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To resum large logarithms in multiscale problems a generalization of theMS is introduced allowing for as
many renormalization scales as there are generic scales in the problem. In the new ‘‘minimal multiscale
subtraction scheme’’ standard perturbative boundary conditions become applicable. However, the multiscale
b functions depend on the various renormalization scale ratios and a large logarithms resummation has to be
performed on them. Using these improvedb functions the ‘‘partial’’ renormalization group equations corre-
sponding to the renormalization point independence of physical quantities allows one to resum the logarithms.
As an application the leading and next-to-leading order two-scale analysis of the effective potential in the
O(N)-symmetricf4 theory is performed. This calculation indicates that there is no stable vacuum in the
broken phase of the theory for 1,N<4. @S0556-2821~97!08704-3#

PACS number~s!: 11.10.Hi, 11.15.Bt, 11.30.Qc

I. INTRODUCTION

The renormalization group~RG! has proved one of the
most important tools in refined perturbative analyses. It has
been recognized for a long time that ordinary loopwise per-
turbation expansions of important physical quantities are not
only restricted to ‘‘small’’ values of the couplings but are
often rendered useless by the occurrence of ‘‘large’’ loga-
rithms. RG resummation of these logarithms is then crucial
to establish a region of validity for perturbative results.

This is the case in the analysis of vacuum stability~VS! in
the standard model~SM!, where the loop expansion of the
effective potential~EP! contains logarithmic terms. Only af-
ter RG summation of these logarithms may the requirement
of vacuum stability be turned into bounds on the Higgs bo-
son mass@1#. Again, the discussion of Bjorken scaling and
its violations in deep inelastic scattering~DIS! is reliable
only after RG summation of the relevant logarithms yielding
in turn high precision tests of QCD and one of the most
accurate determinations of the strong coupling constant@2#.

To apply the established RG techniques in both cases it is
essential that in the region of interest~large absolute values
of the scalar field in the discussion of VS, large momentum
transfer for fixed Bjorken variablexB in DIS! there is only
one generic scaleM. Then, using some mass independent
renormalization scheme such as the modified minimal sub-
traction scheme (MS)M may be tracked by the correspond-
ing renormalization scalem, as it occurs in the combination
\ ln(M/m2) only. Choosingm25M removes the potentially
large logarithms from the perturbation series. Hence, at this
scale the perturbative result is trustworthy for ‘‘small’’ val-
ues of the couplings and yields the proper boundary condi-
tion for the RG evolution to finite values of\ ln(M/m2).

However, there may be many generic scalesMi in the
region of interest. For example, in the computation of finite
temperature EP@3# or in supersymmetric extensions of the
SM one encounters this problem@4#. But even in the SM
there are largely differing effective scales near the tree-level
minimum. Although the usual VS analyses of the SM were
concerned with large absolute values of the scalar field far
away from the tree minimum it is implicitly assumed that the
tree minimum is only slightly shifted by quantum correc-
tions. For consistency, one should check this assumption;
this is a highly nontrivial multiscale problem. The break-
down of the ordinary RG analysis of DIS at small and large
xB is again due to the growing importance of generic scales
other than the large momentum transfer~for a review see
Ref. @5#!. In both instances different potentially large loga-
rithms \ ln(Mi /m

2) occur in the loopwise perturbative ex-
pansion which should be resummed in order to get trustwor-
thy results. But as there is only one renormalization scale one
cannot trace the variousMi at once and remove all the logs
from a loopwise expansion at one particular scale. So, al-
though one still has a perfectly good RG equation there is no
longer a proper boundary condition to RG evolve from. This
problem has been recognized by many authors.

Sticking to theMS scheme the decoupling theorem@6#
was used in Ref.@7# to obtain some regionwise approxima-
tion to leading log’s~LL ! multiscale summations. Although
this is perfectly reasonable, one has to employ ‘‘low-
energy’’ parameters, and it is not clear how to obtain sen-
sible approximations for these low-energy parameters in
terms of the basic parameters of the full theory. Alterna-
tively, one of us@8# argued that one could still apply the
standardMS RG equation to multiscale problems provided
‘‘improved’’ boundary conditions were used. Although some
improved boundary conditions were suggested in some
simple cases, no general prescription was given for con-
structing these boundary conditions, and no obvious im-
proved boundary conditions were apparent for the subleading
log’s summation.

Clearly, one must go beyond the usual mass-independent
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renormalization schemes if multiscale problems are to be se-
riously tackled. In the context of the effective potential we
are aware of two different approaches. In Ref.@9# it was
argued that one could employ a mass-dependent scheme in
which decoupling of heavy modes is manifest in the pertur-
bative RG functions. Alternatively, in Ref.@10# the usual
MS scheme was extended to include several renormalization
scalesk i . While this seems to be an excellent idea, the spe-
cific scheme in@10# has two drawbacks. First, the number of
renormalization points does not necessarily match the num-
ber of generic scales in the problem at hand, as there is a RG
scalek i associated with each coupling. Secondly, when com-
puting multiscale RG functions ton loops one encounters
contributions proportional to lnn21(ki /kj) ~and lower pow-
ers!. If some of the ln(ki /kj) are ‘‘large’’ then even the per-
turbative RG functions cannot be trusted and used to sum
logarithms. A similar approach to the one of Ref.@10# was
outlined in Ref.@11# though no detailed perturbative calcu-
lations were performed.

In this paper we adopt a more systematic approach. Using
the freedom offinite renormalizations we introduce a new
‘‘minimal multiscale subtraction scheme’’ that allows for as
many renormalization scalesk i as there are generic scales in
the problem. Hence, removing all large logarithms at scales
k i
25Mi in the new scheme standard perturbative boundary

conditions become applicable. As in the approach of Ref.
@10#, the multiloop RG functions in this schemeinevitably
depend on the renormalization scale ratiosk i /k j . However,
within our minimal multiscale subtraction scheme we are
able to implement alarge logarithms resummation on the
RG functionsthemselves. Using these improved RG func-
tions the ‘‘partial’’ RGE’s corresponding to the renormaliza-
tion point independence of physical quantities allow us then
to resum the logarithms for any other choice of scales.

Much like in the SM, the calculation of the effective po-
tential near the tree-level minimum of the broken phase
(m2,0) in the O(N)-symmetricf4 theory is a two-scale
problem for 1,N,`. In our opinion, this is the simplest
nontrivial multiscale problem in four dimensions, and so we
propose to use this model to demonstrate our method. In fact,
we are able toanalytically perform leading order~LO! and
next-to-leading order~NLO! multiscale computations in the
O(N) model. Surprisingly, this analysis indicates that the
assumption that the tree-level minimum is not significantly
shifted by quantum corrections is only valid forN.4. For
1,N<4 it appears that there might not even be a stable
vacuum in the broken phase.

The outline of the paper is as follows. In Sec. II we re-
view the standardMS RG approach to LL summations in the
single-scale casesN51 andN→`. In Sec. III we motivate
the idea of two-scale renormalization and introduce our
minimal two-scale subtraction scheme. In Sec. IV we com-
pute the leading order two-scale RG functions within our
minimal prescription. We use these LOb functions in Sec. V
to compute the LO running parameters, which are then used
in Sec. VI to compute the two-scale RG improved potential
to leading order. In Secs. VII and VIII we determine the
next-to-leading order contributions to the RG functions and
running parameters. In Sec. IX we obtain the NLO effective
potential. Section X is devoted to a discussion of the special

caseN52. In Appendix A we collect the values of various
constants and in Appendix B we discuss some relevant two-
loop integrals.

II. RESUMMING LOGS IN THE EFFECTIVE POTENTIAL

Let us consider the massive O(N)-symmetric field theory
with the Lagrangian

L5
1

2
]af]af2

l

24
f42

1

2
m2f22L, ~2.1!

wheref is anN-component scalar field. Note the inclusion
of the cosmological constantL @12# which will prove essen-
tial in the discussion of the RG later~for a nice discussion of
this point in the context of curved spacetime calculations we
refer to@13#!. At first sight this model does not seem to pose
a multiscale problem, since~ignoring the cosmological con-
stant! there is only one scale,m, in the Lagrangian~2.1!.
However, as we shall see the computation of the effective
potential involves two distinct scales. Where does this extra
scale come from? Recall that the effective potential~and
more generally the effective action! is defined as a Legendre
transform of the Schwinger functional,W@ j #. Thus, we have
two dimensionful parameters,m andthe external currentj .

We are interested here mainly in the effective potential
which arises as the zeroth order term in a derivative expan-
sion of the effective actionG@w#:

G@w#5E d4x F2V~w!1
1

2
Z~w!]aw]aw1O~]4!G .

~2.2!

A loopwise perturbation expansion ofV5(n@\n/
(4p)2n#V(n loop) @14,15# yields in theMS scheme

V~ tree!5
l

24
w41

1

2
m2w21L,

V~1 loop!5
M1

2

4 S lnM1

m2 2
3

2D1~N21!
M2

2

4 S lnM2

m2 2
3

2D ,
~2.3!

where

M15m21 1
2 lw2, M25m21 1

6 lw2, ~2.4!

andm is the renormalization scale. The one-loop contribu-
tion to the EP thus contains logarithms of the ratios
Mi /m

2 to the first power and in general then-loop contri-
bution will be a polynomial of thenth order in these loga-
rithms. ~The explicit two-loop result has been obtained in
@16#.! The EP is independent of the renormalization scale
m which gives rise to aMS RG equation.

In view of these logarithms the loopwise expansion may
be trusted only in a region in field and coupling space where
simultaneously

\l

~4p!2
!1,

\l

~4p!2
ln
M1

m2 !1,
\l

~4p!2
ln
M2

m2 !1.

~2.5!
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Following Coleman and Weinberg~CW!, one should make
~aw-dependent! choice ofm so that the logarithms are small.
However, it is easy to see, that if ln(M1 /M2) is large then
it is impossibleto implement the CW procedure, sincethere
is no choice ofm that will simultaneously render both
ln(M1 /m

2) and ln(M2 /m
2) small. Near the tree level mimi-

num of the broken phase (m2,0) ln(M1 /M2) does indeed
become very large.

In the two limiting casesN51 andN→` there is essen-
tially only one relevant scale involved,M1 for N51 and
M2 for N→`. Setting the renormalization scalem equal to
the relevant scale removes the potentially large logarithms at
this scale and we may trust the tree-level EP there. To re-
cover the EP at any other scale we then use theMS RGE

DV50,

D5m
]

]m
1bl

]

]l
1bm2

]

]m2 1bL

]

]L
2bww

]

]w
.

~2.6!

We next expand the RG functions in powers of\. As the
expansion coefficientZ(w) in Eq. ~2.2! does not contain
logarithms at the one-loop level no anomalous field-
dimension arises and it is an easy task to read off the other
one-loop coefficients from the result~2.3!. For N51 we
have, atone loop,

1bl5
3\l2

~4p!2
, 1bm25

\lm2

~4p!2
, 1bL5

\m4

2~4p!2
,

1bw50, ~2.7!

whereas forN→` we find

2bl5
\Nl2

3~4p!2
, 2bm25

\Nlm2

3~4p!2
, 2bL5

\Nm4

2~4p!2
,

2bw50 ~2.8!

which are exact in this limit.
Using the RG functions we recover the running couplings.

Setting s5@\/(4p)2# ln@m(s)/m#, wherem is the reference
scale, we have, forN51,

l~s!5l~123ls!21, m2~s!5m2~123ls!21/3,

L~s!5L2
m4

2l
@~123ls!1/321# ~2.9!

and forN→`

l~s!5l~12 1
3 Nls!21, m2~s!5m2~12 1

3 Nls!21,

L~s!5L1
3m4

2l
@~12 1

3 Nls!2121#. ~2.10!

Imposing the tree-level boundary condition the LL approxi-
mation to the effective potential at an arbitrary scalem be-
comes

V~0!~l,m2,w,L;m!5
l~si !

24
w41

1

2
m2~si !w

21L~si !,

~2.11!

where

s15
\

2~4p!2
ln
M1

m2 , s25
\

2~4p!2
ln
M2

m2 . ~2.12!

Higher orders may again be systematically resummed giving
rise to the NLL, NNLL, etc. approximations to the effective
potential@17#.

As the usual RG may cope with one scale only this ap-
proach does not allow a systematic resummation in the ge-
neric case as we have to deal with two relevant scales, at
least near the tree-level minimum in the broken phase.
Therefore, we have to generalize the usual RG approach al-
lowing for as many renormalization scales as there are rel-
evant scales in the theory, the task we turn to in the next
section.

III. TWO-SCALE RENORMALIZATION

In the previous section we were able to use the renormal-
ization scalem arising inMS to track one relevant scale and
to resum the corresponding logarithms with theMS RG. This
was sufficient to obtain a trustworthy approximation to the
EP forN51 andN→`. To deal with the general case we
shall introduce a new set of parameters depending ontwo
renormalization scalesk1 ,k2 which allow us to track the two
generic scalesMi . That is, we consider afinite transforma-
tion

lMS5Fl~l;k1 ,k2 ,m!,

mMS
2

5m2Fm2~l;k1 ,k2 ,m!,

LMS5L1m4FL~l;k1 ,k2 ,m!,

wMS5wFw~l;k1 ,k2 ,m!. ~3.1!

Here, theMS parameterslMS,mMS
2 ,LMS,wMS at scalem

may be regarded as ‘‘bare’’ ones as opposed to the new
‘‘renormalized’’ two-scale subtraction scheme parameters
l,m2,L,w.

Our goal is to construct a transformation~3.1! with the
following properties:~i! The effective actionG, when ex-
pressed in terms of the new parameters, should be indepen-
dent of theMS scalem; ~ii ! whenk15k2 the minimal two-
scale subtraction scheme should coincide withMS at that
scale;~iii ! whenN51 or N→` one scale should drop and
the two-scale scheme should coincide withMS at the re-
maining scale;~iv! Whenk i

25Mi the standard loop expan-
sion should render a reliable approximation to the full EP
insofar as@\/(4p)2#l(k1 ,k2) is ‘‘small.’’

In order to find a suitable transformation~3.1! with the
desired properties we first study the associated RG’s and RG
functions. Having obtained a trusworthy set of RG functions
we turn them into running couplings and an improved effec-
tive potential.
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Our starting point is

GMS@lMS,mMS
2 ,LMS,wMS;m#5G@l,m2,L,w;k1 ,k2#

~3.2!

from which we derive the two RGE’s corresponding to varia-
tions of scalesk i , where the other scalek j and theMS
parameters are held fixed, in much the same way as the
MS RG is usually derived. Specializing to the effective po-
tential we obtain

DiV50,

Di5k i

]

]k i
1 ibl

]

]l
1 ibm2

]

]m2 1 ibL

]

]L
2 ibww

]

]w
.

~3.3!

The two sets of RG functions are defined as usual

ibl5k i

dl

dk i
, ibm25k i

dm2

dk i
, ibL5k i

dL

dk i
,

ibww52k i

dw

dk i
~3.4!

for i51,2. In general they may be functions not only of
l,m2 as are theMS RG functions but also ofk2 /k1.

Note that property~ii ! requires that the sum of the two-
scale RG functions atk15k2 coincides with theMS RG
function at that scale

1b .~k15k2!12b .~k15k2!5b . ,MS ~3.5!

and property~iii ! fixes the two sets of RG functions in the
single-scale limits. ForN51 there are no Goldstone bosons.
Hence, we have to choose the usualN51 MS RG functions
as the first set of RG functions, given toO(\) by Eq. ~2.7!,
and to disregard the second set of RG functions so that
D25k2]/]k2. For N→` there are no Higgs contributions.
Accordingly, in this limit we have to disregard the first set of
RG functions, so thatD15k1]/]k1, and to choose the sec-
ond set as the largeN MS RG functions, given by Eq.~3.8!.

Let us come back to the general case. As we want to vary
k1 and k2 independently we must respect the integrability
conditions

@k1d/dk1 ,k2d/dk2#5@D1 ,D2#50. ~3.6!

An essential feature of a mass-independent renormalization
scheme such asMS is that theb functions do not depend on
the renormalization scalem. Unfortunately we cannot gener-
alize this to the multiscale case and demand that the two sets
of b functions be independent ofk2 /k1. The point is that the

independence of the RG functions from the scalesk i , i.e.,
@k i]/]k i ,Dj #50, is incompatible with the integrability con-
dition Eq. ~3.6!. However, it is still possible to arrange for
one of the two sets of RG functions, or in slight generaliza-
tion for a linear combination of the two sets, to bek i inde-
pendent. Hence, we assume that

b̃l51blp112blp2 , b̃m251bm2p112bm2p2 ,

b̃L51bLp112bLp2 , b̃w51bwp112bwp2 ~3.7!

depend only onl,m2 unlike the RG functionsib . in Eq.
~3.4!. Accordingly, their values in a perturbative expansion
may be trusted for smalll whatever the value ofk2 /k1.
pj are real numbers subject top11p251. The correspond-
ing RG operator

D̃5p1D11p2D2

5p1k1

]

]k1
1p2k2

]

]k2
1b̃l

]

]l
1b̃m2

]

]m2 1b̃L

]

]L

2b̃ww
]

]w
~3.8!

commutes withk i]/]k i . To recover thek2 /k1 dependence
of Di we use that Eq.~3.6! implies

@D̃,Di #50, ~3.9!

yielding RG-type equations for the sought-afterib . . We re-
mark that the final ‘‘improved’’ potential will have a strong
dependence on thepj parameters. Eachpj choice corre-
sponds to a different transformation in Eq.~3.1! which sat-
isfies conditions~i!, ~ii !, and ~iii !. Accordingly, we should
decide for which values ofpj the transformation~3.1!
‘‘best’’ meets condition~iv!. In Sec. VI we will argue that
the appropriate choice isp151 andp250. That is, the first
set ofb functions, which track the Higgs scale, are indepen-
dent ofk2 /k1.

IV. LO RG FUNCTIONS

To determine theib . we make a perturbative ansatz

ib .~l,m2;t !5 (
a50

`
\a11

~4p!2a12 ib .
~a!~l,m2;t !,

t5
\l

~4p!2
ln

k2

k1
. ~4.1!

Note that this isnot simply a loop expansion, since although
we expand in\ we retain all orders int. Rather, we should
view Eq.~4.1! as a LL, NLL, etc. expansion of the two-scale
RG functions. Hence, we assume the fullk i dependence of
ib . to enter viat. This immediately allows us to rewrite
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p1k1

]

]k1
1p2k2

]

]k2
5

\

~4p!2
l~p22p1!

]

]t
[

\

~4p!2
D.

~4.2!

The corresponding perturbative decomposition of the RG op-
erators becomes

Di5 (
a50

`
\a11

~4p!2a12 Di
~a! ,

Di
~a!5

~4p!2

\
da0k i

]

]k i
1 ibl

~a!
]

]l
1 ibm2

~a! ]

]m2 1 ibL
~a!

]

]L

2 ibw
~a!w

]

]w
~4.3!

with analogous expressions forD̃,D̃(a). To determine the re-
spective RG-like equation for a given orderib .

(a) we need

@D̃~a!,Di
~b!#5S da0D ibl

~b!1b̃l
~a!

]

]l ibl
~b!2 ibl

~b!
]

]l
b̃l

~a!D ]

]l
1S da0D ibm2

~b!
1b̃l

~a!
]

]l ibm2
~b!

2 ibl
~b!

]

]l
b̃m2

~a!D ]

]m2

1S da0D ibL
~b!1b̃l

~a!
]

]l ibL
~b!2 ibl

~b!
]

]l
b̃L

~a!1b̃m2
~a! ]

]m2ibL
~b!2 ibm2

~b! ]

]m2 b̃L
~a!D ]

]L

2S da0D ibw
~b!1b̃l

~a!
]

]l ibw
~b!2 ibl

~b!
]

]l
b̃w

~a!Dw
]

]w
. ~4.4!

Here, we used the form of Eq.~3.1! implying, in generaliza-
tion of the single-scale case, thatibl , ibw do not depend on
m2,L and ibm2, ibL not onL. We can write

ibl
~a!5la12a i

~a!~ t !, ibm2
~a!

5m2la11b i
~a!~ t !,

ibL
~a!5m4lag i

~a!~ t !, ibw
~a!5la11d i

~a!~ t !, ~4.5!

with analogous butt-independent expressions for theb̃
(a)
.

At LO we havea5b50 and Eq.~3.9! reduces to

@D̃~0!,Di
~0!#50. ~4.6!

The corresponding equations for the variousib .
(0) may be

read off from Eq.~4.4!. We now solve them in turn.

ibl
(0) is determined by

Dibl
~0!1b̃l

~0!
]

]l ibl
~0!2 ibl

~0!
]

]l
b̃l

~0!50. ~4.7!

Inserting the further decomposition~4.5! and taking into ac-
count thel dependence oft this equation reduces to

~p22p11ã~0!t !
]

]t
a i

~0!50. ~4.8!

Hence,a i
(0) is independent oft:

a i
~0!~ t !5a1i

~0!5a i
~0!~0!,

ibl
~0!5l2a i

~0! . ~4.9!

The equation foribm2
(0) is

Dibm2
~0!

1b̃l
~0!

]

]l ibm2
~0!

2 ibl
~0!

]

]l
b̃m2

~0!
50 ~4.10!

and reduces to

~p22p11ã~0!t !
]

]t
b i

~0!1ã~0!b i
~0!5b i

~0!ã~0!. ~4.11!

Its solution is best expressed in terms of the functionf ,

f ~ t ![
p22p11ã~0!t

p22p1
, ~4.12!

and reads

b i
~0!~ t !5b1i

~0!1b2i
~0! f21~ t !,

ibm2
~0!

5m2lb i
~0! , ~4.13!

where

b1i
~0!5B̃~0!a1i

~0! and B̃~0!5
b̃~0!

ã~0!
,

b2i
~0!5

1

ã~0!
„ã~0!b i

~0!~0!2a i
~0!~0!b̃~0!

…. ~4.14!

The determination ofibL
(0) is a bit more involved

DibL
~0!1b̃l

~0!
]

]l ibL
~0!2 ibl

~0!
]

]l
b̃L

~0!1b̃m2
~0! ]

]m2ibL
~0!

2 ibm2
~0! ]

]m2 b̃L
~0!50. ~4.15!
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The corresponding reduced ordinary differential equation
~ODE! then reads

~p22p11ã~0!t !
]

]t
g i

~0!12b̃~0!g i
~0!52b i

~0!g̃ ~0!

~4.16!

and is solved by

g i
~0!~ t !5c1i

~0!1c2i
~0! f21~ t !1c3i

~0! f22B̃~0!
~ t !,

ibL
~0!5m4g i

~0! , ~4.17!

where

c1i
~0!5C̃~0!a1i

~0! and C̃~0!5
g̃~0!

ã~0!
, c2i

~0!5
2C̃~0!

2B̃~0!21
b2i

~0! ,

c3i
~0!5

1

ã~0!
„ã~0!g i

~0!~0!2a i
~0!~0!g̃~0!

…2c2i
~0! . ~4.18!

As for ibw
(0) the trivial boundary condition~see below! im-

plies

ibw
~0!50. ~4.19!

In this section we have computed the two-scale LO RG func-
tions for the O(N) model. The results depend onpj as well
as the boundary conditionsa i

(0)(0), b i
(0)(0), g i

(0)(0),
d i
(0)(0) which determine the RG functions att50 ~i.e.,

k15k2). In fact, at LO the boundary conditions areuniquely
determined by the single-scale limit conditions following
from requirements~ii ! and ~iii ! in Sec. III

a1
~0!~0!53, b1

~0!~0!51, g1
~0!~0!5 1

2 , d1
~0!~0!50,

a2
~0!~0!5 1

3 ~N21!, b2
~0!~0!5 1

3 ~N21!,

g2
~0!~0!5 1

2 ~N21!, d2
~0!~0!50. ~4.20!

The LO RG functions forl andw are independent ofpj ,
and are given by~some relevant constants are given in Ap-
pendix A!

1bl
~0!53l2, 2bl

~0!5 1
3 ~N21!l2, 1bw

~0!52bw
~0!50.

~4.21!

However, the LO RG functions form2 andL still have a
marked dependence onpj . As mentioned in the previous
section, we are eventually going to adopt the choicep151,
p250. For this choice Eqs.~4.13! and ~4.17! reduce to

1bm2
~0!

5m2l, 2bm2
~0!

5~N21!@ 1
9 1 2

9 ~123t !21#m2l
~4.22!

and

1bL
~0!5

1

2
m4,

2bL
~0!5~N21!@ 1

182 2
9 ~123t !211 2

3 ~123t !2~2/3!#m4,
~4.23!

respectively. It is clear thattheb functions possess Landau
polesat 3t51. Thus, theseb functions are only trustworthy
for 1@3t. Returning to the generalpj case, theb functions
have a Landau pole atp12p25ã (0)t. To avoid this pole we
require p12p2@ã (0)t for p1.p2 and p12p2!ã (0)t for
p1,p2. The casep15p25

1
2 appears to be pathological.

V. LO RUNNING TWO-SCALE PARAMETERS

The running parameters in the minimal two-scale subtrac-
tion scheme are functions of the variables

si5
\

~4p!2
ln

k i~si !

k i
, t5

\l

~4p!2
ln

k2

k1
, ~5.1!

wherek i are the reference scales. Note thatt(si) as given in
Eq. ~5.1! is in fact si dependent, t(si)5@\l(si)/
(4p)2]ln@k2(s2)/k1(s1)#. The running coupling may be ex-
panded in a series in\

l~si ,t !5 (
a50

`
\a

~4p!2a
l~a!~si ,t ! ~5.2!

with analogous expansions form2(si ,t),L(si ,t),w(si ,t).
We now insert these expansions into Eq.~3.4! and solve for
the LO parameters.

The equation for the leading order running two-scale cou-
pling is

dl~0!

dsi
5l~0!2a i

~0! . ~5.3!

As a i
(0) is constant it is easily integrated

l~0!~si !5l„12l~a1
~0!s11a2

~0!s2!…
21, ~5.4!

where the boundary condition isl(si50)5l.
Turning to the running mass we have to solve

dm2~0!

dsi
5m2~0!l~0!b i

~0! . ~5.5!

b i
(0) is given in Eq.~4.13! in terms of the functionf (t). As to

leading order

t~si !5l~0!~si !S s22s11
t

l D ~5.6!

the si dependence of the right-hand side~RHS! of Eq. ~5.5!
is quite involved. Its integration yields

m2~0!~si !5m2S l~0!~si !

l D B~0!S f ~0!~si !

f D B̃~0!2B~0!

, ~5.7!

with B(0)5(b1
(0)1b2

(0))/(a1
(0)1a2

(0)), and with the bound-
ary conditionm2(si50)5m2. Here, f (0)(si) is the function
obtained by inserting Eq.~5.6! into Eq. ~4.12! defining
f (t):

f ~0!~si !5
l~0!~si !

l
S 11

~a1
~0!1a2

~0!!l~p1s22p2s1!1ã~0!t

p22p1
D

~5.8!
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and f5 f (0)(si50). Note that if the two scales coincide we
havet50 and f (0)(s15s2)5 f51.

We finally determine the running cosmological constant
from

dL~0!

dsi
5~m2~0!!2g i

~0! . ~5.9!

With the use of the results~5.7! for m2(0) and ~4.17! for
g i
(0) we obtain

L~0!~si !5L1L1
~0!F @m2~0!~si !#

2

l~0!~si !
2
m4

l G
1L2

~0!F @m2~0!~si !#
2

l~0!~si !
f ~0!~si !

122B̃~0!

2
m4

l
f 122B̃~0!G , ~5.10!

where

L1
~0!5

C̃~0!

2B̃~0!21
, L2

~0!5
C~0!

2B~0!21
2L1

~0! , ~5.11!

with C(0)5(g1
(0)1g2

(0))/(a1
(0)1a2

(0)), andL(si50)5L.
To LO there is no anomalous field dimension, and so the

field parameterw does not run.
The LO running couplingl (0)(si) has a Landau pole at

l(a1
(0)s11a2

(0)s2)51 and clearly our approximation will
break down before this pole is reached. If we let one of the
si→2` ~i.e., the far IR region! while holding the other fixed
the coupling will tend to zero asl (0)(si→2`)}(2si)

21.
Also note that the LO running coupling is independent of
pj which parametrize the class of finite renormalizations un-
der investigation.

The behavior of the running mass and cosmological con-
stant is more complicated. Consider the combination

S f ~0!~si !

f D S l~0!~si !

l D 21

511
~a1

~0!1a2
~0!!l~p1s22p2s1!

p22p11ã~0!t
.

~5.12!

In the limit investigatedf (0)(si)/ f is not generally positive
unlessp150 or p151. Of course, we thereby assume that
t is chosen such as to avoid theb function poles in which
casep22p11ã (0)t has the same sign asp22p1. This is
disturbing because in Eqs.~5.7! and~5.10! we are required to
take noninteger powers of this quantity. Thus, unlessp150
or p151 we are faced with the disquieting possibility of
complexrunningm2 andL in a region where the running
coupling is very small. Fortunately, we will see in the next
section that a comparison of ourpj -dependent improved po-
tential with standard two-loop and next-to-largeN calcula-
tions indicates thatp151 is the ‘‘natural’’ choice.

VI. LO RG-IMPROVED POTENTIAL

It is now an easy task to turn the results for the running
two-scale parameters into a RG-improved effective potential.
Equation~3.3! yields the identity

V~l,m2,w,L;k1 ,k2!

5V„l~si !,m
2~si !,w~si !,L~si !;k1~s1!,k2~s2!…, ~6.1!

with k i(si) defined in Eq.~5.1!. Next, we assume the validity
of condition ~iv! in Sec. III. Hence, if

k i~si !
25Mi~sj ![m2~sj !1ki l~sj !w

2~sj !,

k15
1

2
, k25

1

6
~6.2!

the loop expansion of the EP should render a reliable ap-
proximation to the right-hand side~RHS! of Eq. ~6.1!.

To proceed we have to determine the values ofsi fulfill-
ing Eq.~6.2!. Insertion of thek i(si)

2 from Eq.~6.2! into Eq.
~5.1! yields a quite implicit set of equations

si5
\

2~4p!2
ln
Mi~sj !

k i
2 . ~6.3!

Since we are meant to be summing consistently all loga-
rithms we have to solve Eq.~6.3! iteratively

si5 (
a50

`
\a

~4p!2a
si

~a!~l, . . . ;si
~0!! ~6.4!

in terms of the LO logs

si
~0!5

\

2~4p!2
ln
Mi

k i
2 , where Mi5Mi~sj50!.

~6.5!

This yields contributions to thesi
(a) from both thesi depen-

dence of the running two-scale parameters and from their
own \ expansion~5.2!. For later use we also give the NLO
term of the result

si
~1!~l, . . . ;si

~0!!5
1

2
ln
Mi

~0!~si
~0!!

Mi
,

where

Mi
~0!~sj !5m2~0!~sj !1kil

~0!~sj !w
2. ~6.6!

To obtain the corresponding series expansion for the RG-
improved effective potential

V~l, . . . ;k i !5 (
a50

`
\a

~4p!2a
V~a!~l, . . . ;k i ! ~6.7!

FIG. 1. Diagrams contributing to the two-loop EP.
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we approximate the RHS of Eq.~6.1! with those terms in the
minimal two-scale subtraction scheme result for the EP sur-
viving whenk i(si)

25Mi(sj ). To O(\) they are explicitly
given by

V„l~si !, . . . ;Mi~sj !…

5
l~si !

24
w~si !

41
1

2
m2~si !w~si !

21L~si !

2
3\

2~4p!2 SM1~si !
2

4
1~N21!

M2~si !
2

4 D . ~6.8!

We finally insert the running two-scale parameters from Eq.
~5.2! into the RHS of Eq.~6.8! with their argumentssi com-
ing from Eq.~6.4!. Accordingly, an expansion in powers of
\ yields contributions to theV(a) from both thesi depen-
dence of the running two-scale parameters and from their
own \ expansion. Keeping only leading order terms we ob-
tain the LO two-scale RG-improved effective potential in the
minimal two-scale subtraction scheme:

V~0!~l, . . . ;k i !5
l~0!~si

~0!!

24
w41

1

2
m2~0!~si

~0!!w2

1L~0!~si
~0!!. ~6.9!

Let us next examine its properties. In the single-scale limits
N51 andN→` Eq. ~6.9! reduces to Eq.~2.11! for i51 and
i52, respectively. In the general case 1,N,` them2w2

andL terms in Eq.~6.9! depend onpj which parametrizes
the class of finite renormalizations under consideration.
Comparison with two-loop and next-to-largeN results will
provide us now with a natural value for them.

We have used atwo-scaleRG to track the two scales
M1 andM2. Once the two logs have been summed up we
can setk15k25m, i.e., we may write our improved poten-
tial in standardMS parameters. In this way we can compare
the improved potential~6.9! with standard perturbation
theory. When now inserting the various constants and ex-
panding Eq.~6.9! in si

(0) up to second order,

V~0!~l,m2,w,L;m!5
l

24
w4F113ls1

~0!1
N21

3
ls2

~0!19l2s1
~0!212~N21!l2s1

~0!s2
~0!1

~N21!2

9
l2s2

~0!2G
1 1

2 m
2w2F11ls1

~0!1
N21

3
ls2

~0!1S 22
~N21!p2
3~p22p1!

Dl2s1
~0!21

N21

3 S 21
2p2

p22p1
Dl2s1

~0!s2
~0!

1
N21

9 SN122
3p2

p22p1
Dl2s2

~0!2G1
m4

l F12 ls1
~0!1

N21

2
ls2

~0!1S 122
~N21!p2
3~p22p1!

Dl2s1
~0!2

1
N21

3 S 11
2p2

p22p1
Dl2s1

~0!s2
~0!1

N21

6 SN112
2p2

p22p1
Dl2s2

~0!2G1L, ~6.10!

we see that theO(si
(0)) terms in Eq.~6.10! agree with the logarithmic terms in the one-loop result~2.3!. The quadratic,

pj -dependent terms in Eq.~6.10! should be compared with the two-loopMS effective potential@16#

V~2 loop!5
lM1

2

8 S 12 ln
M1

m2 D 21~N221!
lM2

2

24 S 12 ln
M2

m2 D 21~N21!
lM1M2

12 S 12 ln
M1

m2 2 ln
M2

m2 1 ln
M1

m2 ln
M2

m2 D
2

~lw!2

12
I ~M1 ,M1 ,M1!2~N21!

~lw!2

36
I ~M2 ,M2 ,M1!, ~6.11!

where I (x,y,z) is the general subtracted ‘‘sunset’’ vacuum integral discussed in Appendix B. The graphs contributing are
given in1 Fig. 1.

Note that the sunset integrals do not contribute to them4 terms. When comparing them4 terms in Eqs.~6.10! and~6.11! it
is easy to see that they only agree forp151 andp250. Comparison of them2w2 andw4 terms is more tricky due to the
nontrivial sunset integrals.

We should decompose these integrals into logarithmic and nonlogarithmic parts. This is not too difficult for
I (M1 ,M1 ,M1). Unfortunately, the decomposition ofI (M2 ,M2 ,M1) is not unique. However, as discussed in Appendix B
it seems natural to adopt the following one:

I ~x,y,z!52
1

2 F ~y1z2x!ln
y

m2 ln
z

m2 1~z1x2y!ln
z

m2 ln
x

m2 1~x1y2z!ln
x

m2 ln
y

m2G12xln
x

m2 12yln
y

m2 12zln
z

m2

1 ‘‘nonlogarithmic’’ terms. ~6.12!

1The full lines denote the Higgs boson with~mass!2M1 and the dashed ones the Goldstones with~mass!2M2.
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Inserting Eq.~6.12! into Eq. ~6.11! we see that thew4 term agrees with the one in Eq.~6.10!. Thew2 terms agree only if
p151 andp250.

An alternative check on Eq.~6.9! is provided by the largeN limit. By construction our improved potential will agree with
standard largeN results. Examining the next-to-largeN result@19# we have found that in the LL approximation them4 terms
in Eq. ~6.9! and in the next-to-largeN limit expression only agree ifp151 andp250. To compare them2w2 terms we have
again employed a ‘‘natural’’ decomposition of some integrals and once again agreement is achieved forp151 andp250. We
remark that no other choice ofpj may be obtained by simply adopting a different decomposition of the relevant integrals. We
have been unable to check thew4 terms since we do not know whether it is possible to perform a ‘‘natural’’ decomposition of
some of the contributing integrals.

Thus, a comparison of our improved potential with the standard two-loop and next-to-largeN potentials strongly indicates
that p151 andp250 is the appropriate choice. This is gratifying, since for this choice one does not encounter the complex
running parameters mentioned in the previous section. Let us finally write down explicitly the two-scale improved potential in
the two-scale minimal subtraction scheme for this choice ofpj :

V~0!5
lw4

24 S 123ls1
~0!2

N21

3
ls2

~0!D 21

1
m2w2

2 S 123ls1
~0!2

N21

3
ls2

~0!D 2~1/3!S 12

N18

3
ls2

~0!

123t
D 2~2/3!~N21!/~N18!

2
m4

2l
F S 123ls1

~0!2
N21

3
ls2

~0!D 1/3S 12

N18

3
ls2

~0!

123t
D 2~4/3!~N21!/~N18!

21G
12

N21

N24

m4

l
~123t !1/3F S 12

N18

3
ls2

~0!

123t
D 2~N24!/~N18!

21G1L. ~6.13!

For t50 this result has already been obtained in a different
way in Ref.@8#. In the broken phase (m2,0) the tree-level
minimum is atM250 or s2

(0)→2`. Hence, as we approach
it ln(M2 /M1) will become large. If we are prepared to trust
Eq. ~6.13! even in theextremecase of the tree minimum
itself an intriguing property emerges.

As long asN.4 thew4 andm2w2 terms vanish and the
m4 term converges to a finite value. As the slope
(dV(0)/ds2

(0))(s2
(0)→2`)↘0 the EP takes its minimum in

the broken phase at the tree-level value and becomes com-
plex for even smallerw2 values. But for 1,N<4 them4

term, and henceV(0), diverges to minus infinity. This indi-
cates that for these values ofN there isno stable vacuum in
the broken phase. Note especially that forN54, i.e., the SM
scalar boson content, the divergence is softer but still there,
as the penultimate term in Eq.~6.13! becomes a logarithm

V~0!5•••2
m4

2l
~123t !1/3lnS 12

4ls2
~0!

123t D 1L.

~6.14!

We have seen that the LO calculation indicates a peculiar
instability in the caseN<4. Could it simply be an artifact of
the LL approximation? That this is possible can clearly be
seen by examining the expansion~6.4!. While Eq. ~6.4! is
certainly the correct way of performing the LL summation it
is not well behaved in the limits2

(0)→2`. One can see that
the si

(1) are not supressed in the limits2
(0)→2`. Further-

more, thesi
(0) become complex in this limit. To clarify the

importance of thesi
(1) terms it is necessary to perform a NLO

calculation which is done in Sec. IX.

VII. NLO RG FUNCTIONS

The LO results of the last two sections have already been
obtained in a less general form in Ref.@8# based on the use of
theMS RG~2.6! and the conjecture that the correct boundary
condition atm25M2 are given by theN51 result ~2.11!.
But using those techniques it appeared to be impossible to go
beyond LO. The finite renormalization~3.1!, introducing the
appropriate number of renormalization scales and the corre-
sponding RG equations~3.3!, allows us to overcome this
problem in a systematic manner. To show the strength of this
technique we now determine the NLO RG functions and in
the next section the corresponding NLO running parameters.

To NLO Eq. ~3.9! yields

@D̃~1!,Di
~0!#1@D̃~0!,Di

~1!#50. ~7.1!

The corresponding equations for the variousib .
(1) are ob-

tained with the use of Eq.~4.4!. We now solve them in turn.

ibl
(1) is determined by

D ibl
~1!1b̃l

~0!
]

]l ibl
~1!2 ibl

~1!
]

]l
b̃l

~0!1b̃l
~1!

]

]l ibl
~0!

2 ibl
~0!

]

]l
b̃l

~1!50. ~7.2!

Proceeding in an analogous way as in obtaining the LO RG
functions in Sec. IV we easily obtain the solution

ibl
~1!5l3a i

~1! , ~7.3!

where
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a i
~1!~ t !5a1i

~1!1a2i
~1! f21~ t !;

a1i
~1!5Ã~1!a1i

~0! and Ã~1!5
ã~1!

ã~0!
,

a2i
~1!5

1

ã~0!
~ ã~0!a i

~1!~0!2a i
~0!~0!ã~1!!. ~7.4!

The equation foribm2
(1) is

Dibm2
~1!

1b̃l
~0!

]

]l ibm2
~1!

2 ibl
~1!

]

]l
b̃m2

~0!
1b̃l

~1!
]

]l ibm2
~0!

2 ibl
~0!

]

]l
b̃m2

~1!
50 ~7.5!

with the solution

ibm2
~1!

5m2l2b i
~1! , ~7.6!

where

b i
~1!~ t !5b1i

~1!1b2i
~1! f21~ t !1 f22~ t !@b3i

~1!1b4i
~1!logf ~ t !#;

b1i
~1!5B̃~1!a1i

~0! and B̃~1!5
b̃~1!

ã~0!
, b2i

~1!5B̃~0!a2i
~1! ,

b3i
~1!5

1

ã~0!
„ã~0!b i

~1!~0!2a i
~0!~0!b̃~1!

…2b2i
~1! ,

b4i
~1!52Ã~1!b2i

~0! . ~7.7!

The equation foribL
(1) becomes quite involved

DibL
~1!1b̃l

~0!
]

]l ibL
~1!2 ibl

~1!
]

]l
b̃L

~0!1b̃m2
~0! ]

]m2ibL
~1!

2 ibm2
~1! ]

]m2 b̃L
~0!1b̃l

~1!
]

]l ibL
~0!2 ibl

~0!
]

]l
b̃L

~1!

1b̃m2
~1! ]

]m2ibL
~0!2 ibm2

~0! ]

]m2 b̃L
~1!

50. ~7.8!

After some algebra we find the result

ibL
~1!5m4lg i

~1! , ~7.9!

where

g i
~1!~ t !5c1i

~1!1c2i
~1! f21~ t !1 f22~ t !@c3i

~1!1c4i
~1!logf ~ t !#

1 f22B̃~0!
~ t !@c5i

~1!1c6i
~1! f21~ t !1c7i

~1! f21~ t !logf ~ t !#;

~7.10!

c1i
~1!5C̃~1!a1i

~0! and C̃~1!5
g̃~1!

ã~0!
,

c2i
~1!5C̃~0!a2i

~1!1S C̃~1!

B̃~0!
2
C̃~0!

B̃~0!

2B̃~1!2Ã~1!

2B̃~0!21
D b2i~0! ,

c3i
~1!5

2C̃~0!

2B̃~0!21
b3i

~1! , c4i
~1!52Ã~1!c2i

~0! ,

c5i
~1!52~Ã~1!B̃~0!2B̃~1!!c3i

~0! ,

c6i
~1!5g i

~1!~0!2c1i
~1!2c2i

~1!2c3i
~1!2c5i

~1! ,

c7i
~1!522Ã~1!B̃~0!c3i

~0! .

To NLO the anomalous dimension is nontrivial and we
have to determineibw

(1) from

Dibw
~1!1b̃l

~0!
]

]l ibw
~1!2 ibl

~1!
]

]l
b̃w

~0!1b̃l
~1!

]

]l ibw
~0!

2 ibl
~0!

]

]l
b̃w

~1!50. ~7.11!

The solution is easily obtained

ibw
~1!5l2d i

~1! , ~7.12!

where

d i
~1!~ t !5d1i

~1!1d2i
~1! f22~ t !;

d1i
~1!5D̃ ~1!a1i

~0! and D̃ ~1!5
d̃ ~1!

ã~0!
,

d2i
~1!5

1

ã~0!
„ã~0!d i

~1!~0!2a i
~0!~0!d̃~1!

…. ~7.13!

So far we have not specified the values of the NLO
boundary constantsa i

(1)(0), b i
(1)(0), g i

(1)(0), andd i
(1)(0).

At LO the relevant constants were completely determined by
the single-scale limit conditions following from requirements
~ii ! and~iii !. Unfortunately they do not anymoreuniquelyfix
the NLO constants. For suppose we expanda i

(1)(0),
b i
(1)(0), g i

(1)(0), andd i
(1)(0) in powers of (N21). Then the

large N limit condition forbids any terms proportional to
(N21)2 and higher powers of (N21) @18#, and theN51
limit condition fixes the contributions proportional to
(N21)0. However, these limits tell us nothing about NLO
terms proportional to (N21). Of course, we still have the
condition that the sums of the two sets of RG functions at
t50 are just the usual MS RG functions, i.e.,

1b .
(1)(t50)12b .

(1)(t50)5b . ,MS
(2 loop) . In MS bL ,MS

(2 loop)
50 and

the other two-loopb functions can be found, e.g., in Ref.
@16#. Putting all this together we have

a1
~1!~0!52 17

3 2@11q1#~N21!, a2
~1!~0!5q1~N21!,

~7.14!
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b1
~1!~0!52 5

6 2@ 5
181q2#~N21!, b2

~1!~0!5q2~N21!,

g1
~1!~0!5q3~N21!, g2

~1!~0!52q3~N21!,

d1
~1!~0!5 1

121@ 1
361q4#~N21!, d2

~1!~0!52q4~N21!,

whereqj are real numbers which are independent ofN. We
shall comment further on sensible choices forqj in the dis-
cussion of the NLO effective potential in Sec. IX.

VIII. NLO RUNNING TWO-SCALE PARAMETERS

Using the LO results and the set of RG functions obtained
in the last section we now calculate the NLO running two-
scale parameters, which will be used to construct the NLO
effective potential.

The equation for the next-to-leading order running two-
scale coupling is

dl~1!

dsi
52l~0!a i

~0!l~1!1l~0!3a i
~1! . ~8.1!

With the use of the results~5.4! for l (0) and~7.3! for a i
(1) we

may integrate this equation and find

l~1!~si !5l~0!~si !
2lnXS l~0!~si !

l D A~1!S f ~0!~si !

f D Ã~1!2A~1!C.
~8.2!

AboveA(1)5(a1
(1)1a2

(1))/(a1
(0)1a2

(0)).
Turning to the NLO running mass we have to solve

dm2~1!

dsi
5l~0!b i

~0!m2~1!1m2~0!S b i
~0!l~1!1l~0!

]b i
~0!

]l
l~1!

1l~0!2b i
~1!D . ~8.3!

The integration of this equation is quite involved and yields

m2~1!~si !5m2~0!~si !FM1
~1!@l~0!~si !2l#1M2

~1!Fl~0!~si !

f ~0!~si !
2

l

f G1l~0!~si !FM3
~1!lnS f ~0!~si !

f D 1M4
~1!lnS l~0!~si !

l D G
1M5

~1!
l~0!~si !

f ~0!~si !
lnS f ~0!~si !

f D S l~0!~si !

l D 21G, ~8.4!

where

M1
~1!5B̃~1!2B̃~0!Ã~1!,

M2
~1!5B~1!2B~0!A~1!2M1

~1!1Ã~1!~B̃~0!2B~0!!logf ,

M3
~1!5B̃~0!~Ã~1!2A~1!!, M4

~1!5B̃~0!A~1!,

M5
~1!5M4

~1!2B~0!A~1!. ~8.5!

AboveB(1)5(b1
(1)1b2

(1))/(a1
(0)1a2

(0)).
The NLO running cosmological constant is determined by

dL~1!

dsi
52m2~0!g i

~0!m2~1!1~m2~0!!2S ]g i
~0!

]l
l~1!1l~0!g i

~1!D . ~8.6!

With the use of the various results above we obtain after a tedious computation

L~1!~si !5l L1
~1!F @m2~0!~si !#

2

l~0!~si !
2
m4

l G1l L2
~1!F @m2~0!~si !#

2

l~0!~si !
f ~0!~si !

122B̃~0!
2
m4

l
f 122B̃~0!G1L3

~1!@@m2~0!~si !#
22m4#1L4

~1!

3F @m2~0!~si !#
2

f ~0!~si !
2
m4

f G1L5
~1!F @m2~0!~si !#

2

f ~0!~si !
2B̃~0! 2

m4

f 2B̃
~0!G1@m2~0!~si !#

2FL6~1!lnS f ~0!~si !

f D 1L7
~1!lnS l~0!~si !

l D G
1L8

~1!
@m2~0!~si !#

2

f ~0!~si !
lnS f ~0!~si !

f D S l~0!~si !

l D 21

1L9
~1!

@m2~0!~si !#
2

f ~0!~si !
2B̃~0! lnS f ~0!~si !

f D S l~0!~si !

l D 21

, ~8.7!

where
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L1
~1!522SM1

~1!1
1

f
M2

~1!DL1~0! , L2
~1!522SM1

~1!1
1

f
M2

~1!DL2~0! ,

L3
~1!5

C̃~0!

2B̃~0! S 2M1
~1!1

C̃~1!

C̃~0!
2Ã~1!D , L4

~1!5
2C̃~0!

2B̃~0!21
M2

~1!

L5
~1!5

1

2B~0! ~C~1!2C~0!A~1!!1
C~0!

B~0! ~B~1!2B~0!A~1!!2
C̃~1!

2B̃~0!
2

C̃~0!

2B̃~0!21
S 2B~1!22B~0!A~1!1

Ã~1!

2B̃~0!
2
B̃~1!

B̃~0!D
1Ã~1!S C̃~0!2C~0!2

2C̃~0!

2B̃~0!21
~B̃~0!2B~0!!D logf ,

L6
~1!5C̃~0!Ã~1!2L7

~1! , L7
~1!5C̃~0!A~1!,

L8
~1!5

2C̃~0!

2B̃~0!21
M5

~1! , L9
~1!52C~0!A~1!1L7

~1!2L8
~1! . ~8.8!

AboveC(1)5(g1
(1)1g2

(1))/(a1
(0)1a2

(0)). We remark that most individual integrals occurring in the computation of not only
L (1) but alsoL (0) andm2(1) yield hypergeometric functions and that only the respective sums of those are again expressible
in terms of elementary functions as given above.

Finally we determine the nontrivial NLO running ofw(si)

dw~1!

dsi
52w~0!l~0!2d i

~1! , w~si50!5w. ~8.9!

The integration of this equation is straightforward and yields

w~1!~si !52wD̃ ~1!@l~0!~si !2l#1w~D̃ ~1!2D ~1!!Fl~0!~si !

f ~0!~si !
2

l

f G , ~8.10!

whereD (1)5(d1
(0)1d2

(0))/(a1
(0)1a2

(0)).
It is easy to see thatl (1), m2(1), andw (1) vanish forN.1 in the limit of onesi→2` while holding the other fixed.

L (1) will tend to a finite value in this limit only forN.4. However, it will diverge for 1,N<4 if p151 ands2→2` with
the same rate asL (0) due to the first two terms in Eq.~8.7!.

IX. NLO RG-IMPROVED POTENTIAL

It is straightforward to extract the two-scale NLO potential from the standard perturbative boundary condition Eq.~6.8!

V~1!~l, . . . ;k i !5
l~1!~si

~0!!

24
w41

l~0!~si
~0!!

6
w3 w~1!~si

~0!!1
1

2
m2~1!~si

~0!!w21m2~0!~si
~0!! w w~1!~si

~0!!1L~1!~si
~0!!

1(
i51

2 F ibl
~0!~sj

~0!!
w4

24
1 ibm2

~0!
~sj

~0!!
w2

2
1 ibL

~0!~sj
~0!!Gsi~1!~l, . . . ;si

~0!!

1
3

2 SM1
~0!~si

~0!!2

4
1~N21!

M2
~0!~si

~0!!2

4 D . ~9.1!

The different contributions come from the expansion of the
running two-scale parameters, from the expansion of their
si dependence, and from the explicit one-loop term in Eq.
~6.8!. In practice, we immediately setp151 andp250 as
has been done in the LO result.

Next, we fix the values ofqj used to parametrize the NLO
boundary functions in Eq.~7.14! by comparing the
qj -dependent NLO potentialand the NLO Z(w)(1) function
with the corresponding standard two-loop results. This im-
mediately fixesq350 and henceg i

(1)(0)50. The value of
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q4 depends on how we decompose the two-loop integralJ
for Z(w)(2 loop) given in2 Fig. 2 into its logarithmic and non-
logarithmic pieces.

In order to determine the ‘‘natural’’ decomposition of this
integral it is helpful to consider thegeneral integral
J(x,y,z) as given in Appendix B. It is symmetric inx,y,z.
Accordingly, a natural decomposition should respect this
property. In fact, there is only one decomposition which does
this

J~x,y,z!} ln
x

m2 1 ln
y

m2 1 ln
z

m2 1 ‘‘nonlogarithmic’’ terms.

~9.2!

We are interested in the caseJ(M2 ,M2 ,M1) and so we
choose the coefficient of the ln(M2 /m

2) term in
J(M2 ,M2 ,M1) to be twice that of the ln(M1 /m

2) term.
This implies that the coefficient of (N21) in d2

(1)(0) must
be twice the coefficient of (N21) in d1

(1)(0) or q452 1
54.

To determineq1 and q2 we need the subleading loga-
rithms in I (M2 ,M2 ,M1). Using the decomposition~6.11!
yields q152 10

27 and q252 5
27. Putting this all together, the

complete set of boundary functions are

a1
~1!~0!52 17

3 2 17
27 ~N21!, a2

~1!~0!52 10
27 ~N21!,

b1
~1!~0!52 5

6 2 5
54 ~N21!, b2

~1!~0!52 5
27 ~N21!,

g1
~1!~0!50, g2

~1!~0!50,

d1
~1!~0!5 1

121 1
108~N21!, d2

~1!~0!5 1
54 ~N21!. ~9.3!

The behavior of the NLO contribution is of most interest
around the broken phase tree-level minimum, where
M250 or s2

(0)→2`. As in the LO case all the terms in Eq.
~9.1! will vanish or converge to a finite limit ifN.4. But for
1,N<4 L (1) and 2bL

(0)
•s2

(1) will diverge. It is easy to check

that they diverge at the same rate asL (0) in the LO analysis.
TheL (1) divergence is supressed by a factorl\/(4p)2 and
is hence harmless. However, the2bL

(0)
•s2

(1) divergence isnot
supressed. This is because thes2

(1) term which is an artifact
of the expansion~6.4! is not small as compared tos2

(0) in the
above limit. However, one can see thatsi

(0)1si
(1) rather than

si
(0) dominates the expansion~6.4! in the relevant limit. If
one made the replacementsi

(0)→si
(0)1si

(1) in Eq. ~6.13! one
still would haveV→2` in the limit under investigation.

X. THE RELEVANCE OF N52

From diagrammatic considerations~see Fig. 3! we would
expect them4 term in the RG-improved potential to have a
certain exchange symmetry in theN52 case. Note that these
graphs will also contribute to them2w2 andw4 term. Now,
for the caseN52 these contributions are invariant under the
exchange of Higgs and Goldstone lines. We would therefore
expect that fork15k25m them4 terms in Eq.~6.13! should
be symmetric ins1

(0) ands2
(0) . A glance at Eq.~6.13! in this

case,

V~0!52
m4

2l
@~123ls1

~0!2 1
3 ls2

~0!!1/3~12 10
3 ls2

~0!!2~2/15!

12~12 10
3 ls2

~0!!1/523#1other terms, ~10.1!

clearly shows that them4 term isnot symmetric ins1
(0) and

s2
(0) . We find it somewhat disturbing that our approximation
scheme does not respect this symmetry.

We know from Sec. VI that Eq.~10.1! matches standard
perturbation theory through to two loops. Therefore, this
s1
(0)↔s2

(0) symmetry must go downbeyond the two-loop
level. Expanding Eq.~10.1! in powers ofs1

(0) ands2
(0) up to

O(l5)

V~0!5
m4

2
@s1

~0!1s2
~0!1l~s1

~0!21 2
3 s1

~0!s2
~0!1s2

~0!2!1l2~ 5
3 s1

~0!31s1
~0!2s2

~0!1s1
~0!s2

~0!21 5
3 s2

~0!3!1l3~ 10
3 s1

~0!41 20
9 s1

~0!3s2
~0!

1 4
3 s1

~0!2s2
~0!21 20

9 s1
~0!s2

~0!31 10
3 s2

~0!4!1l4~ 22
3 s1

~0!51 50
9 s1

~0!4s2
~0!1 80

27s1
~0!3s2

~0!21 20
9 s1

~0!2s2
~0!31 178

27 s1
~0!s2

~0!41 986
135s2

~0!5!#

~10.2!

2In fact, a derivative with respect top2 at p250 has to be taken as indicated in Eq.~B5! from Appendix B.

FIG. 2. Diagram corresponding toJ.

FIG. 3. Diagrams contributing toL to three loops.
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we see that thes1
(0)↔s2

(0) symmetrysurvivesat three and
four loops, but breaks down atfive loops. So we see that the
failure of our approximation to observe it only appears at
quite a high order in perturbation theory. We are unable to
explain this phenomenon further.

XI. CONCLUSIONS

In order to deal systematically with the two-scale problem
arising in the analysis of the effective potential in the
O(N)-symmetricf4 theory we have introduced a generali-
zation ofMS. At each order in aMS loop expansion we have
performed a finite renormalization to switch over to a new
‘‘minimal two-scale subtraction scheme’’ allowing for two
renormalization scalesk i corresponding to the two generic
scales in the problem. TheMS RG functions andMS RGE
then split into two minimal two-scale subtraction scheme
‘‘partial’’ RG functions and two ‘‘partial’’ RGE’s. The re-
spective integrability condition inevitably imposes a depen-
dence of the partial RG functions on the renormalization
scale ratiok2 /k1. Supplementing the integrability with an
appropriate subsidiary condition we have been able to deter-
mine this dependence to all orders in the scale ratio and have
obtained a trustworthy set of LO and NLO two-scale subtrac-
tion scheme RG functions. With the use of the two ‘‘partial’’
RGE’s we have then turned those into LO and NLO running
two-scale parameters exhibiting features similar to theMS
couplings such as a Landau pole now in both scaling chan-
nels. Using standard perturbative boundary conditions,
which become applicable in the minimal two-scale subtrac-
tion scheme, we have calculated the effective potential in
this scheme to LO and NLO. To fix the remaining renormal-
ization freedom we have compared our results with two-loop
and next-to-largeN limit MS calculations. As a main result
we have found in both LO and NLO that for 1,N<4 there
is no stable vacuum in the broken phase.

The vacuum instability in the broken phase of the O(N)
model raises immediately the possibility of a similar out-
come in a multiscale analysis of the SM effective potential.
As the method outlined generalizes naturally to problems
with more than two scales we are in a position to investigate
systematically the different possible scenarios. Before turn-
ing to the SM itself it proves useful thereby to study the
effects of adding either fermions as in a Yukawa-type model
or gauging the simplest case ofN52 as in the Abelian-
Higgs model. The Yukawa case will either be a two- or
three-scale problem, depending on whether one includes
Goldstone bosons or not. The Abelian-Higgs model in the
Landau gauge will be a three-scale problem to which the
methods in this paper are easily extended. Now one hasthree
integrability conditions@Di ,Dj #50 and one must impose
three independent subsidiary conditions analogous to
@k1]/]k1 ,D1#50 which we used in our O(N)-model analy-
sis. Note that for the generaln-scale problem one would
have 1

2n(n21) integrability conditions which should be
supplemented by12n(n21) subsidiary conditions. The ques-
tion as to whether fermions or gauge fields may stabilize the
effective potential for smallN in a full multiscale analysis is
under investigation.
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APPENDIX A: VALUES OF VARIOUS CONSTANTS

Here, we give the values of various constants appearing in
the paper. We quote them for the choicep151 andp250:

B~0!5
N12

N18
, C~0!5

3N

2~N18!
, ~A1!

B̃~0!5
1

3
, C̃~0!5

1

6
, ~A2!

A~1!52
3N114

N18
, B~1!52

5~N12!

6~N18!
,

C~1!50, D ~1!5
N12

12~N18!
, ~A3!

Ã~1!52
17~N18!

81
, B̃~1!52

5~N18!

162
,

C̃~1!50, D̃ ~1!5
N18

324
, ~A4!

L1
~0!52

1

2
, L2

~0!5
2~N21!

N24
, ~A5!

M1
~1!5

19~N18!

486
,

M2
~1!52

~N21!~19N22578N22600!

486~N18!2

1
~N21!~34N21544N12178!

243~N18!2
logf ,

M3
~1!52

~N21!~17N146!

243~N18!
, M4

~1!52
3N114

3~N18!
,

M5
~1!5

2~N21!~3N114!

3~N18!2
, ~A6!

L1
~1!5

19~N18!

486
2

~N21!~19N22578N22600!

486~N18!2f

1
~N21!~34N21544N12178!

243~N18!2f
logf , ~A7!
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L2
~1!52

38~N21!~N18!

243~N24!

1
2~N21!2~19N22578N22600!

243~N24!~N18!2f

2
4~N21!2~34N21544N12178!

243~N24!~N18!2f
logf ,

L3
~1!5

35~N18!

486
,

L4
~1!5

~N21!~19N22578N22600!

486~N18!2

2
~N21!~34N21544N12178!

243~N18!2
logf ,

L5
~1!52

~N21!~N3242N22360N2760!

9~N12!~N18!2

1
34~N21!

81
logf ,

L6
~1!52

~N21!~17N146!

486~N18!
, L7

~1!52
3N114

6~N18!
,

L8
~1!52

2~N21!~3N114!

3~N18!2
, L9

~1!5
2~N21!~3N114!

~N18!2
.

APPENDIX B: THE INTEGRALS I AND J

Here, we list some useful formulas regarding the two-loop
integralsI andJ. The general unsubtracted scalar sunset in-
tegral inD dimensions is defined as

~4p!24I D~x,y,z!

5E dDk

~2p!D
dDl

~2p!D
1

~k21x!~ l 21z!„~k1 l !21z…
. ~B1!

A full calculation of this integral is rather involved@20#.
However, there is a formula in Ref.@21# which nicely splits
the integral into a very simple, forD54 divergent expres-
sion plus a finite term which is proportional to
I D22(x,y,z), i.e., the same integral in two lower dimensions:

I D~x,y,z!5~4p!2D14
G2~22 1

2 D !

~D22!~D23!
@~x2y2z!~yz!~1/2!D221~y2z2x!~zx!~1/2!D221~z2x2y!~xy!~1/2!D22#

2~4p!22~x21y21z222xy22yz22zx! I D22~x,y,z!. ~B2!

Since the last term is finite we regard it as a ‘‘nonlogarithmic’’ term and ascribe the logarithmic terms purely to the simple,
divergent piece. The renormalizedI (x,y,z) referred to in the text is then given as

I ~x,y,z!5FPF~4pe2gm2!2eF I 422e~x,y,z!2
1

e
„K422e~x!1K422e~y!1K422e~z!…G G, ~B3!

where FP denotes the finite part,g is Euler’s constant, and

~4p!22KD~x!5E dDk

~2p!D
1

k21x
. ~B4!

TheKD terms in Eq.~B.3! are due to the subtraction of one-loop subdivergences.
The unsubtractedJD(x,y,z) is defined as

~4p!24JD~x,y,z!5
]

]p2E dDk

~2p!D
dDl

~2p!D
1

~k21x!~ l 21y!„~k1 l1p!21z…U
p250

. ~B5!

The renormalizedJ(x,y,z) which enters intoZ(w)(2 loop) is simply

J~x,y,z!5FP@~4pe2gm2!2eJ422e~x,y,z!#. ~B6!

Above, thex, y, z are the~masses! 2 on the three internal lines.
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