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Trans-Planckian frequencies can be mimicked outside a black-hole horizon as a tail of an exponentially large
amplitude wave that is mostly hidden behind the horizon. The present proposal requires implementing a final
state condition. This condition involves only frequencies below the cutoff scale. It may be interpreted as a
condition on the singularity. Despite the introduction of the cutoff, the Hawking radiation is restored for static
observers. Freely falling observers see empty space outside the horizon, but are ‘‘heated’’ as they cross the
horizon.@S0556-2821~97!06504-1#
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I. INTRODUCTION

The standard derivation of the Hawking radiation@1# re-
quires the existence of exponentially high frequency modes
in a classical space-time background. Indeed, after a short
time ~of order t;M lnM), the required frequency becomes
v;1 in Planck units. For this reason the standard derivation
cannot be trusted after few Hawking photons were already
emitted. It appears that in any derivation of Hawking radia-
tion, with no new physical ingredients, a naive short distance
cutoff will eliminate the Hawking effect@2#. It is, of course,
possible that the origin of the Hawking radiation does de-
pend on the behavior of an ultrahigh trans-Planckian spec-
trum. In this article, however, we suggest an alternative
mechanism for generating Hawking’s radiation in a theory
with an effective cutoff.

Evidence that a theory with a cutoff may reproduce the
Hawking radiation has been recently provided by Unruh’s
work @3#. Unruh has shown that a natural cutoff still gives
rise to the Hawking radiation in the case of sonic black holes
@4#. In his approach the cutoff modifies the dispersion rela-
tion for sound waves. This, in turn, alters the motion of
modes with frequency close to the cutoff scale and gives rise
to a new type of trajectories which approach the horizon, but
eventually ‘‘reflect’’ back to infinity. Further works tried to
adapt Unruh’s model to real black holes@5–7#. It is not clear
that a similar process is indeed realized for real black holes.

In this article we present another possibility. It is shown
that even without modifying the ordinary field equations and
the ensuing dispersion relations, as in the above proposals,
one can still restore the Hawking radiation in a theory with a
cutoff. In the present approach the Hawking radiation is gen-
erated by an apparent trans-Planckian tail outside the black-
hole horizon. The source of this tail is an exponentially large
wave that is mostly hidden behind the black-hole horizon. To
develop this picture we shall use two new key ingredients:
(I ) Ultrahigh frequency modes can be mimicked to arbitrary

accuracy in a bounded region even with a finite band spec-
trum. The basic idea was discovered by Aharonovet al. @8#
and was further developed by Berry@9#, who coined the term
‘‘superoscillations’’ to describe such a behavior. A simple
example of a functionF(t) which exhibits superoscillations
was given in@8#:

F~ t;N,v* !5F S 12v* /v0

2 Deitv0 /N

1S 11v* /v0

2 De2 i tv0 /NGN. ~1!

Here,N.1 is an integer, andv* andv0 being the super and
reference frequencies. For smallt we expand exp(itv0 /N)
and find

F~ t;N,v* !5Fe2 iv* t/N1
~v* 22v0

2!t2

2N2 1O~N23!GN

5e2 iv* tF11
~v* 22v0

2!t2

2N
1O~N22!G>e2 iv* t.

~2!

Although the spectrum of Eq.~1! includes only modes with
frequencies vP(2v0 ,1v0), in the time interval
utu!AN/Av* 22v0

2[T, F(t) behaves as a wave with arbi-
trary large frequencyv* . The number of superoscillations in
this interval is;AN. Systems that interact with the wave
F only during utu!T will not distinguish betweenF and a
pure wavee2 iv* t that extends for all times.

This remarkable feature is derived at the expense of hav-
ing such functions grow exponentially in other regions. In
the example above, forutu.T, we getF;eN. Nevertheless,
as we shall see, the large amplitudes can be confined to a
compact region. In particular, by adapting Berry’s integral
representation@9#, the large amplitudes can be entirely con-
fined to the interior region of a black hole while only ahigh
frequency tailremains outside the black-hole horizon. This
‘‘tail’’ will be seen by the external observer as the origin of
the Hawking radiation. The observer cannot probe the inte-
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rior of the black hole and distinguish between the mimicked
tail and a ‘‘truly’’ trans-Planckian frequency mode.

If the above functionF is viewed as a wave function, then
the probability to see a photon coming out from the tail is
exponentially small. In order to avoid this, we shall make an
additional assumption which is the second basic ingredient:
(II ) A black hole is described by two conditions: by the
ordinary ingoing state and by a final condition.Under this
assumption, the black hole is described in a fashion similar
to that of a pre- and postselected system@10–12#. A pre- and
postselected ensemble is prepared according to given initial
and final conditions. Observations can be then made at some
intermediate time between the pre- and postselections, and
the probability of the measured results can be expressed as
conditional probabilities. However, in our case the final state
will be given a more fundamental role. It will not be deter-
mined by a postselection done by some fictitious observer in
the future, rather it will be conceived as arising from some
new fundamental law, which is required by the presence of a
singularity in the future.

Such a final condition can be anticipated, for example, in
a theory that replaces past or future curvature singularities by
smooth initial or final conditions. To some extent, the Hartle-
Hawking ansatz for the cosmological wave function@13# can
be interpreted as corresponding to initial and final conditions.
When the WKB approximation is valid, the Hartle-Hawking
wave function is expressed in terms of the actionS as

C.eiS1e2 iS. ~3!

It is possible to interpret these two terms as two wave func-
tions which travel forward and backward in time, and corre-
spond to conditions in the past or in the future. It is possible
that a similar fundamental principle is available also for the
case of a black-hole singularity.

Although our assumptionII above might seem at first
radical, we shall show, in Sec. II, that final conditions may
be constructed which do not affect low energy observables.
Such a final condition will manifest only in very extreme
cases. The basic idea, suggested by Aharonov@14#, is to
implement the condition only on very high frequency modes
above some scalevh .

In Sec. III we shall construct the special superoscillatory
function which mimics a high frequency tail using a bounded
spectrum. In Sec. IV we study the response of a stationary
detector in a black-hole geometry to a scalar field when a
cutoff with respect to Kruskal coordinates was introduced. In
Sec. V the two main ingredients, namely, superoscillations
and a final condition, are combined for the simple case of an
eternal black hole. A cutoff is assumed with respect to the
Kruskal coordinates both on the initial Kruskal vacuum state
uOK& and our final stateu f &. It is shown that these initial and
final conditions cause the observer to see Hawking radiation
emitted from the black hole. Finally, we conclude with a
discussion of our results and remaining difficulties.

II. FINAL CONDITION ON ULTRAHIGH MODES

In this section it is shown how a nontrivial final condition
can be imposed without affecting low energy observables.
The basic idea@14# is to implement a final condition only on
high frequency modes.

Over the last decade, Aharonov and collaborators have
elaborated on the two-vector formalism of quantum mechan-
ics. In this formalism one specifies both an initial and a final
state and considers measurements done at intermediate time.
~For a detailed discussion see Refs.@11,12#.! Let the initial
and final conditions on a system be that att52` (1`) the
field is in the stateu i & (u f &). Indeed, one can in ordinary
quantum mechanics impose two such conditions. These
states are independent, but need to be nonorthogonal.

In the following we shall consider measurements at some
intermediate time. Given an observableA5(aPa , where
Pa are projectors to the eigenstatesua&, the probability to
measureA5a is given by the conditional probability1

Prob~au f ,i !5
Prob~a, f u i !
Prob~ f u i !

5
u^ f ua&^au i &u2

(a8u^ f ua8&^a8u i &u2
. ~4!

For certain nontrivial final conditions, low energy labora-
tory experiments will not depend on the final condition. In
the example considered here, a final condition is imposed
only on the high energy sector, i.e., only forv.vh , where
vh is some high energy scale.

To spell out this proposal, let us, for simplicity, consider a
free massless scalar field theory in Minkowski space-time,
and assume that in a certain rest frame the final state of the
field has the form

f ~L,F !&5
1

A11j2
~ uL&1juF&), ~5!

whereuL& and uF& are two normalized states in Fock space,
and j controls the relative probability. The first component
uL& denotes a low energy ‘‘laboratory state,’’ which contains
only particles of low frequency:

uL&5S 11 (
vk,vh

Ck~L !avk

†

1 (
vk ,v l,vh

Dkl~L !avk

† av l

† 1••• D u0M&. ~6!

The second termuF& denotes a certain state of particles with
frequencies abovevh :

uF&5S (
vk.vh

Ck~F !avk

†

1 (
vk ,v l.vh

Dkl~F !avk

† av l

† 1••• D u0M&. ~7!

We shall demand that the final state always has the form
given in Eq. ~5!, and isconstrainedalways to include the
same high energy stateuF&. We shall not constrain the con-
tent of the low energy stateuL&. @In terms of the pre- and
postselection terminology, this corresponds to postselection

1Clearly, Eq. ~4! is different from u^au i &u2, the probability ob-
tained if only the initial state is fixed. The latter is obtained from
Eq. ~4! by further summing overf .
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of an ensemble with fixedF, but arbitraryL in the specific
combination of Eq.~5! above.#

Since in the final condition the low energy stateuL& is left
unspecified, we need to modify Eq.~4! accordingly. The
probability to findA5a is now given by further summing
over a basis of the subspace,HL5$uL&&%, of low energy
states:

Prob~auF,i !5
(LP~a,L,Fu i !

(L,a8P~a8,L,Fu i !
. ~8!

Thus,

Prob~auF,i !5
(Lu^ f ~L,F !uPau i &u2

(L,a8u^ f ~L,F !uPa8u i &u
2 . ~9!

We callPa a low energy ‘‘laboratory’’ projector if

juu^LuPauF&uu,e, ;LPHL , ~10!

where e is some small number. If Eq.~10! is satisfied for
every eigenvalue of the operatorA, thenA will be termed a
low energy laboratory observable. If the initial state is taken
to be one of the low energy states, i.e.,iPHL , then for a low
energy observable, Eq.~9! reduces to

Prob~auF,i !5
(Lu^LuPau i &1O~e!u2

(L,a8u^LuPa8u i &1O~e!u2
5

^ i uPau i &
^ i u i &

1O~e!,

~11!

the ordinaryF-independent expression.
Nevertheless, if the initial state does contain states with

v.vh , or when the condition~10! is not satisfied, the full
expression~9! must be used, and the probability generally
depends onuF&.

Although we have seen that expectation values for low
energy laboratory observables reduce to the ordinary expres-
sion, it is possible that the fluctuations of the field are still
sensitive to the conditionF. To investigate this question let
us consider the case of continuous measurements at interme-
diate times. In particular, let us consider the interaction of a
particle detector with the field. This example will be useful
in the following sections as well.

A particle detector@15,16# can be described as a two-level
system with an energy gapV. The detector is coupled to a
scalar fieldf(x,t) via the action

SI5lE dtdx~A1A†!f~x,t !d~x2XD!. ~12!

Here,t is the proper time in the rest frame of the detector,
andXD(t) is the classical trajectory of the detector.A,A† act
on the two internal statesu6& according to

A†u2&5u1&, Au1&5u2&,

A†u1&50, Au2&50. ~13!

A detection of a particle will be described as a transition
from the ground state to the excited state. In the limit of
small coupling constant, we shall be interested in obtaining
the transition amplitude, computed to the first order inl.

With the final condition, the transition probability is given
by

T~1u2,F,i !5
(Lu^1, f ~L,F !uUI u2,i &u2

(6,Lu^6, f ~L,F !uUI u2,i &u2
, ~14!

where(6 denotes a summation over the final internal states,
andUI5exp(2il*LIdt) is the unitary evolution operator in
the interaction picture.

To lowest order in the coupling constant, we get

T~1u2,F,i !

5l2
(Lu^1, f ~L,F !u*LIdtu2,i &u2

(L~ u^ f ~L,F !u i &u21l2u^1, f ~L,F !u*LIdtu2,i &u2!

5l2(
L

u^1u ^ ~^Lu1j^Fu!E LIdtu2,i &u21O~l4!,

~15!

where in passing to the last line we used the identity
^Fu i &50.

The transition probability obtained in Eq.~15! has the
ordinary form, except that now it contains the additional
componentl2(LuAFu2, where

AF5jE dt^1,FuLI u2,i &. ~16!

WhenAF vanishes, Eq.~15! reduces to the ordinary transi-
tion probability.

Let us now consider the new amplitudeAF . Using the
representation~7! for uF&, and neglecting possible multipar-
ticle contributions, we obtain

AF5j(
vk

Ck* ~F !

A4pvk
E

2t0

t0
dtexp~ iVt!

3exp$ ivk@ t~t!2kXD~t!#%

[(
vk

AF~k!. ~17!

For an inertial detector,t5t/A12VD
2 , we find that

AF~k!5j
Ck* ~F !

A4pvk

sin$@V1~vk2CDk!/A12VD
2 #t0%

@V1~vn2VDk!/A12VD
2 #t0

.

~18!

The last equation reduces tod@V1(vn2VDk)/
A12VD

2 ]50 only when t0@1/vk.1/vh , and j is finite,
sayj;1. This means that as long as the relative amplitude
j of uF& is not large, the fluctuations are averaged out to zero
after a time which is determined by 1/vh . Intuitively, this
seems natural. An interaction on a time scale shorter than
1/vh involves energy fluctuations of order;vh , which in
turn depend on the conditionF.

Anticipating the discussion in Sec. V, let us also consider
the largej case. By insisting that Eq.~10! is satisfied, we
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find that the expectation values~11! are still unmodified.
Nevertheless, the fluctuatingAF seen by a particle detector
are not negligible. In this case, to average out such fluctua-
tions, we will need timest0@j/vh . Otherwise, our detector
will observe particles which are not present in the initial state
u i &.

Finally, we note that the above considerations can be eas-
ily extended to the case of a final mixed state. The analogue
of the stateu f (L,F)& is given by the density matrix

r f5uL&^Lu1rF , ~19!

where rF is constructed from states with frequency
v.vh .

III. ULTRAHIGH FREQUENCY FROM A BOUNDED
SPECTRUM

The other key elementI of our approach is the use of
superoscillatory functions, alluded to in the introduction.
These functions, having only a bounded Fourier spectrum,
can still mimic an arbitrarily high frequency though in a
finite region.

In the Fourier representation of such a function,

F~u!5E
0

1

dvCvexp~ ivu!, ~20!

the trick is to choose certain coefficientsCv , such that at a
finite interval ofu, F exhibits rapid oscillations with a fre-
quencyv*@1.

As superoscillations necessitate large amplitudes at other
regions, our purpose is to find a representation in which these
large oscillations are confined to a bounded region ofu. To
construct such a function, we will use a variant of an integral
representation for a superoscillatory function that was found
by Berry @9#. Consider the function:

FA,D~u!5
1

A2pD2E0
2p

daexpS i

D2cos~a2 iA ! Deicosau,
~21!

whereA andD are real parameters. The modes ofFA,D(u)
are bounded byuvu5ucosau,1.

The integration above can be analytically performed to
yield

FA,D~u!5A2p/D2I 0S i

D2A112cosh~A!D2u1D4u2D ,
~22!

whereI 0 is the zeroth modified Bessel function.
Expanding Eq.~22! aroundu50, we note thatFA,D(u)

behaves as

FA,D~u!5exp@ icosh~A!u#. ~23!

FA,D(u) ‘‘superoscillates’’ with frequencyv*5coshA. This
expansion is valid in a regionuuu,@cosh(A)D2#21[du. Thus,
the parameterD controls the numbernS of superoscillations:
nS;du/v*51/D2.

By modifying the two parametersA andD, we can con-
trol the frequency and number of superoscillations. However,
the limits A→` or D→0 are singular. Outside the region
du, where the function superoscillates,F grows exponen-
tially. F gets its maximal value atu52coshA/D2, where the
amplitude grows to

F;exp~coshA/D2!. ~24!

The superoscillations are hence found at the tails of an ex-
ponentially high peak.

Far away from the region of superoscillations, for
u@du, Eq. ~22! reduces to a low frequency wave:

FA,D~u!5
1

u
exp~ iu !. ~25!

In Sec. V we will show that these properties ofF allow
finding a stateuF& that mimics the trans-Planckian Hawking
photons close to the horizon. A particle detector will not
distinguish between a ‘‘fake’’ tail of superoscillations and
‘‘real’’ trans-Planckian model. Before proceeding to this fi-
nal task, it will be useful to reexamine the interaction of a
particle detector with a scalar field near a black hole.

IV. PARTICLE DETECTOR IN KRUSKAL GEOMETRY
WITH A CUTOFF

In this section we examine the response of a particle de-
tector in the space-time of an eternal black hole. We shall
assume that the initial state is the Unruh vacuum@15#, but
that modes above a certain frequency are cut off. In this
section we use usual, only preselected, quantum-mechanics
framework.~We shall defer the discussion of an additional
final condition to the next section.!

The geometry of an eternal black hole is described in
terms of Kruskal coordinatesU,V, that are defined via the
relations

ds25~122M /r !dt22~122M /r !21dr22r 2dV2

5~122M /r !dudv2r 2dV2

5
exp~2r /4M !

r /2M
dUdV2r 2dV2. ~26!

Here,

u,v5t6r * , ~27!

wherer *5r12M ln(r/2M21), and

U524Mexp~2u/4M !, V54Mexp~v/4M !. ~28!

The Unruh vacuum corresponds to an initial state which
reproduces Hawking radiation atI1. It is imposed by select-
ing the in-vacuum with respect to the Killing vector]U on
the past horizon (V50) as follows. Consider a scalar field in
the reduced 111 spherical approximation. By the conformal
invariance, we have

f~U,V!5fR~U !1fL~V!. ~29!

In terms of creation and annihilation operators, we have
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fR~U !5E dv

A4pv
~e2 ivUav

R1H.c.!, ~30!

and a similar expression of the left-moving partfL .
Now, for the Unruh vacuumu0U&,

av
Ru0U&50. ~31!

Here, we furthermore assume that modes withv.vc are cut
off.

Let us consider now a static particle detector that is lo-
cated at a constant radiusr and interacts with the cutoff
vacuum state defined above. The trajectory (r ,t) of the de-
tector can be described in terms of the Kruskal coordinates
(U,V) as

UD52~r /2M !1/2lexp@~2t1r !/4M #,

VD5~r /2M !1/2lexp@~2t2r !/4M #, ~32!

wherel[4M (122M /r )1/2.
Using the interaction~12!, and Eqs.~30! and ~32!, we

shall obtain the transition amplitude from an initial vacuum
state, an unexcited detector to a final state with excited de-
tector state, and a one-scalar photon of frequencyv:

A~1,vu2,0K!5lE dt^1,1vu~A1A†!f~UD!u2,0U&,

~33!

where the time coordinate is related to the proper time by
dt5dt/(122M /r )1/2. We find that

A~1,vu2,0U!5l2E dt

A4pvk

eiVtexp„ivk~r /2M !1/2

3 lexp$@2t~t!1r #/4M %…. ~34!

The total probability of jumping to an exited state is ob-
tained by summation over the final emitted photon states:

Prob~1 !5 (
v,vc

uA~1,v!u2. ~35!

By inspecting the transition amplitude equation~34!, one
finds that the integral is dominated by a stationary point at

vs.p524Mexp$@ t~t!2r #/4M %S 2Mr D 1/2. ~36!

Since the maximal frequency isvc , after u time of order
t2r;4M ln(vC/4M ), this transition amplitude vanishes.

In other words, the emission seen by the detector will
come to halt very shortly after it started. This corresponds to
the usual result that a cutoff will terminate the Hawking ra-
diation.

V. RESTORING THE HAWKING RADIATION

We shall now show that a particular choice for the final
condition gives rise to an effective ultrahigh frequency in the
vicinity of the horizon and avoids the above ‘‘extinction’’ of

the Hawking radiation due to the cutoff.
As we have seen in Sec. II, when a final condition on the

high frequency modes is imposed, the transition amplitude
~15! contains an extra term~16!. The contribution of this
term to the transition amplitude for a stationary detector lo-
cated at radiusr is

AF5jE dt^1,FuLI u2,0U&

5jE dteiVtE dva

Ca* ~F !

A4pva

exp„iva~r /2M !1/2

3 lexp$@2t~t!1r #/4M %…, ~37!

where the range of integration ofva is the band of high
frequency modes inuF&. In order to replace the contribution
of a trans-Planckian frequencyv* by a superoscillation, we
shall require that

^1,Fv* ,DuLI u2,0U&5^1,v5v* uLI u2,0U&. ~38!

That is, the superposition of the amplitude given in Eq.~37!
gives rise to a single high frequency modev* .

We shall assume that the final state contains only modes
with frequenciesvP(vc ,vc2z), with v in MPL units.
z,1 is some pure number that defines the size of the high
energy ‘‘band’’ below the cutoff scale. Using the represen-
tation ~21! for superoscillatory functions, we can find the
coefficientsCa(F) of the single particle states in Eq.~7!. ~In
this article we shall not construct the coefficients of multi-
particle terms.! The result is

uFv* &5E
0

2p

daAva

v* FexpS iDcos~a2 iA ! D Gava

† u0U&,

~39!

where

va5vc1z~cosa11!/2, v*5coshA. ~40!

Outside the black-hole horizon, the effective transition
amplitude ~37! ~with a sufficiently large number of sup-
eroscillationsnS;1/D), is precisely identical to that ob-
tained without the cutoff. Therefore, we have shown that by
a superposition of final states withvP(vc ,vc2z), we can
mimic a trans-Planckian frequencyv*5coshA@vc .

Freely falling detectors are equivalent to inertial detectors
in Minkowski space-time. We have seen in Sec. II, that in-
ertial detectors with a small boost factor will not respond to
the final condition. In close analogy, freely falling detectors
outside the black hole respond only to low frequency modes.
Thus, a freely falling detector outside the black hole effec-
tively interacts only with a normal wave and hence sees the
space as mostly empty; precisely as in the ordinary picture.
Nevertheless, the standard picture fails at the interior of the
black hole. Inside the black hole the effective trans-
Planckian tail rises sharply to a tremendous amplitude~24!
of ;exp(v* /D2).

Although the expectation values of low energy observable
may remain unchanged, thefluctuationsbecome exponen-
tially large. This implies that a probe that couples during a
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finite time to the field will detect particles with high prob-
ability. In the standard picture the black hole is basically
empty, and nothing extraordinary occurs when an observer
crosses the horizon. In our case, we expect that as the probe
crosses the horizon, it will immediately start heating up. We
see that in this scenario, while outside the black hole the
ordinary predictions are respected, new physics is predicted
for the region hidden by the horizon.

So far, we have only demonstrated that a single trans-
Planckian mode can be restored. To restore the full transition
probability ~35!, we need to mimic the full trans-Planckian
spectrum. Since the different frequencies superpose with no
interference, we need to choose a final state which is a den-
sity matrix:

r f5uL&^Lu1E
0

vmax
dv* uFv* &^Fv* u. ~41!

The first term represents the nonconditioned final low energy
state, which allows the restoring of ordinary low energy
physics outside the black hole. The second term represents
the final condition on high energy states near the cutoffvc
and is responsible for the Hawking radiation. Strictly speak-
ing, the state uFv* & becomes ill defined in the limit
v*→`. Yet, during every finite lifetime, we have a well-
defined expression. For example, for an isolated black hole
that evaporates according to the standard picture during
t;M3, we will require in Eq.~41! vmax;eM

2
.

VI. DISCUSSION

In this article we have presented a novel picture in which
the Hawking radiation can be restored in presence of a cutoff
without trans-Planckian modes. To this end, we have intro-
duced two new ingredients: superoscillations which can
mimic trans-Planckian modes, and a final condition on the
field. The final conditionF in Eq. ~39! complements the
ordinary in-state, and was chosen so as to give rise to sup-
eroscillations with respect to static observers. On the other
hand, in the reference frame of freely falling observers,F
corresponds to a condition on very high frequencies and
hence does not affect ‘‘low energy’’ observables. As dis-
cussed in the introduction, in a more complete theory,F
should be derived from some fundamental principle~e.g.,
that suggested in Ref.@13#!. Since our framework still lacks
this basic principle, in this work we have not provided a full
derivation of Hawking’s radiation; rather, we have shown
that with a certain conditionF, Hawking’s radiation can be
obtained from superoscillations without invoking trans-

Planckian modes of the field. Hawking’s radiation is there-
fore restored independently of the particular nature of the
cutoff, i.e., the yet unknown short distance structure of quan-
tum gravity.

The qualitative description of Hawking’s effect in this
formalism can be summarized as follows. The source of the
Hawking radiation is a tail of trans-Planckian oscillations
near the horizon, that reaches out from a wave with expo-
nentially high amplitudes hidden inside the black hole. Out-
side the horizon, we may not notice any significant differ-
ence from the ordinary picture; freely falling observers see
very little radiation, and static observers see the ordinary
Hawking radiation. However, this correspondence with the
ordinary picture breaks down inside the black hole. The ex-
ponentially high amplitudes inside the black hole imply a
‘‘hot’’ black-hole interior, i.e., freely falling observers which
cross the horizon will immediately heat up. We therefore
anticipate large back-reaction effects for the black-hole inte-
rior.

We shall conclude with some comments. The final state of
the high energy sector near the cutoff energy seems to be a
density matrix. A possible explanation for this could be the
following. In our approach gravity is essentially treated
semiclassically. If indeed the final state is related to the sin-
gularity, we cannot expect it to be expressed as a direct prod-
uct of a matter state and a semiclassical gravity state. Rather,
it should be a highly entangled matter-gravity state. Since
outside the black hole the semiclassical approximation is
valid, the matter state should result from tracing over gravity
states. This procedure may lead to a reduced density matrix
such as in Eq.~41!.

The formalism presented in this paper is far from being
complete, and many important questions remain. For ex-
ample, canF states also mimic then-point correlation func-
tions? Or, how does the radiation energy transfer from the
black hole to the observer in this picture? We hope that some
of the features presented in this approach will turn out useful
in understanding the enigma of Hawking radiation.

Note added.After the completion of this work I found
out that a concept related to ingredientI was suggested also
by Rosu@17#.
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