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Trans-Planckian tail in a theory with a cutoff

B. Reznik
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(Received 28 June 1996

Trans-Planckian frequencies can be mimicked outside a black-hole horizon as a tail of an exponentially large
amplitude wave that is mostly hidden behind the horizon. The present proposal requires implementing a final
state condition. This condition involves only frequencies below the cutoff scale. It may be interpreted as a
condition on the singularity. Despite the introduction of the cutoff, the Hawking radiation is restored for static
observers. Freely falling observers see empty space outside the horizon, but are “heated” as they cross the
horizon.[S0556-282(97)06504-1

PACS numbd(s): 04.70.Dy, 03.65.Bz

I. INTRODUCTION accuracy in a bounded region even with a finite band spec-
trum. The basic idea was discovered by Aharommal. [8]
The standard derivation of the Hawking radiatidd re-  and was further developed by Beifi§], who coined the term
quires the existence of exponentially high frequency mode$superoscillations” to describe such a behavior. A simple
in a classical space-time background. Indeed, after a sho@xample of a functior-(t) which exhibits superoscillations
time (of ordert~MInM), the required frequency becomes Was given in[8]:
w~1 in Planck units. For this reason the standard derivation

cannot be trusted after few Hawking photons were already _ . 1-w*/wg ton /N

emitted. It appears that in any derivation of Hawking radia- F(EN, ™) = T eo

tion, with no new physical ingredients, a naive short distance

cutoff will eliminate the Hawking effed2]. It is, of course, 1+ w*/wo) “itwg /N N 1)
possible that the origin of the Hawking radiation does de- 2 €

pend on the behavior of an ultrahigh trans-Planckian spec-

trum. In this article, however, we suggest an alternativéiere,N>1 is an integer, and* andw, being the super and

mechanism for generating Hawking's radiation in a theoryreference frequencies. For smaliwe expand exi{wo/N)

with an effective cutoff. and find
Evidence that a theory with a cutoff may reproduce the

Hawking radiation has been recently provided by Unruh’s

work [3]. Unruh has shown that a natural cutoff still gives F(t;N,0*) 2N

rise to the Hawking radiation in the case of sonic black holes

[4]. In his approach the cutoff modifies the dispersion rela- - (w*z—m?,)t2 B

tion for sound waves. This, in turn, alters the motion of =e 11 —>n  TONN %)

modes with frequency close to the cutoff scale and gives rise

to a new type of trajectories which approach the horizon, but ()

eventually “reflect” back to infinity. Further works tried to . .
adapt Unruh’s model to real black holgs-7]. It is not clear Although_ the spectrum of Eq1) |_ncludes on_ly modes with
requencies we(—wg,+wg), in the time interval

that a similar process is indeed realized for real black holes. s : ]
In this article we present another possibility. It is shownlt/< W/ Jo*?—w5=T, F(t) behaves as a wave with arbi-
that even without modifying the ordinary field equations andtrary large frequency*. The number of superoscillations in
the ensuing dispersion relations, as in the above proposallis interval is~yN. Systems that interact with the wave
one can still restore the Hawking radiation in a theory with aF only during [t|<T will not distinguish betweer and a
cutoff. In the present approach the Hawking radiation is genpure wavee '“"t that extends for all times.
erated by an apparent trans-Planckian tail outside the black- This remarkable feature is derived at the expense of hav-
hole horizon. The source of this tail is an exponentially largeing such functions grow exponentially in other regions. In
wave that is mostly hidden behind the black-hole horizon. Tahe example above, fdt|>T, we getF~eN. Nevertheless,
develop this picture we shall use two new key ingredientsas we shall see, the large amplitudes can be confined to a
(1) Ultrahigh frequency modes can be mimicked to arbitrarycompact region. In particular, by adapting Berry’s integral
representatiof9], the large amplitudes can be entirely con-
fined to the interior region of a black hole while onlyhagh
*Present address: T-6 MS B288, Los Alamos Nationalfrequency tailremains outside the black-hole horizon. This
Laboratory, Los Alamos, NM 87545. Electronic address: “tail” will be seen by the external observer as the origin of
reznik@t6-serv.lanl.gov the Hawking radiation. The observer cannot probe the inte-
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rior of the black hole and distinguish between the mimicked Over the last decade, Aharonov and collaborators have

tail and a “truly” trans-Planckian frequency mode. elaborated on the two-vector formalism of quantum mechan-
If the above functiorf is viewed as a wave function, then ics. In this formalism one specifies both an initial and a final

the probability to see a photon coming out from the tail isstate and considers measurements done at intermediate time.

exponentially small. In order to avoid this, we shall make an(For a detailed discussion see Rdft1,12.) Let the initial

additional assumption which is the second basic ingredientand final conditions on a system be that at—o« (+x) the

(I1) A black hole is described by two conditions: by thefield is in the statdi) (|f)). Indeed, one can in ordinary

ordinary ingoing state and by a final conditiobinder this quantum mechanics impose two such conditions. These

assumption, the black hole is described in a fashion similastates are independent, but need to be nonorthogonal.

to that of a pre- and postselected sys{df—12. A pre- and In the following we shall consider measurements at some

postselected ensemble is prepared according to given initiahtermediate time. Given an observatde=>all,, where

and final conditions. Observations can be then made at soni&, are projectors to the eigenstates, the probability to

intermediate time between the pre- and postselections, andeasureA=a is given by the conditional probability

the probability of the measured results can be expressed as

conditional probabilities. However, in our case the final state

will be given a more fundamental role. It will not be deter-

mined by a postselection done by some fictitious observer in

the future, rather it will be conceived as arising from some For certain nontrivial final conditions, low energy labora-

new fundamental law, which is required by the presence of &ory experiments will not depend on the final condition. In

singularity in the future. the example considered here, a final condition is imposed
Such a final condition can be anticipated, for example, inonly on the high energy sector, i.e., only fet> w;,,, where

a theory that replaces past or future curvature singularities by, is some high energy scale.

smooth initial or final conditions. To some extent, the Hartle- To spell out this proposal, let us, for simplicity, consider a

Hawking ansatz for the cosmological wave functjd8] can  free massless scalar field theory in Minkowski space-time,

be interpreted as corresponding to initial and final conditionsand assume that in a certain rest frame the final state of the

When the WKB approximation is valid, the Hartle-Hawking field has the form

wave function is expressed in terms of the acti®as

Prok(a,fli) _ [(fla)(ali)l?

Protalf,i)= Proffli) — =, [(fla’)(a’[i)*’

(4)

~al —i 1
P=elS+eiS 3 ®)

frp)= —,—1+§2(|L>+§|F>),
It is possible to interpret these two terms as two wave func-
tions which travel forward and backward in time, and corre-where|L) and|F) are two normalized states in Fock space,
spond to conditions in the past or in the future. It is possibleand ¢ controls the relative probability. The first component
that a similar fundamental principle is available also for the||_> denotes a low energy “laboratory state,” which contains

case of a black-hole singularity. only particles of low frequency:
Although our assumptioril above might seem at first

radical, we shall show, in Sec. Il, that final conditions may

_ t
be constructed which do not affect low energy observables. IL)= 1+w2w Ck('-)awk
Such a final condition will manifest only in very extreme Ko
cases. The basic idea, suggested by Ahardrid¥, is to bt
implement the condition only on very high frequency modes +wk ;@h Du(L)ag,a,,+ - |10um). (6)

above some scaley, .
In Sec. Ill we shall construct the special superoscillatoryThe second terrtF) denotes a certain state of particles with
function which mimics a high frequency tail using a boundedfrequencies abovey, :
spectrum. In Sec. IV we study the response of a stationary
detector in a black-hole geometry to a scalar field when a

cutoff with respect to Kruskal coordinates was introduced. In IFy=| > CuFal

Sec. V the two main ingredients, namely, superoscillations o> wp k

and a final condition, are combined for the simple case of an

eternal black hole. A cutoff is assumed with respect to the + 2 Dy(F)al al +... |Op). 7)
. e ey W o

Kruskal coordinates both on the initial Kruskal vacuum state oK, 0> op

|Ok) and our final statéf). It is shown that these initial and _
final conditions cause the observer to see Hawking radiation We shall demand that the final state always has the form
emitted from the black hole. Finally, we conclude with a 9iven in Eq.(5), and isconstrainedalways to include the

discussion of our results and remaining difficulties. same high energy stat€). We shall not constrain the con-
tent of the low energy statf ). [In terms of the pre- and

Il EINAL CONDITION ON ULTRAHIGH MODES postselection terminology, this corresponds to postselection

In this section it is shown how a nontrivial final condition
can be imposed without affecting low energy observables. !Clearly, Eq.(4) is different from|(ali}|?, the probability ob-
The basic ide@14] is to implement a final condition only on tained if only the initial state is fixed. The latter is obtained from
high frequency modes. Eq. (4) by further summing ovef.
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of an ensemble with fixe&, but arbitraryL in the specific With the final condition, the transition probability is given
combination of Eq(5) above] by
Since in the final condition the low energy stéite is left
unspecified, we need to modify E¢4) accordingly. The S+ Fp U =.0))2
probability to findA=a is now given by further summing T(+|—,F,i)= SIE ; F) TR 14
over a basis of the subspack, ={|L))}, of low energy sl(E fm Uil =0
states: whereX . denotes a summation over the final internal states,
s, P(a,L,F|i) andU,=exp(-irfL,d7) is the unitary evolution operator in
ProlalF,i)= . (8)  the interaction picture.
2 a2 P(a’,LF[i) To lowest order in the coupling constant, we get
Thus,
T(+|=,F,i)
> (f I0,i)|? — )2
ProbialF.i)= L L Tali)] ) N S fplfLdr =i

2L,a’|<f(L,F)|Ha’|i>|2.

We callll, a low energy “laboratory” projector if

EL(|<f(L,F)|i>|2+)\2|<+!f(L,F)|f|—IdT|_vi>|2)

73 oL+ &FD | Lr -+ 00,

(15

EIKLIT[F)|<e, VLeM,, (10

where € is some small number. If Eq10) is satisfied for

every eigenvalue of the operatdr thenA will be termed a Where in passing to the last line we used the identity

low energy laboratory observable. If the initial state is taken(F|i)=0.

to be one of the low energy states, iiez,H, , then for a low The transition probability obtained in E¢15) has the

energy observable, E¢Q) reduces to ordinary form, except that now it contains the additional
componeni\23 | |Ag|?, where

EL|<|-|Ha|i>+O(‘f)lz _<i|Ha|i>

ProttalF) = 5 L+ 0te? (il

+0(e),
(11) AF=§f dr(+,F[L | —.i). (16)

the ordinaryF -independent expression. _ _When Ar vanishes, Eq(15) reduces to the ordinary transi-
Nevertheless, if the initial state does contain states Wltqion probability.

w>wy,, or when the conditiorf10) is not satisfied, the full Let us now consider the new amplitudg . Using the
expression(9) must be used, and the probability generally ¢ esentatior7) for |F), and neglecting possible multipar-

depends o). _ ticle contributions, we obtain
Although we have seen that expectation values for low

energy laboratory observables reduce to the ordinary expres-

sion, it is possible that the fluctuations of the field are still Ck(F) (o .

sensitive to the conditioff. To investigate this question let Ar= % Nl drexp(iQr)

us consider the case of continuous measurements at interme- ki

diate times. In particular, let us consider the interaction of a Xexpliwft(7)—kXp(7)]}

particle detector with the field. This example will be useful

in the following sections as well. => A(k). (17)
A particle detectof15,16 can be described as a two-level oK

system with an energy ga@d. The detector is coupled to a
scalar fieldg(x,t) via the action For an inertial detectott,=7/\/1— V2, we find that

¥ (F) sin{[Q+(w—Cpk)/y1-V3] o}
drwr  [Q+(w,—VpK)/V1-V3]ry

Here, 7 is the proper time in the rest frame of the detector, (18)
andXp(t) is the classical trajectory of the detectdr A" act The
on the two internal statds-) according to

s,=>\J drdx(A+A") ¢(x,1) 8(x—Xp). (12 Ar(k)=¢

last equation reduces 105 Q+(w,—Vpk)/
\/1—V2D =0 only when 7y>1/w>1lw,, and ¢ is finite,

ATl=)y=]+), Al+)=|-), say é~ 1_. This means that as long as the relative amplitude
£ of |[F) is not large, the fluctuations are averaged out to zero
AT|+)=0, A-)=0. (13)  after a time which is determined bydly. Intuitively, this

seems natural. An interaction on a time scale shorter than
A detection of a particle will be described as a transition1l/w,, involves energy fluctuations of order wy,, which in
from the ground state to the excited state. In the limit ofturn depend on the conditidn.
small coupling constant, we shall be interested in obtaining Anticipating the discussion in Sec. V, let us also consider
the transition amplitude, computed to the first ordehin the largeé case. By insisting that Eq10) is satisfied, we
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find that the expectation valugdl) are still unmodified. By modifying the two parameter& and A, we can con-
Nevertheless, the fluctuatiny= seen by a patrticle detector trol the frequency and number of superoscillations. However,
are not negligible. In this case, to average out such fluctuathe limits A—« or A—0 are singular. Outside the region
tions, we will need timesy> ¢/ wy, . Otherwise, our detector Su, where the function superoscillate®, grows exponen-
will observe particles which are not present in the initial statetially. ® gets its maximal value at= — coshtVA?, where the

[i). amplitude grows to
Finally, we note that the above considerations can be eas- )
ily extended to the case of a final mixed state. The analogue ® ~exp(CosiA/AS). (24)

of the Statdf(”» is given by the density matrix The superoscillations are hence found at the tails of an ex-

=|LWL|+ pg, 19 ponentially high peak.
pr=I(LI*pe 19 Far away from the region of superoscillations, for
where pe is constructed from states with frequency U> U, Ed.(22) reduces to a low frequency wave:
(l)>(1)h. 1
CIDA,A(u)=Gexp(iu). (25)
Ill. ULTRAHIGH FREQUENCY FROM A BOUNDED

SPECTRUM In Sec. V we will show that these properties ®fallow

superoscillatory functions, alluded to in the introduction.Photons close to the horizon. A particle detector will not
These functions, having only a bounded Fourier spectrundistinguish between a “fake™ tail of superoscillations and

finite region. nal task, it will be useful to reexamine the interaction of a
1 . IV. PARTICLE DETECTOR IN KRUSKAL GEOMETRY
CID(U)Z 0 dwaeXQI Q)U), (20) WITH A CUTOFF

o ) o In this section we examine the response of a particle de-
the trick is to choose certain coefficier@s,, such that at a tector in the space-time of an eternal black hole. We shall
finite interval ofu, ® exhibits rapid oscillations with a fre- zssume that the initial state is the Unruh vacuurs), but
quencyw*>1. that modes above a certain frequency are cut off. In this

As superoscillations necessitate large amplitudes at oth@fection we use usual, only preselected, quantum-mechanics
regions, our purpose is to find a representation in which thesgamework. (We shall defer the discussion of an additional
large oscillations are confined to a bounded regiom.oTo  final condition to the next section.
construct such a function, we will use a variant of an integral The geometry of an eternal black hole is described in
representation for a superoscillatory function that was founderms of Kruskal coordinated,V, that are defined via the

by Berry[9]. Consider the function: relations
s 4(W) 1 2wd '{ [ i )) o ds?=(1—2M/r)dt?— (1—2M/r) tdr?—r?dQ?
AU)=— aexp -zcoga—iA)|e ,
A V27A?)o A® —(1-2M/r)dudy — r2d0?
(21)
exp(—r/4aM) 12
whereA andA are real parameters. The modesdaf ,(u) - r/2M dudv—r-dQ* (26)
are bounded byw|=|cos|<1.
The integration above can be analytically performed toHere,
yield
uv=t*r*, 27
i
P a(U)=\27/A%], P\/1+ZCOSNA)AZU+A4UZ> , wherer* =r +2MIn(r/2M — 1), and
(22) U=—4Mexp —u/dM), V=4Mexpv/4M). (29
wherel is the zeroth modified Bessel function. The Unruh vacuum corresponds to an initial state which
Expanding Eq(22) aroundu=0, we note thatb A(U)  reproduces Hawking radiation @t . It is imposed by select-
behaves as ing the in-vacuum with respect to the Killing vectey on

the past horizon\{=0) as follows. Consider a scalar field in
the reduced %1 spherical approximation. By the conformal
invariance, we have

D a(u)=exdicosiA)ul. (23

® 4 A(u) “superoscillates” with frequency* = costA. This

expansion is valid in a regiou| <[ cosh@)A?] 1= u. Thus, H(U,V) = pr(U)+ ¢ (V). (29)
the parameteA controls the numbeng of superoscillations:

Ng~ dul * = 1/A?. In terms of creation and annihilation operators, we have
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de _ the Hawking radiation due to the cutoff.
¢R(U)=f (e*""UaSﬂL H.c), (30 As we have seen in Sec. I, when a final condition on the
VATw high frequency modes is imposed, the transition amplitude
. . ) (15) contains an extra termil6). The contribution of this
and a similar expression of the left-moving pgit . term to the transition amplitude for a stationary detector lo-
Now, for the Unruh vacuunhOy), cated at radius is

a;|0y)=0. (31)
, Aszf dr(+,F[Li[—,00)
Here, we furthermore assume that modes withw, are cut
off. . o . _ C*(F)
Let us consider now a static particle detector that is lo- zgf dre"”f do,— expli w,(r/2M)?

cated at a constant radiusand interacts with the cutoff Vidrw,
vacuum state defined above. The trajectaryt)( of the de-
tector can be described in terms of the Kruskal coordinates xlexg[—t(m)+r]/aM}), (37)

(U.V) as where the range of integration @, is the band of high
Un=—(r/2M)¥2 —t41)/AM], frequency modes ifF). In order to replace the contribution
P (r ) e MMl of a trans-Planckian frequeney* by a superoscillation, we
VD=(r/2|\/|)1/2| eXFi(_t_r)/4M], (32) shall require that
wherel=4M(1—2M/r)Y2. (+.Fux alli]=,0p)=(+ 0= 0*|L||=,0y). (38

Using the interaction12), and Egs.(30) and (32), we
shall obtain the transition amplitude from an initial vacuum
state, an unexcited detector to a final state with excited de?
tector state, and a one-scalar photon of frequancy

That is, the superposition of the amplitude given in BY)
ives rise to a single high frequency modé.
We shall assume that the final state contains only modes
with frequenciesw € (w;,w;— ), With @ in Mp_ units.
{<1 is some pure number that defines the size of the high
A(+ ,w|—,OK)=)\f dr{+,1,|(A+ AN ¢d(Up)|—,0y), energy “band” belowthe cutoff scale. Using the represen-
(33) tation (21) for superoscillatory functions, we can find the
coefficientsC,(F) of the single particle states in E(). (In
where the time coordinate is related to the proper time byhis article we shall not construct the coefficients of multi-

dt=d7/(1-2M/r)*¥2 We find that particle terms. The result is
| 2J d7_ o 112 |F o) szd Qo F{i ga—iA)||al |oy)
A(+,0|—,0y)=\ | —=¢€"Texp(i w\(r/2M) w*) = a\/ | €Xp 1 Cos a—I a, [Vu),
( DN Tamas e o 9V or & 3 o
Xlexp{[ —t(7)+r]/AM}). (39
where
The total probability of jumping to an exited state is ob-
tained by summation over the final emitted photon states: w,=wct {(cox+1)/2, *=coshA. (40)

) Outside the black-hole horizon, the effective transition
Prol(+)= Z |A(+, )] (39  amplitude (37) (with a sufficiently large number of sup-
o eroscillationsng~1/A), is precisely identical to that ob-
By inspecting the transition amplitude equati@4), one  tained without the cutoff. Therefore, we have shown that by
finds that the integral is dominated by a stationary point at & Superposition of final states withe (w¢,w.—{), we can
mimic a trans-Planckian frequeney* = coshA> .
VARG Freely falling detectors are equivalent to inertial detectors
(36) in Minkowski space-time. We have seen in Sec. Il, that in-
ertial detectors with a small boost factor will not respond to
Since the maximal frequency is., after u time of order the final condition. In close analogy, freely falling detectors
t—r~4MIn(wc/4M), this transition amplitude vanishes. outside the black hole respond only to low frequency modes.
In other WordS, the emission seen by the detector Wi”ThUS, a freely falllng detector outside the black hole effec-
come to halt very shortly after it started. This corresponds tdively interacts only with a normal wave and hence sees the

the usual result that a cutoff will terminate the Hawking ra-Space as mostly empty; precisely as in the ordinary picture.
diation. Nevertheless, the standard picture fails at the interior of the

black hole. Inside the black hole the effective trans-
Planckian tail rises sharply to a tremendous amplit(@i®
of ~exp*/A?).

We shall now show that a particular choice for the final  Although the expectation values of low energy observable
condition gives rise to an effective ultrahigh frequency in themay remain unchanged, tHeictuationsbecome exponen-
vicinity of the horizon and avoids the above “extinction” of tially large. This implies that a probe that couples during a

wsp=—4M exp{[t(r)—r]/4M}(T

V. RESTORING THE HAWKING RADIATION
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finite time to the field will detect particles with high prob- Planckian modes of the field. Hawking’'s radiation is there-
ability. In the standard picture the black hole is basicallyfore restored independently of the particular nature of the
empty, and nothing extraordinary occurs when an observegutoff, i.e., the yet unknown short distance structure of quan-
crosses the horizon. In our case, we expect that as the prolagm gravity.
crosses the horizon, it will immediately start heating up. We The qualitative description of Hawking's effect in this
see that in this scenario, while outside the black hole théormalism can be summarized as follows. The source of the
ordinary predictions are respected, new physics is predicteHawking radiation is a tail of trans-Planckian oscillations
for the region hidden by the horizon. near the horizon, that reaches out from a wave with expo-
So far, we have only demonstrated that a single transnentially high amplitudes hidden inside the black hole. Out-
Planckian mode can be restored. To restore the full transitiogide the horizon, we may not notice any significant differ-
probability (35), we need to mimic the full trans-Planckian ence from the ordinary picture; freely falling observers see
spectrum. Since the different frequencies superpose with ngery little radiation, and static observers see the ordinary
interference, we need to choose a final state which is a deawking radiation. However, this correspondence with the
sity matrix: ordinary picture breaks down inside the black hole. The ex-
ponentially high amplitudes inside the black hole imply a
pi=|LY(L|+ fwmaxdw*|Fw*)<Fw*|. (41) “hot” black-hqle inter_ior_, ie., fr_eely falling observers which
0 cross the horizon will immediately heat up. We therefore
anticipate large back-reaction effects for the black-hole inte-
The first term represents the nonconditioned final low energyjqr.
state, which allows the restoring of ordinary low energy e shall conclude with some comments. The final state of
physics outside the black hole. The second term represenige high energy sector near the cutoff energy seems to be a
the final condition on high energy states near the cuieff gensity matrix. A possible explanation for this could be the
and is responsible for the Hawking radiation. Strictly speak{ollowing. In our approach gravity is essentially treated
ing, the state|F,x) becomes ill defined in the limit semiclassically. If indeed the final state is related to the sin-
w* —co. Yet, during every finite lifetime, we have a well- gularity, we cannot expect it to be expressed as a direct prod-
defined expression. For example, for an isolated black hol@ct of a matter state and a semiclassical gravity state. Rather,
that evaporates according to the standard picture during should be a highly entangled matter-gravity state. Since

t~M3, we will require in Eq.(41) wmax~eM2. outside the black hole the semiclassical approximation is
valid, the matter state should result from tracing over gravity
V1. DISCUSSION states. This procedure may lead to a reduced density matrix

_ ) _ ) ~ such as in Eq(41).

In this article we have presented a novel picture in which  The formalism presented in this paper is far from being
the Hawking radiation can be restored in presence of a cutoffomplete, and many important questions remain. For ex-
without trans-Planckian modes. To this end, we have introgmple, carF states also mimic the-point correlation func-
duced two new ingredients: superoscillations which canijons? Or, how does the radiation energy transfer from the
mimic trans-Planckian modes, and a final condition on theyjack hole to the observer in this picture? We hope that some
field. The final conditionF in Eq. (39) complements the of the features presented in this approach will turn out useful
ordinary in-state, and was chosen so as to give rise to SUpy ynderstanding the enigma of Hawking radiation.
eroscillations with respect to static observers. On the other Note addedAfter the completion of this work | found
hand, in the reference frame of freely falling observéfs, oyt that a concept related to ingredi¢nwas suggested also
corresponds to a condition on very high frequencies angy Rosu[17].
hence does not affect “low energy” observables. As dis-
cussed in the introduction, in a more complete thedty,
should be derived from some fundamental princifdeg.,
that suggested in Reff13]). Since our framework still lacks
this basic principle, in this work we have not provided a full | am grateful to W. G. Unruh for many helpful discus-
derivation of Hawking’'s radiation; rather, we have shownsions during the preparation of this work. | also like to thank
that with a certain conditiofr, Hawking’s radiation can be Y. Aharonov, S. Massar, and S. Nussinov for helpful discus-
obtained from superoscillations without invoking trans- sions and remarks.
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