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We make an all-order analysis to establish the precise correspondence between nonrelativistic Chern-Simons
quantum field theory and an appropriate first-quantized description. The physical role of the field-theoretic
contact term in the context of renormalized perturbation theory is clarified through their connection to the
self-adjoint extension of the Hamiltonian in the first-quantized approach. Our analysis provides a firm theo-
retical foundation on quantum field theories of nonrelativistic anyons.@S0556-2821~97!07804-1#

PACS number~s!: 11.10.Kk, 71.10.Pm

I. INTRODUCTION

It is generally understood that for every Schro¨dinger~i.e.,
nonrelativistic! quantum field theory with the conserved par-
ticle number, there exists a corresponding quantum-
mechanical~or first-quantized! description@1#. This will cer-
tainly be the case with nonsingular interactions, but becomes
quite uncertain if singular interactions, such as the two-body
d-function potential, are involved. In two or more spatial
dimensions, thed-function potentials lead to nontrivial~i.e.,
interacting! systems only when infinite renormalization or
self-adjoint extension of the Hamiltonian is taken into con-
sideration@2–4#. Using the language of Schro¨dinger field
theory, on the other hand, thed-function potential between
particles is formally represented by a local or contact inter-
action of the form@f†(x)f(x)#2. The Dyson-Feynman per-
turbation theory is then beset with ultraviolet divergences,
and to make sense out of this field theory one must regularize
and renormalize the amplitudes. Because of these complica-
tions it is not so easy to make a direct comparison between
the first- and second-quantized approaches even for this rela-
tively simple system. But, Bergman@5# demonstrated re-
cently that the two approaches are, in fact, completely
equivalent once the renormalized strength of the
@f†(x)f(x)#2 interaction is chosen to be related in a specific
way to the self-adjoint extension parameter entering the
quantum-mechanical approach.

In two spatial dimensions, we have another kind of sys-
tem where similar problems arise naturally, those involving
anyons@6#. Quantum mechanically, anyons can be regarded
as flux-charge composites and so the relative dynamics of the
two anyon system is essentially the Aharonov-Bohm scatter-
ing problem@7#. The latter problem has a certain ambiguity
as regards the choice of boundary condition at the singular
point of the Aharonov-Bohm potential, namely, at the loca-
tion of the flux line. According to the theory of self-adjoint
extension, it is known that there exists a one-parameter fam-
ily of acceptable boundary conditions@3,8#, including as a
special case the often-assumed hard-core boundary condition
~appropriate to an impenetrable flux line! @7#. In perturbative
treatments, however, this boundary condition is not easily
incorporated and without paying due attention to it one ends
up with a divergent perturbation series@9#. Among various
proposals made to amend this situation@10#, a particularly
interesting one is to introduce an extrad-function potential

of suitable strength@11#, the role of which is to secure a
finite ~and correct! perturbation theory. The second-
quantized description has a certain ambiguity also. Naively,
the field theory for anyons can be obtained if the Schro¨dinger
field is coupled to a Chern-Simons gauge field@12,13#. But,
once one takes renormalization into account, one is forced to
allow the @f†(x)f(x)#2-type local interaction also in the
theory@14#. Needless to say, it should be important to under-
stand the physical role of such contact interaction term and
also its significance within the first-quantized approach. This
is especially so in view of possible relevance of the Chern-
Simons field theory in some of most remarkable phenomena
in planar physics such as the quantum Hall effect.

A serious study on the above issue was made recently by
Amelino-Camelia and Bak@15#. They showed that lower-
order field theory calculations of the scattering amplitudes
agree with the corresponding quantum-mechanical results
obtained using the method of self-adjoint extension, pro-
vided the strength of the@f†(x)f(x)#2-interaction is suit-
ably related to the self-adjoint extension parameter. Note that
this situation is entirely analogous to the pured-function
case mentioned earlier. A new feature is that, if the strength
of the @f†(x)f(x)#2-interaction is equal to the critical value
appropriate to the so-called self-dual limit@13#, the field
theory turns out to be ultraviolet finite@14# and yields the
anyon scattering amplitude consistent with the scale-
invariant boundary conditions. This last fact has now been
confirmed by one of us toall orders in perturbation theory
@16#. With these developments it should be useful to have a
self-contained account on quantum description of anyons
which takes contact terms properly into consideration, in
both first- and second-quantized formulations. This will,
above all, serve to show the essential equivalence of the two
formulations and illuminate the physical significance of the
contact term entering either formulation. The present work
has been written precisely for this purpose.

This paper is organized as follows. In Sec. II we recon-
sider quantum-mechanical description of anyons and explain,
in particular, how the boundary condition, needed at the co-
incidence point of two anyons, can be implemented through
the introduction of appropriate contact terms in the Hamil-
tonian. Note that we here consider not just the hard-core
boundary condition but the general boundary condition al-
lowed by the self-adjoint extension method~the correspond-
ing anyons were called ‘‘colliding anyons’’ in Ref.@15#!.
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Section III is concerned with the Chern-Simons field theory
description of anyons, with the@f†(x)f(x)#2-type contact
terms included for the sake of renormalizability. In this field
theory context we elaborate on the all-order analysis of the
two-anyons-wave scattering amplitude, a brief account of
which was given for the first time in Ref.@16#. Based on this
analysis, we then clarify the connection between the field-
theoretic formulation and the quantum-mechanical descrip-
tion. Section IV contains the summary and discussions.

II. FIRST-QUANTIZED DESCRIPTIONS OF ANYONS
WITH BOUNDARY CONDITION IMPLEMENTING

CONTACT TERMS

Anyons, which are realized only in planar physics, can be
described using either bosonic or fermionic description. Tak-
ing bosonic description, one may specify quantum dynamics
of a system of anyons by the particle Hamiltonian

H5(
n

1

2m
~pn2aAn!

21
1

2 (
n,m~Þn!

U~ urn2rmu!, ~2.1!

An
i [e i j (

m~Þn!

xn
j 2xm

j

urn2rmu2
, ~2.2!

where rn[(xn
1 ,xn

2) denotes the position of thenth particle,
andU(urn2rmu) a nonsingular two-body potential included
for generality. The vector potentialAn[(An

1 ,An
2), seen by

particle n, is that of point vortices carried by all the other
particles, and it is the resulting Aharonov-Bohm-type inter-
ference effect that is responsible for the anyonic behavior of
particles. The parametera characterizes the type of anyons
and without loss of generalitya may be restricted to the
interval (21,1!.

But, due to the singular nature of the vector potential~2.2!
at points rn5rm , the information given above doesnot
specify the system completely and a suitable boundary con-
dition at locations of singularity must be posited. There ex-
ists a class of boundary conditions~see below! all of which
are in fact realizable with the help of suitable regularization
procedures. Thus, anyons are further classified by the nature
of the boundary condition chosen at two-anyon intersection
points. Also, this extra specification is something thathas to
be madeand should be taken into account, say, in all ap-
proximate treatments. Divergences encountered in naive per-
turbation theory~with uau!1) for the anyon system can be
ascribed to the ill-defined nature of the problem caused by
not fixing the boundary condition@10#. Under the circum-
stance that the boundary condition cannot be ignored, it will
then be natural to ask whether the boundary condition in
question may be implemented by having instead an appro-
priate contact interaction term in the Hamiltonian. That is
possible, as we will show below. This entirely Hamiltonian
description for anyons will allow a straightforward applica-
tion of perturbation theory and also serve as a bridge to the
field-theoretic description.

To study the boundary condition problem mentioned
above, we may concentrate on the relative dynamics in the
two-anyon sector. It will be governed by the Hamiltonian

H rel5
1

m
~p2aA!21U~r !, ~2.3!

Ai[
e i j xj

r 2
~r[ur u!, ~2.4!

wherer[(x1,x2) andp denote relative position and momen-
tum. Furthermore, since the boundary condition to be chosen
at r50 has an effect on thes wave only, it will suffice to
consider thes-wave Hamiltonian. Throughout this paper, we
also set\51. The corresponding Schro¨dinger equation reads

F2
1

r

d

dr
r
d

dr
1

a2

r 2
1mU~r !Gc~r !5k2c~r ! ~r.0!,

~2.5!

which has the general solution of the form~for aÞ0)

c~r !5AJuau~kr !1BJ2uau~kr !, ~2.6!

whereA, B are arbitrary constants. Here,J6uau(kr) repre-
sent two linearly independent solutions of Eq.~2.5! with the
following small-r behavior:

J6uau~kr !;
1

G~16uau! S kr2 D 6uau

@11O~r !#, r→0.

~2.7!

Note that we have assumed a sufficient regularity ofU(r ) at
r50, and the functionsJ6uau(kr) have been normalized in
such a way that they reduce to ordinary Bessel functions, i.e.,
J6uau(kr) if U(r ) is taken to vanish. The wave function in
Eq. ~2.6! is not regular atr50, but still square integrable
~with uau,1) for arbitrary finite values ofA andB. This is
in marked contrast with the case of higher partial waves
where only one type of solution is square integrable.~Note
that, due to the Bose symmetry of the two-particle wave
function, there is nop-wave state.! In the present case we
may pick an appropriate boundary condition at the origin in
accordance with the method of self-adjoint extension of the
Hamiltonian. This leads to a one-parameter family of bound-
ary conditions@3,8#:

lim
r→0

F r uaucu~r !2
tanu

m2uau
G~11uau!
G~12uau!

d

d~r 2uau!
@r uaucu~r !#G50,

~2.8!

with the corresponding solution given as

cu~r !5~const!FJuau~kr !1tanuS km D 2uau

J2uau~kr !G ,
~2.9!

whereu is a dimensionless real parameter andm a reference
scale. The hard-core boundary condition@i.e., c(0)50#,
which is often assumed in the literature, corresponds to the
choiceu50 but, clearly, there is noa priori reason to favor
this particular case.

We now discuss how we can implement the boundary
condition ~2.8! dynamically, viz., by introducing a contact
interaction term of the form

2228 55SANG-JUN KIM AND CHOONKYU LEE



Hc5lu~r !d2~r ! ~2.10!

in the Hamiltonian.@In the notation of Eq.~2.1!, this contact
term translates into two-body interaction of the formHc5
1
2(n,m(Þn)lu(urn2rmu)d2(rn2rm).# In Eq. ~2.10! we have
written ad function multiplied by anr -dependent function,
an apparently redundant expression. But, as we shall see
soon, it has a reason.1 If we form the new relative Hamil-
tonian

H̃ rel5H rel1Hc , ~2.11!

the functioncu given in Eq.~2.9! will then have to be its
eigenstate~when all ill-behaved quantities are interpreted in
a suitably regularized sense!. This demands especially that

^cuH̃ relucu&5
k2

m
^cucu& ~2.12!

or

E d2rc* ~r !H 1m ~2 i¹2aA!21U~r !1lu~r !d2~r !2
k2

m J
3cu~r !50, ~2.13!

wherec(r ) can be an arbitrary function of the form~2.6!.
One must chooselu(r ) such that Eq.~2.13! may hold. In
using the condition~2.13! it is to be noted that, since both
c†(r ) andcu(r ) are in general not regular atr50, the op-
eration with thed-function term demands much care and
especially one may not insertlu(0) for lu(r ). Actually,
there are other ill-behaved contributions in Eq.~2.13! also.
See below.

To give a precise meaning to Eq.~2.13! and also to the
Schrödinger equation withH̃ rel ~in the ranger>0), we must
introduce a suitable regularization procedure as regards the
singularity atr50. This involves two distinct aspects, viz.,
regularizing the Hamiltonian suitably and then finding the
corresponding eigenfunction which can be viewed as the
regularized form of the functioncu(r ) given above. We may

here replace the vector potential~2.4! by the regularized ex-
pression

Ai ~e!5
1

r1e S e i j xj

r D ~2.14!

and thed-function d2(r ) by the regularized one

d2~r ;e!5
1

2p
¹2ln~r1e!5

1

2pr

e

~r1e!2
, ~2.15!

with e→01 understood if there is no further dangerous ma-
nipulation left. Our regularization procedure is simply to re-
place r by r1e, while leaving all angular dependences in-
tact. Then, it is possible to show that the functions obtained
from J6uau(kr) by the simple substitutionr→r1e satisfy
the equations~for r>0)

F 1m ~2 i¹2aA~e!!21U~r !2
k2

mGJ6uau„k~r1e!…

5F 1m S 2
1

r

d

dr
r
d

dr
1

a2

~r1e!2D1U~r !2
k2

mG
3J6uau„k~r1e!…

57
uau
m

Fk~r1e!

2 G6uau

G~16uau!
e

r ~r1e!2

[7
2puau
m

Fk~r1e!

2 G6uau

G~16uau!
d2~r ;e!. ~2.16!

These follow readily from the behaviors~2.7! and the fact
that J6uau(kr) solve the differential equation~2.5!. Using
Eq. ~2.16! we may thus conclude that the function
cu(r1e), given by the expression~2.9! with the substitution
r→r1e, satisfies the relation

F 1m ~2 i¹2aA~e!!21U~r !2
k2

mGcu~r1e!

52
2puau
m H 1

G~11uau! Fm~r1e!

2 G uau

2tanu
1

G~12uau! Fm~r1e!

2 G2uau

1

G~11uau! Fm~r1e!

2 G uau

1tanu
1

G~12uau! Fm~r1e!

2 G2uau J d2~r ;e!cu~r1e!. ~2.17!

1This is related to the fact that strength of thed function in our case needs renormalization~except for the special cases ofu50 or
p/2). Thesituation here is analogous to the case of a pured-function potential problem, as discussed in Refs.@2–4#.
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The functioncu(r1e), being indistinguishable fromcu(r ) for r@e, can naturally be regarded as the regularized eigenfunc-
tion. But note that, on the right-hand side of Eq.~2.17!, we have a certain expression giving a nontrivial contribution, say, to
the matrix element formed with the general state given in Eq.~2.6!.

From Eq. ~2.17! the precise form of the necessary contact interaction term can be inferred: the quantity multiplying
c(r1e) in the right-hand side of Eq.~2.17! should be identified with2lu(r )d

2(r ) or, in a regularized form, with
2lu(r )d

2(r ;e). That is,2

lu~r !52
2puau
m H G~11uau!tanu2G~12uau!Fm~r1e!

2 G2uau

G~11uau!tanu1G~12uau!Fm~r1e!

2 G2uau J
5H 2puau

m
, u50,

2
2puau
m H 122

G~12uau!
G~11uau!

cotuFm~r1e!

2 G2uauJ , uÞ0.

~2.18!

With the thus-constructed contact term included inH̃ rel , this
new Hamiltonian, without any separate consideration of the
boundary condition at the origin, will select the function-type
c(r )5cu(r ) @i.e., thee→01 limit of cu(r1e)# as its only
acceptable eigenfunction type. Especially, the hard-core
boundary condition~i.e., the u50 case! is implemented
by a particularly simple contact Hamiltonian,Hc
5(2puau/m)d2(r ). This repulsive contact term is precisely
what has been suggested by the authors of Ref.@11# as the
extra interaction needed to cancel perturbation-theory diver-
gences. Also, interesting is the fact that, since

B[e i j ] iAj
~e!

52
e

r ~r1e!2

522pd2~r ;e!, ~2.19!

the net regularized relative HamiltonianH̃ rel @see Eq.~2.11!#
in the u50 case assumes the form of the two-dimensional
Pauli Hamiltonian for a ‘‘spin-1/2’’ particle~with its spin
polarized in the missingz direction! with the vector potential
A(e) and the scalar potentialU(r ).

Note that, even for the same given boundary condition,
the contact Hamiltonian may have a slightly different look if
the method of regularization is different. For example, sup-
pose we replace the vector potential~2.4! by that of finite-
radius flux tube of radiusr 0 ~with the magnetic field confined
to the surface of the tube! @17#, i.e., by

Ai ~r0!5H 0, r,r 0 ,

e i j xj

r 2
, r.r 0 .

~2.20!

Then, for the regularized form of the contact Hamiltonian,
the ring potential

Hc5
l̄u

2pr 0
d~r2r 0! @'l̄ud2~r !# ~2.21!

will especially be appropriate. Here, the strengthl̄u , which
is independent ofr , is to be chosen such that the boundary
condition ~2.8! may be realized forr 0→0. Using this form,
Hagen@18# demonstrated how one may implement the hard-
core boundary condition. This can easily be generalized to
accommodate more general boundary condition in Eq.~2.8!.
Now, the eigenfunction ofH rel will have to take the form~up
to an overall multiplicative constant!

c~r !5HJ0~kr !, r,r 0 ,

AJuau~kr !1BJ2uau~kr !, r.r 0
~2.22!

with the constantsA andB determined by the conditions

c~r 01e!2c~r 02e!50,

dc

dr U
r5r01e

2
dc

dr U
r5r02e

5m
l̄u

2pr 0
c~r 0!. ~2.23!

For sufficiently smallkr0, Eqs.~2.23! imply

2If one wishes, the form given in Eq.~2.18! for lu may be re-
placed by another expression involving only the regularization pa-
rametere but notr . @One may use the integral condition~2.13! for
this purpose.# But, with a regularizedd function brought in, there is
no reason to favor such an expression in particular; indeed, our
development leads quite naturally to the form~2.18!. In this regard,
see also our alternative form of contact interaction given in Eq.
~2.21! below.
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A
1

G~11uau! S kr02 D uau

1B
1

G~12uau! S kr02 D 2uau

51,

A
uau

G~11uau! S kr02 D uau

2B
uau

G~12uau! S kr02 D 2uau

5
m

2p
l̄u ,

~2.24!

and hence we obtain the ratio

B

A
5

G~12uau!S uau2
ml̄u

2p
D

G~11uau!S uau1
ml̄u

2p
D S kr02 D 2uau

. ~2.25!

On the other hand, if we compare the above wave function in
the regionr.r 0 with the form given in Eq.~2.9!, we are led
to set

B

A
5tanuS km D 2uau

. ~2.26!

From Eqs.~2.25! and ~2.26! we thus see that the strength
l̄u of the given contact term should be chosen as

l̄u52
2puau
m

G~11uau!tanu2G~12uau!S mr 0
2 D 2uau

G~11uau!tanu1G~12uau!S mr 0
2 D 2uau .

~2.27!

Note that, for u50, we again find the value
l̄u5052puau/m.

We have so far shown that an anyon system can be speci-
fied solely by the Hamiltonian only when one takes into
account a suitable contact interaction term. It is needed to
implement the boundary condition chosen at the two-particle
intersection point. For the special case ofu50 or p/2, this
contact Hamiltonian assumes a particularly simple form,
viz., Hc5(2puau/m)d2(r ) for u50 and
Hc52(2puau/m)d2(r ) for u5p/2. In fact, only foru50
or u5p/2, Hc and alsocu(r ) in Eq. ~2.9! ~up to an irrel-
evant overall constant! become independent of our reference
scalem; this is an evidence of thescale invariancein the
system. Here, one might suspect that, for a general
N-anyon Hamiltonian, contact interaction terms involving
more than two particles may have to be introduced as well.
We strongly believe that these should be unnecessary, i.e.,
two-body contact interactions we have discussed suffice.
This is supported by the perturbative analysis of an
N-anyon system~in Ref. @11#, for example! and also by the
renormalization counterterm structure in the field-theoretic
approach.

Before closing this section, we will give the explicit ex-
pression for thes-wave scattering amplitude of two anyons
when the two-body potentialU(rn2rm) is taken to be zero.
Given the scattering solution~2.9!, a straightforward analysis
yields thes-wave scattering amplitude@15#

As~p!5~e2 ipuau21!
~m/p!2uau2tanu

~m/p!2uau1e2 ipuautanu
, ~2.28!

wherep is the magnitude of the relative momentum. Defin-
ing

l ren[2
2puau
m

tanu21

tanu11
, ~2.29!

then the expression~2.28! can be recast as

As~p!5e2 ipuau212~eipuau2e2 ipuau!

3
l ren2l0

l02l ren1~l01l ren!~m/p!2uaueipuau , ~2.30!

where we have setl052puau/m. „Note that if we set
l ren5l0 in Eq. ~2.30! @or u50 in Eq. ~2.28!#, the result is
that appropriate to the hard-core boundary condition first
given in Ref. @7#.… We may now of course look upon this
result as that corresponding to the system defined by the
Hamiltonian~2.11! ~with U[0) which contains the contact
interaction. We will make use of this result in the next sec-
tion.

III. QUANTUM FIELD-THEORETIC DESCRIPTION
OF ANYONS

When interactions involved are nonsingular and conserve
the particle number, a Schro¨dinger quantum field theory is
known to be completely equivalent to nonrelativistic quan-
tum mechanics of many particles@1#. Needless to say, Feyn-
man diagram approach in many-body theory is an important
by-product of this correspondence. But, in the presence of
local or contact interactions, the singular nature of interac-
tion makes the situation no longer simple, both infinite renor-
malization ~in the field-theoretic approach! and self-adjoint
extension of the Hamiltonian~in the quantum-mechanical
approach! take part in any discussion purporting to establish
the analogous correspondence. In the latter case, we are not
aware of any general argument as regards the nature of such
correspondence and so each model system has to be dis-
cussed separately.@The main obstacle to givinggeneralar-
guments stems from the big difference in the accustomed
language used in the two approaches, one diagrammatical
~and in momentum space! and the other in the form of dif-
ferential equations~in position space!#. The anyon system
involves singular interactions and this issue arises naturally.
We will below give a field theory description of anyons~in-
cludingall-loop corrections and renormalization effects! and
then relate it to the quantum-mechanical description of the
previous section. For earlier related works, see Refs.
@5,14,15#, where the problem was studied in lower-order per-
turbation theory.

We begin by specifying our candidate quantum field
theory for anyons. It is a~211!-dimensional nonrelativistic
system described by the~bare! Lagrangian density

L5
k

2
] tA3A2kA0B1f†S iD t1

D2

2mDf2
lB

2
f†f†ff,

~3.1!

wheref is a bosonic field,A5(A1,A2) denotes a Chern-
Simons gauge field,B5e i j ] iAj[¹3A, and the covariant
derivatives are
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Dt5] t1 ieA0 ,

D5¹2 ieA. ~3.2!

Without the last term in Eq.~3.1!, this model was first con-
sidered by Hagen@12#. But the last contact interaction term,
first considered in Ref.@13#, is necessary to ensure the renor-
malizability of the theory. As it turns out, this additional
term is of crucial importance in the field-theoretic treatment
of anyons. For a comprehensive review on various aspects
concerning the above theory, readers may consult Ref.@19#.

Setting aside the renormalization problem for a moment,
it might be useful to reproduce quantum-mechanical descrip-
tion corresponding to the above theory by the standard
many-body-theory procedure. First, using the ‘‘Gauss’’ con-
straint

¹3A52
e

k
f†f, ~3.3!

the gauge fieldsA may be expressed in terms of the matter
fields ~in the Coulomb gauge! as

A~r ,t !52
e

k
¹3E d2r 8G~r2r 8!f†~r 8,t !f~r 8,t !,

~3.4!

whereG(r ) is the Green’s function of the two-dimensional
Laplacian

G~r !5
1

2p
lnur u. ~3.5!

Assuming Eq.~3.4!, the Hamiltonian can now be identified
with

H5E d2r F 1

2m
~Df!†•~Df!1

lB

2
f†f†ff G . ~3.6!

Then, defining theN-particle Schro¨dinger wave function

F~r 1,...,rN,t ![
1

N!
^0uf~r1 ,t !•••f~rN ,t !uF& ~3.7!

and using the canonical commutation relations

@f~r ,t !,f~r 8,t !#5@f†~r ,t !,f†~r 8,t !#50,

@f~r ,t !,f†~r 8,t !#5d~r2r 8!, ~3.8!

it is straightforward~but tedious! to derive the Schro¨dinger
equation of the form@13,20#

i
]

]t
F~r 1,...,rN,t !5H 2

1

2m(
n

F¹n2
ie2

k
¹n

3S (
m~Þn!

G~rn2rm! D G2
1

lB

2 (
n,m~Þn!

d~rn2rm!J
3F~r 1,...,rN,t !. ~3.9!

What we have in Eq.~3.9! has the appearance of the
Schrödinger equation for the anyon system, with
a5e2/2pk andU(urn2rmu)50 in the notation of Sec. II;
the d-function potential in Eq.~3.9!, which originates from
the f†f†ff coupling in Eq.~3.1!, may be viewed as the
boundary-condition implementing term at two-particle inter-
section points. But the above argument suggests at most the
formal correspondence forbare amplitudes~with singular
interactions replaced by suitably regularized ones, as we
have done in Sec. II!. Our goal is to find the correspondence
between well-defined renormalized amplitudes of the two ap-
proaches. In the quantum-mechanical description, we have
invoked the method of self-adjoint extension to find such
well-defined two-particle scattering amplitude which de-
pends on the self-adjoint extension parameteru @or on
l ren, as defined in Eq.~2.29!# but not on the bare contact
couplinglB . To be able to make an unambiguous compari-
son, the corresponding renormalized amplitude in the field
theory context will be obtained below. Here, it is perhaps
worthwhile to remark that the correspondence we found
above~for bare quantities! may be more than a formal one if
the theory is free from ultraviolet divergences; this happens
for the lB value equal to62puau/m, for which we have a
scale-invariant system. In this connection, see the paragraph
following Eq. ~2.27! and the discussion following immedi-
ately after Eq.~3.39! below.

Given the Lagrangian density~3.1!, Feynman rules are as
follows. The nonrelativistic boson propagator in momentum
space is

D~k!5
1

S k02 k2

2m
1 i e D , ~3.10!

FIG. 1. Basic vertices of the theory defined by the action~3.1!.

FIG. 2. Vanishing diagrams.
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so that we have3

2 i ^0uTf~x!f†~0!u0&5E d3k

~2p!3
D~k!e2 i ~k0x02k•x!.

~3.11!

Introducing the gauge-fixing term

LGF52
1

j
~¹•A!2 ~3.12!

and then considering the limitj→0, the only nonvanishing
components of the Chern-Simons gauge field propagator is
easily found to be

2 i ^0uTAi~x!A0~0!u0&5E d3k

~2p!3
Di0~k!e2 i ~k0x02k•x!,

~3.13!

with

Di0~k!52D0i~k!5
i e i j kj
kk2

. ~3.14!

@This is essentially the Fourier transform of the Aharonov-
Bohm potential.# There are four interaction vertices as shown
in Fig. 1. Three of them, coming from the covariant deriva-
tive terms, are given as

G052 ie, ~3.15a!

G i5
ie

2m
~pi1pi8!, ~3.15b!

G i j52
ie2

m
d i j , ~3.15c!

while the remaining from the contact interaction term reads

Gl522ilB . ~3.16!

With our gauge choice~that is, the Coulomb gauge! and
normal ordering of contact interaction term
(lB/2)f

†f†ff, diagrams in Fig. 2 give zero contribution.
So, there are no renormalization of mass, field, or chargee in
this nonrelativistic theory. It is only the strength of contact

interaction which has a nontrivial renormalization effect.
This requires a detailed study of two-particle scattering am-
plitude.

The two-particle scattering amplitude can be described in
terms of the effective two-particle interactionG @1#, repre-
sented by~see Fig. 3!

G~p,p8;q,q8!5K~p,p8;q,q8!1E d3k

~2p!3
K~p,p8;q,q8!

3 iD~k!iD~p1p82k!

3K~k,p1p82k;q,q8!1•••, ~3.17!

where K denotes the two-particle-irreducible kernel. Of
course, we are here dealing with bare quantities and hence, to
make our equations meaningful, a suitable regularization
must be employed. For this purpose we shall utilize the
simple momentum cutoff, with its detailed implementation to
be found below. Theentire nonvanishing graphs which are
not reducible by cutting two matter lines are those shown in
Fig. 4, and the full kernelK can be identified with the sum of
Ka , Kb, and Kc . ~Note that, in this nonrelativistic field
theory, graphs such as those shown in Fig. 5 vanish identi-
cally.! Astute readers may recognize that these three contri-
butions to the kernelK find obvious interpretations on the
basis of the Hamiltonian~3.6!.

Using the Feynman rules, one then finds that the quanti-
tiesKa , Kb, andKc are given by the expressions~which are
independent of energy variables!

3Here and also in Eq.~3.13! below, one usually has free-field
operatorsff andAf instead of full fieldsf andA. But, because of
the reason to be explained shortly, there is no mass and field renor-
malization in our theory so that the free-field restriction can be
omitted.

FIG. 3. Graphical representation of the effective two-particle
interactionG.

FIG. 4. Representation of the full kernelK in terms of three
different contributions.

FIG. 5. Diagrams yielding vanishing contribution to the two-
particle-irreducible kernel.
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Ka~p,p8;q,q8!5
e2

mk

~q2p!3~p2p8!

~p2q!2
, ~3.18a!

Kb~p,p8;q,q8!52 i
e4

4pmk2 ln
L2

~p2q!2
, ~3.18b!

Kc~p,p8;q,q8!52 ilB . ~3.18c!

In Eq. ~3.18b!, L is an ultraviolet momentum cutoff and one
can obtain the given expression@valid regardless of the rela-
tive ratio between (p2q)2 andL2# as

Kb~p,p8;q,q8!5 i
e4

mk2E d3k

~2p!3
i

p01k02
~p1k!2

2m
1 i e

k–~q2p2k!

k2~q2p2k!2
1~p→p8,q→q8!

5 i
e4

2mk2E d2k

~2p!2
k–~q2p2k!

k2~q2p2k!2
1~p→p8,q→q8!

5 i
e4

2mk2E
0

2p

dwE
0

L ukuduku
~2p!2

ukuuq2pucosw2k2

k2@k222ukuuq2pucosw1~q2p!2#
1~p→p8,q→q8!

52 i
e4

4pmk2 ln
L2

~p2q!2
. ~3.19!

Also note that Eq.~3.17! for G may be recast as the integral
equation

G~p,p8;q,q8!5K~p,p8;q,q8!1E d3k

~2p!3

3K~p,p8;k,p1p82k!
i

k02
k2

2m
1 i e

3
i

p01p082k02
~p1p82k!2

2m
1 i e

3G~k,p1p82k;q,q8!, ~3.20!

which is the Bethe-Salpeter equation. From Eq.~3.20! we
see thatG depends not onp0 or p08 separately but on the sum
p01p08 only. This allows one to perform thek0 integration
immediately~using Cauchy’s theorem!, to yield the equation

G~p,p8;q,q8!5K~p,p8;q,q8!1E d2k

~2p!2

3K~p,p8;k,p1p82k!

3
i

p01p082
k2

2m
2

~p1p82k!2

2m
1 i e

3G~k,p1p82k;q,q8!. ~3.21!

We find it convenient to work in the center-of-mass frame
where

p852p, q852q, p01p085q01q08[E. ~3.22!

Then, the simplified notationsG→G(p,q;E), K→K(p,q),
etc. for the corresponding quantities should suffice, and Eq.
~3.21! becomes

G~p,q;E!5K~p,q!1E d2k

~2p!2
K~p,k!

i

E2
k2

m
1 i e

3G~k,q;E!. ~3.23!

If we now decomposeG andK as

G~p,q;E!5(
n

Gn~ upu,uqu,E!einw,

K~p,q!5(
n

Kn~ upu,uqu!einw ~3.24!

(w is the angle between the incoming and outgoing mo-
menta! and insert these into Eq.~3.23!, it follows after the
angle integration, that

2234 55SANG-JUN KIM AND CHOONKYU LEE



Gn~ upu,uqu,E!5Kn~ upu,uqu!1E duku2

4p
Kn~ upu,uku!

i

E2
k2

m
1 i e

Gn~ uku,uqu,E!

5Kn~ upu,uqu!1E duku2

4p
Kn~ upu,uku!

i

E2
k2

m
1 i e

Kn~ upu,uqu!1E duku2

4p E duk8u2

4p

3Kn~ upu,uku!
i

E2
k2

m
1 i e

Kn~ uku,uk8u!
i

E2
k82

m
1 i e

Kn~ uk8u,uqu!1•••. ~3.25!

Thenth partial wave part ofG being obtained by iteratingKn only, we are entitled to consider each partial wave contribution
separately. As discussed in Ref.@16#, non-s-wave~i.e., nÞ0) parts can be shown to be finite order by order while the series
for G0 ~obtained by iteratingK0) is not. This in turn implies that renormalization is necessary only for thes-wave amplitude
G0. So, for our purpose~i.e., to compare the field-theoretic results with those of Sec. II!, it should suffice from now on to
confine our attention to the analysis of thes-wave amplitude, that is, to then50 case with the integral equation~3.25!. The
latter equation will become well defined only with the help of a suitable regularization. A natural procedure, consistent with
our momentum cutoff philosophy, would be simply to restrict various integration ranges@see Eq.~3.25!# to uku2<L2,
uk8u2<L2, . . . , etc. On the other hand, from Eqs.~3.18a!–~3.18c!, we have thes-wave contribution of the kernel given as

K05Ka
01Kb

01Kc
0 , ~3.26a!

Ka
050, ~3.26b!

Kb
052 i

e4

4pmk2 ln
L2

L~ upu,uqu!2
, ~3.26c!

Kc
052 ilB , ~3.26d!

whereL(upu,uqu) denotes the larger ofupu and uqu. Thephysical s-wave scattering amplitude is obtained fromG0(upu,uqu,E)
with uqu5upu andE5upu2/m.

We will organize the series forG0(upu,upu,E) in the following way. LetḠ0 denote all contributions involvingKb
0 only ~and

hence not dependent onlB), viz.,
4

Ḡ0S upu,upu,
upu2

m D5Kb
01E Kb

0~ iD!~ iD!Kb
01E Kb

0~ iD!~ iD!Kb
0~ iD!~ iD!Kb

01•••

52 i
e4

4pmk2 ln
L2

upu2
2S e4

4pmk2D 2E
0

L2d~ uku2!
4p S ln L2

L~ upu,uku!2D 2 im

uku22upu22 i e S ln L2

L~ upu,uku!2D
1 i S e4

4pmk2D 3E
0

L2d~ uku2!
4p E

0

L2d~ uk8u2!
4p S ln L2

L~ upu,uku!2D 2 im

uku22upu22 i e S ln L2

L~ uku,uk8u!2D
3

2 im

uk8u22upu22 i e S ln L2

L~ uk8u,upu!2D1•••, ~3.27!

and write

G0S upu,upu,
upu2

m D5Ḡ0S upu,upu,
upu2

m D1GcontactS upu,upu,
upu2

m D . ~3.28!

To study the amplitudeGcontact(upu,upu,upu2/m), we find it convenient to introduce the quantity

4The quantityḠ0 given by Eq.~3.27! was denoted asGAB
0 in Ref. @16#, for this amplitude was identified somewhat mistakenly with the

s-wave part of the Aharonov-Bohm~AB! amplitude obtained under the hard-core boundary condition in that paper.

55 2235QUANTUM DESCRIPTION OF ANYONS: ROLE OF . . .



GcrossS upu,upu,
upu2

m D5Kc
01E Kc

0~ iD!~ iD!Kb
01E Kb

0~ iD!~ iD!Kc
01E Kc

0~ iD!~ iD!Kb
0~ iD!~ iD!Kb

0

1E Kb
0~ iD!~ iD!Kc

0~ iD!~ iD!Kb
01E Kb

0~ iD!~ iD!Kb
0~ iD!~ iD!Kc

01•••

52 ilB2
lBe

4

4pmk2E
0

L2d~ uku2!
4p

ln
L2

L~ upu,uku!2
2 im

uku22upu22 i e

2
lBe

4

4pmk2E
0

L2d~ uku2!
4p

2 im

uku22upu22 i e
ln

L2

L~ upu,uku!2
1•••, ~3.29!

which involves only one contact interactionKc
0 , and also the quantity

GbubbleS upu,upu,
upu2

m D5E Kc
0~ iD!~ iD!Kc

01E Kc
0~ iD!~ iD!Kb

0~ iD!~ iD!Kc
01E Kc

0~ iD!~ iD!Kb
0~ iD!~ iD!Kb

0~ iD!~ iD!Kc
01•••

52lB
2E

0

L2d~ uku2!
4p

2 im

uku22upu22 i e
1 i

lB
2e4

4pmk2E
0

L2d~ uku2!
4p E

0

L2d~ uk8u2!
4p

2 im

uku22upu22 i e

3 ln
L2

L~ uku,uk8u!2
2 im

uk8u22upu22 i e
1•••, ~3.30!

which is the sum of all terms containing precisely two con-
tact interactions at the left and right ends of the diagrams.
DenotingKb

0 by the graph shown in Fig. 6, above three am-
plitudes can be expressed graphically as in Fig. 7. Then, with
the help of the quantitiesGcrossandGbubble, it is not difficult
to see that the entirelB-dependent contributionGcontactmay
be expressed as

Gcontact5lBG̃cross$11lBG̃bubble1~lBG̃bubble!
21•••%

5
lBG̃cross

12lBG̃bubble

, ~3.31!

where we have definedlB-independent quantities,
G̃cross[(1/lB)Gcross and G̃bubble[( i /lB

2)Gbubble. Note that,
through Eq.~3.31!, we have now made thelB dependence of
our amplitude explicit.

Direct calculations of the quantities such asḠ0, G̃cross,
andG̃bubbleappear to be still formidable. We can here make a
progress by studying instead the cutoff dependence of those
quantities. This consideration, in fact, allows us to obtain
certain simple differential equations satisfied by the three
quantities. Writinga5e2/2pk and making the observations
@see Eqs.~3.26c! and ~3.26d!#

L2
d

dL2Kb
05

pa2

mlB
Kc
0 , L2

d

dL2Kc
050, ~3.32!

let L2d/dL2 ~for fixed lB) act on the integral equations
~3.27!, ~3.29!, and~3.30!. In this process, a marked simplifi-
cation follows from the fact that ifL2d/dL2 acts on the
upper-end valueL2 of the integration ranges and the relevant
integrand containsKb

0, every such contribution just yields

zero since we haveKb
0uk25L250 @asL(uku,upu)u uku5L should

be identified withL#. The results are the following relation-
ships:

L2
dḠ0

dL2 5
pa2

m
G̃cross, ~3.33a!

L2
dG̃cross

dL2 5
2pa2

m
G̃bubbleG̃cross, ~3.33b!

L2
dG̃bubble

dL2 52
m

4p
1

pa2

m
~ G̃bubble!

2. ~3.33c!

Note that the first term in the right-hand side of Eq.~3.33c!
originates from the cutoff dependence of the leading-order
amplitude *Kc

0( iD)( iD)Kc
0 from Gbubble @see Eq.~3.30!#.

Solving the differential equation~3.33c!, we have

G̃bubble5S m

2puau D 12~d1L
2! uau

11~d1L
2! uau , ~3.34!

where d1 is a certain expression which is independent of
L2. Using Eq.~3.34! with Eq. ~3.33b!, we also find

G̃cross5d2
~d1L

2! uau

$11~d1L
2! uau%2

~3.35!

and then, from Eqs.~3.35! and ~3.33a!,

Ḡ052S puaud2
m D 1

11~d1L
2! uau 1d3 , ~3.36!

where we introduced twoL2-independent integration con-
stantsd2 andd3. Actually, by a simple dimensional reason,
d2 andd3 may depend ona only while d1 can be put as
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d15Feip/2p
f ~a!G2 ~3.37!

(p5upu is the magnitude of the relative momentum!, with
f (a)511O(a) on the basis of the result in lowest non-
trivial order.

Inserting the expressions~3.34! and~3.35! into Eq.~3.31!
yields the following expression forGcontact:

Gcontact5lBd2

~d1L
2! uau

11~d1L
2! uau

12
lBm

2puau
1S 11

lBm

2puau D ~d1L
2! uau

.

~3.38!

The desired fulls-wave amplitude, given by Eq.~3.28!, fol-
lows immediately from Eqs.~3.36! and ~3.38!. Since the
s-wave two-particle scattering amplitude can be identified
with 22iG0, we now see that our field-theoretic analysis
leads to

As~p!522id3~a!2
2p i uau
m

d2~a!

3

lB2
2puau
m

2puau
m

2lB1S 2puau
m

1lBD ~d1L
2! uau

522id3~a!2
2p i uau
m

d2~a!

3
lB2l0

l02lB1~l01lB!FLp eip/2f ~a!G2uau ,

~3.39!

where, in the second expression,l052puau/m and we have
made use of the form~3.37!. Based on this expression, we
notice that iflB56l0562puau/m(56e2/mk), any de-
pendence on the ultraviolet cutoffL disappears fromAs(p)
and the resulting amplitudes exhibitscale invarianceto all
orders ~just as was the case with the quantum-mechanical
expression for thoselB values!. For these special values of
lB , the scattering amplitude is given by a finite perturbation
theory and the system requires no renormalization. This hap-
pens because divergences appearing in the perturbation
theory of Ḡ0 get canceled order by order by divergences
resulting from contributions involving the contact interaction
@16#. Now, at least for these finite-theory cases, we may be
allowed to invoke the usual one-to-one correspondence ex-
isting between a nonrelativistic quantum field theory and the

quantum mechanical approach@1#, viz., for lB56l0 , our
amplitude~3.39! should match the result in Eq.~2.30!. @We
have not been able to verify this assertion directly, however.#
Taking this for granted, we can now fixd3(a) andd2(a) in
the above expression by using the result in Eq.~2.30! as

22id3~a!5e2 ipuau21, ~3.40a!

22id3~a!1
2p i uau
m

d2~a!5eipuau21, ~3.40b!

and this leads to the following expression forAs(p):

As~p!5e2 ipuau212~eipuau2e2 ipuau!

3
lB2l0

l02lB1~l01lB!FLp eip/2f ~a!G2uau .

~3.41!

For lBÞ6l0 , we must renormalize the theory to obtain
the scattering amplitude which has no explicit dependence
on the cutoff. Let us introducel ren, the renormalized cou-
pling, by the relation

l01lB

l02lB
@L f ~a!#2uau5

l01l ren

l02l ren
m2uau, ~3.42!

or, writing l̃B5lB6l0 and l̃ren5l ren6l0, by the relation

l̃B5l̃renFL

m
f ~a!G72uauH 17

1

2

l̃ren
l0

S 12FL

m
f ~a!G72uau D J 21

.

~3.43!

Here, m is the normalization scale. Then, the amplitude
~3.41! can be recast into the form

As~p!5e2 ipuau212~eipuau2e2 ipuau!

3
l ren2l0

l02l ren1~l01l ren!~m/p!2uaueipuau .

~3.44!

FIG. 6. Graphical representation ofKb
0 .

FIG. 7. Graphical representation ofḠ0, Gcross, andGbubble.
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This renormalizedscattering amplitude is in complete agree-
ment with the quantum-mechanical expression~2.30!, only if
our field-theoretic renormalized couplingl ren is taken to be
related to the self-adjoint extension parameteru by Eq.
~2.29!. We may now assert that the quantum-field theory
defined through the action~3.1! and renormalized as above
provides an equivalent description of many-anyon quantum
mechanics with a general boundary condition as considered
in the previous section.

Before closing this section, we shall emphasize once
again the role of the contact interaction terms in the quantum
description of anyons. As was explained in Sec. II, we need
them to implement dynamically~i.e., through the Hamil-
tonian! a suitable boundary condition at the two-anyon coin-
cidence point. As such, their presence is in no way an artifact
of perturbation theory. They essentially go over to the field-
theoretic description, where one usually does not consider
the boundary condition separately. In fact, without including
the contact term in the Lagrangian density, the given field
theory is not renormalizable and hence does not lead to a
well-defined theory. The equivalence between the first- and
second-quantized approaches can be established only when
we include the appropriate contact interaction term. For in-
stance, in the special case of anyons satisfying the hard-core
boundary condition, the Lagrangian density of the corre-
sponding field theory reads

L5
k

2
] tA3A2kA0B1f†S iD t1

D2

2mDf2
e2

2mk
f†f†ff,

~3.45!

and this happens to be an ultraviolet finite theory.

IV. SUMMARY AND DISCUSSIONS

Due to the singular nature of anyon interaction at short
distance, one has a well-defined many-anyon quantum me-
chanics only after a suitable boundary condition at the two-
anyon coincidence point has been chosen. This introduces a
new free parameter, the self-adjoint extension parameteru in
the theory, which serves to specify the chosen boundary con-
dition. We have shown that this boundary condition, in its
full generality, can be implemented dynamically by introduc-

ing a suitable contact interaction term in the anyon Hamil-
tonian. This system admits a quantum field-theoretic descrip-
tion in the form of a Chern-Simons gauge theory, and we
have here shown that thef†f†ff-type contact interaction
assumes a crucial role not only in securing a well-defined
theory but also in realizing the full equivalence with the
quantum-mechanical approach. The strength of the renormal-
ized contact coupling in the field-theoretic description is re-
lated to the self-adjoint extension parameter which encodes
the quantum-mechanical boundary condition.

We have a few comments to make. First of all, note that
more general kinds of anyons~other than the ones we dis-
cussed here! are possible, such as those obeying so-called
matrix ~or mutual! statistics@21# and also those obeying non-
Abelian statistics@22#. Both quantum-mechanical and field-
theoretic descriptions for these generalized~but still nonrel-
ativistic! anyons were discussed by various authors@23,24#
without paying due attention to the contact interaction terms.
These must be corrected along the line discussed in this pa-
per.~In this regard, see especially Ref.@25# where the related
issue is studied in non-Abelian Chern-Simons field theory
with the help of some lower-order perturbative calculations.!
Another problem deserving more study is to look at related
issues from the viewpoint ofrelativistic Chern-Simons field
theory, as was considered recently in Ref.@26# within one-
loop approximation. Finally, we need to have more informa-
tion on those specific features of an anyon system which
depend crucially on the self-adjoint extension parameter~or,
equivalently, on the coupling strength of thef†f†ff inter-
action in the field-theoretic approach!. After all, if anyons
play a role in real physical phenomena, it will be an experi-
mental question to determine what specific boundary condi-
tion the given anyons satisfy.
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