17) the precise form of the necessary contact interaction term can be inferred: the quantity multiplying
J(r+e) in the right-hand side of Eq(2.17 should be identified with—\,(r)5%(r) or, in a regularized form, with
—Ny(r)8%(r;€). That is?

p(r+e)]e
[(1+|a|)tand—T'(1—|al)
\ _ 27|« 2
o(=" wu(r+e)]?el
I(1+]|a))tand+T(1—-|al) >
27| al
’ 0:01
= " 2.1
| _emal(, ra-lah_ furraP (218
TTm | T 2 670
|
With the thus-constructed contact term includedHig,, this 0, r<rg,
new Hamiltonian, without any separate consideration of the Al = { iyl (2.20
boundary condition at the origin, will select the function-type —, >, ’
W(r)=uy(r) [i.e., thee— 0+ limit of ,(r+€)] as its only r

acceptable eigenfunction type. Especially, the hard-core
boundary condition(i.e., the §=0 case is implemented
by a particularly simple contact HamiltonianH.

= (27| a|/m)&%(r). This repulsive contact term is precisely
what has been suggested by the authors of Rdfl as the
extra interaction needed to cancel perturbation-theory diver-

Then, for the regularized form of the contact Hamiltonian,
the ring potential

Ao

gences. Also, interesting is the fact that, since HC:Zwroa(r_rO) [~Np6%(r)] (2.21
B=e;;diA7 . . . —
will especially be appropriate. Here, the strength which
_ € is independent of, is to be chosen such that the boundary
r(r+e)? condition (2.8) may be realized for,—0. Using this form,
) Hagen[18] demonstrated how one may implement the hard-
=—2m5(re), 219  core boundary condition. This can easily be generalized to

- accommodate more general boundary condition in(E®).
the net regularized relative Hamiltonia [see Eq(2.11]  Now, the eigenfunction ol ., will have to take the forntup
in the =0 case assumes the form of the two-dimensionato an overall multiplicative constant
Pauli Hamiltonian for a “spin-1/2" particlgwith its spin
polarized in the missing direction with the vector potential

A9 and the scalar potenti&l(r). . N TokD), r<ro,
Note that, even for the same given boundary condition, ry= (2.22
the contact Hamiltonian may have a slightly different look if Adja|(Kr)+BJ_|(Kr), T>Tg

the method of regularization is different. For example, sup-
pose we replace the vector potentfald) by that of finite-
radius flux tube of radius, (with the magnetic field confine
to the surface of the tubél17], i.e., by

d with the constanté\ andB determined by the conditions

h(rote)—g(ro—€)=0,
2If one wishes, the form given in Eq2.18 for A, may be re-
placed by another expression involving only the regularization pa-
rametere but notr. [One may use the integral conditi¢®.13 for d
i X - i ) . ]
this purposd.But, with a regularized function brought in, there is -
no reason to favor such an expression in particular; indeed, our dr
development leads quite naturally to the fof18). In this regard,
see also our alternative form of contact interaction given in Eq.
(2.2 below. For sufficiently smalkrg, Eqgs.(2.23 imply

Ny
2’7Tr0

_d

dr

=m

p(ro). (2.23

r=rgte r=ro—
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1 kro\ 1 krg\ ~l wherep is the magnitude of the relative momentum. Defin-
Ara+ap|2 ) TBTa-TaD 7) ’ N9
[ —la 2 tanﬂ—l
el [kro\t_ el (ko) m = — e a1, 2.29
T(1+]a))| 2 T(1—|a) | 2 270 m 1a
2.24 then the expressiof2.28 can be recast as
and hence we obtain the ratio B Ay(p)=e-imlel—1— (eirlal _g-inlal)
M\, N
F(1_|a|)(|a|__) 2|a| X ren 0 23
" y (m> . @2 Ko~ Mrent (g g (ulp 2 (230
mAg
I(1+|al) |a|+ﬁ) where we have seh,=2w|a|/m. (Note that if we set

Aren= Mo in EQ. (2.30 [or #=0 in Eq. (2.28], the result is
On the other hand, if we compare the above wave function ithat appropriate to the hard-core boundary condition first
the regionr >r, with the form given in Eq(2.9), we are led  given in Ref.[7].) We may now of course look upon this

to set result as that corresponding to the system defined by the
Hamiltonian(2.11) (with U=0) which contains the contact
B k2 interaction. We will make use of this result in the next sec-
—=tang| —| . (2.26 :
A tion.
From Egs.(2.25 and (2.26 we thus see that the strength IIl. QUANTUM FIELD-THEORETIC DESCRIPTION
N\, of the given contact term should be chosen as OF ANYONS
urg) 2l When interactions involved are nonsingular and conserve
270 ['(1+]|a|)tand—T(1—|«a) > the particle number, a Schiimger quantum field theory is
Ng=— 2Ta - known to be completely equivalent to nonrelativistic quan-
T(1+]|a|)tangd+T(1-|a|) o tum m_echanics of many_particlé$]. Needless tp say, Feyn-
2 man diagram approach in many-body theory is an important

(2.27) by-product of this correspondence. But, in the presence of
local or contact interactions, the singular nature of interac-
tion makes the situation no longer simple, both infinite renor-
Ng=o=2m|al/m. malization (in the field-theoretic approagtand self-adjoint

~ We have so far shown that an anyon system can be SpeGixtension of the Hamiltoniatin the gquantum-mechanical
fied solely by the Hamiltonian only when one takes intoapproachtake part in any discussion purporting to establish
account a suitable contact interaction term. It is needed tg,e analogous correspondence. In the latter case, we are not
implement the boundary condition chosen at the two-particlgyyare of any general argument as regards the nature of such
intersection pOint. For the SpeCia| case@t0 or ’77/2, this Correspondence and so each model System has to be dis-
c_ontact Hamiltonian assumes a particularly simple formssed separatelfThe main obstacle to givingeneralar-

viz., Hc=(2m|a|/m)8%(r) for 6=0 and  guments stems from the big difference in the accustomed
Hc=—(2m|a|/m)&*(r) for 6=m/2. In fact, only for=0  |anguage used in the two approaches, one diagrammatical
or 6=m/2, H. and alsoy,(r) in Eq. (2.9 (up to an irrel-  (and in momentum spag@nd the other in the form of dif-
evant overall constanbecome independent of our reference tgrential equationgin position spacd. The anyon system
scalep; this is an evidence of thecale invariancein the  jnyolves singular interactions and this issue arises naturally.
system. Here, one might suspect that, for a generajye will below give a field theory description of anyofis-
N-anyon Hamiltonian, contact interaction terms involving cludingall-loop corrections and renormalization effecend
more than two particles may have to be introduced as welkhen relate it to the quantum-mechanical description of the
We strongly believe that these should be unnecessary, i.grevious section. For earlier related works, see Refs.
two-body contact interactions we have discussed suffic§s 14,15, where the problem was studied in lower-order per-
This is supported by the perturbative analysis of anyrbation theory.

N-anyon systentin Ref.[11], for example and also by the We begin by specifying our candidate quantum field
renormalization counterterm structure in the field-theoretiaheory for anyons. It is 42+ 1)-dimensional nonrelativistic

Note that, for #=0, we again find the value

approach. system described by tH&are Lagrangian density
Before closing this section, we will give the explicit ex-

pression for thes-wave scattering amplitude of two anyons K o 2 Ag 4oy

when the two-body potentidl (r,—r,,) is taken to be zero. £~ 5 WAXA—KkAB+ ¢ IDit5 b= b ¢ b,

Given the scattering solutidf2.9), a straightforward analysis (3.1
yields thes-wave scattering amplitudel5]
where ¢ is a bosonic fieldA=(A;,A,) denotes a Chern-
(2.29 Simons gauge fieldB=¢;;d;A;j=V XA, and the covariant
derivatives are

(ulp)2e —tang

As(p):(e_iw‘al_ 1) (M/p)2\a\+e—|w\a\tan9'
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higher order
= Q: —@— = _&_ = | correction to =0
the ¢ propagator
L L ¥ L. ( higher order ]
(a) (b) ©) (d) = | correction to =0
| the A propagator |

FIG. 1. Basic vertices of the theory defined by the acti®1).

higher order

D.=d,+ie = | correction to =0
t t AO ’ Lthe 3 point vertex |

D=V —ieA. (3.2
. . . ) FIG. 2. Vanishing diagrams.
Without the last term in Eq3.1), this model was first con-
sidered by Hagehl2]. But the last contact interaction term, )
: : : : d 1 ie?
first considered in Refl13], is necessary to ensure the renor- i— @(r o) =1 — — V_—vy
malizability of the theory. As it turns out, this additional ot LN 2m4 | k"
term is of crucial importance in the field-theoretic treatment

of anyons. For a comprehensive review on various aspects v E G(r—r ))r
concerning the above theory, readers may consult [Réf. m(Zn) noom

Setting aside the renormalization problem for a moment,
it might be useful to reproduce quantum-mechanical descrip- +E 2 S(ro—r )]
tion corresponding to the above theory by the standard 2 n,m(%n) nom
many-body-theory procedure. First, using the “Gauss” con-
straint XD(ry,....r\t). (3.9

VXA=— %(bT(ﬁ, (3.3 What we have in Eq(3.9 has the appearance of the

Schralinger equation for the anyon system, with
a=e?2mk andU(|r,—r,|)=0 in the notation of Sec. Il;
the &-function potential in Eq(3.9), which originates from
the ¢'¢" ¢ coupling in Eq.(3.1), may be viewed as the
e boundary-condition implementing term at two-particle inter-
A(r,t)=— —fo d’r'G(r—r") e (r' 1) e(r' 1), section points. But the above argument suggests at most the
K (3.9 formal correspondence fdrare amplitudes(with singular
' interactions replaced by suitably regularized ones, as we
whereG(r) is the Green's function of the two-dimensional Nave done in Sec.)ll Our goal is to find the correspondence
Laplacian between well-defined renormalized amplitudes of the two ap-
proaches. In the quantum-mechanical description, we have
1 invoked the method of self-adjoint extension to find such
G(f):§|n|f|- (3.5  well-defined two-particle scattering amplitude which de-
pends on the self-adjoint extension paramefefor on
Assuming Eq.(3.4), the Hamiltonian can now be identified Arens @S defined in Eq(2.29] but not on the bare contact
with couplingAg. To be able to make an unambiguous compari-
son, the corresponding renormalized amplitude in the field
1 \g theory context will be obtained below. Here, it is perhaps
H=f dzr[ﬁ(D@T'(D(ﬁH 7¢T¢T¢¢ . (3.6 worthwhile to remark that the correspondence we found
above(for bare quantitiesmay be more than a formal one if
Then, defining theN-particle Schfdinger wave function the theory is free from ultraviolet divergenges; this happens
for the A g value equal to* 27|a|/m, for which we have a
1 scale-invariant system. In this connection, see the paragraph
q)(rl----ivat)Em<0|¢(r1-t)' —(ry,H)|®) (3.7 following Eq. (2.27) and the discussion following immedi-
' ately after Eq(3.39 below.
Given the Lagrangian densit.1), Feynman rules are as
follows. The nonrelativistic boson propagator in momentum

the gauge field®\ may be expressed in terms of the matter
fields (in the Coulomb gaugeas

and using the canonical commutation relations

[p(r,),¢(r" H]=[4"(r,1),4"(r',)]=0, space is
[p(r,1),8T(r",)]=d(r—r"), 3.8 1
A(K)=7————, 3.1
it is straightforward(but tedious to derive the Schdinger (+ (k _ k—+ie (310
equation of the fornj13,2Q] ° 2m
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P a p q P k

- - > L5 p > >
r = K + K K N —— P d
?_ _)-q p_')_ —)-q p_')_ Pk q K, +
—— P q
FIG. 3. Graphical representation of the effective two-particle P > >
interactionl. R R
P 7 4
-5 P q
so that we have K, N
d3k . . P N
—i(0|T$(x)4(0)]0) = f ZmFAlettoeTien, ’ > >
3.1 p
(3.11 5
Introducing the gauge-fixing term K.
g gaug g
1 ¥
LGF:_E(V'A)Z (3.12

FIG. 4. Representation of the full kernil in terms of three

and then considering the limig—0, the only nonvanishing different contributions.

components of the Chern-Simons gauge field propagator is

easily found to be interaction which has a nontrivial renormalization effect.
This requires a detailed study of two-particle scattering am-

_ d3k ko kex) plitude.
—i(0]TA(X)Ao(0)|0) = f (ZT)SDio(k)e oo, The two-particle scattering amplitude can be described in
(3.13  terms of the effective two-particle interactidh [1], repre-

sented by(see Fig. 3

with

i d3k
Dio(k)=—D0i(k)=|Z—kZ'. (3.14 F(p,p’;q,q’)=K(p.p';q,q’>+f(ZT)sK(p,p’;q,q’)
[This is essentially the Fourier transform of the Aharonov- XIAGKITA(pFP k)
Bohm potentiall There are four interaction vertices as shown xXK(k,p+p'—k;q,9")+---, 3.19
in Fig. 1. Three of them, coming from the covariant deriva-
tive terms, are given as

where K denotes the two-particle-irreducible kernel. Of
Io=—ie, (3.15a3  course, we are here dealing with bare quantities and hence, to

make our equations meaningful, a suitable regularization

must be employed. For this purpose we shall utilize the

I =%(pi +pi), (3.15n  simple momentum cutoff, with its detailed implementation to
be found below. Theentire nonvanishing graphs which are

- not reducible by cutting two matter lines are those shown in
= — 35-- (3.150 Fig. 4, and the full kernek can be identified with the sum of
! m '’ ’ K., Ky, and K.. (Note that, in this nonrelativistic field

theory, graphs such as those shown in Fig. 5 vanish identi-
while the remaining from the contact interaction term readscally.) Astute readers may recognize that these three contri-
butions to the kerneK find obvious interpretations on the
Fy=—2ikg. (3.1  basis of the Hamiltonia3.6).
Using the Feynman rules, one then finds that the quanti-

With our gauge choicéthat is, the Coulomb gaugand tiesK,, K,, andK_ are given by the expressiofshich are
normal  ordering of contact interaction term independent of energy variabjes

(Mg/2)pTpTp o, diagrams in Fig. 2 give zero contribution.
So, there are no renormalization of mass, field, or charige
this nonrelativistic theory. It is only the strength of contact

SHere and also in Eq(3.13 below, one usually has free-field
operator&z)f andAf instead of full fields¢ and A. But, because of
the reason to be explained shortly, there is no mass and field renor-
malization in our theory so that the free-field restriction can be FIG. 5. Diagrams yielding vanishing contribution to the two-
omitted. particle-irreducible kernel.




2234 SANG-JUN KIM AND CHOONKYU LEE

55
2 /. ’ :
(q—p)X(p—p) Ke(P,p';0,9")=—iNg. (3.180
Ka(p,p":0,0") =~ k(=g (3.189 ¢ °
. ) In Eq.(3.18h, A is an ultraviolet momentum cutoff and one
e

(3.18b can obtain the given expressipvalid regardless of the rela-

Ko(p.p":0,0") =1 tive ratio between§—q)? andA?] as

47-rmK2|n(p—q)2’

d3k i k-(qg—p—k)
277.)3 (p+k)2 . k2(q p— k)2+(p*>p QHQ)

e4
Kp(p.p';0.9 ):'m,@f(

2m

G J d’k  k-(q—p—k) , ,
~'omi2) @m? Kiq—p—tz (PP A=)

Fﬂ JA|k|d|k| Kla-picose—ké
Lo (2m)? K[k2—2[k[[q—p|cosp + (q—p)7] P P47

2||

4’7TmK (p—q)z' (3.19

Also note that Eq(3.17 for I' may be recast as the integral p’=—p, q'=-0, PotPs=Qo+dy=E. (3.22
equation

d3k L .
— Then, the simplified notations —I'(p,q;E), K—K(p,q),
(2m) etc. for the corresponding quantities should suffice, and Eq.
(3.21) becomes

I'(p,p’;0,9")=K(p,p";0,9") +

[
XK(p,p’:k,p+p’—k)—k2—

ko_%+|€ .
X - > E———He
, (p+p' —k)°
p0+p0—k0 T'HE
XI'(k,p+p'=kiq,q"), (3.20

xT'(k,q;E). (3.23
which is the Bethe-Salpeter equation. From E820 we

see th,af depen.ds not op, or p; separately bu.t on the_sum If we now decompos& andK as

po+ P only. This allows one to perform thiey integration

immediately(using Cauchy’s theoremto yield the equation

!. ! ’. ! de
L(p.p’0.0")=K(p.p';0. HJW F(p.;E)=2 T

ing
L)

XK(p,p';k,p+p’—k)
i
k2 (p+p' —k)? K(p,q)=2> K"(|p|.|a)e™" (3.24
— " tje n
2m 2m

XTI'(k,p+p’'—k;q,q"). (3.2

X

Po+Po—

(¢ is the angle between the incoming and outgoing mo-
We find it convenient to work in the center-of-mass framementa and insert these into E¢3.23), it follows after the

where angle integration, that
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d|k|? i
(ol lal.E) =Kol Jah + [ - K(lplJkh—r— (K. |al.E)

E——+ie
m
) ik’ < dlk|* dlk °
=Kol lab+ [ G KBl ) —z—Klplla)+ [ G
E——+|
n I n ! I n !
XK (|pl[k)——z——K"(k][K') ——gz——K"(K[,]a) + - - -. (3.2
E——+ie E——+ie
m m

The nth partial wave part of being obtained by iterating" only, we are entitled to consider each partial wave contribution
separately. As discussed in REE6], nons-wave (i.e., n#0) parts can be shown to be finite order by order while the series
for I'° (obtained by iteratind<®) is not. This in turn implies that renormalization is necessary only foisth@ve amplitude

I'%. So, for our purposéi.e., to compare the field-theoretic results with those of Segitlshould suffice from now on to
confine our attention to the analysis of th@vave amplitude, that is, to the=0 case with the integral equatid8.25. The

latter equation will become well defined only with the help of a suitable regularization. A natural procedure, consistent with
our momentum cutoff philosophy, would be simply to restrict various integration rafsges Eq.(3.25] to |k|?<A?2,

[k’|2<A2, ..., etc. On the other hand, from E¢8.189—(3.180, we have thes-wave contribution of the kernel given as
KO=K2+K2+K?, (3.263
K2=0, (3.26b
e A?
O_ s
K= —i gz (3.260
Ko=—i\g, (3.260

whereL(|p|,|a|) denotes the larger dp| and|q|. The physical swave scattering amplitude is obtained fratfi(|p|,|q|,E)
with |g|=|p| andE=|p|?/m.

We will organize the series fdr°(|p|,|p|,E) in the following way. Let™ denote all contributions mvolvmgb only (and
hence not dependent o), viz.*

|p|2 0 0, . 0 0,: . 0,: . 0
T pl,[pl, | = K3+ | KBGA)(AIK)+ | KBGA)(IA)KIA)IAIKD+- -

N N T N A
—i n - n
ame® P \dami?] Jo " am | "L(Ipl kD2 TKIP=TpP—ie | L(pl.IK])?

+_( e? )fAzd(lkF) azd(|k’ |2)( A2 ) —im (| A2 )
aami?] o L(IpL kD2 TKIZ—TpP—ie | "L(IK[,[K'])2
X —im ( (3.27
K2 [p[P—ie L<|k|,|p|> s :
and write
2y 2 2
1| I lpl. 2| <7 L1, 2o+ e 11 0 | 228

2/m), we find it convenient to introduce the quantity

To study the amplitudé’

“The quantityﬁ given by Eq.(3.27 was denoted aEXB in Ref.[16], for this amplitude was identified somewhat mistakenly with the
s-wave part of the Aharonov-BohifAB) amplitude obtained under the hard-core boundary condition in that paper.
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|p|2 _ 0 0,: . 0 0,: . 0 0, . 0,: . 0
Lerosg [PLIPL= | =Kt | Ke(iA)(iA)Kp+ | Kp(iA)(IA)Ke+ | Ke(iA)(IA)Kp(IA)(1A)K]

+f Kg(iA)(iA)KS(iA)(iA)ngLf KOGA)(IA)KDGA)(IA)KS+- -

_ Age® fAzd(|k|2)| A? —im
T Zami2 e “am TLOpLIKDZ KP—[plP—ie

Age? J’Azd(|k|2) —im | A2 . -
aami®)e 4w KP—[pP—ie "L(pL kD2 (3:29

which involves only one contact interactidﬁﬁ, and also the quantity

2
rbubbm(lpl,lpl,'%)=f KS(iA)(iA>K2+f KS(iA)(iA)KS(iA)(iA)KS+f KS(1A)(IA)KE(IA) (1A)Kp(iA) (I A)KE+ -

_ hszZd(lklz) —im - Age' jA2d<|k|2>fA2d<lk’|2> —im

)y Tam KP|plP-ie 'ammille 4w Jo 4w KPP [pPP—ie

x| A _im__ (3.30
n - - - .
L(KLIKD? [K'[*=[pl*—i€

which is the sum of all terms containing precisely two con-zero since we havKg|kz:Az=0 [as |—(|k|,|P|)|\k\:A should

tact interactions at the left and right ends of the diagramspe identified withA]. The results are the following relation-
DenotingKy, by the graph shown in Fig. 6, above three am-ships:

plitudes can be expressed graphically as in Fig. 7. Then, with _

the help of the quantitieB .ossand Iy ppie it is Not difficult ,dI?  ma®~

to see that the entireg-dependent contributiol .oiactmay A dA2 " m Leross (3.333
be expressed as

df:cross_ 270’ ~

~ ~ _ 2 _ ~
1—‘contact: ABFcrosil"' )\Brbubble+ ()\Brbubble)2+ o } dA? m FbUbb|erC’035’ (3.33
)\B’fcross d’I‘: 2
== (3.3) oWl bubple_ M 7a” = 2
1= Nglbupble A A2 27 T Touppd ™ (3.330

where we have defined\g-independent quantities, thg that the first term in the right-hand side of EQTBBC)
FcrossE(llks)Fcross and Fbubblez(i/)\é)rbubble- Note that, originates from the cutoff dependence of the leading-order

amplitude [K2(iA)(iA)K? from T'pupne [Se€ EQ.(3.30].
:)hJ;) :ﬂ]pﬁtﬂ'g?gsegb\{;’;thave now made thes dependence of Solving the differential equatiof8.339, we have

Direct calculations of the quantities such E%, fcross, _
andTl'y,yneappear to be still formidable. We can here make a Dpupble™
progress by studying instead the cutoff dependence of those

quantities. This consideration, in fact, allows us to Obtain\Nhere d1 is a certain expression which is independent of
certain simple differential equations satisfied by the threey2 ysing Eq.(3.34 with Eq. (3.33b, we also find
quantities. Writinga= e?/27rx and making the observations

1-(dyA?)l
1+ (dyAZ)lel (339

m

2| al

[see Eqs(3.260 and(3.264] ~ (d;A?)lel
Ueross d2{1+(d1A2—|_’_2) afy (3.395
» 9 0 ma® 0 » 9 o
A d_AZKb:m_)\BKC' A dTZKC:O’ (3.32  and then, from Eqd3.35 and(3.333,
let A2d/dA? (for fixed \g) act on the integral equations I __( m )1+ (d A2 +ds, (336

(3.27), (3.29, and(3.30. In this process, a marked simplifi-

cation follows from the fact that ifA?d/dA? acts on the where we introduced twa\?-independent integration con-
upper-end valud 2 of the integration ranges and the relevantstantsd, andds. Actually, by a simple dimensional reason,
integrand containsk(g, every such contribution just yields d, andd; may depend omr only while d, can be put as
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part of 1 -
FIG. 6. Graphical representation Kf . | . :>< +§><+><2§ + wgf
iml2 2
f 3.3
(a) ( D + ++ -

(p=|p| is the magnitude of the relative momentynwith

f(a)=1+0(a) on the basis of the result in lowest non- |
trivial order. Toee | = + ? +
Inserting the expressior{8.34) and(3.35 into Eq.(3.3) i | ‘ )

yields the following expression fdr ;ontace

2
!

d1:

(dlAz)‘“‘ FIG. 7. Graphical representation BF, T gross @NAdT puppie-
1+ (d;A%)le
1

T contace= Ngd> . guantum mechanical approagh|, viz., for A\g=*\,, our
1— Agm 4 Agm )(d A2)lel amplitude(3.39 should match the result in E¢R.30. [We
2|l 2a|al) Tt have not been able to verify this assertion directly, howgver.

(3.3  Taking this for granted, we can now fdg(«) andd,(a) in

the ab ion b ing th Iti
The desired fulls-wave amplitude, given by Eq3.28), fol- e above expression by using the result in 430 as

lows immediately from Eqs(3.36 and (3.39. Since the —2ids(a)=e" 72— 1, (3.403
s-wave two-particle scattering amplitude can be identified
with —2iI'°, we now see that our field-theoretic analysis 27| al ,
leads to —2ids(a)+ dy(a)=€"—1, (3.40p
_ 27T||a| . . : _
AJ(p)=—2ids(a)— dy(a) and this leads to the following expression #&y(p):
—a—imlal _ 1 _ (pimlel _ a—iwlel
27| a As(p)=e 1-(e € )
B™ Ag—A
m B 0
><27'r|a| 2| al 8 A i Al
m _)\B+< +hg|(dA?)ldl No—=Ag+(No+Ap) Ee” f(a)
_ 2i|al (3.4
=—2id3(a) - da(a) . .
For Ag# =\, we must renormalize the theory to obtain
Na— N the scattering amplitude which has no explicit dependence
B 0

X on the cutoff. Let us introducg,.,, the renormalized cou-

2[a] . .
No— Mg+ (No+Ap) éeiw/2f(a) pling, by the relation
p
Aot A Aot A
(3.39 LA @) P A, (342
0 0 ren

where, in the second expressian,=2|«|/m and we have
made use of the forni3.37). Based on this expression, we or, writing )\B Ng=\g and )\,en Nren™ Mo, by the relation
notice that ifAg=*\o=*27|a|/m(=+e*mk), any de- L, - L, .
pendence on the ultraviolet cutoff disappears fromi\(p) ~ 2l 1 Nen A w2l
and the resulting amplitudes exhilsicale invarianceto all 8= Mre ;f(a) s\ ;f(a) .
orders(just as was the case with the quantum-mechanical (3.43
expression for thos&g values. For these special values of
\g, the scattering amplitude is given by a finite perturbationHere, u is the normalization scale. Then, the amplitude
theory and the system requires no renormalization. This hag3.41) can be recast into the form
pens because divergences appearing in the perturbation . . .
th I° i Ayp)=e el —1— (g7l —gimlal)

eory of I'” get canceled order by order by divergences
Ees]ulting from contributions involving the contact interaction A ren— Mo
16]. Now, at least for these finite-theory cases, we may be X ST Al -
allowed to invoke the usual one-to-one correspondence ex- Mo~ Nrent (No+ e (/)€1
isting between a nonrelativistic quantum field theory and the (3.49




2238 SANG-JUN KIM AND CHOONKYU LEE 55

This renormalizedscattering amplitude is in complete agree-ing a suitable contact interaction term in the anyon Hamil-
ment with the quantum-mechanical expresgi®130), only if ~ tonian. This system admits a quantum field-theoretic descrip-
our field-theoretic renormalized coupling., is taken to be tion in the form of a Chern-Simons gauge theory, and we
related to the self-adjoint extension parametetby Eq. have here shown that thé'¢'¢¢-type contact interaction
(2.29. We may now assert that the quantum-field theoryassumes a crucial role not only in securing a well-defined
defined through the actio(8.1) and renormalized as above theory but also in realizing the full equivalence with the
provides an equivalent description of many-anyon quantunguantum-mechanical approach. The strength of the renormal-
mechanics with a general boundary condition as considereided contact coupling in the field-theoretic description is re-
in the previous section. lated to the self-adjoint extension parameter which encodes
Before closing this section, we shall emphasize oncehe quantum-mechanical boundary condition.
again the role of the contact interaction terms in the quantum We have a few comments to make. First of all, note that
description of anyons. As was explained in Sec. Il, we neednore general kinds of anyor(sther than the ones we dis-
them to implement dynamicallyi.e., through the Hamil- cussed hepeare possible, such as those obeying so-called
tonian a suitable boundary condition at the two-anyon coin-matrix (or mutua) statisticd 21] and also those obeying non-
cidence point. As such, their presence is in no way an artifachbelian statistic§22]. Both quantum-mechanical and field-
of perturbation theory. They essentially go over to the field-theoretic descriptions for these generalizbdt still nonrel-
theoretic description, where one usually does not consideativistic) anyons were discussed by various autf@3,24]
the boundary condition separately. In fact, without includingwithout paying due attention to the contact interaction terms.
the contact term in the Lagrangian density, the given fieldThese must be corrected along the line discussed in this pa-
theory is not renormalizable and hence does not lead to per.(In this regard, see especially REZ5] where the related
well-defined theory. The equivalence between the first- andssue is studied in non-Abelian Chern-Simons field theory
second-quantized approaches can be established only wheiith the help of some lower-order perturbative calculatipns.
we include the appropriate contact interaction term. For inAnother problem deserving more study is to look at related
stance, in the special case of anyons satisfying the hard-coigsues from the viewpoint aklativistic Chern-Simons field
boundary condition, the Lagrangian density of the corretheory, as was considered recently in R&6] within one-
sponding field theory reads loop approximation. Finally, we need to have more informa-
tion on those specific features of an anyon system which
depend crucially on the self-adjoint extension paramgtegr
equivalently, on the coupling strength of thé ¢’ ¢ ¢ inter-
(3.45 action in the field-theoretic approgchifter all, if anyons

) ) . play a role in real physical phenomena, it will be an experi-

and this happens to be an ultraviolet finite theory. mental question to determine what specific boundary condi-
tion the given anyons satisfy.

2

iD D
| t+%

2

e
b—5—d ¢ o9,

2Mmk

K

£=3

HAXA—kAB+ T

IV. SUMMARY AND DISCUSSIONS
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