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Multiscale subtraction scheme and partial renormalization group equations
in the O(N)-symmetric ¢* theory
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To resum large logarithms in multiscale problems a generalization dfifés introduced allowing for as
many renormalization scales as there are generic scales in the problem. In the new “minimal multiscale
subtraction scheme” standard perturbative boundary conditions become applicable. However, the multiscale
B functions depend on the various renormalization scale ratios and a large logarithms resummation has to be
performed on them. Using these improv@dunctions the “partial” renormalization group equations corre-
sponding to the renormalization point independence of physical quantities allows one to resum the logarithms.
As an application the leading and next-to-leading order two-scale analysis of the effective potential in the
O(N)-symmetric ¢* theory is performed. This calculation indicates that there is no stable vacuum in the
broken phase of the theory forIN<4.[S0556-282(97)08704-3

PACS numbsg(s): 11.10.Hi, 11.15.Bt, 11.30.Qc

I. INTRODUCTION However, there may be many generic scales in the
region of interest. For example, in the computation of finite
The renormalization groupRG) has proved one of the temperature EF3] or in supersymmetric extensions of the
most important tools in refined perturbative analyses. It haSM one encounters this problefd]. But even in the SM
been recognized for a long time that ordinary loopwise perthere are largely differing effective scales near the tree-level
turbation expansions of important physical quantities are nominimum. Although the usual VS analyses of the SM were
only restricted to “small” values of the couplings but are concerned with large absolute values of the scalar field far
often rendered useless by the occurrence of “large” loga-away from the tree minimum it is implicitly assumed that the
rithms. RG resummation of these logarithms is then cruciatree minimum is only slightly shifted by quantum correc-
to establish a region of validity for perturbative results. tions. For consistency, one should check this assumption;
This is the case in the analysis of vacuum stabit$) in  this is a highly nontrivial multiscale problem. The break-
the standard moddiSM), where the loop expansion of the down of the ordinary RG analysis of DIS at small and large
effective potentialEP) contains logarithmic terms. Only af- xg is again due to the growing importance of generic scales
ter RG summation of these logarithms may the requiremendther than the large momentum transfésr a review see
of vacuum stability be turned into bounds on the Higgs bo-Ref. [5]). In both instances different potentially large loga-
son masg1]. Again, the discussion of Bjorken scaling and rithms #In(M; /x?) occur in the loopwise perturbative ex-
its violations in deep inelastic scatterif®IS) is reliable  pansion which should be resummed in order to get trustwor-
only after RG summation of the relevant logarithms yieldingthy results. But as there is only one renormalization scale one
in turn high precision tests of QCD and one of the mostcannot trace the variou$t; at once and remove all the logs
accurate determinations of the strong coupling con§@nt  from a loopwise expansion at one particular scale. So, al-
To apply the established RG techniques in both cases it ithough one still has a perfectly good RG equation there is no
essential that in the region of interdgfirge absolute values longer a proper boundary condition to RG evolve from. This
of the scalar field in the discussion of VS, large momentunproblem has been recognized by many authors.
transfer for fixed Bjorken variablgg in DIS) there is only Sticking to theMS scheme the decoupling theord®
one generic scalé\{. Then, using some mass independentwas used in Ref 7] to obtain some regionwise approxima-
renormalization scheme such as the modified minimal subtion to leading log’s(LL) multiscale summations. Although
traction schemeNIS) M may be tracked by the correspond- this is perfectly reasonable, one has to employ “low-
ing renormalization scalg, as it occurs in the combination energy” parameters, and it is not clear how to obtain sen-
fIn(M/ 1?) only. Choosingu?= M removes the potentially sible approximations for these low-energy parameters in
large logarithms from the perturbation series. Hence, at thiterms of the basic parameters of the full theory. Alterna-
scale the perturbative result is trustworthy for “small” val- tively, one of us[8] argued that one could still apply the
ues of the couplings and yields the proper boundary condistandardMS RG equation to multiscale problems provided
tion for the RG evolution to finite values d&fin(M/u?). “improved” boundary conditions were used. Although some
improved boundary conditions were suggested in some
simple cases, no general prescription was given for con-
*Present address: Theor. Phys. Institut, Univérsiema, Frbel-  structing these boundary conditions, and no obvious im-
steig 1, D-07743 Jena, Germany. Electronic address: Ford@tpi.unproved boundary conditions were apparent for the subleading
jena.de log’s summation.
"Electronic address: wie@stp.dias.ie Clearly, one must go beyond the usual mass-independent
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renormalization schemes if multiscale problems are to be seesaseN=2. In Appendix A we collect the values of various
riously tackled. In the context of the effective potential we constants and in Appendix B we discuss some relevant two-
are aware of two different approaches. In Re] it was  loop integrals.
argued that one could employ a mass-dependent scheme in
which decoupling of heavy modes is manifest in the pertur-ll. RESUMMING LOGS IN THE EFFECTIVE POTENTIAL
bative RG functions. Alternatively, in Ref10] the usual . . -
— . ._ .. Letus consider the massive R)(-symmetric field theory
MS scheme was extended to include several renormalization. :

) . ) with the Lagrangian
scalesk; . While this seems to be an excellent idea, the spe-
cific scheme if10] has two drawbacks. First, the number of N
renormalization points does not necessarily match the num- L=50a¢0"¢— 53¢ "~ MG = A, (2.1
ber of generic scales in the problem at hand, as there is a RG

scalex; associated with each coupling. Secondly, when comwhere ¢ is anN-component scalar field. Note the inclusion
puting multiscale RG functions ta loops one encounters of the cosmological constart [12] which will prove essen-
contributions proportional to M*(«;/«;) (and lower pow- tial in the discussion of the RG latéfor a nice discussion of
ers. If some of the Ink;/;) are “large” then even the per- this point in the context of curved spacetime calculations we
turbative RG functions cannot be trusted and used to sumefer to[13]). At first sight this model does not seem to pose
logarithms. A similar approach to the one of REf0] was  a multiscale problem, sindggnoring the cosmological con-
outlined in Ref.[11] though no detailed perturbative calcu- stan} there is only one scalan, in the Lagrangian2.1).
lations were performed. However, as we shall see the computation of the effective
In this paper we adopt a more Systematic approach_ Usingotential involves two distinct scales. Where does this extra
the freedom offinite renormalizations we introduce a new Scale come from? Recall that the effective potentaid
“minimal multiscale subtraction scheme” that allows for as More generally the effective actipis defined as a Legendre
many renormalization scales as there are generic scales in transform of the Schwinger functionallj]. Thus, we have
the problem. Hence, removing all large logarithms at scale§V0 dimensionful parametersy andthe external current.
k2= M,; in the new scheme standard perturbative boundary We are interested here mainly in the effective potential
conditions become applicable. As in the approach of Ref\_/\{hlch arises as t_he zergth order term in a derivative expan-
[10], the multiloop RG functions in this schenigevitably ~ Sion of the effective actiof’| ¢]:
depend on the renormalization scale ratios«; . However,
within our minimal multiscale subtraction scheme we are F[(P]zf d*x
able to implement darge logarithms resummation on the
RG functionsthemselves. Using these improved RG func- 2.2
tions the “partial” RGE's corresponding to the renormaliza-
tion point independence of physical quantities allow us the
to resum the logarithms for any other choice of scales.
Much like in the SM, the calculation of the effective po- N 1
tential near the tree-level minimum of the broken phase Ved= — o441 —m2p2+A,
(m?<0) in the O(N)-symmetric ¢* theory is a two-scale 24 2
problem for I<N<e. In our opinion, this is the simplest 5 5
nontrivial multiscale problem in four dimensions, and so we, (1 ioop _ 11 Ian 3 +(N—1)M—2 InMZ 3
propose to use this model to demonstrate our method. In fac¥ 4 72_ 2 4 7 2/
we are able tanalytically perform leading orde(LO) and (2.3
next-to-leading orde(NLO) multiscale computations in the
O(N) model. Surprisingly, this analysis indicates that thewhere
assumption that the tree-level minimum is not significantly

1
—V(ep)+ EZ(QD)%M“WLO(&“)}-

A loopwise perturbation expansion ofV=X.[A"/
"\am)2nv( 1099 [14,19 yields in theMS scheme

shifted by quantum corrections is only valid fbi>4. For Mi=m+ 3Np?%,  My=mP+ § \e?, (2.4
1<N=<4 it appears that there might not even be a stable
vacuum in the broken phase. and w is the renormalization scale. The one-loop contribu-

The outline of the paper is as follows. In Sec. Il we re-tion to the EP thus contains logarithms of the ratios
view the standartS RG approach to LL summations in the /M /#” to the first power and in general timeloop contri-
single-scale cased=1 andN—. In Sec. Il we motivate bution will be a polynomial of thenth order in these loga-
the idea of two-scale renormalization and introduce oufithms. (The explicit two-loop result has been obtained in
minimal two-scale subtraction scheme. In Sec. IV we com{16]) The EP is independent of the renormalization scale
pute the leading order two-scale RG functions within oursx Which gives rise to MS RG equation.
minimal prescription. We use these L®functions in Sec. V In view of these logarithms the loopwise expansion may
to compute the LO running parameters, which are then use@e trusted only in a region in field and coupling space where
in Sec. VI to compute the two-scale RG improved potentialsimultaneously
to leading order. In Secs. VII and VIII we determine the
next-to-leading order contributions to the RG functions and AN <1 AN In%<l AN In&
running parameters. In Sec. IX we obtain the NLO effective  (4m)? ' (4m? u? ' (4m)? u?
potential. Section X is devoted to a discussion of the special (2.5

<1
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Following Coleman and WeinbergCW), one should make o ) A(s) L1 )
(a p-dependentchoice of so that the logarithms are small. VO (A m%, 0, A;u)= g ¢ amAs)e +A(s),
However, it is easy to see, that if I,/ M,) is large then .11

it is impossibleto implement the CW procedure, sinttere
is no choice ofu that will simultaneously render both where
In(M;/1?) andIn(M,/u?) small Near the tree level mimi-
num of the broken phaser<0) In(M;/M,) does indeed h M,y h M,
become very large. 51:2(47.,)2"‘_2' 52:2(477)2"'_2' (212
® 22

In the two limiting casedN=1 andN—« there is essen-
tially only one relevant scale involvedyt; for N=1 and Higher orders may again be systematically resummed giving
M, for N— ., Setting the renormalization scaleequal to  rise to the NLL, NNLL, etc. approximations to the effective
the relevant scale removes the potentially large logarithms giotential[17].
this scale and we may trust the tree-level EP there. To re- As the usual RG may cope with one scale only this ap-

cover the EP at any other scale we then useMIEeRGE proach does not allow a systematic resummation in the ge-
neric case as we have to deal with two relevant scales, at

DV=0, least near the tree-level minimum in the broken phase.

Therefore, we have to generalize the usual RG approach al-

d d lowing for as many renormalization scales as there are rel-
D:M@JFIBAXJFB#WJWBAJ_BW@- evant scales in the theory, the task we turn to in the next

(2.6)  section.

We next expand the RG functions in powersfaf As the ll. TWO-SCALE RENORMALIZATION

expansion coefficienZ(¢) in Eq. (2.2) does not contain

logarithms at the one-loop level no anomalous field- |n the previous section we were able to use the renormal-
dimension arises and it is an easy task to read off the othgs 4tion scaleu arising inMS to track one relevant scale and

(r)]ne—loop co:afficients from the resule.3. For N=1 we to resum the corresponding logarithms with M8 RG. This
ave, atone loop was sufficient to obtain a trustworthy approximation to the

3\ 2 ~ Am? EP forN=1 andN—~. To deal with the general case we
Br=r—z, 1Bm= 3, 1Br=m—3, shall introduce a new set of parameters dependingwam
(4m) (4m) 2(4m) renormalization scales, , x, which allow us to track the two
generic scalegM; . That is, we consider finite transforma-
18,=0, (2.7 tion
whereas foN—~ we find Ais=Fy(NjKkq,Kk9,0),
AN ANAM? ANm? 2

— _ _ m_:mZFmZ()\;Kl,Kz,/.L),

2BA_3(47T)2, 2ﬂm2_ 3(477)21 ZIBA_2(477)2= MS
Ags=A+mFy(Nikq,k2,1),

. . ovs= eF o(N k1, K0, 1). (3.

which are exact in this limit.

U_smgihe RG fugcuons we recover the_ running couplingsere, theMS parameterg\M_Svmiﬁ_saAM_S:‘PM_S at scalep
Setting s=[#/(4m)"]In[u(s)/n], where w is the reference 5y pe regarded as “bare” ones as opposed to the new
scale, we have, foN=1, “renzormalized” two-scale subtraction scheme parameters

_ _ N,mS A @,
MS)=M(1-3rs)"!, m*(s)=m*(1-3As) 17, Our goal is to construct a transformati¢®.1) with the
- following properties:(i) The effective actionl’, when ex-
A(S)=A— =—[(1—3rs)3—1] 2.9 pressed in terms of the"new parameters, sh()_u!d be indepen-
2\ dent of theMS scaleu; (ii) when k; =k, the minimal two-
scale subtraction scheme should coincide WitB at that
and forN— o scale;(iii) whenN=1 or N— one scale should drop and
the two-scale scheme should coincide wht§ at the re-
maining scale{iv) When Ki2:./\/li the standard loop expan-
sion should render a reliable approximation to the full EP
insofar ag #/(4m)%I\ (k1 ,«5) is “small.”

In order to find a suitable transformatidB.1) with the
desired properties we first study the associated RG’s and RG
Imposing the tree-level boundary condition the LL approxi-functions. Having obtained a trusworthy set of RG functions
mation to the effective potential at an arbitrary scalde-  we turn them into running couplings and an improved effec-
comes tive potential.

AS)=N(1— INAS)™L, m?(s)=m?(1— INis) 1,

3m* ~
A(s)=A+K[(1—%N)\s) 1-1]. (2.10
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Our starting point is independence of the RG functions from the scalesi.e.,
[ «idl dk; ,D;]=0, is incompatible with the integrability con-
dition Eq. (3.6). However, it is still possible to arrange for
il Mas Mis A ews s ] =TI\, M2, A, @5 k1, k5] one of the two sets of RG functions, or in slight generaliza-
(3.2 tion for a linear combination of the two sets, to keinde-
pendent. Hence, we assume that
from which we derive the two RGE's corresponding to varia-
tions of scalesx;, where the other scale; and theMS ~ ~
parameters are held fixed, in much the same way as the Br=1BxP1F2B\P2,  Bme=18m2P1t 2BmeP2,
MS RG is usually derived. Specializing to the effective po-

tential we obtain Br=1BAP1+ 2B4P2, E¢:1ﬂ¢p1+2ﬁ¢p2 (3.7

S depend only om\,m? unlike the RG functions 3 in Eq.

DV=0, : : : : .
(3.4). Accordingly, their values in a perturbative expansion
may be trusted for smalk whatever the value ok,/«k;.

9 9 9 9 9 p; are real numbers subject | +p,=1. The correspond-
DiZKi&—m+iﬁx5+iﬁm2ﬁ—mz+iﬂAa—A—iﬂw£- ing RG operator
(3.3 _
. . D=p,D1+p,D;
The two sets of RG functions are defined as usual

B a Jd ~ 9 ~ d ~ 0
_lel&_Kl-i'pZ’Q(?—Kz+:8)\X+:3mza_m2+:8/\a_A
5 dA 5 dn? 5 dA
iPATKig—, iPm2T KT, iPAT K d
d; d; dx; —B(p(p 0 (3.8
do commutes withk;d/ dk;. To recover thex,/«x,; dependence
iBep= " Kig— dx; B4 of D; we use that Eq(3.6) implies
for i=1,2. In general they may be functions not only of [iipi]:(), (3.9

\,m? as are theMS RG functions but also ok, /«;.

Note that propertyii) requires that the sum of the two- yijelding RG-type equations for the sought-aft@ . We re-
scale RG functions ak;= «, coincides with theMS RG  mark that the final ¢ ‘improved” potential will have a strong
function at that scale dependence on thp; parameters. Eaclp; choice corre-

sponds to a different transformation in E.1) which sat-
isfies conditions(i), (ii), and (iii). Accordingly, we should
1B.(k1= k) +2B. (k1= K2)=B. Ms (35  decide for which values ofp; the transformation(3.1)
“best” meets condition(iv). In Sec. VI we will argue that
and property(iii) fixes the two sets of RG functions in the the appropriate choice jg;=1 andp,=0. That is, the first
single-scale limits. FON=1 there are no Goldstone bosons. set of 8 functions, which track the Higgs scale, are indepen-
Hence, we have to choose the usMat 1 MS RG functions  dent of ky/ k1.
as the first set of RG functions, given @(%) by Eq.(2.7),
and to disregard the second set of RG functions so that IV. LO RG FUNCTIONS
D,= Kk,dl dk,. For N—oo there are no Higgs contributions.
Accordingly, in this limit we have to disregard the first set of To determine thg3 we make a perturbative ansatz
RG functions, so thaD; = k,d/d«4, and to choose the sec-

ond set as the largd MS RG functions, given by EJ3.8). w atl
Let us come back to the general case. As we want to vary BN m2:t)= E S i,B(a>()\,m2;t),
K1 and k, independently we must respect the integrability ' a=o (4m)
conditions
L 4.1
[k,d/dKy, rodldicy]=[ Dy, D,]=0. (3.6 =G (4.9

An essential feature of a mass-independent renormalizatioNote that this isnot simply a loop expansion, since although
scheme such a€S is that theg functions do not depend on we expand it we retain all orders in. Rather, we should
the renormalization scale. Unfortunately we cannot gener- view Eq.(4.1) as a LL, NLL, etc. expansion of the two-scale
alize this to the multiscale case and demand that the two seBG functions. Hence, we assume the filldependence of
of B functions be independent af,/ «;. The point is that the ;8. to enter viat. This immediately allows us to rewrite
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i+ i: A ANpo— )i: A D 'D_(a):(47T)2530 :3 B(a) ﬂ(a)
lelaKl szzﬁKz W P2—P1 &I_W . i 7 KlaKi iP 0}\ +iBx A
4.2 5
The corresponding perturbative decomposition of the RG op- —iﬁgpa)éoﬁ 4.3
erators becomes
o] 1 —~ o~
a+ (a) with analogous expressions for, D(®. To determine the re-

D= — oy DI, ; . i .
' aZO (4m)sares T spective RG-like equation for a given ordg® we need

B(b) |:8(b) (a)

(b) (a)
+
B B A Y

[D(a),'Di(b)]Z

I\ Aoa! L)Y

J
5+(5ﬁ°D B+ B a0 o2 ﬁ“”)

J
op iﬁg\b)_i_ﬁ(a) B(b) |:8(b) IBA '8(3) BA |:8m2 a)) -

Y Y mzamz'
P
| sa0n  a(b) 4 R (b)_ ) 2 Z@
(5‘3‘D.ﬁ¢ + B\ ax'B iB) axﬁ ) s (4.9

Here, we used the form of E¢3.1) implying, in generaliza- J
=(0) (0) 1 =(0) g(0) — 3(0)7(0)
tion of the single-scale case, tha, ,i3, do not depend on (P2=pyt @™t — B+ a " BT =4 "a . (410
m?,A and ;Bm2,i3, Not onA. We can write

BE=N 2@ (1), BE=mAARTLEA (1), Its solution is best expressed in terms of the funcfipn
—ma — 1
BY =m0, BY =AY, (49 00 pot 30t

: . . ~(a) f()y=—"—"—"", (4.12
with analogous but-independent expressions for ty?é . P2—P1

At LO we havea=b=0 and Eq.(3.9) reduces to

[5<°),Di(°)]=0. 4.6 and reads
The corresponding equations for the vario® may be BO(1)=b®+bQf (1),
read off from Eq.(4.4). We now solve them in turn.
(0) ; i
iB)’ is determined by
Bz =m*\B, (4.13
DA+ B~ B0 - B0 = BO=0. (47
N I\ where

Inserting the further decompositiqd.5) and taking into ac-
count theh dependence df this equation reduces to E(O)

b@=B®al® and B©=
- J
(pz—pl-i-a(o)t)ﬁai(o):O. 4.9

Hence,a!? is independent of:

“.’>—~(0)(‘<°>/3 (0)-«”(0)8”). (414
V() =af}=a°(0),

BY=\a”. (4.9  The determination of 8\ is a bit more involved
The equation for,B(O) ; 5
D (0)+ (0) (0) (0) 7(0) (0)
0) (O) (0) (0) (O) IB [)’}\ a)\ IB)\ (9)\ Bmz am 2iPA
DiBmet By oxiBmz—iB\ o Bm2=0  (4.10
2N 2N
<0> J ~(0)
~.89 (01—, (4.15

and reduces to
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The corresponding reduced ordinary differential equatiorrespectively. It is clear thahe 8 functions possess Landau

(ODE) then reads

- d ~ -
(b2 a0 5 10+ 2 0{0= 2405

(4.16
and is solved by
_ _ 550
YO0 =e0+ e A0+t ),
B =my?, (4.17
where
=(0) V)
~ ~ y 2C
(0) — (*(0) 5(0) 0 __ O__—~  HO
c;; =C%aj;’ and C ~0" Cyi 2§<°)—1b2"
(0) 1 (0) ,(0) (0)/ 9\ =(0) (0)
¢y == (@V%7(0)—a;(0)¥?)—cy’. (4.18

)

As for ;8 the trivial boundary conditiorisee below im-
plies

B =0. (4.19

In this section we have computed the two-scale LO RG func-

tions for the ON) model. The results depend @p as well
as the boundary conditions(?(0), B{9(0), 1{9(0),
5(9(0) which determine the RG functions a0 (i.e.,
k1= K5). In fact, at LO the boundary conditions araiquely

determined by the single-scale limit conditions following

from requirementsii) and (iii) in Sec. lll
7(0)=1,
B (0)=3(N-1),

y(0)=%(N-1),

a?(0)=3, pY0)=1, 5P(0)=0,
a”(0)=3 (N-1),
6(0)=0. (4.20

The LO RG functions folx and ¢ are independent of;,

polesat 3t=1. Thus, thesg functions are only trustworthy
for 1>3t. Returning to the genera; case, thes functions
have a Landau pole @, — p,=a®t. To avoid this pole we
require p;— p,>a%t for p;>p, and p;—p,<a®t for
p;<p,. The casep,=p,=3 appears to be pathological.

V. LO RUNNING TWO-SCALE PARAMETERS

The running parameters in the minimal two-scale subtrac-
tion scheme are functions of the variables

i ki(s)

S :W n—

AN

K
, t= Wln— (51)

2
Ki Ky’
wherek; are the reference scales. Note tha) as given in
Eq. (5.1 is in fact s, dependent, t(s)=[AN(S;)/
(47)?]In[kx(Sy)/k1(S1)]. The running coupling may be ex-
panded in a series ifi

)= (a)(g,
Msi=2 7 M¥(sD (5.2
with analogous expansions fan?(s;,t),A(s;,t),¢(s;,t).
We now insert these expansions into E844) and solve for
the LO parameters.
The equation for the leading order running two-scale cou-
pling is

d\(©

ds

N024(0) (5.3

As o(9 is constant it is easily integrated

AO(s)=NA-N(a{Vs;+as,)) 7L, (5.4)

where the boundary condition }(s;=0)=A\.
Turning to the running mass we have to solve
dm?3©

— m2(0))\ (0) g(0)
=m el
ds NUB;

(5.9

and are given bysome relevant constants are given in Ap- B is given in Eq.(4.13 in terms of the functiori(t). As to

pendix A)

1B0=3\% B7=5(N-1)\?, 1BQ=,80=0.

(4.21

However, the LO RG functions fom? and A still have a
marked dependence quy. As mentioned in the previous
section, we are eventually going to adopt the chgige 1,
p,=0. For this choice Eq94.13 and(4.17) reduce to

BA=m2\,  ,B%Y=(N-1)[}+ 2(1-3t) 1 m’\
(4.22
and
1
1,858):§m4,

2BY=(N=D)[5—§(1-3) "+ 5 (1-30)~@9]m",
(4.23

leading order

t(Si):)\(o)(Si)<52_31+ L)

X (5.6

the s; dependence of the right-hand sidRHS) of Eq. (5.5
is quite involved. Its integration yields

B<°>( f(O)(Si))E(O)B@
f

A\O(s)
A

mz(o)(si):m2< , (5.7

with B@= (8 + B /(a{V+ oY), and with the bound-

ary conditionm?(s;=0)=m?. Here, f(®(s;) is the function

obtained by inserting Eq(5.6) into Eq. (4.12 defining

f(t):

(af”+ & )N (p1S,— Pasy) + @Ot
P2—P1

f0(sp) =

A(O)(Si)(
N 1+

(5.9
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andf=1f()(s,=0). Note that if the two scales coincide we

havet=0 andf(¥(s,=s,)=f=1. Q@ Q
We finally determine the running cosmological constant
from
dA© A
— (m2(0y2..(0)
g5~ (MO (5.9
) FIG. 1. Diagrams contributing to the two-loop EP.
With the use of the result&.7) for m?(®) and (4.1 for
O .
7|( : we Obtaln V()\ymzv(PvA;KlaKZ)
AO(s)= A+ L@ MO mt = VN ($).M(5)),0(5) A(S)i k(S ka(S2)), (6.
i 1 )\(0)(Si) A
20) 5 with k;(s;) defined in Eq(5.1). Next, we assume the validity
o LM77 ) 12280 of condition (iv) in Sec. lIl. Hence, if
+La Wf (s)
|
4 Ki(S)2=M;(s)=m*(s)) + ki N(s)) ©%(s)),
_m_fl—ZE(O) (5 10)
. | | k ! k ! (6.2
175 Ke=g :
where 2 6
co c the loop expansion of the EP should render a reliable ap-
LO=—<— LP=——-L{", (511 proximation to the right-hand sid&HS) of Eq. (6.1).
2B9-1 2B -1 To proceed we have to determine the values; dhilfill-
. ing Eq.(6.2). Insertion of thex;(s;)? from Eq.(6.2) into Eq.
() 0 0 0 —0\—
with C(O= (5§ )TL YN (i + af ))g andA(sj=0)=A. (5.1 yields a quite implicit set of equations
To LO there is no anomalous field dimension, and so the
field parametekp does not run. 3 Mi(s))
The LO running coupling\(®)(s,) has a Landau pole at S=2@a " (6.3
I

AaPs;+aPs,)=1 and clearly our approximation will
break down before this pole is reached. If we let one of th
si— — (i.e., the far IR regiopwhile holding the other fixed
the coupling will tend to zero as(®(s;— —»)x(—s) L.

&ince we are meant to be summing consistently all loga-
rithms we have to solve Ed6.3) iteratively

Also note that the LO running coupling is independent of % a

p;j which parametrize the class of finite renormalizations un- 5= 2 y si(a)()\, o ;si(o)) (6.4

der investigation. a=o (4m)

The behavior of the running mass and cosmological con-
stant is more complicated. Consider the combination in terms of the LO logs
(f(o)(si)>()\(0)(si)) 1:1+ (a)?+ )N (P15~ P2S1) s0= h 2|nﬂ2i’ where M= M;(s;=0).
f A p,—py+ a0t 2(4m)° " K

(5.12 (6.5

In the limit investigatedf(©)(s;)/f is not generally positive This yields contributions to the® from both thes; depen-
unlessp;=0 or p;=1. Of course, we thereby assume thatdence of the running two-scale parameters and from their
t is chosen such as to avoid thefunction poles in which own 7 expansion(5.2). For later use we also give the NLO
casep,—p;+ %t has the same sign gs,—p;. This is  term of the result
disturbing because in Eq&.7) and(5.10 we are required to
take noninteger powers of this quantity. Thus, unless 0 1 MO
or p.=1 faced wi sauieti inili sV, ... 8= In—n-—",

Py we are faced with the disquieting possibility of [ [ 2 M,
complexrunningm? and A in a region where the running
coupling is very small. Fortunately, we will see in the next\yhere
section that a comparison of opj-dependent improved po-
tential with standard two-loop and next-to-larjjecalcula- Mi(o)(sj):mz(o)(sj)+ki)\(o)(sj)¢2- (6.6)
tions indicates thap,;=1 is the “natural” choice.

To obtain the corresponding series expansion for the RG-

VI. LO RG-IMPROVED POTENTIAL improved effective potential
It is now an easy task to turn the results for the running o a
two-scale parameters into a RG-improved effective potential. V(A )= VOO, ..k (6.7

Equation(3.3) yields the identity TS (4m)%R
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we approximate the RHS of E¢6.1) with those terms in the A O (sl 1
minimal two-scale subtraction scheme result for the EP sur-  VO(\, ... k)= 2—4'<p4+ §m2<°>(s§°))<p2
viving when Ki(si)2=/\/li(sj). To O(#) they are explicitly
given by +A(°)(si(°)). (6.9
V(A(S), ... s Mi(s)))
A(S) 1 Let us next examine its properties. In the single-scale limits
= qu(si)‘l-l— Emz(si)qo(si)erA(si) N=1 andN—o Eq.(6.9) reduces to Eq2.11) fori=1 and
i=2, respectively. In the general caseclN< the m?¢?
3 [ My(s)? My(s)? and A terms in Eq.(6.9) depend orp; which parametrizes
+(N-1)———|. (6.8  the class of finite renormalizations under consideration.

S 2(4m)?\ 4 4

Comparison with two-loop and next-to-largé results will

We finally insert the running two-scale parameters from EqProvide us now with a natural value for them.

(5.2) into the RHS of Eq(6.8) with their arguments; com- We have used a@wo-scaleRG to track the two scales
ing from Eq.(6.4). Accordingly, an expansion in powers of My and M,. Once the two logs have been summed up we
# yields contributions to th&/® from both thes, depen- ~Can setk;=«,= u, i.e., we may write our improved poten-
dence of the running two-scale parameters and from theiiial in standardMS parameters. In this way we can compare
own # expansion. Keeping only leading order terms we ob-the improved potential(6.9) with standard perturbation
tain the LO two-scale RG-improved effective potential in thetheory. When now inserting the various constants and ex-
minimal two-scale subtraction scheme: panding Eq.(6.9) in si(o) up to second order,

A
VON,M?,0,A;u)=

4 o, N"1 0 24(0)? 2(0)(0) (N-1)® 24(0)2
229 1+3\s; +T)\sz +9N°s;” +2(N—1)N°s; s, +T)\ S5

N—1
1+as?+ T)\s(zo)Jr

+3 m?p? 2— —(N_l)p2>)\23(°>2+ N_l<2+ p2p2 )Azs(lo)s(zo)

3(p2—P1) ! 3 2~ P1
N-1 3p2 | 502 M1 o N=1 o (1 (N=1)pa)| , 2
+T(N+2—E)7\ S5 +T z)\Sl +T7\52 + E—m)\sl
N—1 2p, 2.(0)(0) N—1 2p, 2.(0)2
+ 3 (1+ pz_pl))\ S17’S, +T N+1—H A S5 +A, (6.10

we see that th@(si(o)) terms in Eq.(6.10 agree with the logarithmic terms in the one-loop res@iB). The quadratic,
pj-dependent terms in E¢6.10 should be compared with the two-lodgS effective potentia[16]

AM4? My ? AM,? M;\? AMGM, My 2 My M,
(2 loop) — = 2_ e N A _ oA e N PR P MR P
\Y, 8 (1 In 2 +(N“—1) 52 1-In 2 +(N—1) 12 1-In 2 In 2 +In 2 In 2
(Ng)? (Ng)?
- TI(Ml,Ml,Ml)—(N—l) [(My, My, M), (6.11

36

wherel(x,y,z) is the general subtracted “sunset” vacuum integral discussed in Appendix B. The graphs contributing are
given in® Fig. 1.

Note that the sunset integrals do not contribute tontHgerms. When comparing the* terms in Eqs(6.10 and(6.11) it
is easy to see that they only agree for=1 andp,=0. Comparison of then’¢? and ¢* terms is more tricky due to the
nontrivial sunset integrals.

We should decompose these integrals into logarithmic and nonlogarithmic parts. This is not too difficult for
[(My, M1, M;). Unfortunately, the decomposition bfM,,M,, M) is not unique However, as discussed in Appendix B
it seems natural to adopt the following one:

y 2 y 2 2 y 2 2 y 2 2 2 y 2 2

+ “nonlogarithmic” terms. (6.12

The full lines denote the Higgs boson wilnas3? M, and the dashed ones the Goldstones \itas3? M.
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Inserting EqQ.(6.12 into Eq. (6.11) we see that theo* term agrees with the one in E¢.10. The ¢? terms agree only if
p;=1 andp,=0.

An alternative check on E@6.9) is provided by the larg® limit. By construction our improved potential will agree with
standard larg®N results. Examining the next-to-largeresult[19] we have found that in the LL approximation thé terms
in Eq. (6.9 and in the next-to-largdl limit expression only agree ;=1 andp,=0. To compare then’¢? terms we have
again employed a “natural” decomposition of some integrals and once again agreement is achigyedif@ndp,=0. We
remark that no other choice pf may be obtained by simply adopting a different decomposition of the relevant integrals. We
have been unable to check thé terms since we do not know whether it is possible to perform a “natural” decomposition of
some of the contributing integrals.

Thus, a comparison of our improved potential with the standard two-loop and next-tdNgrgtentials strongly indicates
thatp,;=1 andp,=0 is the appropriate choice. This is gratifying, since for this choice one does not encounter the complex
running parameters mentioned in the previous section. Let us finally write down explicitly the two-scale improved potential in
the two-scale minimal subtraction scheme for this choicg;of

N+8 0 —(2/13)(N—-1)/(N+8)
\o? N—1 1 m2e2 N—1 -3 3 Asy)
(0 P U - SO (¢) BN () — g0 _ (0) _
V o2 (1 3\s; 3 AS, + (1 3\S; 3 AS 1 13t
N+8 0 —(4/3)(N—1)/(N+8)

m? N—1 13 T)\S(z :
_ _ (0) _ (0) _ —

o (1 3\s; 3 AS, ) 1 1-3t 1

N+8_ —(N—4)/(N+8)
4 = \S;

FPULLLPTPHET: | (P S —1]+A (6.13

N—4 A\ 1-3t ' :

|
For t=0 this result has already been obtained in a different VII. NLO RG FUNCTIONS

way in Ref.[8]. In the broken phasen?<0) the tree-level
minimum is atM,=0 ors”)— — . Hence, as we approach
it In(M, /M) will become large. If we are prepared to trust
Eqg. (6.13 even in theextremecase of the tree minimum
itself an intriguing property emerges.

As long asN>4 the ¢* andm?¢? terms vanish and the
m* term converges to a finite value. As the slope
(dVO7dsO) (s — —)\,0 the EP takes its minimum in

The LO results of the last two sections have already been
obtained in a less general form in RE8] based on the use of
theMS RG(2.6) and the conjecture that the correct boundary
condition atu?=.M, are given by theN=1 result(2.11).

But using those techniques it appeared to be impossible to go
beyond LO. The finite renormalizatidi3.1), introducing the
appropriate number of renormalization scales and the corre-
sponding RG equation§3.3), allows us to overcome this
the broken phase at thze tree-level value and becomei COBroblem in a systematic manner. To show the strength of this
plex for even smallerp” values. But for kxN<4 them”  ochnigue we now determine the NLO RG functions and in

O . . . . . . . . ! A )
term, and henc&(®, diverges to minus infinity. This indi- e next section the corresponding NLO running parameters.
cates that for these values Nfthere isno stable vacuum in To NLO Eq. (3.9 yields

the broken phaseNote especially that fol=4, i.e., the SM

scalar boson content, the divergence is softer but still there, [5(1),Di(°>]+[5<0),pi<1>]:o, (7.2

as the penultimate term in E¢.13 becomes a logarithm

The corresponding equations for the variqg&fl) are ob-

tained with the use of Ed4.4). We now solve them in turn.
BV is determined by

+
1-3t A

m* ArsY)
V(O):~-~—§(1—3t)1’3ln 1—- 2
(6.14

We have seen that the LO calculation indicates a peculiar
instability in the cas&<4. Could it simply be an artifact of
the LL approximation? That this is possible can clearly be —-B(O)iﬁ(lEO 7.2
seen by examining the expansioi4). While Eq. (6.4) is L gn A ' '
certainly the correct way of performing the LL summation it
is not well behaved in the limi{”)— — . One can see that
the s{*) are not supressed in the limsb”— —oo. Further-
more, thes”) become complex in this limit. To clarify the BU=\3D (7.3
importance of thesi(l) terms it is necessary to perform a NLO o '

calculation which is done in Sec. IX. where

~ 0 d ~ ~. d
1 0 1 1 0 1 0
Diﬂ§)+ﬁ§>5i (x)—iﬁ(x)ﬁﬁ(x”rﬁ(x)ﬁi v

Proceeding in an analogous way as in obtaining the LO RG
functions in Sec. IV we easily obtain the solution
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V(1) =agy +ag’t (D),

ey

al’=A®a® and AV=——

R R

1 ~
ay) == (@%a{"(0) - af?(0)a™).

2i ~(0) (74)
The equation for,,B(lz) is
1 1 0
DiBi+ B awﬁ” B &)\B )+ By &)\.ﬁ“
1
B M%( /=0 (7.5
with the solution
B =mA2pM, (7.6
where
BM () =b+ b5t H(t) + 2t [ b + b logf (1) ];
1 =Y 0 =Y E(l) 1 Y 1
o =Ba and BU-C0 b-BOa,
() 1 501 00y 3D)_ pd)
b3 _,.(O)('V Bi"(0)=a; 7 (0)B)— by,
b=~ ALY 7.7
The equation for 8{") becomes quite involved
D8+ B )\“3<1> "85‘1)5)\ 7(0) B(O) BA
0 0 0 1
~ By amzﬂ() By (9)\.3“ .Bi)m\ﬁ”
+ Bt (9m2|,3 ~iBut 5 zﬂA
=0. (7.8
After some algebra we find the result
By =mhyt, (7.9

where

My =cP+ci 0+ 20)[cs +cylogf (1)]

+1-27 e+ P L)+ P H(t)logf (D) ];
(7.10

2211

yﬂ)

1) _~(1)4(0
C(li)_c( )a(li) =0

and CW=-_

c O 2gm_AD

(1= Oz A ()
Ca =Caa BO BO ,g0_q | &
2C(© ~
1) _ 1 1) _ 1)~(0
C%i)—mbéi), cyi'=—AWcy,

e = 2(AWBO _§<1>)C<3ci>> ,
1 1 1 1 1 1
c’'=n"(0)—cit —ci — 5’ —cg,
cP=—2AWBOCY

To NLO the anomalous dimension is nontrivial and we
have to determings(” from

~ 0
DAY+ B £ B - B B+ BN = B

Ao AN
—iB a)\ﬂ '=0. (7.11
The solution is easily obtained
BY=22oY, (712
where
() =dii +dy (s
H_HQ 0 o
dgl):D(l)ag_l) and D(l)_....,(o
w__1 ~0s0 09y sV

So far we have not specified the values of the NLO
boundary constanta(*(0), g*(0), ¥*(0), and 5*(0).
At LO the relevant constants were completely determined by
the single-scale limit conditions following from requirements
(i) and(iii ). Unfortunately they do not anymormiquelyfix
the NLO constants. For suppose we expanff)(0),

B1(0), 1(0), andsM(0) in powers of N—1). Then the
large N limit condition forbids any terms proportional to
(N—1)? and higher powers ofN—1) [18], and theN=1
limit condition fixes the contributions proportional to
(N—1)°. However, these limits tell us nothing about NLO
terms proportional toN—1). Of course, we still have the
condition that the sums of the two sets of RG functions at
t=0 are just the wusualMS RG functions, i.e.,

1BI(t=0)+,80(t=0)= %% In MS ¢ '2P=0 and
the other two-loopB functions can be found, e.g., in Ref.

[16]. Putting all this together we have

aM(0)=qgy(N-1),
(7.149

aP(0)=—¥—-[1+q;](N-1),
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i (0) (1)
BL0)=-2 —[&+ql(N-1), BL(0)=g,(N-1), With the use of the result$.4) for ™ and(7.3) for o™ we
may integrate this equation and find

yM(0)=gs(N-1), ¥5"(0)=—-qgs(N-1),

(D D_ A
S0 = 5+ [ +ad(N-1),  5(0)=~au(N-1), w>(si>=x<o><soz|n((k(oi(s‘))A LU )

whereq; are real numbers which are independeniNofwe (8.2
shall comment further on sensible choices @pn’n the dis-

cussion of the NLO effective potential in Sec. IX.
Above AM= (oM + afM)/ (a{V+ D).

VIIl. NLO RUNNING TWO-SCALE PARAMETERS Turning to the NLO running mass we have to solve

Using the LO results and the set of RG functions obtained

in the last section we now calculate the NLO running two- dm?% ,8(0)
scale parameters, which will be used to construct the NLO —gg =\ 0B%m?® +m© ﬂ(o)?\(l)ﬂ\(o)
effective potential.
The equation for the next-to-leading order running two-
scale coupling is LT (8.3
(1)
s =20 O g(OND 4 \ (034D (8.0
ds The integration of this equation is quite involved and yields
|
(0) S: A f(O) S: )\(0) S:
m2(s) =m?O(5)[MPNO(s) —N]+ ML [f@)((s-l)) — 5|+ Os) Mgl)ln(¥)+Mf)ln(#>
|
A(O)(S) fO>s)| (NV(s)| 7t
+M5 f(O)( )I ( f \ ) (84)
where
M{Y=BD-BOAD
M =B —BOAL - MY+ AL (BO —BO)ogf,
MP=BOAD-AD) MP=BOAD,
M =M —BOAD, (8.9
Above BW= (M + B /(aP+ o).
The NLO running cosmological constant is determined by
dA® vy
ds =2m?(0 5 Om2(1) 4 (m2(9))2 ﬁwmwww . (8.6

With the use of the various results above we obtain after a tedious computation

[m*©(s)]* m*

ol Im*9(s)7?
) X Ty

(1)

[m O(s)l?  m
()ZB(O) f23<°>

mt -
AD(s)=x LY f(O)(Si)l—ZB(O)_mTf1—2B(0)

+LIImM2O(s) 12— m*+ LYY

fO(s) N(s)
©(s) i +[m2<°)(si)]2[Lgl>In(T) +L(71)In(T>

IO (1Os)| (A Os) I Os)1? (1)) (ACs)|
n +L =5 )
Os) f A ° 0)g)28” f A

[m?O(s) ]2 m

(8.7)

1
+L§

where
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1 1
LM = —2( MY+ ?M;D) L, L= —2( MY+ —M<21>) LY,

f
o) 1) co
LD C~ Dy~ AW L= EC M¢
P Y-{C) 0 4 ogo_q 2
c cw c AL BW
(1)_ W CcOAD) 4 = (BD-BOAD) - - (1) _ogOA(L) -
Ls'=25 CA )+ (B —BPAW) 50 2501 2B'M-2BYA +2E<°) S0
c)
LA GO _2C " Fo1_go) | gt
2B0-1 o
LO=COAL_LD | H_COAD
1) 2 (1) (1) A L | (D _ D
L§ =WM5 , LP=—cOaA® 4 (Db, (8.9

Above CH= (Y + i) /(alP+ o). We remark that most individual integrals occurring in the computation of not only
AD but alsoA©® andm?® yield hypergeometric functions and that only the respective sums of those are again expressible
in terms of elementary functions as given above.

Finally we determine the nontrivial NLO running ef(s;)

deV
s = eI, e(si=0)=¢. 8.9

The integration of this equation is straightforward and yields

(8.10

(P(l)(si):_905(1)[)\(0)(30_}\]_’_(P(B(l)_D(l))[)\(O)(Si) )\},

fO(s) f
whereD@® = (609+ 50)/(a{?+ o).
It is easy to see that™®, m?2®), and ¢ vanish forN>1 in the limit of ones,»— while holding the other fixed.

A® will tend to a finite value in this limit only foN>4. However, it will diverge for x N<4 if p;=1 ands,— — with
the same rate a&(®) due to the first two terms in E@8.7).

IX. NLO RG-IMPROVED POTENTIAL

It is straightforward to extract the two-scale NLO potential from the standard perturbative boundary condit{6rBEq.

x(l)(si(O)) )\<O)(Si(0) 1
VOO, k)= ot ¢° V() S mP () P mPO(s(?) ¢ () + AN (")
2 @2
+2 {.ﬁx°)<s<°>>24+ BRSO T+ B SV, . s0)
3 M(O)(S_(O))Z M(O)(S-(O))z
+3 B ] N pai i A yat 9.

The different contributions come from the expansion of the Next, we fix the values afj; used to parametrize the NLO
running two-scale parameters, from the expansion of theiboundary functions in EQ.(7.14 by comparing the

s; dependence, and from the explicit one-loop term in Eqg;-dependent NLO potentiand the NLO Z2¢)™ function
(6.8). In practice, we immediately sgt;=1 andp,=0 as with the corresponding standard two-loop results. This im-
has been done in the LO result. mediately fixesq;=0 and henceyi(l)(O):O. The value of
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s O 00 OO
o

OO 3 OO
FIG. 2. Diagram corresponding th SO O 0O0
g, depends on how we decompose the two-loop integral FIG. 3. Diagrams contributing td to three loops.

for Z(¢)?1°°) given ir? Fig. 2 into its logarithmic and non-
Iogar(itﬁ)mic pie?:es. g g that they diverge at the same rate/&§) in the LO analysis.

In order to determine the “natural”’ decomposition of this The A divergence is supressed by a fackdi/ (4)? and
integral it is helpful to consider thegeneral integral IS hence harmless. However, thg\-s5" divergence isiot
J(x,y,2) as given in Appendix B. It is symmetric in,y,z.  Supressed. This is because #j¥ term which is an artifact
Accordingly, a natural decomposition should respect thiof the expansiori6.4) is not small as compared téo) in the
property. In fact, there is only one decomposition which doesibove limit. However, one can see tisft + s(*) rather than

this s{®) dominates the expansiai6.4) in the relevant limit. If
« y , one made the replacemesf’—s(¥+ s in Eq. (6.13 one
J(X,Y,2)*In— +In— +In— + “nonlogarithmic” terms. still would haveV— —c° in the limit under investigation.
pne Tt
(9.2

X. THE RELEVANCE OF N=2

We are interested in the Cag‘éMz’leMlz) and so we From diagrammatic consideratiofsee Fig. 3 we would
choose the coefficient of the IMo/u®) term In  eypect them? term in the RG-improved potential to have a
J(M;, M5, M,) 1o be twice that of the Inbl; /u®) term.  cepain exchange symmetry in the=2 case. Note that these
This implies that the coefficient N 1) in 8,(0) must  graphs will also contribute to there? and ¢* term. Now,
be twice the coefficient of—1) in 5{*)(0) or q,=—&. for the caseN =2 these contributions are invariant under the
To determineq, and g, we need the subleading loga- exchange of Higgs and Goldstone lines. We would therefore
rithms in | (M,, M;, M,). Using the decompositiof6.11)  expect that for, = k,= u them* terms in Eq.(6.13 should
yields q; = — 37 and g,=— 7. Putting this all together, the pe symmetric ins{*) ands{®. A glance at Eq(6.13) in this
complete set of boundary functions are case,

(1) —_ 17 17/N_ (1) _ 10N 4
(0) 3 —(N—1), (0)=—-37(N-1), VO— m—[(1—3)\s(°)— : ASO) 131 — 10 0))~(2119
N 1 2 2

AUO)==3-&(N-1), BE(0)=—5(N-1),

y(0)=0, Y(0)=0,

+2(1—2rs) 53]+ other terms, (10.1)

clearly shows that then* term is not symmetric ins{®) and
SV(0)=%+2(N=1), &P(0)=&(N-1). (9.3 Y. We find it somewhat disturbing that our approximation
scheme does not respect this symmetry.

The behavior of the NLO contribution is of most interest We know from Sec. VI that Eq10.1) matches standard
around the broken phase tree-level minimum, whergerturbation theory through to two loops. Therefore, this
M,=0 ors?)— —. As in the LO case all the terms in Eq. s{¥—s) symmetry must go dowrbeyondthe two-loop
(9.2) will vanish or converge to a finite limit iN>4. But for  level. Expanding Eq(10.1) in powers ofs{” ands{® up to
1<N=<4 A® and,BY- stV will diverge. It is easy to check O(\°)

3
vo =T [S(O)+S (S 4+ 2 8050 4+ 50%) 1122 619+ (050 4+ (00 4 £ 6(00%) 4\ 31250 4 206(0)°G(0)

5 4 3 2 2 M3 4
14 510°5(0% 1 205(05(0° 1 106(0)%) | )\ 4(225(0)° 1 506(0)%6(0) 1 80G(0)G(0)% | 204(0)°G(0)° 4 1780150 4 9865(0)°) )

(10.2

2In fact, a derivative with respect fo? at p?>=0 has to be taken as indicated in EB5) from Appendix B.
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we see that tha{®?)—s® symmetrysurvivesat three and ACKNOWLEDGMENTS
four loops, but breaks down &veloops. So we see thatthe -~y has been partially supported by Schweizerischer

failure of our approximation to observe it only appears afygationalfonds. We thank D. O'Connor, L. O'Raifeartaigh, .
quite a high order in perturbation theory. We are unable toasachs, and C.R. Stephens for helpful comments.
explain this phenomenon further.

APPENDIX A: VALUES OF VARIOUS CONSTANTS

Xl. CONCLUSIONS Here, we give the values of various constants appearing in

In order to deal systematically with the two-scale problemthe paper. We quote them for the choeg=1 andp,=0:

arising in the analysis of the effective potential in the
O(N)-symmetric* theory we have introduced a generali- B(°>—N+2 clo— 3N
zation of MS. At each order in S loop expansion we have N+8’ 2(N+8)’
performed a finite renormalization to switch over to a new
“minimal two-scale subtraction scheme” allowing for two _ 1 - 1
renormalization scales; corresponding to the two generic B<°)=§, C<°>=g, (A2)
scales in the problem. THdS RG functions andMS RGE
then split into two minimal two-scale subtraction scheme
“partial” RG functions and two “partial” RGE’s. The re- A — 3N+14 B 5(N+2)
spective integrability condition inevitably imposes a depen- T N+8 T B(N+8)’
dence of the partial RG functions on the renormalization
scale ratiok,/k;. Supplementing the integrability with an
appropriate subsidiary condition we have been able to deter- cl=p pD»= N+2 (A3)
mine this dependence to all orders in the scale ratio and have ’ 12(N+8)’
obtained a trustworthy set of LO and NLO two-scale subtrac-
tion scheme RG functions. With the use of the two “partial” _ 17(N+8) ~
RGE's we have then turned those into LO and NLO running AV =— , BW=
two-scale parameters exhibiting features similar to M@
couplings such as a Landau pole now in both scaling chan-
nels. Using standard perturbative boundary conditions, -
which become applicable in the minimal two-scale subtrac- cW=o,
tion scheme, we have calculated the effective potential in
this scheme to LO and NLO. To fix the remaining renormal-
ization freedom we have compared our results with two-loop L0 1 L) 2(N—-1) AS
and next-to-largeN limit MS calculations. As a main result 1= o 27 N-4 (AS)
we have found in both LO and NLO that foxIN<4 there
is no stable vacuum in the broken phase.

The vacuum instability in the broken phase of theN)( M<1>:19(N+8)
model raises immediately the possibility of a similar out- ! 486 '
come in a multiscale analysis of the SM effective potential.
As the method outlined generalizes naturally to problems _ 2 _
with more than two scales we are in a position to investigate M= — (NZDAN 578;' 2600
systematically the different possible scenarios. Before turn- 486N+8)
ing to the SM itself it proves useful thereby to study the (N—1)(34N2+ 544N+ 2178
effects of adding either fermions as in a Yukawa-type model 5
or gauging the simplest case df=2 as in the Abelian- 243N+8)
Higgs model. The Yukawa case will either be a two- or
three-scale problem, depending on whether one includes (N—1)(17N+46) 3N+ 14
Goldstone bosons or not. The Abelian-Higgs model in the M(gl)= - 243N+8) 511)2_ m
Landau gauge will be a three-scale problem to which the
methods in this paper are easily extended. Now ondhras
integrability conditions[D; ,D;]=0 and one must impose ) 2(N—=1)(3N+14)
three independent subsidiary conditions analogous to Mg = 3(N+8)2 , (A6)
[ k19! dk1,D,]=0 which we used in our @f)-model analy-
sis. Note that for the generai-scale problem one would

(A1)

5(N+8)
162 °

N+8

pW—__"=
D 324"’

(A4)

logf,

have in(n—1) integrability conditions which should be L 19N+8) (N—1)(19N*~ 578N - 2600
supplemented bgn(n—1) subsidiary conditions. The ques- 1 486 486N+ 8)f

tion as to whether fermions or gauge fields may stabilize the )

effective potential for smalN in a full multiscale analysis is (N—1)(34N +544N+217a!ogf (A7)

under investigation. 243N+ 8)2f
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1 38N-1)(N+8) L (N—1)(17N+46) 1 3N+14
2 =T T 2aN-4) © 7 48GNT8) 7 6(Nt8)’
2(N—1)2(19N?—578\— 2600
22aAN—4)(N+8)7F L 2(N—1)(3N+14) 1 2(N—1)(3N+14)

8 3(N+8)° ' "% (N+8)°
4(N—1)?(34N?+ 544N+ 2179

2aAN—d(N+ 8z edh
APPENDIX B: THE INTEGRALS | AND J
" 35(N+8) _ Here, we list some useful formulas regarding the two-loc_)p
Ly'=—m0p+, integralsl andJ. The general unsubtracted scalar sunset in-
486 . . . ; :
tegral inD dimensions is defined as
(1)_(N—1)(19N2—578N—260()
L4 - 48&N+8)2 (47T)_4|D(X,y,Z)
(N 1)(34N?+ 544N+ 2178 :f d%k d"l 1 ®1)
- 243N+ 8)° logf @mP (2m)P (K+x) (124 2)(k+1)7+2)
LW (N—1)(N°—42N?— 360N —760) A full calculation of this integral is rather involvefR0].
5 9(N+2)(N+8)? However, there is a formula in Ref21] which nicely splits
the integral into a very simple, fdD =4 divergent expres-
N 34(N_1)|0 ¢ sion plus a finite term which is proportional to
81 g Ip_2(X,y,2), i.e., the same integral in two lower dimensions:

r?2-3D
Ip(X,y,2)= (477)‘D+4m[(x—y— 2)(y2)MP 2+ (y = 2= x) (29 PP 2+ (z—x—y) (xy) VAP 2]
— (A7) 2(X2+y2+ 22— 2xy—2yz—22zX) lp_»(X,Y,2). (B2)

Since the last term is finite we regard it as a “nonlogarithmic” term and ascribe the logarithmic terms purely to the simple,
divergent piece. The renormalizé(i,y,z) referred to in the text is then given as

1
I(X,y,z)= FF{(47TG yM2)25|: l4—26(X,Y,2)— ;(K4725(X) Ky 2d(Y) TKs2(2) ||, (B3)
where FP denotes the finite past,is Euler's constant, and
A7) 2Kp(x)= f ¢k 1 B4
(4m) " “Kp(x)= 2790 KX’ (B4)
TheKp terms in Eq.(B.3) are due to the subtraction of one-loop subdivergences.
The unsubtractedp(x,Y,z) is defined as
(@m0 00y.2) g ( d°k dPlI 1 @5
X,Y,2)= = )
™Y T2 ] @mP (2mP () (1T y) (kH P2+ D) o
The renormalized(x,y,z) which enters intdZ(¢)?'°°" is simply
J(xy,2)=FH(47e" "u?)?Jy 2x.y,2)]. (B6)

Above, thex, y, z are the(masse¥’ on the three internal lines.



55 MULTISCALE SUBTRACTION SCHEME AND PARTIAL ... 2217

[1] M. J. Duncan, R. Phillippe, and M. Sher, Phys. L&&3B, 165 [9] H. Nakano and Y. Yoshida, Phys. Rev.49, 5393(1994).
(1985; M. Sher and H. W. Zaglauer, Phys. Lett.286 527  [10] M. B. Einhorn and D. R. T. Jones, Nucl. PhyB23(FS1(,
(1988; M. Lindner, M. Sher, and H. W. Zaglauehid. 228, 261(19849.

139 (1989; M. Sher, Phys. Repl79 274 (1989; M. Sher, [11] K. Nishijima, Prog. Theor. Phys88, 993 (1992; 89, 917
Phys. Lett. B317, 159(1993; J. A. Casas, J. R. Espinosa, and (1993.

M. Quiros, ibid. 382, 374 (1996. [12] M. Bando, T. Kugo, N. Maekawa, and H. Nakano, Phys. Lett.
[2] V. N. Gribov and I. N. Lipatov, Sov. J. Nucl. Phy$5, 438 B 301, 83 (1992.
(1972; A. J. Buras, Rev. Mod. Phy&2, 199(1980; G. Al- [13] I. L. Buchbinder, S. D. Odintsov, and I. L. Shapiteffective
tarelli, Phys. Rep81, 1(1982; L. V. Gribov, E. M. Levin, and Action in Quantum GravityInstitute of Physics Publishing,
M. G. Ryshkin,ibid. 100, 1 (1983; M. Virchaux and A. Milsz- Bristol, 1992.
tajn, Phys. Lett. B274, 221(1992. [14] S. Coleman and E. Weinberg, Phys. Rev9,D1888(1973.
[3] J. KapustaFinite Temperature Field TheorCambridge Uni-  [15] R. Jackiw, Phys. Rev. 0, 1686(1974).
versity Press, Cambridge, England, 1889 [16] C. Ford and D. R. T. Jones, Phys. Lett.2B4, 409 (1992;
[4] M. Carena, M. Quiros, and C. E. M. Wagner, Nucl. Phys. 285 399E) (1992.
B461, 407 (1996. [17] B. Kastening, Phys. Lett. R83 287 (1992.

[5] R. G. RobertsThe Structure of the ProtofCambridge Uni-  [18] H. J. Schnitzer, Phys. Rev. [0, 1800(1974.
versity Press, Cambridge, England, 1998. Forte and R. D. [19] R. G. Root, Phys. Rev. 00, 3322(1974.

Ball, Acta Phys. Pol. B6, 2097(1995. [20] A. B. Lahanas, K. Tamvakis, and C. E. Vayonakis, Nucl. Phys.
[6] T. Appelquist and J. Carazzone, Phys. Rel1)2856(1979; B196, 11 (1982; C. Ford, I. Jack, and D. R. T. Jondbjd.

K. Symanzik, Commun. MatB34, 7 (1973. B387, 373 (1992; A. I. Davydychev and J. B. Tauskbid.
[7] M. Bando, T. Kugo, N. Maekawa, and H. Nakano, Prog. B397, 123(1993.

Theor. Phys90, 405(1993. [21] A. I. Davydychev and J. B. Tausk, Phys. Rev.53, 7381

[8] C. Ford, Phys. Rev. B0, 7531(1994. (1996.



