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Radiation of extreme black holes
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The radiation from extreme Reissner-Nordstrblack holes is computed by considering the collapse of a
spherical charged shell. No neutral radiation is found, and, therefore, the black hole temperature is zero, but
there is emission of charged particles if the charge to mass ratio is greater than one. The absence of thermal
effects is in accord with the predictions of Euclidean theory and it is argued why the radiation entropy should
not be regarded as a black hole attribute. Rather, if any entropy is to be present in the future, this is interpreted
as a loss of quantum coherence in the past by the presence of the timelike wormhole made by charges. The
stability of the extreme black hole to emitting uncharged particles is consistent with the conjecture of cosmic
censorship, which may thus be regarded as strengthened by the quantum [tB8656-282(197)02104-§

PACS numbes): 04.70.Dy, 04.62+v

I. INTRODUCTION fold is a stationary point of the action is the inverse Hawking
temperature of the black hole, as any other choice yields a
After Hawking's discoveny1] of the quantum emission conical singularity in the space. For the extreme Reissner-
of radiation from black holes, a large amount of investigationNordstran black hole, the stationary point is represented by
has been done to clarify the dynamical origin of black holea radial electric field with chargQ|=M and the line ele-
entropy. Recently, the particular case of extreme black holement
(defined as black holes having zero surface gravigas been
investigated at length from many points of view, after the - Ao (r—m)2 r2 )
discovery that extreme black holes have zero entropy, but ds?=Gapdxdx :_ré_d72+ mdr
nonzero horizon are@]. One argument runs as followsee
also [3]). According to finite temperature quantum field +r2(dg*+sirfode?). 2
theory, the leading contribution to a partition function in a
loop expansion, often called the tree approximation, isUnder the Hodge duality on the field strendh,, it also
InZg=—1(B,¢), whereg is the stationary point of the Euclid- dgscribes a magnetically charged extreme black hole'. Now
ean actiorl (3, %), andg is the period of the imaginary time, this is a pzerfectly regular metric on the manifold
physically interpreted as the inverse temperature of the equiM! = RX RXS", wherer ranges inlt. The topology is that of
librium state. For gravity in an asymptotically flat context, @1 annulus whose inner boundaryratM is at infinite dis-
B is then the inverse temperature at infinity as the local equitance from the interior points. As such, it can be identified to
librium (Tolman temperature is dependent on position. To@ny period without danger of a conic singularity in the space.
get also a well-defined canonical ensemble, the system mugférefore one considers the Euclidean theory on the mani-
be enclosed in a large box with fixed temperature near th&!d S'X RX S? where the circumference of ti# factor is
boundany4]. The Euclidean action for the Einstein-Maxwell @ny realg. The bulk term of the action is purely electromag-

system ig5,6] (we use dimensionless uni@=c=7%=1) netic asR=0, and by adding the boundary term due to grav-
ity one finds easily Id;=—p8M, of which one half is the

1 1 gravitational contribution and the other half the electromag-
= - 16~ R(g)Y2d*x— 8—f [K](h)Yd3x netic contribution(this is 8 times the electrostatic energy
TIM mIam outside of a sphere with charg@ and radiusr =M, in the
1 extreme limit when|Q|=M). The partition function being
+ Ef FaoF 2°(g)Y2d%x, (1) linear in B, the canonical entropy vanishes rather than being
M one-quarter of the horizon area, as would be expected by
continuity with nonextreme black holes. The essential reason
where (i) M is asymptotically flat with boundary for this difference is the crucial fact that the horizon of an
IM=SX(ro)xS; at some large radius,, (i) the fields extreme configuration is at infinite proper distance along
(9,F) are periodic with periogB near the boundary, ardi)  spacelike directions from any point in the outer static region
K is the trace of the second fundamental form of the bound¢but not along timelike or null directionsThis might also
ary and[K]=K—Kj, Kq being the trace as if the boundary imply that no information los§7] exists for such bodies,
were embedded in flat Euclidean space. The subtraction afithough the hole can still swallow any matter configuration,
Ky is to ensure that flat space has a vanishing partition funcas the information entropy is normally associated with re-
tion and that the arbitrary, is at last removed by letting gions whose boundary is at finite distancasvery different
ro—o°. In the case of nonextreme black hole configurationsyiew has been expressed[]). In view of these facts, and
it so happens that the unigyesuch that the Euclidean mani- the lack of continuity of the Bekenstein-Hawking geometric
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entropy, the question of whether extreme black holes radiatproblems involving horizon§1,25]. The implications of the

or not must be revisited. Indeed, @] it was thought that result and some comments about black hole entropy will be
extreme black holes possibly radiate so as to keep the blagkostponed to the discussion. The calculation shows that one
hole extreme, if matter is sent down the hole, because th@ay forget about the collapse process and work equivalently
Euclidean solution can be identified to apy This can be With the maximally extended solution, by taking the modes
interpreted as the fact that unperturbed extreme black holemerging from the past horizon to be positive frequency with
simply do not radiate. In two dimensiori& the sense of fespect to the retarded time=t—r*, wherer* is the tor-
ignoring the two angular variableghey do not radiate in t0is€ coordinate in the extreme Reissner-Nordstroetric,
fact, as was noted by Davig8]. As a related fact, the trace 2nd the incoming modes to be positive frequency with re-

o . .
anomaly causes the stress tensor to be divergent on the hRRect to _th.e advanced time=t-+r (these are the cond|-.
rizon in dimension 410, but in four dimensions things are tions defining the Boulware vacuum in the Schwarzschild

different, as the stress tensor is regular in the zero temper2ckground Only the radiation at infinity will be clearly
ture state and divergent near the horizon in any nonzero te _|sp_layed, as the part|_cl_e spectrum near the bla_ck hole can be
subject to many nontrivial phenomena, depending on the ex-

perature stat§l1]. This would imply that an extreme black : t bound in th lomb. and
hole cannot be in equilibrium at any temperature but zero!Stence of bound or resonance states in the Coulomb an

which again is consistent with the idea that extreme blac@ravitational field of the shell. The result does not seem to

holes do not radiate. This is welcome perhaps, since extrenfi€PeNd on the fact that matter is in a thin shell and holds for

black holes are on the verge of developing a naked singulaﬁm extreme ball as well.
ity, and any instability in this case would seem unhappy.
The question whether the temperature and entropy of an Il. ASYMPTOTIC BEHAVIOR

extreme charged black hole are really zero was then investi- 5g \yas explained 23] (see also Refg26—29), the
gated by using the Haag-Hessling quantum equivalence pringg  ations of motion of a collapsing charged spherical shell
ciple [12-14 and Green functionfld], stress-energy calcu- an e deduced by relating the discontinuity of the extrinsic

curvature across the shell with the surface energy density in

. o : : €Mfe shell, the Israel-Kuchar equations. lebe the surface
black holes can be identified with elementary string excna—energy density of the shell in the comoving frame and

tions[18—21]. All such approaches were concerned with sta- =47R2%p the total proper mas® being the shell radius.

tionary extreme black holes and ignored the gravitational, 5 extreme shell, we introduce the abbreviation
collapse bringing them to a quasistationary stadtepriori,

however, it seems obvious that a collapsing matter configu- M2—M?2
ration, whether or not extreméA=|Q|), coupled to a quan- a= oM
tum field must radiate. The reason is twofold, one being the

time-increasing redshift imparted to the field modes by theyhere M is the total gravitational mass of the shell. The

motion of the collapsing matter, the other being the presencgyterior metric is the extremal Reissner-Nordstrmetric
of the Coulomb field which can easily reach the critical

threshold of pair creation. Indeed, the lower the mass of the (r—M)2 re

black hole, the higher the electric field intensity, suggesting 05 =JapdX*dx=— 2 dt*+ (r_M)Zdrz

that extreme black holes are indeed unstable objects. How-

ever, this is perhaps not so obvious, as in fact we obtain +r2(de?+sirfod¢?), ©)

emission of charged particles if and only if the charge-to-

mass ratio is greater than 1, but no emission at all of neutrednd the interior is part of flat Minkowski space. The shell
particles. This is just what is needed to avoid naked singuPosition is specified by =R(7), t=T(7), where r is the
larities, since neutral particles would decrease the mass b#@foper time along the shell history. The equations of motion
not the charge of the black hole. As extreme black holes arare then

clearly unstable under small variations of the mass and

charge parameters, unleéd! = 5|Q|, this also means that M al’ . R R?R?
extreme configurations are unstable to emitting particles. The “Nm + Rl 1, T= R—M 1+ (R—M)?%

guantum instability of extreme black holes to emitting 4
charged particles has also been implicitly noted28], as
when the temperature goes to zero by increasing the bladkor such an extreme shell, one may expect the Coulomb
hole mass, and therefore by reducing the surface gravity, theepulsion of like charges to stop the collapse by turning in a
rate of charge loss remains finite. Such a continuity argumerfiounce. In fact, a simple consequence of the equations of
is not obvious because the Reissner-Norastreolution  motion is that ifM > AM>0, then the shell radius has a turn-
changes character abruptly in the extreme limit. ing point atRy=(M+ M)/2<M which is a minimum ra-
Here we compute the particle emission at infinity by tak-dius. Therefore the shell reaches the horizon value at
ing into account the collapse process of an extremal chargegd=M, and disappears from sight by forming a future event
shell, as has been described #8]. The Hawking radiation horizon at some advanced tirog (see Fig. 1
from the collapse of a thin uncharged shell was investigated As Fig. 1 shows, the shell subsequently bounces and ex-
earlier by Boulware[24]. After discussing the asymptotic pands by forming another asymptotically flat region with a
behavior of the shell, we pass to the quantum theory byast horizon, and singularities are not formed. The space
following the traditional Hawking's scheme for handling outside the shell in between the two horizons is a closed
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treme black hole, where(u) approaches; exponentially
SHELL HISTORY fast in retarded time, the exact formula being

ry—r_
2 I
2rs

v(U)=v,—Ce K+ 0O(e V), k=

©)

wherek is the surface gravity and. =M = \/M?—Q?Z. This

can be traced back to the first order pole singularity that
PAST HORIZON controls the behavior af* near the horizon in contrast with
the logarithmic singularity of the nonextreme case. The as-
ymptotic behavior(8) on the horizon is not restricted to a
FUTURE HORIZON thin shell. In fact, the exterior geometry is the Reissner-
Nordstran metric even for a collapsing, charged extreme
\ I+ ball. It is then easy to show that finite on the horizon
implies the behavio(8), which is almost all one needs to
compute the radiation at infinity.

L

WORMHOLE

IIl. MINIMAL QUANTUM THEORY

The asymptotic behavior just discussed has the conse-
guence that the phase of a positive frequency ingoing mode
FIG. 1. The Penrose diagram of an extreme bouncing shell. ifrom past infinity will be redshifted at a_m_uch !ower ra_te than

the bottom region the shell is collapsing, in the top region the shelfr nonextreme black holes. Indeed, it is fairly straightfor-

is expanding, and each point represents a two-sphere. The region Y¢a"d to deduce the asymptotic form of such a mode near the

the left of the shell history is a flat space of radRisnd to the right ~ €vent horizon, when the black hole is about to form. Pre-

is part of the extended Reissner-Nordstrmetric.|* (17) denotes ~ Cisely we have the following. LeP;, . be a positive fre-

future (past null infinity. quency solution of the charged Klein-Gordon equation in the
collapse geometry of the infalling shell,

universe, and a topology change takes place. We shall focus

Yo

on the bottom region containing the future event horizon, 9% (VatieA) (Vo tieAp)Pj, = 1?Pj,e=0,
i.e., the one where the shell appears collapsthg top re- i@
gion will be important latex Aa=Qr "4, (10

Although the equations of motion are exact integrables, h is the ch he field. which is indoi
we only need the asymptotic expansion of the functiondV€ree is the charge of the field, which is ingoing from past

R(r) andT(7) near the horizon. More precisely we need theNfinity, and thereforg j standing for (,m)]

advanced tima of the shell as a function of the retarded _ -2, -1 —jwt
P, o=(4 Y.(6,4)R

time u, namely, the relation (u) near the horizon to leading jore= (4TP) T (0, IRy (e,

nontrivial order ine=R—M. From the equations of motion [ 7
; =p°+
we find OENPTT A (D
: ) 3 wherep=0 is the radial momentun¥,;( 6, ¢) are the spheri-
R=ap+a,e+ae”+0(e”), (3 cal harmonics, and the modes are normalized &dfanction
. _y - of w. Then, asymptotically for large, for w>u, and for
T=b_se “+b_8""+bo+0(e), (6)  r—M, the outgoing part oP,,, . after reflection through the
where the exact form of the coefficients is left apart, as theSheII S
really important fact is that bota, andb_, are nonvanish- P, o=(47p) Y2 ~1Y(9,d)expiCpu~ e ivet-iovs
. . . jw,e A4 J
ing. The advanced and retarded coordinate times are, respec-
tively, t=r*, where Q
o= —. (12
M?2 Q|

r
r*=r+2MIn(M—l>—_—M, (7)
r Because of the ultrarelativistic condities> w, we may ne-
lect the masg: from now on, its only role being to set the

shows the characteristic first order pole of extreme blac . . .
P ower bound for integration over energy. The quantum field

holes. From the equations it now follows thgtu) remains
finite on the horizon whilau diverges to infinity. More ex-

actly, b=, f dw[Aj,PjuetBl,Pl, ] (13
T Ju

v(u)=v;—Cu +0(u2nu), u—os, (8)
is assumed to be in thgn) vacuum state relative to the
wherev is the value of advanced time that marks the birthabove decomposition. In order to obtain the particle content
of the black hole andC is a positive constant depending on at future infinity, we have to expand the in mode into posi-
M and M. This behavior may be compared with the nonex-tive and negative frequency waves of the kind exj{u),
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namely, waves which are purely outgoing to infinity. This is amplitudeéj‘e(w’) to infinity [see Eq(14)]. In this way we
a rather delicate matter. Considering Etp) as an holomor-  fing the mode at future infinity to b@ve omitted the spheri-

argue that the Fourier expansion Bf, . can only contain

the factors exptiwu), which just share witiP; , . the same JC = .
holomorphic property. We immediately conclude thiagre Piwe=—7—| e P _1(2JCp(w'—0e))B;.
is no neutral scalar radiation at infinity from an extremal \/E ®

black hole However, for charged fields things are different (o' —ce)de’ \C (=

due to the superradiant phenomenon. Indeed, in the extended X (o) T2 o't g
Reissner-Nordstrm geometry the radial outgoing waves V(o' —aoe) Vam)u

from the past horizon have the asymptotic behaj2@] (we .

are neglecting the logarithmic phase due to the Coulomb X(2VCp(—oe—w"))B} _,

field as it is unnecessary to our aims
0(—oe—w')dw’

J(—oe—w') '

(14) and we can see the presence of a negative frequency compo-
nent, providedoe<0. Similarly, a negative frequency in

which define the reflection and transmission coefficients ofnode will have a positive frequency component at infinity if

the potential barrier surrounding the black hole. One definege>0. By following the usual proceduid.,25], the Bogol-

similar reflection-transmission coefficients for ingoing wavesjubov coefficient responsible for particle creation can be de-

from past infinity(with arrows pointing to the left One has termined easily from Eq.19). We find

then the unitarity relationg22]

X(w") (19

ei(w—ae)r*_}_’&j’e(w)e—i(w—oe)r*, r*——oo,

. Bi,e(w)eipr*, r*—oo,

vCp' -
- - (+) __ JCp(oe—w)
PBj (@)= (0= 08B o(®), 15 Plorwe™ oo -12VCRee 0B,
(0= €)|B| o(@)]2=p[1—|A; o(@)|7]. (16) X(0')0(ce—w')

From Eq.(14), a positive frequency wave packet at the ho- B \/C(UE—w')J 2 Cloe=a))B" (o'
rizon containing the factor exp{iwu) arrives at infinity with - \/ﬁ ~1( ploe—w'))Bj (o)
the time dependence gxpi(w+oe)u]. This is holomorphic

in the lower half complexi plane if o+ oe>0, but is holo- X O(oe—w') (20)

morphic in the upper half complex plane if o+ o0e<O0,

which is just one superradiance condition. Therefore thdy using Eq.(15). We now see that the same result could

wave packet can have a negative frequency component Sgve been obtained by working in the extended Reissner-

infinity, corresponding to particle emission in the quantumNordstran solution and by taking the modes emerging from

theory. the past horizon to be positive frequency with respect to
We now show that this is actually the case. ketC such ~U=t—r*, as the holomorphy argument applies exactly in the

that — 1<Rev<1/2 andJ,(z) the Bessel function of order same way. The Bogoljubov coefficients are then as in Eq.

v. Then (20), except that the Bessel function gets replaced by
w+w'—oe). In this “Unruh-like picture” there is no
S PR Joo")do’ redshift, only superradiance as the basis of the emission.
fo e (@), (2Voo")do Among the consequences of E@QO), the following

emerge. Because is the sign ofQ, only charges having the
w712 i sign of Q will appear in the outer region and the black hole
TGE ex;{ j) o(u). (17 will discharge. These are the particles associated with incom-
ing modes which started at past infinity at advanced time
By forming a wave packet one can easily show that the limifor whichv —v, was small and negativisee Fig. 1 There
v— — 1 can be safety taken. This means that in a distributiorare also particles associated with modes for whichv,
sense we have was small and positive. These are created in the wormhole
region and will escape in the top region of the figure by
C iU e - , , crossing the past horizon of that region. To the author it is
f e ' w) M4 (2Vwe") 6w )dw not obvious how to define afin) vacuum state in the top
region. Presumably an observer at past infinity in this region
ex;{iw) o(u) would require that no particles be crossing the past horizon,
u

—o0

=0 13 (18 and then a flux of particles will be present at future infinity,
with the sign of the black hole charge. Thus it would be of
This equation, combined with E¢14), can be used to propa- great concern for him to observe an even larger flux than
gate the in mod®;, . to future infinity. Indeed, each mono- expected(due to particles that crossed the wormhola-
chromatic component in E¢18) tunnels through the poten- stead, there is little doubt as to how defining thmut)
tial barrier surrounding the black hole, by carrying thevacuum state in the top region @$ alone, for example, is a
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Cauchy surface for massless fields. The Bogoljubov coeffiparticles at infinity is given by Eq(22) for o’'=w", and
cient of the partner particles can be found by the same typtherefore it is infinite, being proportional t§(0). This re-

of arguments as used above, i.e., by expressing the phasefdcts the fact that there is a steady rate of emission lasting an
the mode after reflection through the shell in terms of thenfinite time, as judged from infinity. To see this one writes
retarded timeu of the wormhole region, which provides a &(0)=T/2m, for a large timeT, as follows from

past extension of the top universe where the shell is expand-

ing. It is given once more by E@20), the basic reason being O

that the coordinatd retains its timelike character in the 5(w_w'):ﬂ _T/Ze'(“’ “dt, (23
wormhole(in Schwarzschild geometry it isthat enjoys the

timelike character L :
; ... with increasing accuracy the larger i& Hence Eq.(22)
in E?]%a:)nuiroorir:] E?’n.(sg)e’sthkejzet aarse Qﬁafhzrggﬁs(grggﬁgﬁltﬁeslﬂr erSeaIIy gives the expected number of particles emitted during
going 1 ' 9 N requires large interval of time. Dividing byl gives the luminosity
them, these particles must be created too. The detailed fate 8F
. . : the black hole as
such particles is less clear, because the Klein-Gordon equa-
tion possibly admits bound or quasibound states around the 1 ve
black hole, in the poten_t|al well dge to the Coulomb k_)|nd|ng L=— 2_2 j [1— |Aj,e(w)|2]wdw
energy. If resonances indeed exist, they should be included T Ju
among a complete set of horizon states which are needed to 1 e
describe the ingoing particles. The continuum states can be —— > (2|+1)f [1-|A o(0)|]wde, (24)
taken to have a time dependence of the form exp@) on 2m=0 2 '
the horizon. They are then spread over the entire future ho-

rizon, while the resonances or the bound states will decaXinceL&j «(»)| does not depend on the azimuth quantum
exponentially at infinity. The Bogoljubov coefficient of the nymberm (the centrifugal barrier depends érbut not on

ingoing particles is then determined by m). One may note thdt >0 because the absorbitivity of the
(ce—w) black hole,I'j(w)=1—|A ¢(®)|? is negative in the super-
B8) =0t o’ —ae)éj () o(oce—w'), radiance region, and also that the range of integratidn i
e Vo' ’ very large for all known elementary particles, as for them

(21) e/u>1. Similarly, one gets the rate of charge loss,

where nowj = (I,—m). Notice that in the Schwarzschild so- ) e oe _
lution only ingoing modes for whichy —v,| was small were Q= 2—2 (21+ 1)f [1-]|A o(®)|*]dw, (25
actually important. In the present case the entire future hori- =0 ®

zon is involved in particle creation, as the electric field is )
everywhere constant over there. To fix ideas let us supposihich may be compared witf22]. One expects that only

Q>0. The calculation shows that to each positive chargdOurier components of the field having wavelength smaller
emitted to infinity with quantum numbers, () a negatively thanM mteract S|gn|f|can_tlly vy|th the black hole; i.e., only
charged particle havind (— m) falls into the black hole. The ~frequencies greater thavi ~ will be important. 1” the stron-
particles may then be captured in the quasibound states tﬂfr conditionw>1(l+1)/M holds and alsq.™“<M, then
forming a negatively charged cloud around the black holdhe absorbtivity of the black hole may be computed in the
(but this we cannot prove at present even if resonances exisf/KB approximation[22], which gives

or be emitted into ingoing modes and crossing then the ho- -

rizon, but none of them escape to infinity. This is similar to Ti(w)= —ex;{ _mpM ) 1Q]=M (26)
certain effects which are predicted to arise close to very J eQ /)’ '

heavy nuclei. In the field of overcritical nuclei with atomic

numberZ greater than some criticdl, (for a point nuclei is and the rate of charge loss is the Schwinger result
Z.=137) a pion condensate is expected from a proper quan-

tum field theory calculatiofi30], leading to the concept of a . e*Qs M2
charged vacuum. For the black hole it@that is the rel- Q=——w¢© V{_ eQ )
evant parameter and overcriticality is achieved roughly for

|Q|>e/u?, which means that the Coulomb field at the hori- The expected number of particles in the outgoing wave

(27)

zon exceed the critical field for pair production. packetQ;, with i=(l,m,w), carrying angular momentum
From Eq.(20) we also obtain the equation j=(1,m) and sharply peaked around is
fo Biutt Bty A= —[1-|A) o(0")]?] (in|Ni|iny=ni=—Tj(w)=|A (0)]>*~1, (28

X f(oe—w')8(w' —w") (22)  WhereN; is the number operator for that mode. Knowing the
Bogoljubov coefficients, the higher moments can likewise be
by using EqQ.(16) and the completeness relation for BesselcOmputed. For example, a simple calculation gives
functions[replacing the ¢) with the (=) ande with —e, it . - )
holds for the ingoing particles tdoThe expected number of (in[(N)?in)=n;+2n7, (29
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and this can be used to firéh|(N;)¥|in) by induction over phase of an ultrarelativistic ingoing mode near the event ho-
k. They are all derivable from the following probability dis- rizon after reflection through the shell will be the same as for
tribution for N particles in the given modé&he moments the scalar field. However, the amplitude will be different
determine the distribution because it must be propagated along the radially ingoing null
geodesics by parallel transport, in the geometric optics ap-
proximation. Precisely we have the following. LR}") be a
positive frequency solution of the charged Dirac equation

n

P(MFW-

(30

It is perhaps remarkable that this exhibits the same relation- i YA(VatieAy )P\ — uP{)=0 (34

ship among probability and mean particle numbers as in pair

creation by a pure electric field in flat spa&d,32. in the collapse geometry of the infalling shell, which is in-
From the above derivation it is clear that the emissiongoing from past infinity and normalized to &function of

vanishes not only for neutral particles, but for charged also i, and therefore

|e|<u, which again is consistent with cosmic censorship.

The results are consistent if the back reaction of the created +) 112 f.(0xn | .
particles on the shell is negligible, which will be the case if Pro =(27p) 777 "N f(1) e ',
the typical energy of the quanta is much smaller than the 2 A

black hole mass. This then requiree<M, which also im- =
plies u<M (for the existing charged particles @=NpTtut,

A similar analysis can be done for an extreme, rotatin . .  —
shell. This time we do not have at our disposal exact equgyhere p=0 is the radial momentumi=y—goo and the

tions since the exterior geometry is not given by the KerrWO-SPIN0rsy, and¢, are eigenspinors of the Dirac operator

metric all the time(a solution which is valid to first order in ©On the two-sphere corresponding to the eigenvalutsee
the angular velocity of the shell but to all orders for the mas€10W. Then, asymptotically for large, for w> u, f)”d for
and radial velocity has been worked out{88]). Hence one —M just outside the shell, the outgoing part®f,’ after
assumes that the Kerr geometry settles asymptotically, whef¢flection through the shell is

the event horizon is about to form. It is a result in the theory

(35

of gravitational collapse that asymptotically=QT, where P§+):(2wp)‘1’2r‘1Du‘1’2( X*)
Q) is the stationary value of the angular velocity of the hori- ¢ N
zon ande¢ the angular velocity of the shelthis can be seen Xexp(iCpu~Lye ivet-iovytia (36)

explicitly in [33]). From the timelike condition on the four-
velocity of the shellg,,u®u®=—1, and from the Kerr met- \yhereC, D, and « are constants witlC>0. The constant

ric, it then follows that D can be fixed by requiring the normal component of the
oM2 R-M)? Dirac current to be continuous across the shefl]. More
_ +R2. (31) directly, it can be found by requiring the Bogoljubov coeffi-

(R—M)? N M*(1+cos6) cients below to represent a unitary transformation between

) initial and final states. As for the scalar case we may now
Therefore, sinc® converges to a finite value on the horizon, conclude that there iso emission of neutral fermions (neu-

one gets trinos) from an extreme black holé&or charged fermions
. things are different but, this time, not as a consequence of
R=ay+a;e+0(s?), superradiance since there is not, in fact, superradiance for
fermions. To investigate this we need the asymptotic behav-
T=b_,e ?+b_16 ' +by+O(e), (32 ior of spinors near the horizon and infinity. In the Schwarzs-

) ) ) o ) child background, the Dirac equation has been given a com-
with ¢-independent leading coefficients anet R—M. This  jete treatment ifi35,24. The neutrino equations in the Kerr
is the behavior that occurred in the Reissner-Norastcase, geometry were solved and quantized[84], where the ab-
and accordingly it yields a quantum emission with lUMin0S-gence of superradiance for fermions was noted. A lot of ma-
ity (see[34] for nonextreme black holgs terial in this case can also be found in the Chandrasekhar
1 . i m_onograph[_36], _whe_re the theory of separability of the
L=—=— > f [1—|Am ()| odo, (33  Dirac equation is discussed at length. In the Reissner-
2mm Ju ’ Nordstron geometry, the Dirac equation can likewise be
separated. In the standard representation of Dirac matrices,
whereQ =(2M) " is the angular velocity of the horizon for for a positive frequency solution of the for(85), one ob-

the extreme Kerr metric. Hence there is no emission otains for the radial functions the two coupled equations
s-wave radiation, a characteristic feature of superradiance

phenomena. AN
iN2f1+iTfl+[(w—eA0)+N,u]f2:O, (37

IV. FERMIONS

The calculation with fermions is more complicated but the

AN
. 2 ’ i _ _ —
basic principle is the same as for the scalar case. Namely, the IN"f5—i r fot[(0=eA)=Nu]f,=0, (38)
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where a prime denotes a derivative with respect, tand the wyo +u\
two-component spinorg, and ¢, are regular solutions of ~ P{)=i e"“’ P g,
the equations \/ZWP ¢A Vo' -
><(2\/Cp(w’—Ue))é)\(w’)ﬁ(w’—o-e)dw
1
2 6?9-1- Ecota 60’ (9(15 X)\—|)\¢)\, (Tl)()\:(ﬁ)\y * \/E XAV — 0 eiw’t*ip’r*\]
(39) pN2ap’ | e T ’
X (2\Cp(—oge—w"))B} (w')8(—oe—w')dw’,

which implies also
(46)

and we can see the presence of a negative frequency compo-
xXr=—iAx,, (400 nentifce<0. A similar formula can be written for a nega-
tive frequency ingoing mod@!_), and then a positive fre-
guency component will be presentae>0. The Bogoljubov
whered? are the standard Pauli matrices. The eigenvalue coefficients describing particle creation are defined by the
takes then all nonzero integer values and there Rrgstates ~ €xpansion of the outgoing solutions defining the out-vacuum
for each given [37,38. From the radial equations, the posi- State, here denoted b9{,), in terms of the ingoing solu-
tive frequency outgoing modes from the past horizon ardions which define the initial vacuum state at past infinity:
defined by the asymptotic behaviowe are neglecting the i.e.,
logarithmic phase due to the Coulomb field as is unnecessary

io?

+1 t0) + |
dy ECO mﬂ'(%;

to our aim$ f o)) PO +87) P de (47
fi=[e (@O L A (w)e (@ 0™ px o the + (—) standing for positivgnegative frequency. The
(41)  asymptotic behavior of the functio®{;,) at future infinity is
wetpl o
() -1/2, -1 Fi(w't—ip'r*)
~[el(w oe)r _A (w)e i(0—oe)r* ] r*—>—oo, Q}\w (27Tp) r ¢}\\/m e . (48)

We then obtain, for large,

e /wgﬂék(w)e.pr, I 43 () ,=1CI(2VCp(oe—w))B} (w')8(ce—w"),

’ (49

,BMU w—l\/_JO(Z\/Cp( ce—w’ )BA w')(—oe—w')

f,~ \/w_T'U“B;\(w)eipr*, r* —oo, (44) (50)

from which we get also

where a normalization to & function of w is understood. fw (£)% p(=) 4 1— A N219(+ oe— o'
For two solutions of the radial equationsf,(f,) and BlaruBrurdp=[1-1A\(w ) F]o(= 0~ 0)
(91,9,), the quantityW=1f}g,+f>g, is a constant. This

then implies the unitarity equat|ons X (o' —a"). (52)

The conclusions that can be drawn from these results follow
the same pattern as for bosons. To fix ideas we @ik : A
flux of positron radiation is then emitted to infinity. Each
positron may be regarded as one member of a pair, the other
showing that no superradiance exists for fermions. Similarlymember being emitted just inside the future horizon. As
one defines an ingoing solution with correspondmg transm|sthere are no electrons in the outgoing modes, they are mostly
created and captured near the shell. The electron pairs may

sion and«reflectlonaamplltudeB;\(w), A\ () and obtains the then occupy the bound states or the resonances possibly ad-
relationB, (w) = —B,(w). mitted by the Dirac equation around the black h@tethe

To obtain the particle content at future infinity, we have to Schwarzschild case there exist indeed resonance $88ps
expand the mode in E¢36) into outgoing solutions, whose or be captured in the shell by crossing the event horizon in
behavior near the horizon just outside the shell is likean ingoing mode. This is only a pictorial description, of
u” Y2exd —i(w—oe)u—ioet]. This is becauseN=u"'? in  course, as we have not chosen a complete set of horizon
this region. Using then Eq17) for v=0, we find the mode states to describe mathematically the ingoing partitiess
at future infinity to be could be done along the lines [##5]). Moreover, there is not

By(0)]2=1—|A\(0)|?, (45)
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a unique set available, and so the physics near the horizon & invariant meaning as the electric field intensity is the
better described by stress tensor considerations. But it seersguare root of the invariari,,F2%/2.
clear that complicated and interesting effects can arise near However, there is no emission of uncharged particles of
the black hole and ones which require much more detaile@ither statistics. Therefore, the temperature of such black
calculations. holes must be zero and extreme black holes with larger
Apart from the horizon, the picture is quite similar to the masses tham can exist as effectively stable objecss-
phenomenon of positron creation by heavy nuclei. When theuming that the lightest charged boson is the pidore-
charge numbefZ > 137 (for a pointlike nucleus the electric  over, the particles in the superradiance modes are emitted in
field at the first Bohr radius exceeds the critical field for pairpure states which is still another reason for the temperature
creation. If the lower energy levels around the nucleus ar¢o vanish. This is what we know about temperature and we
empty, then a flux of positrons, created in pairs, is emittedcome now to what we believe about entropy. For this we
escaping to infinity while the electrons fill the available en-have not such a sharp conclusion since we have not followed
ergy levels[40,30. The analogous condition for the black the evolution of the in vacuum with the required details
hole isM <e/u?, which can be a very large massufis the  (which also depends on the fate of the shes at future
electron massgsee discussion belowHowever, in the gravi-  infinity one can observe only particles of one typesitively
tational case a flux is present even if there are not boundharged ifo>0, negatively charged i<<0) with probabil-
states. ity P(N;) given by Eq.(30), the radiation can be described
From Eq.(51) the luminosity can likewise be determined. by the density matriXone can easily shows that these par-
As there are /\| states available to each, and ticles are uncorrelated

A\ (0)=A_,(w), the luminosity of the black hole will be
= > o PNz, NPDINg, NN, N,

4 oe N TR,
L=— > X\ J 1-|A wdw, 52 :
-2 , - IA@)ledo (52) (54)
. where the sum is over all many-particles states Wthpar-
and the rate of charge loss is ticles in a modeQy, . . ., N; particles in a mod®); and
)= 462>\f”1 1A, ()] (53
Q=-7 &, BriAle)lde. PNy, . N =TT P(Ny. (55

EOth ?rebwr:ar(.onetgvould fobtaln fro_tm the Haer:!ng radlatllgnAS Trp2< 1, this is a mixed state and one can pose the prob-
ormula by taking the surtace gravity approaching zero. FOfig . g the density matrix description fundamentally related

neutrinos, bothL=Q=0, which is again what one would o the formation of a black hole? In flat space the entropy
expect_fr(_)m the emissiqr_w of nonextreme black holes_in theyssociated withp is the von Neumann entropy arising from
same limit. The probability to have zero or one fermion atthe fact that only particles of one type are chosen to be de-
infinity in a wave packeQ;, withi=(\,w), sharply peaked tected, and in fact the final state in the Schwinger process is
aroundw, can likewise be computed. These are, respectivelya pure stat§32]. Hence the density matrix description is not
Po=1—n; andP,=n;, wheren,=T", ,=1—|A,(w)|?isthe  a fundamental one in this caéhat a subsystem of a system
mean number of fermions in the given mo@eis also the in a pure state is described by a density matrix is a well-
escape probability of a fermion from near the shell to reactknown discovery due to Landau and von Neumann; see
infinity). This can be loosely interpreted in terms of a degen{41]). For the collapsing shell, however, the case may be that
erate Fermi gas near the horizon wite>0 in the role of the emission is unable to turn the bounce into a collapse.
Fermi energy, all states outside this range being empty. Then a second asymptotically flat region forms, a white hole
indeed, which is connected to the first by a traverse timelike
wormhole (the region bounded by the two horizons and the
shell in Fig. 1, and the oppositely charged particles captured
We have shown that extreme charged black holes formely the shell are effectively lost to outside observers. How-
by collapse radiate steadily charged particles for whichever, the entropy associated wijihis not related to that loss
e>u, the bosons being emitted in the superradiance regioas it increases with time while the entropy is a stationary
w—oe<0, and likewise the fermions. For both fermions andquantity—i.e., we do not have an entropy rate—with a cor-
bosons, the emission is dominated by a Schwinger process ofsponding entropy loss from the black hole as in the nonex-
pair creation in a Coulomb field, enhanced by the shell betreme case. Thus thedescription does not seem fundamen-
cause as it collapses the volume filled by the electric fieldally related to the formation of a black hole. The
increases. The critical field for pair creation to be significantentanglement entropf42—44 of the |in) state associated
is of orderu?/e, and the electric field of the shell near the with any Cauchy surface intersecting the horizon must also
horizon is Q/M2=+M"1. Therefore there is a smallest be zero because the horizon is at infinite proper distance
massM.=e/u? needed to have significant emission, in thealong spacelike directior{¢his has not been verified though
sense that black holes with larger masses are effectively In the top region, a flux of particles seems to emerge from
stable to emitting charged particles. As the lightest chargethe past event horizon. These are the partner particles of
particles are the electron-positron system, this gives a criticahose considered up to now, created just inside the future
M.=10%g=10°M. Note that the above statements havehorizon(see alsd24] for a noncharged sheliThis radiation

V. DISCUSSION
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is also described by a density matrix and will have a corre-
sponding entropy. We noted above that for an observer in the
top region this radiation would be perhaps surprising as it
seems to emerge from the past horizon of the strav
expanding. In fact, the top region can be interpreted as an
extreme white hole. Thus, if a wormhole really forms, it is
unclear how to define the final stafieom the viewpoint of
scattering theory, this should be the one at future infinity in ;
the top region in Fig. )L For an observer in the top region it =0/
is hardly possible to measure correlations that had been cre-
ated before the wormhole formed, and a mixed final state is
a real possibility. In this case, one has a loss of quantum !
coherence in the past, because part of a pure state failed to
traverse the wormhole made by charges, but the radiation
entropy has nothing to do with the entropy of a black hole, at
least if this is interpreted as the number of different configu-
rations that a black hole can have for given values of its
macroscopic parameters.

It must be said that the above discussion really ignored
the back reaction of the emission on the shell. As a matter of
fact, the emission of charged particles with u necessarily FIG. 2. Penrose’s diagram of a bouncing nonextreme shell. To
evolves the body toward nonextreme states. There is theRe left of the shell history is part of the maximally extended
another I|ke|y outcome. The shell may bounce by forming 3Reissner-Nordstrn geometry.
timelike wormhole with a hidden singularity and expand in

another asymptotically flat region, because this is a possible .
solution of Einstein field equatiorig. 2. The partner par- Jreater tharM. or magnetically charged black holgé5].

ticles then end up in the singularity, the horizon is pushed af NN it seems that we have systems with the same macro-

finite spacelike distances, and there is the usual geometrRCOPIC parametergnass and charge or magnetic chargied
entropy of black holes. several possible values for the entropy, as may happen for
The issue of extreme black hole entropy loses its meanin§ertain systems with broken symmetries and a degenerate
in the present context; i.e., it makes sense to say that thground statde.g., the realization of a charged vacyuithe
black hole has no entropy only over periods where we mayossibility of stable extreme black holes is thus a very inter-
neglect the charge and mass loss. Thus, if by careful opergsting fact. They can link white-to-black holes and their
tions one prepares a pure state containing an extrem@ormhole character can in principle activate processes
charged shell and let it collapse, the future evolution is likelywhereby information is lost, in agreement with the view ex-
to be similar to that of nonextreme configurations, havingpressed if8]. But if the mass required for stability is, as we
nonzero entropy. argued, really greater thaM ., then the question may be
However, one can devise processg@ike black hole only a matter of principle.
evaporatiop that can yield a state arbitrarily close to the As our last point, since/u is much greater than 1 for all
extreme stat@45], and the entropy of such states should beknown elementary particle&bout 16! for electron$, the
nonzero by continuitybut by the third law of black hole instability caused by the quantum emission drives the black
mechanic$46,47 the extreme state may be physically inac- hole away from the possibility to form a naked singularity,
cessible. Arguments have also been proposed according tevhich may be regarded as cosmic censorship at work. On the
which the extreme state may have an entropy proportional tother hand, the nonextreme charged shell almost invariably
its mass[48]. On the other side, for eternal or stalftever  forms a singularity and there is both thermal emission and
long period$ extreme black holes, the Euclidean theory pre-geometric entropy. The entropy problem may thus be con-
dicts zero entropy2,49| (but at the same time, the thermo- nected with the formation of singularities, rather than with
dynamic description seems to break down in the case of exhe formation of horizons, in accordance with certain ideas of
treme black holeq50]). This includes those with mass Penrosd51].
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