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The radiation from extreme Reissner-Nordstro¨m black holes is computed by considering the collapse of a
spherical charged shell. No neutral radiation is found, and, therefore, the black hole temperature is zero, but
there is emission of charged particles if the charge to mass ratio is greater than one. The absence of thermal
effects is in accord with the predictions of Euclidean theory and it is argued why the radiation entropy should
not be regarded as a black hole attribute. Rather, if any entropy is to be present in the future, this is interpreted
as a loss of quantum coherence in the past by the presence of the timelike wormhole made by charges. The
stability of the extreme black hole to emitting uncharged particles is consistent with the conjecture of cosmic
censorship, which may thus be regarded as strengthened by the quantum theory.@S0556-2821~97!02104-8#

PACS number~s!: 04.70.Dy, 04.62.1v

I. INTRODUCTION

After Hawking’s discovery@1# of the quantum emission
of radiation from black holes, a large amount of investigation
has been done to clarify the dynamical origin of black hole
entropy. Recently, the particular case of extreme black holes
~defined as black holes having zero surface gravity! has been
investigated at length from many points of view, after the
discovery that extreme black holes have zero entropy, but
nonzero horizon area@2#. One argument runs as follows~see
also @3#!. According to finite temperature quantum field
theory, the leading contribution to a partition function in a
loop expansion, often called the tree approximation, is
lnZb52I(b,f̃), wheref̃ is the stationary point of the Euclid-
ean actionI (b,f̃), andb is the period of the imaginary time,
physically interpreted as the inverse temperature of the equi-
librium state. For gravity in an asymptotically flat context,
b is then the inverse temperature at infinity as the local equi-
librium ~Tolman! temperature is dependent on position. To
get also a well-defined canonical ensemble, the system must
be enclosed in a large box with fixed temperature near the
boundary@4#. The Euclidean action for the Einstein-Maxwell
system is@5,6# ~we use dimensionless unitsG5c5\51)

I52
1

16pEMR~g!1/2d4x2
1

8pE]M
@K#~h!1/2d3x

1
1

16pEMFabF
ab~g!1/2d4x, ~1!

where ~i! M is asymptotically flat with boundary
]M5S2(r 0)3Sb

1 at some large radiusr 0, ~ii ! the fields
(g,F) are periodic with periodb near the boundary, and~iii !
K is the trace of the second fundamental form of the bound-
ary and@K#5K2K0, K0 being the trace as if the boundary
were embedded in flat Euclidean space. The subtraction of
K0 is to ensure that flat space has a vanishing partition func-
tion and that the arbitraryr 0 is at last removed by letting
r 0→`. In the case of nonextreme black hole configurations,
it so happens that the uniqueb such that the Euclidean mani-

fold is a stationary point of the action is the inverse Hawking
temperature of the black hole, as any other choice yields a
conical singularity in the space. For the extreme Reissner-
Nordström black hole, the stationary point is represented by
a radial electric field with chargeuQu5M and the line ele-
ment

ds25g̃abdx
adxb5

~r2M !2

r 2
dt21

r 2

~r2M !2
dr2

1r 2~du21sin2udf2!. ~2!

Under the Hodge duality on the field strengthFab , it also
describes a magnetically charged extreme black hole. Now
this is a perfectly regular metric on the manifold
M5R3R3S2, wheret ranges inR. The topology is that of
an annulus whose inner boundary atr5M is at infinite dis-
tance from the interior points. As such, it can be identified to
any period without danger of a conic singularity in the space.
Therefore one considers the Euclidean theory on the mani-
fold S13R3S2, where the circumference of theS1 factor is
any realb. The bulk term of the action is purely electromag-
netic asR50, and by adding the boundary term due to grav-
ity one finds easily lnZb52bM, of which one half is the
gravitational contribution and the other half the electromag-
netic contribution~this is b times the electrostatic energy
outside of a sphere with chargeQ and radiusr5M , in the
extreme limit whenuQu5M ). The partition function being
linear inb, the canonical entropy vanishes rather than being
one-quarter of the horizon area, as would be expected by
continuity with nonextreme black holes. The essential reason
for this difference is the crucial fact that the horizon of an
extreme configuration is at infinite proper distance along
spacelike directions from any point in the outer static region
~but not along timelike or null directions!. This might also
imply that no information loss@7# exists for such bodies,
although the hole can still swallow any matter configuration,
as the information entropy is normally associated with re-
gions whose boundary is at finite distances~a very different
view has been expressed in@8#!. In view of these facts, and
the lack of continuity of the Bekenstein-Hawking geometric
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entropy, the question of whether extreme black holes radiate
or not must be revisited. Indeed, in@2# it was thought that
extreme black holes possibly radiate so as to keep the black
hole extreme, if matter is sent down the hole, because the
Euclidean solution can be identified to anyb. This can be
interpreted as the fact that unperturbed extreme black holes
simply do not radiate. In two dimensions~in the sense of
ignoring the two angular variables! they do not radiate in
fact, as was noted by Davies@9#. As a related fact, the trace
anomaly causes the stress tensor to be divergent on the ho-
rizon in dimension 2@10#, but in four dimensions things are
different, as the stress tensor is regular in the zero tempera-
ture state and divergent near the horizon in any nonzero tem-
perature state@11#. This would imply that an extreme black
hole cannot be in equilibrium at any temperature but zero,
which again is consistent with the idea that extreme black
holes do not radiate. This is welcome perhaps, since extreme
black holes are on the verge of developing a naked singular-
ity, and any instability in this case would seem unhappy.

The question whether the temperature and entropy of an
extreme charged black hole are really zero was then investi-
gated by using the Haag-Hessling quantum equivalence prin-
ciple @12–14# and Green functions@15#, stress-energy calcu-
lations@16,17,11#, and Hamiltonian methods@3,2#. New light
was shed on these problems by the discovery that extreme
black holes can be identified with elementary string excita-
tions @18–21#. All such approaches were concerned with sta-
tionary extreme black holes and ignored the gravitational
collapse bringing them to a quasistationary state.A priori,
however, it seems obvious that a collapsing matter configu-
ration, whether or not extreme (M5uQu), coupled to a quan-
tum field must radiate. The reason is twofold, one being the
time-increasing redshift imparted to the field modes by the
motion of the collapsing matter, the other being the presence
of the Coulomb field which can easily reach the critical
threshold of pair creation. Indeed, the lower the mass of the
black hole, the higher the electric field intensity, suggesting
that extreme black holes are indeed unstable objects. How-
ever, this is perhaps not so obvious, as in fact we obtain
emission of charged particles if and only if the charge-to-
mass ratio is greater than 1, but no emission at all of neutral
particles. This is just what is needed to avoid naked singu-
larities, since neutral particles would decrease the mass but
not the charge of the black hole. As extreme black holes are
clearly unstable under small variations of the mass and
charge parameters, unlessdM5duQu, this also means that
extreme configurations are unstable to emitting particles. The
quantum instability of extreme black holes to emitting
charged particles has also been implicitly noted in@22#, as
when the temperature goes to zero by increasing the black
hole mass, and therefore by reducing the surface gravity, the
rate of charge loss remains finite. Such a continuity argument
is not obvious because the Reissner-Nordstro¨m solution
changes character abruptly in the extreme limit.

Here we compute the particle emission at infinity by tak-
ing into account the collapse process of an extremal charged
shell, as has been described in@23#. The Hawking radiation
from the collapse of a thin uncharged shell was investigated
earlier by Boulware@24#. After discussing the asymptotic
behavior of the shell, we pass to the quantum theory by
following the traditional Hawking’s scheme for handling

problems involving horizons@1,25#. The implications of the
result and some comments about black hole entropy will be
postponed to the discussion. The calculation shows that one
may forget about the collapse process and work equivalently
with the maximally extended solution, by taking the modes
emerging from the past horizon to be positive frequency with
respect to the retarded timeu5t2r * , wherer * is the tor-
toise coordinate in the extreme Reissner-Nordstro¨m metric,
and the incoming modes to be positive frequency with re-
spect to the advanced time,v5t1r * ~these are the condi-
tions defining the Boulware vacuum in the Schwarzschild
background!. Only the radiation at infinity will be clearly
displayed, as the particle spectrum near the black hole can be
subject to many nontrivial phenomena, depending on the ex-
istence of bound or resonance states in the Coulomb and
gravitational field of the shell. The result does not seem to
depend on the fact that matter is in a thin shell and holds for
an extreme ball as well.

II. ASYMPTOTIC BEHAVIOR

As was explained in@23# ~see also Refs.@26–29#!, the
equations of motion of a collapsing charged spherical shell
can be deduced by relating the discontinuity of the extrinsic
curvature across the shell with the surface energy density in
the shell, the Israel-Kuchar equations. Letr be the surface
energy density of the shell in the comoving frame and
M54pR2r the total proper mass,R being the shell radius.
For an extreme shell, we introduce the abbreviation

a5
M22M2

2M ,

whereM is the total gravitational mass of the shell. The
exterior metric is the extremal Reissner-Nordstro¨m metric

ds25gabdx
adxb52

~r2M !2

r 2
dt21

r 2

~r2M !2
dr2

1r 2~du21sin2udf2!, ~3!

and the interior is part of flat Minkowski space. The shell
position is specified byr5R(t), t5T(t), where t is the
proper time along the shell history. The equations of motion
are then

Ṙ52AF MM1
a

RG221, Ṫ5
R

R2M
A11

R2Ṙ2

~R2M !2
.

~4!

For such an extreme shell, one may expect the Coulomb
repulsion of like charges to stop the collapse by turning in a
bounce. In fact, a simple consequence of the equations of
motion is that ifM.M.0, then the shell radius has a turn-
ing point atRT5(M1M)/2,M which is a minimum ra-
dius. Therefore the shell reaches the horizon value at
R5M , and disappears from sight by forming a future event
horizon at some advanced timev0 ~see Fig. 1!.

As Fig. 1 shows, the shell subsequently bounces and ex-
pands by forming another asymptotically flat region with a
past horizon, and singularities are not formed. The space
outside the shell in between the two horizons is a closed
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universe, and a topology change takes place. We shall focus
on the bottom region containing the future event horizon,
i.e., the one where the shell appears collapsing~the top re-
gion will be important later!.

Although the equations of motion are exact integrables,
we only need the asymptotic expansion of the functions
R(t) andT(t) near the horizon. More precisely we need the
advanced timev of the shell as a function of the retarded
time u, namely, the relationv(u) near the horizon to leading
nontrivial order in«5R2M . From the equations of motion
we find

Ṙ5a01a1«1a2«
21O~«3!, ~5!

Ṫ5b22«
221b21«

211b01O~«!, ~6!

where the exact form of the coefficients is left apart, as the
really important fact is that botha0 andb22 are nonvanish-
ing. The advanced and retarded coordinate times are, respec-
tively, t6r * , where

r *5r12M lnS rM 21D2
M2

r2M
, ~7!

shows the characteristic first order pole of extreme black
holes. From the equations it now follows thatv(u) remains
finite on the horizon whileu diverges to infinity. More ex-
actly,

v~u!5v12Cu211O~u22lnu!, u→`, ~8!

wherev1 is the value of advanced time that marks the birth
of the black hole andC is a positive constant depending on
M andM. This behavior may be compared with the nonex-

treme black hole, wherev(u) approachesv1 exponentially
fast in retarded time, the exact formula being

v~u!5v12Ce2ku1O~e22ku!, k5
r12r2

2r1
2 , ~9!

wherek is the surface gravity andr65M6AM22Q2. This
can be traced back to the first order pole singularity that
controls the behavior ofr * near the horizon in contrast with
the logarithmic singularity of the nonextreme case. The as-
ymptotic behavior~8! on the horizon is not restricted to a
thin shell. In fact, the exterior geometry is the Reissner-
Nordström metric even for a collapsing, charged extreme
ball. It is then easy to show thatv finite on the horizon
implies the behavior~8!, which is almost all one needs to
compute the radiation at infinity.

III. MINIMAL QUANTUM THEORY

The asymptotic behavior just discussed has the conse-
quence that the phase of a positive frequency ingoing mode
from past infinity will be redshifted at a much lower rate than
for nonextreme black holes. Indeed, it is fairly straightfor-
ward to deduce the asymptotic form of such a mode near the
event horizon, when the black hole is about to form. Pre-
cisely we have the following. LetPjv,e be a positive fre-
quency solution of the charged Klein-Gordon equation in the
collapse geometry of the infalling shell,

gab~¹a1 ieAa!~¹b1 ieAb!Pjv,e2m2Pjv,e50,

Aa5Qr21da
0 , ~10!

wheree is the charge of the field, which is ingoing from past
infinity, and therefore@ j standing for (l ,m)]

Pjv,e5~4pp!21/2r21Yj~u,f!Rjv~r !e2 ivt,

v5Ap21m2, ~11!

wherep>0 is the radial momentum,Yj (u,f) are the spheri-
cal harmonics, and the modes are normalized to ad function
of v. Then, asymptotically for largeu, for v@m, and for
r→M , the outgoing part ofPjv,e after reflection through the
shell is

Pjv,e.~4pp!21/2r21Yj~u,f!exp~ iCpu21!e2 iset2 ivv1,

s5
Q

uQu
. ~12!

Because of the ultrarelativistic conditionv@m, we may ne-
glect the massm from now on, its only role being to set the
lower bound for integration over energy. The quantum field

f5(
j
E

m

`

dv@AjvPjv,e1Bjv
† Pjv,2e* # ~13!

is assumed to be in theu in& vacuum state relative to the
above decomposition. In order to obtain the particle content
at future infinity, we have to expand the in mode into posi-
tive and negative frequency waves of the kind exp(6ivu),

FIG. 1. The Penrose diagram of an extreme bouncing shell. In
the bottom region the shell is collapsing, in the top region the shell
is expanding, and each point represents a two-sphere. The region to
the left of the shell history is a flat space of radiusR and to the right
is part of the extended Reissner-Nordstro¨m metric.I1 (I2) denotes
future ~past! null infinity.
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namely, waves which are purely outgoing to infinity. This is
a rather delicate matter. Considering Eq.~12! as an holomor-
phic function ofu in the lower half complexu plane, we
argue that the Fourier expansion ofPjv,e can only contain
the factors exp(2ivu), which just share withPjv,e the same
holomorphic property. We immediately conclude thatthere
is no neutral scalar radiation at infinity from an extremal
black hole. However, for charged fields things are different
due to the superradiant phenomenon. Indeed, in the extended
Reissner-Nordstro¨m geometry the radial outgoing waves
from the past horizon have the asymptotic behavior@22# ~we
are neglecting the logarithmic phase due to the Coulomb
field as it is unnecessary to our aims!

RW jv.H ei ~v2se!r*1AW j ,e~v!e2 i ~v2se!r* , r *→2`,

BW j ,e~v!eipr* , r *→`,
~14!

which define the reflection and transmission coefficients of
the potential barrier surrounding the black hole. One defines
similar reflection-transmission coefficients for ingoing waves
from past infinity~with arrows pointing to the left!. One has
then the unitarity relations@22#

pBW j ,e~v!5~v2se!BQ j ,e~v!, ~15!

~v2se!uBQ j ,e~v!u25p@12uAQ j ,e~v!u2#. ~16!

From Eq.~14!, a positive frequency wave packet at the ho-
rizon containing the factor exp(2ivu) arrives at infinity with
the time dependence exp@2i(v1se)u#. This is holomorphic
in the lower half complexu plane ifv1se.0, but is holo-
morphic in the upper half complexu plane if v1se,0,
which is just one superradiance condition. Therefore the
wave packet can have a negative frequency component at
infinity, corresponding to particle emission in the quantum
theory.

We now show that this is actually the case. LetnPC such
that 21,Ren,1/2 andJn(z) the Bessel function of order
n. Then

E
0

`

e2 iv8u~v8!n/2Jn~2Avv8!dv8

5
vn/2e2 ipn/2

iun11 expS ivu D u~u!. ~17!

By forming a wave packet one can easily show that the limit
n→21 can be safety taken. This means that in a distribution
sense we have

E
2`

`

e2 iv8u~v8!21/2J21~2Avv8!u~v8!dv8

5v21/2expS ivu D u~u!. ~18!

This equation, combined with Eq.~14!, can be used to propa-
gate the in modePjv,e to future infinity. Indeed, each mono-
chromatic component in Eq.~18! tunnels through the poten-
tial barrier surrounding the black hole, by carrying the

amplitudeBW j ,e(v8) to infinity @see Eq.~14!#. In this way we
find the mode at future infinity to be~we omitted the spheri-
cal harmonics on the right-hand side for simplicity!

Pjv,e.
AC
A4p

E
m

`

e2 iv8t1 ip8r*J21„2ACp~v82se!…BW j ,e

3~v8!
u~v82se!dv8

A~v82se!
1

AC
A4p

E
m

`

eiv8t2 ip8r*J21

3„2ACp~2se2v8!…BW j ,2e*

3~v8!
u~2se2v8!dv8

A~2se2v8!
, ~19!

and we can see the presence of a negative frequency compo-
nent, providedse,0. Similarly, a negative frequency in
mode will have a positive frequency component at infinity if
se.0. By following the usual procedure@1,25#, the Bogol-
jubov coefficient responsible for particle creation can be de-
termined easily from Eq.~19!. We find

b jv8v,e
~1 !

52
ACp8

Ase2v8
J21„2ACp~se2v8!…BW j ,e*

3~v8!u~se2v8!

5
AC~se2v8!

Ap8
J21„2ACp~se2v8!…BQ j ,e* ~v8!

3u~se2v8! ~20!

by using Eq.~15!. We now see that the same result could
have been obtained by working in the extended Reissner-
Nordström solution and by taking the modes emerging from
the past horizon to be positive frequency with respect to
u5t2r * , as the holomorphy argument applies exactly in the
same way. The Bogoljubov coefficients are then as in Eq.
~20!, except that the Bessel function gets replaced by
d(v1v82se). In this ‘‘Unruh-like picture’’ there is no
redshift, only superradiance as the basis of the emission.

Among the consequences of Eq.~20!, the following
emerge. Becauses is the sign ofQ, only charges having the
sign ofQ will appear in the outer region and the black hole
will discharge. These are the particles associated with incom-
ing modes which started at past infinity at advanced timev
for which v2v0 was small and negative~see Fig. 1!. There
are also particles associated with modes for whichv2v0
was small and positive. These are created in the wormhole
region and will escape in the top region of the figure by
crossing the past horizon of that region. To the author it is
not obvious how to define anu in& vacuum state in the top
region. Presumably an observer at past infinity in this region
would require that no particles be crossing the past horizon,
and then a flux of particles will be present at future infinity,
with the sign of the black hole charge. Thus it would be of
great concern for him to observe an even larger flux than
expected~due to particles that crossed the wormhole!. In-
stead, there is little doubt as to how defining theuout&
vacuum state in the top region asI1 alone, for example, is a
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Cauchy surface for massless fields. The Bogoljubov coeffi-
cient of the partner particles can be found by the same type
of arguments as used above, i.e., by expressing the phase of
the mode after reflection through the shell in terms of the
retarded timeu of the wormhole region, which provides a
past extension of the top universe where the shell is expand-
ing. It is given once more by Eq.~20!, the basic reason being
that the coordinatet retains its timelike character in the
wormhole~in Schwarzschild geometry it isr that enjoys the
timelike character!.

Again from Eq.~20!, there are no charges of opposite sign
in the outgoing modes, but as charge conservation requires
them, these particles must be created too. The detailed fate of
such particles is less clear, because the Klein-Gordon equa-
tion possibly admits bound or quasibound states around the
black hole, in the potential well due to the Coulomb binding
energy. If resonances indeed exist, they should be included
among a complete set of horizon states which are needed to
describe the ingoing particles. The continuum states can be
taken to have a time dependence of the form exp(6ivv) on
the horizon. They are then spread over the entire future ho-
rizon, while the resonances or the bound states will decay
exponentially at infinity. The Bogoljubov coefficient of the
ingoing particles is then determined by

b jv8v,e
~2 !

5
A~se2v8!

Ap8
d~v1v82se!BQ j ,e~v8!u~se2v8!,

~21!

where nowj5( l ,2m). Notice that in the Schwarzschild so-
lution only ingoing modes for whichuv2v0u was small were
actually important. In the present case the entire future hori-
zon is involved in particle creation, as the electric field is
everywhere constant over there. To fix ideas let us suppose
Q.0. The calculation shows that to each positive charge
emitted to infinity with quantum numbers (l ,m) a negatively
charged particle having (l ,2m) falls into the black hole. The
particles may then be captured in the quasibound states by
forming a negatively charged cloud around the black hole
~but this we cannot prove at present even if resonances exist!
or be emitted into ingoing modes and crossing then the ho-
rizon, but none of them escape to infinity. This is similar to
certain effects which are predicted to arise close to very
heavy nuclei. In the field of overcritical nuclei with atomic
numberZ greater than some criticalZc ~for a point nuclei is
Zc.137) a pion condensate is expected from a proper quan-
tum field theory calculation@30#, leading to the concept of a
charged vacuum. For the black hole it isQ that is the rel-
evant parameter and overcriticality is achieved roughly for
uQu.e/m2, which means that the Coulomb field at the hori-
zon exceed the critical field for pair production.

From Eq.~20! we also obtain the equation

E
0

`

b jv8v,e
~1 !* b jv9v,e

~1 ! dp52@12uAQ j ,e~v8!u2#

3u~se2v8!d~v82v9! ~22!

by using Eq.~16! and the completeness relation for Bessel
functions@replacing the (1) with the (2) ande with 2e, it
holds for the ingoing particles too#. The expected number of

particles at infinity is given by Eq.~22! for v85v9, and
therefore it is infinite, being proportional tod(0). This re-
flects the fact that there is a steady rate of emission lasting an
infinite time, as judged from infinity. To see this one writes
d(0)5T/2p, for a large timeT, as follows from

d~v2v8!.
1

2pE2T/2

T/2

ei ~v2v8!tdt, ~23!

with increasing accuracy the larger isT. Hence Eq.~22!
really gives the expected number of particles emitted during
a large interval of time. Dividing byT gives the luminosity
of the black hole as

L52
1

2p(
j
E

m

se

@12uAQ j ,e~v!u2#vdv

52
1

2p(
l>0

~2l11!E
m

se

@12uAQ l ,e~v!u2#vdv, ~24!

since uAQ j ,e(v)u does not depend on the azimuth quantum
numberm ~the centrifugal barrier depends onl but not on
m). One may note thatL.0 because the absorbitivity of the

black hole,G l(v)512uAQ l ,e(v)u2, is negative in the super-
radiance region, and also that the range of integration inL is
very large for all known elementary particles, as for them
e/m@1. Similarly, one gets the rate of charge loss,

Q̇5
e

2p(
l>0

~2l11!E
m

se

@12uAQ l ,e~v!u2#dv, ~25!

which may be compared with@22#. One expects that only
Fourier components of the field having wavelength smaller
thanM interact significantly with the black hole; i.e., only
frequencies greater thanM21 will be important. If the stron-
ger conditionv@ l ( l11)/M holds and alsom21!M , then
the absorbtivity of the black hole may be computed in the
WKB approximation@22#, which gives

G j~v!52expS 2
pm2M2

eQ D , uQu5M , ~26!

and the rate of charge loss is the Schwinger result

Q̇.2
e4Q3

M
expS 2

pm2M2

eQ D . ~27!

The expected number of particles in the outgoing wave
packetQi , with i5( l ,m,v), carrying angular momentum
j5( l ,m) and sharply peaked aroundv, is

^ inuNi u in&5ni52G j~v!5uAQ l ,e~v!u221, ~28!

whereNi is the number operator for that mode. Knowing the
Bogoljubov coefficients, the higher moments can likewise be
computed. For example, a simple calculation gives

^ inu~Ni !
2u in&5ni12ni

2 , ~29!
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and this can be used to find^ inu(Ni)
ku in& by induction over

k. They are all derivable from the following probability dis-
tribution for N particles in the given mode~the moments
determine the distribution!:

P~Ni !5
ni
N

~11ni !
N11 . ~30!

It is perhaps remarkable that this exhibits the same relation-
ship among probability and mean particle numbers as in pair
creation by a pure electric field in flat space@31,32#.

From the above derivation it is clear that the emission
vanishes not only for neutral particles, but for charged also if
ueu<m, which again is consistent with cosmic censorship.
The results are consistent if the back reaction of the created
particles on the shell is negligible, which will be the case if
the typical energy of the quanta is much smaller than the
black hole mass. This then requiresse!M , which also im-
pliesm!M ~for the existing charged particles!.

A similar analysis can be done for an extreme, rotating
shell. This time we do not have at our disposal exact equa-
tions since the exterior geometry is not given by the Kerr
metric all the time~a solution which is valid to first order in
the angular velocity of the shell but to all orders for the mass
and radial velocity has been worked out in@33#!. Hence one
assumes that the Kerr geometry settles asymptotically, when
the event horizon is about to form. It is a result in the theory
of gravitational collapse that asymptoticallyḟ.VṪ, where
V is the stationary value of the angular velocity of the hori-
zon andḟ the angular velocity of the shell~this can be seen
explicitly in @33#!. From the timelike condition on the four-
velocity of the shell,gabu

aub521, and from the Kerr met-
ric, it then follows that

Ṫ5
2M2

~R2M !2
A ~R2M !2

M2~11cos2u!
1Ṙ2. ~31!

Therefore, sinceṘ converges to a finite value on the horizon,
one gets

Ṙ5a01a1«1O~«2!,

T5b22«
221b21«

211b01O~«!, ~32!

with u-independent leading coefficients and«5R2M . This
is the behavior that occurred in the Reissner-Nordstro¨m case,
and accordingly it yields a quantum emission with luminos-
ity ~see@34# for nonextreme black holes!

L52
1

2p (
lm

E
m

mV

@12uAQ lm,e~v!u2#vdv, ~33!

whereV5(2M )21 is the angular velocity of the horizon for
the extreme Kerr metric. Hence there is no emission of
s-wave radiation, a characteristic feature of superradiance
phenomena.

IV. FERMIONS

The calculation with fermions is more complicated but the
basic principle is the same as for the scalar case. Namely, the

phase of an ultrarelativistic ingoing mode near the event ho-
rizon after reflection through the shell will be the same as for
the scalar field. However, the amplitude will be different
because it must be propagated along the radially ingoing null
geodesics by parallel transport, in the geometric optics ap-
proximation. Precisely we have the following. LetPlv

(1) be a
positive frequency solution of the charged Dirac equation

iga~¹a1 ieAa!Plv
~1 !2mPlv

~1 !50 ~34!

in the collapse geometry of the infalling shell, which is in-
going from past infinity and normalized to ad function of
v, and therefore

Plv
~1 !5~2pp!21/2r21N21/2S f 1~r !xl

f 2~r !fl
D e2 ivt,

v5Ap21m2, ~35!

where p>0 is the radial momentum,N5A2g00, and the
two-spinorsxl andfl are eigenspinors of the Dirac operator
on the two-sphere corresponding to the eigenvaluel ~see
below!. Then, asymptotically for largeu, for v@m, and for
r→M just outside the shell, the outgoing part ofPlv

(1) after
reflection through the shell is

Plv
~1 !.~2pp!21/2r21Du21/2S xl

fl
D

3exp~ iCpu21!e2 iset2 ivv11 ia, ~36!

whereC, D, anda are constants withC.0. The constant
D can be fixed by requiring the normal component of the
Dirac current to be continuous across the shell@35#. More
directly, it can be found by requiring the Bogoljubov coeffi-
cients below to represent a unitary transformation between
initial and final states. As for the scalar case we may now
conclude that there isno emission of neutral fermions (neu-
trinos) from an extreme black hole. For charged fermions
things are different but, this time, not as a consequence of
superradiance since there is not, in fact, superradiance for
fermions. To investigate this we need the asymptotic behav-
ior of spinors near the horizon and infinity. In the Schwarzs-
child background, the Dirac equation has been given a com-
plete treatment in@35,24#. The neutrino equations in the Kerr
geometry were solved and quantized in@34#, where the ab-
sence of superradiance for fermions was noted. A lot of ma-
terial in this case can also be found in the Chandrasekhar
monograph@36#, where the theory of separability of the
Dirac equation is discussed at length. In the Reissner-
Nordström geometry, the Dirac equation can likewise be
separated. In the standard representation of Dirac matrices,
for a positive frequency solution of the form~35!, one ob-
tains for the radial functions the two coupled equations

iN2f 181 i
lN

r
f 11@~v2eA0!1Nm# f 250, ~37!

iN2f 282 i
lN

r
f 21@~v2eA0!2Nm# f 150, ~38!
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where a prime denotes a derivative with respect tor , and the
two-component spinorsxl andfl are regular solutions of
the equations

F is2S ]u1
1

2
cotu D1

i

sinu
s3]fGxl5 ilfl , s1xl5fl ,

~39!

which implies also

F is2S ]u1
1

2
cotu D1

i

sinu
s3]fGxl52 ilxl , ~40!

wheresa are the standard Pauli matrices. The eigenvaluel
takes then all nonzero integer values and there are 4ulu states
for each givenl @37,38#. From the radial equations, the posi-
tive frequency outgoing modes from the past horizon are
defined by the asymptotic behavior~we are neglecting the
logarithmic phase due to the Coulomb field as is unnecessary
to our aims!

fW1.@ei ~v2se!r*1AW l~v!e2 i ~v2se!r* #, r *→2`,
~41!

fW2.@ei ~v2se!r*2AW l~v!e2 i ~v2se!r* #, r *→2`,
~42!

fW1.Av1m

p
BW l~v!eipr* , r *→`, ~43!

fW2.Av2m

p
BW l~v!eipr* , r *→`, ~44!

where a normalization to ad function of v is understood.
For two solutions of the radial equations, (f 1 , f 2) and
(g1 ,g2), the quantityW5 f 1* g21 f 2* g1 is a constant. This
then implies the unitarity equations

uBW l~v!u2512uAW l~v!u2, ~45!

showing that no superradiance exists for fermions. Similarly,
one defines an ingoing solution with corresponding transmis-

sion and reflection amplitudesBQ l(v), AQ l(v) and obtains the

relationBQ l(v)52BW l(v).
To obtain the particle content at future infinity, we have to

expand the mode in Eq.~36! into outgoing solutions, whose
behavior near the horizon just outside the shell is like
u21/2exp@2i(v2se)u2iset#. This is becauseN.u21/2 in
this region. Using then Eq.~17! for n50, we find the mode
at future infinity to be

Plv
~1 !. i E

m

` AC
A2pp8

S xlAv81m

flAv82m
D e2 iv8t1 ip8r*J0

3„2ACp~v82se!…BW l~v8!u~v82se!dv8

2 i E
m

` AC
A2pp8

S xlAv82m

flAv81m
D eiv8t2 ip8r*J0

3„2ACp~2se2v8!…BW l* ~v8!u~2se2v8!dv8,

~46!

and we can see the presence of a negative frequency compo-
nent if se,0. A similar formula can be written for a nega-
tive frequency ingoing modePlv

(2) , and then a positive fre-
quency component will be present ifse.0. The Bogoljubov
coefficients describing particle creation are defined by the
expansion of the outgoing solutions defining the out-vacuum
state, here denoted byQlv

(6) , in terms of the ingoing solu-
tions which define the initial vacuum state at past infinity:
i.e.,

Qlv
~6 !5E

m

`

@alvv8
~6 ! Plv8

~6 !
1blvv8

~6 ! Plv8
~7 !

#dv8, ~47!

the 1 (2) standing for positive~negative! frequency. The
asymptotic behavior of the functionsQlv

(6) at future infinity is

Qlv
~6 !.~2pp!21/2r21S xlAv6m

flAv7m
D e7 i ~v8t2 ip8r* !. ~48!

We then obtain, for largev,

blv8v
~1 !

5 iACJ0„2ACp~se2v8!…BW l* ~v8!u~se2v8!,
~49!

blv8v
~2 !

5 iACJ0„2ACp~2se2v8!…BW l~v8!u~2se2v8!,
~50!

from which we get also

E
0

`

blv8v
~6 !* blv9v

~6 ! dp5@12uAW l~v8!u2#u~6se2v8!

3d~v82v9!. ~51!

The conclusions that can be drawn from these results follow
the same pattern as for bosons. To fix ideas we takeQ.0: A
flux of positron radiation is then emitted to infinity. Each
positron may be regarded as one member of a pair, the other
member being emitted just inside the future horizon. As
there are no electrons in the outgoing modes, they are mostly
created and captured near the shell. The electron pairs may
then occupy the bound states or the resonances possibly ad-
mitted by the Dirac equation around the black hole~in the
Schwarzschild case there exist indeed resonance states@39#!,
or be captured in the shell by crossing the event horizon in
an ingoing mode. This is only a pictorial description, of
course, as we have not chosen a complete set of horizon
states to describe mathematically the ingoing particles~this
could be done along the lines of@25#!. Moreover, there is not
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a unique set available, and so the physics near the horizon is
better described by stress tensor considerations. But it seems
clear that complicated and interesting effects can arise near
the black hole and ones which require much more detailed
calculations.

Apart from the horizon, the picture is quite similar to the
phenomenon of positron creation by heavy nuclei. When the
charge numberZ.137 ~for a pointlike nucleus!, the electric
field at the first Bohr radius exceeds the critical field for pair
creation. If the lower energy levels around the nucleus are
empty, then a flux of positrons, created in pairs, is emitted,
escaping to infinity while the electrons fill the available en-
ergy levels@40,30#. The analogous condition for the black
hole isM<e/m2, which can be a very large mass ifm is the
electron mass~see discussion below!. However, in the gravi-
tational case a flux is present even if there are not bound
states.

From Eq.~51! the luminosity can likewise be determined.
As there are 4ulu states available to eachl, and

AW l(v)5AW 2l(v), the luminosity of the black hole will be

L5
4

p (
l.0

lE
m

se

@12uAW l~v!u2#vdv, ~52!

and the rate of charge loss is

Q̇52
4e

p (
l.0

lE
m

se

@12uAW l~v!u2#dv. ~53!

Both are what one would obtain from the Hawking radiation
formula by taking the surface gravity approaching zero. For
neutrinos, bothL5Q̇50, which is again what one would
expect from the emission of nonextreme black holes in the
same limit. The probability to have zero or one fermion at
infinity in a wave packetQi , with i5(l,v), sharply peaked
aroundv, can likewise be computed. These are, respectively,

P0512ni andP15ni , whereni5Glv512uAW l(v)u2 is the
mean number of fermions in the given mode~it is also the
escape probability of a fermion from near the shell to reach
infinity!. This can be loosely interpreted in terms of a degen-
erate Fermi gas near the horizon withse.0 in the role of
Fermi energy, all states outside this range being empty.

V. DISCUSSION

We have shown that extreme charged black holes formed
by collapse radiate steadily charged particles for which
e.m, the bosons being emitted in the superradiance region
v2se,0, and likewise the fermions. For both fermions and
bosons, the emission is dominated by a Schwinger process of
pair creation in a Coulomb field, enhanced by the shell be-
cause as it collapses the volume filled by the electric field
increases. The critical field for pair creation to be significant
is of orderm2/e, and the electric field of the shell near the
horizon is Q/M256M21. Therefore there is a smallest
massMc5e/m2 needed to have significant emission, in the
sense that black holes with larger masses are effectively
stable to emitting charged particles. As the lightest charged
particles are the electron-positron system, this gives a critical
Mc.1038g5105M( . Note that the above statements have

an invariant meaning as the electric field intensity is the
square root of the invariantFabF

ab/2.
However, there is no emission of uncharged particles of

either statistics. Therefore, the temperature of such black
holes must be zero and extreme black holes with larger
masses thanMc can exist as effectively stable objects~as-
suming that the lightest charged boson is the pion!. More-
over, the particles in the superradiance modes are emitted in
pure states which is still another reason for the temperature
to vanish. This is what we know about temperature and we
come now to what we believe about entropy. For this we
have not such a sharp conclusion since we have not followed
the evolution of the in vacuum with the required details
~which also depends on the fate of the shell!. As at future
infinity one can observe only particles of one type~positively
charged ifs.0, negatively charged ifs,0) with probabil-
ity P(Ni) given by Eq.~30!, the radiation can be described
by the density matrix~one can easily shows that these par-
ticles are uncorrelated!

r5 (
N1 , . . . ,Nj

P~N1 , . . . ,Nj !uN1 , . . . ,Nj&^N1 , . . . ,Nj u,

~54!

where the sum is over all many-particles states withN1 par-
ticles in a modeQ1, . . . ,Nj particles in a modeQj and

P~N1 , . . . ,Nj !5)
k

P~Nk!. ~55!

As Trr2,1, this is a mixed state and one can pose the prob-
lem: Is the density matrix description fundamentally related
to the formation of a black hole? In flat space the entropy
associated withr is the von Neumann entropy arising from
the fact that only particles of one type are chosen to be de-
tected, and in fact the final state in the Schwinger process is
a pure state@32#. Hence the density matrix description is not
a fundamental one in this case~that a subsystem of a system
in a pure state is described by a density matrix is a well-
known discovery due to Landau and von Neumann; see
@41#!. For the collapsing shell, however, the case may be that
the emission is unable to turn the bounce into a collapse.
Then a second asymptotically flat region forms, a white hole
indeed, which is connected to the first by a traverse timelike
wormhole~the region bounded by the two horizons and the
shell in Fig. 1!, and the oppositely charged particles captured
by the shell are effectively lost to outside observers. How-
ever, the entropy associated withr is not related to that loss
as it increases with time while ther entropy is a stationary
quantity—i.e., we do not have an entropy rate—with a cor-
responding entropy loss from the black hole as in the nonex-
treme case. Thus ther description does not seem fundamen-
tally related to the formation of a black hole. The
entanglement entropy@42–44# of the u in& state associated
with any Cauchy surface intersecting the horizon must also
be zero because the horizon is at infinite proper distance
along spacelike directions~this has not been verified though!.

In the top region, a flux of particles seems to emerge from
the past event horizon. These are the partner particles of
those considered up to now, created just inside the future
horizon~see also@24# for a noncharged shell!. This radiation
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is also described by a density matrix and will have a corre-
sponding entropy. We noted above that for an observer in the
top region this radiation would be perhaps surprising as it
seems to emerge from the past horizon of the shell~now
expanding!. In fact, the top region can be interpreted as an
extreme white hole. Thus, if a wormhole really forms, it is
unclear how to define the final state~from the viewpoint of
scattering theory, this should be the one at future infinity in
the top region in Fig. 1!. For an observer in the top region it
is hardly possible to measure correlations that had been cre-
ated before the wormhole formed, and a mixed final state is
a real possibility. In this case, one has a loss of quantum
coherence in the past, because part of a pure state failed to
traverse the wormhole made by charges, but the radiation
entropy has nothing to do with the entropy of a black hole, at
least if this is interpreted as the number of different configu-
rations that a black hole can have for given values of its
macroscopic parameters.

It must be said that the above discussion really ignored
the back reaction of the emission on the shell. As a matter of
fact, the emission of charged particles withe.m necessarily
evolves the body toward nonextreme states. There is then
another likely outcome. The shell may bounce by forming a
timelike wormhole with a hidden singularity and expand in
another asymptotically flat region, because this is a possible
solution of Einstein field equations~Fig. 2!. The partner par-
ticles then end up in the singularity, the horizon is pushed at
finite spacelike distances, and there is the usual geometric
entropy of black holes.

The issue of extreme black hole entropy loses its meaning
in the present context; i.e., it makes sense to say that the
black hole has no entropy only over periods where we may
neglect the charge and mass loss. Thus, if by careful opera-
tions one prepares a pure state containing an extreme
charged shell and let it collapse, the future evolution is likely
to be similar to that of nonextreme configurations, having
nonzero entropy.

However, one can devise processes~like black hole
evaporation! that can yield a state arbitrarily close to the
extreme state@45#, and the entropy of such states should be
nonzero by continuity~but by the third law of black hole
mechanics@46,47# the extreme state may be physically inac-
cessible!. Arguments have also been proposed according to
which the extreme state may have an entropy proportional to
its mass@48#. On the other side, for eternal or stable~over
long periods! extreme black holes, the Euclidean theory pre-
dicts zero entropy@2,49# ~but at the same time, the thermo-
dynamic description seems to break down in the case of ex-
treme black holes@50#!. This includes those with mass

greater thanMc or magnetically charged black holes@45#.
Then it seems that we have systems with the same macro-
scopic parameters~mass and charge or magnetic charge! and
several possible values for the entropy, as may happen for
certain systems with broken symmetries and a degenerate
ground state~e.g., the realization of a charged vacuum!. The
possibility of stable extreme black holes is thus a very inter-
esting fact. They can link white-to-black holes and their
wormhole character can in principle activate processes
whereby information is lost, in agreement with the view ex-
pressed in@8#. But if the mass required for stability is, as we
argued, really greater thanMc , then the question may be
only a matter of principle.

As our last point, sincee/m is much greater than 1 for all
known elementary particles~about 1021 for electrons!, the
instability caused by the quantum emission drives the black
hole away from the possibility to form a naked singularity,
which may be regarded as cosmic censorship at work. On the
other hand, the nonextreme charged shell almost invariably
forms a singularity and there is both thermal emission and
geometric entropy. The entropy problem may thus be con-
nected with the formation of singularities, rather than with
the formation of horizons, in accordance with certain ideas of
Penrose@51#.
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