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Head-on collisions of black holes: The particle limit
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We compute gravitational radiation waveforms, spectra, and energies for a point particle ahgrfatisng
from rest at radiug into a Schwarzschild hole of madd. This radiation is found to lowest order in
(mg /M) with the use of a Laplace transform. In contrast with numerical relativity results for head-on collisions
of equal-mass holes, the radiated energy is found not to be a monotonically increasing function of initial
separation; there is a local radiated-energy maximumat.5M. The present results, along with results for
infall from infinity, provide a complete catalog of waveforms and spectra for particle infall. We give a
representative sample from that catalog and an interesting observation: Unlike the simple spectra for other
head-on collisiongeither of particle and hole, or of equal mass hpkbe spectra foro>r,>~5M show a
series of evenly spaced bumps. A simple explanation is given for this. Lastly, our energy n¢erssslts are
compared with approximation methods used elsewhere, for small and for large initial separation.
[S0556-282(197)03404-9

PACS numbs(s): 04.70.Bw, 04.30.Db

[. INTRODUCTION AND OVERVIEW not be made. We present here an extension of the DRPP
calculation to the case of infall from a finite radius.

Among the earliest calculations of astrophysical sources The extension is not at all straightforward. If the particle
of gravitational radiation is the “Davis-Ruffini-Press-Price” starts at infinity, the initial value data can be taken as zero, so
(DRPP calculation[1,2] of radiation emitted when a par- that the spacetime is unperturbed Schwarzschild until the
ticle, starting from rest at infinity, falls into a nonspinning gravitational influence of the particle is felt. If the particle
black hole. In this work, the mass of the patrticle is treated astarts from a finite radius, the specification of compatible
a perturbation of the Schwarzschild spacetime, and the Einnitial value data cannot be avoided. Understanding the in-
stein equations, to first order in this perturbation, are orgafluence of the initial data is, in fact, a major motivation for
nized into the Zerilli equatiori3,4], a single linear wave the present work. Supercomputer evolution will be limited,
equation. This work was later elaborated by Ferrari andor the foreseeable future, to evolving the interaction of holes
Ruffini [5] who considered the head-on plunge of a particlefor short times. The starting point for these evolutions will be
which starts with nonzero inward velocity at spatial infinity. initial data from some approximation methoe.g., a post-

There is now renewed interest in such calculations. Thé\ewtonian expansignThe way to make the bridge from the
advent of laser interferometric gravity wave detec{@ishas  approximation to the strong field realm of supercomputing
directed attention at black hole collisions as one of the mostequires that we understand what the crucial features are of
plausible, and surely the most fascinating, sources of detecthe initial value data. It seems to us that the particle limit
able waves. But the generation of strong waves is a procegsovides a very useful probe of this issue.
without simplifying symmetries and one which involves  The remainder of the paper is organized as follows. In
strong field interactions. The challenge of finding energiesSec. Il we start by presenting the basic mathematical ap-
and waveforms generated in these processes helped to sgupach. Like the DRPP calculation, our approach uses fre-
the recent effort in numerical relativity and, in particular, in quency components. A Laplace transform converts the lin-
the binary black hole supercomputing Grand ChallefiJe  earized Einstein equation for each pole, from a partial
Because of the difficulty of direct supercomputer solutions differential equation in Schwarzschild coordinateisto a set
approximate methods, as checks and guides, are very valof ordinary differential equations in The Laplace transform
able. The “particle limit,” in which the mass of one of the treats the initial data mathematically as if it were a source
holes is very small, is in this category, and models of holesand helps with insight into the relation of the initial value
in binary orbits are a fundamental tool. data and the stress-energy source. Two points in particular

We are interested here in using a particle model to help irshould be noted in Sec. Il. The first concerns the linearized
the understanding of numerical relativity results for colli- wave equation. The equation presented by Zerilli was formu-
sions of holes. To date those computations have been limiteldted in the Regge-Wheeler gaudé], a specific first-order
to head-on, axisymmetric collisior{8,9]. The codes have coordinate choice. The Zerilli equation was presented
also been limited in the time for which they can evolve so-through a Fourier transform and has no direct equivalent as a
lutions. Infall from very large distances cannot at present bgartial differential equation. This is not a fundamental ob-
evolved; computations start from a finite separation of thestacle, but it does complicate the relationship of the Zerilli
holes, and so direct comparison with the DRPP results carwave function and the initial data. To avoid these problems

we use the Moncrief formulation of the probledh]. Mon-
crief's wave function is constructed explicitly from initial
*Electronic address: lousto@mail.physics.utah.edu data and is equivalent to the Zerilli wave function except for
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sourcelike terms. The second point to notice has to do witlpared with predictions based on other results and approxima-
conventions. A variety of conventions has been used for nortions, especially those of the close-limit approximation.

malizing the Zerilli (or Moncrief) functions and their trans- Throughout the rest of the paper we use G=1 units,
forms. In Sec. Il, we present a definition of all our conven-the signature— + ++, and other conventions of the text-
tions and their relationship to those used elsewhere. book of Misner, Thorne, and Wheelgt1].

Aspects of the numerical approach, a Green function in-
tegral, are discussed in Sec. Ill. A major issue is the need for Il. MATHEMATICAL APPROACH

a highly accurate evaluation of the Green function integrals
in order to preclude numerical errors from giving rise to an
erroneous initial burst of radiation. Numerical results are pre- For the straight-line plunge of a particle into a nonspin-
sented in Sec. IV for energy, spectra, and waveforms. Plotging hole the perturbations of the Schwarzschild spacetime
are given for infall starting from rest at radii ranging from are all even parity. We take the particle to be moving along
ro/2M=1.1 tor,/2M =15. These are combined with results the z axis, so that the perturbations are not dependent on the
for infall from infinity to give a complete picture of the de- azimuthal anglep. To describe the perturbations we use the
pendence of the radiation on the initial physical conditionsnotation of Regge and Wheelgt0], here specialized to the
The numerical results are discussed in Sec. V and are conaxisymmetric/-pole case ifi=0):

A. Variables and conventions

d?=dsp+(1—2M/r)(HoY,)dt?+ (1—2M/r) "Y(H,Y,0)dr2+r3(KY o+ Ga?Y .o/ 96%)d 6

+r2(sirfOKY o+ G sing cosfdY ,o/30)dp>+2H Y ,odtdr+2hg(dY ,o/d60)dtdo+ 2h (Y o/ 96)drde,  (2.1)

whereds; is the unperturbed line element for a Schwarzs-variables in the perturbed Einstein equations, one needs to
child spacetime of masd, Hy, Hy, H,, ho, hy, K, andG are  take an extra time derivative. One can then define the vari-
functions ofr,t, andY ,((6) are them=0 spherical harmon- able yrz(r,t) by

ics. We then follow the prescription given by Moncrigef] _

in his Eqs.(5.8—(5.12 and(5.27) to arrive at a wave func- . r2K—(r—2M)H,

tion. Rather than choose the normalization of Moncrief's Vzer= NI+ 3M , (2.9
Q" we choose a normalization closely related to Zerilli's

[3] wave function. In the Regge-Wheeldll0] gauge where the overdot indicates a derivative with respect.to
(G=ho=h;=0) this “Moncrief-Zerilli” function is The Fourier transform of this variable, divided byiw, is
the function defined in Zerilli's papers. For vacuum pertur-

{Hy—rdK/ar}|, (2.2  bationsyze= ¢, and so the Zerilli wave function, in vacuum,
can be chosen to agree with ogir

By computing the stress-energy pseudotensor in a radia-
tion gauge, we find that radiated power per solid angle is

r K r—2Mm
NEL| T Nr+3M

p(r,t)=

where we have used Zerilli's notation

N=(/+2)(/—1)l2. 23 P 1 2

We now give the relationship of this variable, which we shall dQ ~ 64m
use throughout the paper, to the following wave functions:

(i) Q appearing in Moncrief'$4] Eq. (5.27) and(ii) perand  (whereu is retarded time an@ is powey, so that the gravi-
¥num @ppearing in Ref[12]. For /=2 the wave function tational wave power, integrated over all angles, is
appearing asy in Eq. (11-31) of Cunningham, Price, and

I
ou

2 (92
(COtQﬁY/O— WY/O (2.6

2

Moncrief[13], and ¢ defined in Eq(13) of Price and Pullin 1 (7+2) oy
[14], agree withiy,er. The relations are P= (/=2)!| gu 2.7
Y=2QI[/ (7 +1)]=2[(/=2)1(/+2) 1pen Our wave functiony satisfies a second-order wave equa-
= 2[(7 =27+ 2) T (2.4 ftion with a source term,
2 2
Zerilli [3] derives his equation only in the frequency do- Y _
main, and so no direct comparison can be made with func- at? + ar*? VANY=SArD. 28

tions of r,t. It is, however, straightforward to use the same
steps as Zerilli in the Regge-Wheeler gauge, but confined tblere r* =r+2M In(r/l2M —1) is the Regge-Wheeldrl0]
ther,t domain. It turns out that to decouple the even-parity“tortoise” coordinate,V , is the Zerilli potential
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2M a0 1 )
vV, (r)= 1—7 R44= k| (1—2M/r)“U —ﬁ(l—ZM/r) S(r—R)/re,
2.1
2)\2()\+1)r +B6A2Mr?+ 18\ M?r +18M°3 219
r3(Ar+3M)? ’ R22K = k[ 8(r —R)/2U°],
2.9 where
andS(r,t) is the source term. _ T
We are interested in the case in which the source is a K=8mMg\(2/+1)/4m. (219
point particle, of massn,, following a spacetime trajectory ; ;
given byt=T(7), andr=R(7), wherer is proper time along When these are used in B@.13 the result is
the particle world line: 2(1—2M/r)k
S (r,t)=— —r3(1—-2M/r)
T = (Mg /UQUHUYS(r —R)S2(Q)/r2  (2.10 V1) (Ar+3M)
, r(a+1)—M
Here U#=dx*/dr is the particle four-velocity, and the X5god =R+ ——go—
0-component iU%=¢g,/(1—2M/R), whereg,=—U,, the
“energy-at-infinity per unit particle mass,” is a constant of 3MU°r(1—2M/r)?
motion that takes the valugl —2M/r  for infall from rest at N I\+3M Sr—Ry|. (2.1
ro. The two-dimensional delta functiof?(Q)) gives the an-
gular location of the particle trajectory: When the source term is included, the relation between our
wave functionys and the Zerilli wave function of Eq2.5
becomes
Q)= 2 Y/l 6,6)Y7n( 6, 8)
- «kU%(r—2M) dR
r-R). (2.1

=y er — 0
:Z Y, o(O)\(2/+1)/4m, (2.12) Y=Yz (T (1 3M) dt (

B. Initial data
with the last expression applying for infall along the positive ] ] ] ]
7 axis. For comparison with established results of numerical rela-

We now need to write the EinsteinG(,,) and Ricci tivity we want initial data representing an initially stationary
(R,,) tensors, in a tensor spherical harmonic decompositiospacetime, and so we takge, the initial time derivative of
Iike that in Eq.(2.1). The components we shall need are ¢, to be zero. To determine ou, the initial value ofy, we

choose an initial three-geometry with the conformally flat

form that is used in numerical relativif15,16]:
Goo=2, G44Y,y, Rg=>, R44Y,q, o _
4 4 ds?=d(r,0)Y[dr?+r?(de>+sirfed¢?)], (2.189

_s ) 5 where® satisfies a flat-space Laplace equalitid =0. We
Ryo= > (R22KY 1o+ R22G°Y 10/067).  (2.12 choosed to represent a throat of mass;, on thez axis at
z=2z, and a throat of masm, at z=z,. The simplest such

(Here, and below, we omit indices where the meaning of Sflution has the form

the symbols, such a&44, is clear from the contextBy

rearranging the expressions for the perturbed Einstein and d=1+ 1 m

Ricci components, we find that the source term in €9, 2\ JrZsirfo+ (r co¥—1z,)?

for an axisymmetric problem, is

m;
2(1—2M/r) ) 2M\ 4 + Tser 5 (219
= — = r“sinf6+(r cosh—2z,)
A= Do e |1 e ReX
4 We now identify M=m;+m, and choose
ra . :
—(N\r+M)R22K — —G44+r3R44}_ Z3=—12y(my/m;) so that the dipole moment vanishes for
Ar+3M r>z,. We treat the mass ration,/M as small and keep

(2.13  termsin Eq(2.19 only to first order in this ratio. We ignore
the nonradiative”= 0,1 perturbations and writ® as
The Einstein equations can now be used to replace the per- M
turbed Ricci and Einstein components with components of MMy
the particle stress energy: e=1+5 + T, E FATP,(cos), (2.20

G44=kU°(1—2M/r)28(r —R)/r?, where
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_ ((zpfTY if T>2zy, L 2M)2a2 . 2M 3M\ 1 9K
FAO=\ fTzp) t if T2, @29 ~ w2
We next change radial variables, from isotropiclikéo a _ ( 1— ﬂ) A K=—G44
Schwarzschild-like coordinate with the transformation r r2
_ Zz 2
= (Jr+r—2M)2a. (2.22 B+ /2/+1Uo(1_ﬂ) L str—ry).
4 r r
When this is used in Eq2.18 and terms higher order in (2.28
m, are omitted, the result is '
2m,/r — By integrating across the discontinuity and by using Egs.
A= 1+ o, f/(r)P/(COS‘”) (2.21), (2.22, and(2.24, we find
L d6*+sir?od ¢ 2.2
x 1—2M/r+r (d67+sin6d$%) | 2.23 AerEdK/(jrlr:rg_dK/dr|r:ra
From this we can infer that the initial value perturbations in — grm V(2/+ D)/
the Regge-Wheeler notation of EQ.1) areG=h;=0 and ZTngg/Z‘ [1—-2MIr,
K 2m2/r__}_ — [ 4= - _ g V@ Dlan 229
=He=1rwia N 27771 (2.24 -oeT Org‘/il_zm/ro' :

We must now complete the identification of this confor-

mally flat solution with the point particle solution. Clearly which gives us the same relationship as in E327).
the locationr =z, of the perturbative throat must be set to

Z,=ro=(\ro+ Jro—2M)?/4. (2.25 C. Laplace transforms
We now define the Laplace transforinh of ¢ to be

The massn, of the throat mushot be set to the mass, of
the particle. The particle mas®, can be viewed as the w
“bare” mass of the particle, the mass that is measured very Y (r,o)= fo e'“ly(r,t)dt. (2.30
close to the location of the particle. On the other hangljs
a formal parameter of the initial value solution; since the
total Arnowitt-Deser-Misne(ADM) mass for Eq(2.19 is e take ¢ to vanish fort<0, which means tha®(r, )
m, +m,, gravitational binding energy is included m;. We st pe analytic in the upper half of the comptesplane. At

give here two arguments for the correct relationship. Theiarge r, for outgoing wavesg(r,t) is a function only of
first is based on the definition, given by Brill and Lindquist ; _-* and soW takes the form

[15], of “bare” mass for a solution with the formi2.19, a

mass exclusive of binding energy. To find an expression for

this bare mass they look at the extension of the geometry \I,(r,w)*)A(w)eiwr*_ (2.31)
through the perturbative throat into an asymptotically flat

universe; the bare mass of the perturbative throat is the mass

measured at infinity in that universe. From E#3) of Ref.  \ve callA the amplitude of the outgoing radiation. Since the
[15] the bare mass of the perturbative thr@atfirst order in outgoing radiationy(r t) is pure real, the amplitude satisfies

my/M) is the crossing relatioh(— w)=A* (w).

bare _ The waveform for outgoing radiation, as a function of

my " =my(1+M/2r). (226 retarded timeu=t—r*, can be found by the inverse trans-
form
We identify the bare mass with the particle masg and
conclude
-1 1 A —iwu 1= —iwu
M 1 oM zp(u):Z A(w)e '"“do=R p A(w)e "“dw|.
m2:m0 1+__ :_mo 1+ 1-—. - 0
2r 2 Mo (2.32

(2.27

An independent way of finding the relationship is to look atFor a particle falling in from infinity the waveform extends
the perturbed Hamiltonian constraint. For a conformally flatto u— —, and there is no initial data to deal with. In this
(Hp=H,=K) initial three-geometry[equivalent to Eg. caseA(w) is to be interpreted as a Fourier, rather than
(C79 of Ref.[17]] this gives us Laplace, transform. If the particle hag> 1, then the wave-
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form does not vanish at— —<, and the transform exists Mo ro\ Y2 r AM
only for w in the lower half plane, and will have a pole at T(r)=so<m) (m) \/1- r—+ 1+ r_)
w=0. For the inverse transforifthe first integral in Eq. 0 0
(2.32] the contour should be interpreted as going below the 0 312 Iro
real o axis, and so the integral is the equivalent of the (W) €0 arcta+ T—l}
Cauchy principal value plus half the contribution of the resi-
due of the pole ato=0: oM 2M
+2 arctan{rao1 - (2.39
0

d(u)= Re[ym) %fmA(w)e"”“dw
+ '5 lim {wA(w)}. (2.33

From Parseval’'s theorem and EQ.7), we have that the
radiated energy at Scki is
d 2
Wy

du

1 (/+2)! w(
_E(/—z)!f_m

1 (/+2)!
12872 (/ — 2)![
1

©

0?|A(w)|?dw

— o0

%)

(/+2)!
(/—2)!Jo

The energy spectrum is, therefore, given by

w?|A(w)|?dw. (2.349

6472

dE 1 (/+2)!

- - 72 2
do 6472 (/—2)1¢ [ACw)[*.

(2.39

We now multiply Eq.(2.8) by €', integrate fromt=0 to
%, and integrate by parts in the integral involviagy/ dt2.
The result is an ordinary differential equation fér.

5 S : :
ez TLo"=VANTY == go(r) +iwio(r) +S(r, ),

J
(2.39

whereyy(r) is the initial value ofy(t,r), i,//o(r) is the initial
value of (t,r), and the source terf@ is defined as

S(r,w)zfooce‘“’ts/(r,t)dt. (2.3

For the particle source we substitute Q.16 into Eq.
(2.37), to get

_2(1-2Min)k 21— oM/
She)= T Do +amy| " (A72MID
" 1 d/[ et . 1 [r(Av+1)—M
|R| dt| 2U°R IR| 2u°
3MU°r(1-2M/r)?| 03
B rA+3M € : (239
T(r)

The subscript T(r)” indicates that functions of time, such

as R=dR/dt,U%e'“, are to be evaluated at the value of
t=T(r) whereT=T(7) with r=R(7). For infall from rest at
radiusr, this givest as a function of through

The result in Eq(2.38 for S(r,w), however, is not valid for
r=ry. Whenr =r, the § functions in Eq(2.16), as functions
of t, have vanishing arguments &t 0, the end point ot
integration in Eq.(2.37), and so the integration is not well
defined. The way to deal with this will be explained in the
next section.

lll. COMPUTATIONAL IMPLEMENTATION
A. Green function formal solution
We start by rewriting Eq(2.36 in the form
PV
ar*?

+H[@?=VAN)]V=S(r,), 3.0

where S is the complete right-hand side of E@.36), in-
cluding both the stress-energy term and the initial value
terms:

Sl @, 1) =—o(N) +iwpy(r)+S(r,®). (3.2

This equation is to be solved for the boundary conditions of
ingoing waves at the horizon and outgoing waves at spatial
infinity: ¥—e '™ for r*——o and T—e“" for
r* — +o. The Green function solution is found in the usual
way. We definey, (r*,w) and yr(r*,w) as the homoge-
neous solutions of Eq3.1) with asymptotic forms

r*ﬂfoc

yL(r*1(U) N e*iwr*

r¥ oo | .
YR(r*,w) — €. 3.3
We define the Wronskian of the homogeneous solutions, an
r*-independent constant, to be

d

d
W(w)EyLFyR_yRFyL- (3.9

With the above definitions, the Green function solution is
written

1 r*
\I,(r!w): m yR(r* ,(l)) fﬁmstot(rvw)yL(F* vw)dF*

+yL(r*iw)J':Stot(Flw)YR(F*lw)dF* . (35)

In the limit of larger™* this gives us

1 o0
A(w):Wf_mstot(rlw)yL(r*vw)dr*- (36)
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B. Evaluation of the Green function integral whereF andG contain noé functions. The troublesome part

The first two terms in Eq(3.2) are straightforward to of the Green function integral can then be written as
integrate in Eq.(3.6), but the stress-energy source term
S(r,w) cannot be evaluated at. [The expression in Eq. .
(2.38 formally diverges asr(—r) ~*? and hence cannot be f S(r, @)y (r*,w)dr* =T, + T, (3.8
used in Eq(3.6).] To make sense of this we start by writing —
the source in Eq2.16 as

S(r,t)=F(r,t)8'(r—R[t])+G(r,t) 8(r —R[t]), whereZ; is the integral involvingG andZ, involvesF. The
(3.7 first of these is

+ oo i 00 I 00 dr
Il=J e"”‘dtJ yL(r*,w)dr*G(r,t)é(r—R)=f e""‘dtf yL(r*,0)G(r,t)8(r—-R)————
0 —% 0 oM 1-2M/r

=fmei‘"tyL(r*(t),w)G(R(t),t)dt/[l—2M/R(t)]=—fro e Ty (r*,w)G(r,T(r))dr*/R. (3.9
0

In the final integral, the factor E?%v(r—ro)*l’2 diverges but is integrable. A similar set of transformations is now applied to
Is:

+ oo . oo o© oo dr
Iff e"“tdtf yL(r*,w)F(r,t)ﬁ’(r—R)dr*=f e""tdtf yL(r*, o)F(r,t)8'(r-R) ————
0 —o 0 2M 1-2M/r

— i wt ( F ) F J *
= [ ety 000 | T |+ g e DL (©,0)]

*

—jro IwTr)(l ZM) ( F ) . ( F ) dr
=] e “ ar\ T oM yu(r*,m)+ 1T=oMIr (y (r*,w))

To evaluate these explicitly we need the fact that for free fall from res§:at

bl [, 2M [2MIr —2Mir, a1
ol 1-2M/ry 319

We can now use the explicit expressions Fdir,t) andG(r,t) from Eq.(2.16) to write

r=R(t)

*

(3.10

ITe g eeTdrx (1— 2M/r) i 1o M (2)\—3+12M/rO)M a1
LT TN L) L aMir—aMir, (Nr3My | ar YT AT+ 3M - 312

From Egs.(3.6) and(3.2) and the definitions of; +Z,, we have that

Alw)= IﬁIﬁiwﬁlzﬁo(r)yL(r*,w)dr*—f:ipo(r)yL(r*,w)dr* (3.13

W(w)

Since we are considering an initially stationary problem, we h'bdﬁeo. The initial data fory comes from putting E¢2.24)
into EqQ. (2.2):

om, JAml(2/+1) e g MU Tolr7
VU s v vy varervi | KOS S N vy g
2M_[ —(/+1)rgir7+2
—r 1_Tr /771/70‘+1 ) (314)
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where the upper expressions apply in the aase, and the  Simpson’s rule. From the solution fév the energy spectrum
lower forr<ry,. is computed with Eq.(2.35 and the waveform from

It should be noted that, approaches a nonzero constant,Ed. (2.32. _ _ _ _
andy, (r* ’w)_>efiwr*, asr—2M, and so the integral over The numerical solution used a routine to find the “particle

Vo, in Eq. (3.13, is improper at large negative . We must contribution,” Z, + Z,, and one for the “initial value contri-

recall that we are really computinlyin the upper half of the bution,” the integral ovey, in Eq.(3.18. For bOth routines,
; - ; second-order convergence was found and Richardson ex-
complexw plane. To deal with this computationally we re-

X ! . trapolation was used. The step size in the Runge-Kutta and

cast the integral in Eq3.13 into the form intggration routines were halvped until the Ricr?ardson ex-
w . trapolate agreed with that from the next larger grid within a
f Yo(NYL(r* ,w)dr* —iw Lyg(2M)e ' st preset error limit. The initial value contribution could be usu-

e ally be found within an error of 0.2%, while the particle

" contributions required an error preset of 0.5%. For most val-

+ f Po(r)yL(r*, w)dr*, ues of/,w,r, these precision requirements were easily met.

Far The exception was a relatively small number of points at
(3.15 which the real and imaginary parts of a contribution differed

' by more than an order of magnitude. In this case it was

where ¢o(2M) is the limit of ¢, at r=2M. The value of difficult to get high accuracy in the smaller part.

" fanmust be chosen such that there is negligible variation of Afn ?Stﬂmtattﬁ of;he_ erlrlor_ in outr r?sults Iis complicated by
J betweerr*._. and the horizon. e fact that the physically important results are a superposi-

tion of the particle and initial value contributions, and sig-
nificant cancellations occur in this superposition. These can-
cellations, in principle, mean that the error may be much

The first step in the solution is to determine the Wronsk-larger than the small relative error in each contribution. To

C. Numerical method

ian in Eq.(3.4). We denote the form of, at larger by arrive at an estimate of the error in our determinations of the
radiated energy we have recomputed the energy for four tri-

YL ~ a(w)e" +B(w)e o, (3.1  als, in which=0.5% was added to the particle contribution,

r—o and then to the initial value contribution. The results for

. ] ] ] ) energies and errors are given in Table |I. We see that for
We find 5(w) by solving Eq.(3.1) with the right-hand side  many cases the computed energy is not highly sensitive to
set to zero and with the starting conditign=e™'*"" im-  the cancellation; the estimated error of around 1% is just
posed at a large negative valuerdf. A fourth-order Runge- what we would expect in the squatenergy of a quantity
Kutta routine is used to integratg out to large values of (amplitude with an error of 0.5%. For some cases, however,
r* where it is matched to approximate forms of the asymp-especially those with highef, there is a significant magni-
totic solution. In practice, good accuracy was difficult to fication of error. We emphasize that the error estimates given
achieve with the asymptotic form in E¢3.16 and asymp- in Table | are extremely conservative. In arriving at them we
totic solutions one order higher ind¥ were used. From have used the maximum 0.5% error applied to all values of

B, the Wronskian follows immediately: o, Whereas this maximum error actually applies only to a
) small subset of the points. The smoothnessnabs) wave-
W(w)=2i0p(w). 317 forms reported in the next section, and the consistent varia-

tion of results with changingg, is evidence that the actual
errors are rather smaller than those reported in Table .
In addition to the infall from finiter, we also have com-

With B in hand, withg,=0, and with the substitution in Eq.
(3.19), the problem consists of computing

1 . puted spectra and waveforms for infall from infinity. We
Alw)= Ziwp (@) i+ T— o(2M)e™ ' “'start characterize these cases with the same paramgter use
for infall from ry. Here it has the value of the Lorentz
P factor
+iwf Yoy (r* ,w)dr* |, (3.18
Mt ° - go=11-v2 (3.19

whereZ;+7Z, is the integral given in Eq(3.12 and ¢, is  for a particle with velocity .. at infinity. For computation of
given in Eq.(3.14). A numerical solution foA(w) is found  infall from infinity the above computational scheme is modi-
by using a fourth-order Runge-Kutta routine to solve yor  fied only in the following ways(i) The form of T(r) in Eq.
and dy, /dr*, and the integral in Eq(3.18 is done by (2.39 must be changed to

€0 ( r ) ) 2M  (2e2-3)g,

L _ 12807 9)%0 2_ [ \/ 2 1y
SZ-1\2m) Veom e \/(80 1)(2M+ L+(eo 1)<2M”

(23— 1)(r/2M)+ 1+ 2go(r/2M) Je5— 1+ 2M/r
(ri2M)—1 -

In

T(r)y=-—

+ In{ (3.20
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TABLE |. Radiated energy for infall fronn. TABLE Il. Radiated energy for infall from infinity.
ro/2M / (2M/m3)E, Error £o (2M/m3)E, (2M/m)E4 (2M/MH)E,
15 2 1.64<10°2 1% 1 1.82<10°2 2.18x10°3 2.96x10°4
3 1.98<10°3 1% 1.1 2.75¢10°2 3.48<10°3 5.06x10 %
4 2.88<10°4 5% 1.3 6.48<10 2 9.90x 103 1.73x10°3
15 1.285 1071 2.40x10°? 5.21x10°3
5 2 1.43<10°? 1% 1.8 2.70<10°! 6.34x10 2 1.76x10 2
3 1.62<10°3 2% 3 1.285 4.46%101 1.885<10°?
4 2.23x1074 6%
the spectra for the two limiting cases, the DRPP infall from
3 2 1.40<1072 2% rest atr,— o, and the close-limit spectrumy— 1. (The lat-
1.65< 1073 4% ter is normalized to have the same energy as ghe2 spec-
4 2 61x 10~ 11% trum.) Thery/2M =2 spectrum has an appearance that inter-
polates between the two limits, as might be expected. As
, ro increases further, however, changes in the spectrum de-
2 2 1.4%<10 3% velop that might not be expected. As shown in Fig. 3, the
2.21x10°3 5% simple spectrum for smatl, develops a secondary peak and
4 3.56x 104 11% the secondary peak grows witly. As ry continues to in-
crease, the initial shape of the waveform becomes a very
- . broad depression, extending from the moment infall begins
15 2 8.1K10 3% to the beginning of quasinormal ringing. This is illustrated in
3 2.10x10°° 5% the waveform in Fig. @), for r ,/2M = 10. The start of infall,
4 5.66<10°4 10% att=0, ro/2M =10, corresponds ta/2M =—12.2, and it is
at this value ofu that the waveform begins to take on non-
11 5 902104 “1% zero values. The initial part of the waveform, then, represents

L, the gravitational bremsstrahlung from the early nonrelativis-
3 1.85¢10 1% tic part of the particle motion. The small wiggles around
4 4.06<10°° 4% u/2M~ —12 are a numerical artifact due to imperfect can-
cellation of contributions from the initial value and particle
parts of the source(To verify this we changed the initial
(if) The initial value contributions in Eq(3.18 must be value contribution by+10% and found the change in the
omitted. (i) The limit of integration in Eq(3.12 must be jnitial wiggles to be much greater than in other features of
changed fromrg to . The computed energy for these the waveform. For comparison, a DRPP waveform, for in-
go=1 cases are given in Table Il. Since there is only afall from infinity, is also shown in Fig. 4(For infall from
particle contribution in these cases, there is no issue of cannfinity, of course, the zero of time cannot be set to the be-
cellation affecting the errors. The errors in the energy are, imjinning of infall. The time was arbitrarily shifted for the
fact, primarily due to the cutoff in the solution at a finite DRPP curve. This waveform has a similar ringing pattern as
radius(with an analytic addition to represent the source conthe infall from a finite radius, but lacks the initial waveform
tribution to infinity). Error estimates were made by varying depression.

the cutoff radius and were found to be around 1% for all The end of the initial waveform depression is, roughly,

eo=1 cases. the beginning of quasinormal ringing, as can be seen in Fig.
4(a). The generation of quasinormal ringin@8] is associ-
IV. WAVEFORMS AND SPECTRA ated with the peak of the potential in E(.9). The time

t/2M ~54 at which the particle reaches the peak, at around

Results for quadrupole waveforms and spectra naturally/2M ~1.5, is at retarded tima/2M ~53. This is consistent
divide themselves into three ranges, smiglPM (less than  with Fig. 4(a), which shows ringing beginning somewhere
~2), moderate o/2M (from ~2 to ~5), and large ¢/2M. around this value ofi.
Waveforms are given as functions of retarded time It is interesting to compare the waveforms for a particle
u=t—r*. For smallry, as shown in Fig. (B), the shape of falling from rest to the waveform of a particle on a time-
the waveform is that of simple quasinormal ringing. This symmetric geodesic trajectory, a particle that long in the past
shape is the same for all, and the single example shown was moving radially outward just outside a hole, that reaches
suffices for all smalty. Since the waveforms have the samea certain maximum radius, at timet=0, and that subse-
shape, the energy spectra, shown in Figb) &nd Xc), also  quently falls into the hole. The analysis of this case requires
have the same shape, changing only in magnitudeyas-  only a simple modification of Eq(3.13; the initial value
creases. terms are omitted an@lue to time symmetry of the souice

As ry increases further, the early negative excursion ofthe complex conjugate of;+Z, is added toZ;+Z,. The
the waveform begins to broaden, and the spectrum shifteesulting waveform is shown in Fig(&, and has also been
slightly. Figure 2 shows they/2M =2 spectrum along with given in Ref.[12]. That waveform shows two periods of
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FIG. 2. The/'=2 spectra for ,/2M =2 and for the two limiting
cases of DRPP and the close limit. The close-limit case is normal-

ized to have the same energy as th®M =2 spectrum. For the
three spectra, close-limit caseg/2M =2, and DRPP case, the
maxima of the spectra occur, respectively,cgt,{(2M)= 0.765,

0.675, and 0.625.

quasinormal ringing, an early one excited when the particle
goes outward through the region around the potential peak
and a later one due to motion inward through the peak. This
later period of ringing and, in fact, all features of the wave-
form generated aftar/2M ~ — 10 agree very closely with the
waveform for the particle falling from rest. Because the ear-
lier ringing has a higher amplitude, the energy spectrum for
the symmetric trajectory, shown in Figid, is dominated by
this early ringing and has very large amplitude. In the figure
it is seen to be much larger than the DRPP spectrum, which
(see Fig. 4 approximates the spectrum for infall from

ro/2M=7.5.

Since the spectra for infall from both smal and from
© have a single pealsee, e.g., Fig. 2 it is interesting that

0.04

— r/2M=3.5
r/2M=4

— — - r=infinity

(m, *)dE Jdw

0.03

0.02 -

0.01

waveform is shown as a function of retarded tiomet—r*, with

t=0 corresponding to the moment at which the infall begins. In-

cluded for comparison are the predictions of the close-limit ap-

proximation. For the ,/2M = 1.1 case, shown itb), the close-limit

energy is larger than the computed energy by 11%. For the

ro/2M=1.5 case, in(c), the close-limit energy is 2.9 times the FIG. 3. Spectra of'=2 energy fom ,=3.5 and 4. For compari-
son, the DRPP spectrum for infall from infinity is also shown.

0.00
0
Mo

computed energy.
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FIG. 4. The/=2 waveforms and spectra for largg In (a) the waveform for ,/2M =10 is shown as a function of retarded timend
is contrasted with the DRPP wavefor(fior which the zero of retarded time has a different meanikgergy spectra are shown (b)—(d)
for three large values af, and are contrasted with thg— o DRPP limit (dashed curves

for intermediate values of; the spectra are characterized by  This explanation can be tested on time-symmetric motion,
a row of more-or-less evenly spaced bumpsrAgrows, the  where there are two well-separated periods of ringing in Fig.
number of bumps increases, and the bumps decrease in spa¢a). The amplitudes of the ringing are different, of course,
ing and in height. The origin of these modulations can beand so we should not expect 100% modulation of the spec-
understood by considering a simple example: Suppose @um and, indeed, the modulations in Figbbare not 100%.
waveform consists of nothing but a single period of quasi-The time shift between the first and second ringing periods is
normal ringing with the transfori\(w). The transform of  on the order of 75(R1) (roughly the time it takes for the
the same waveform shifteq I_ater in time _EF)ghiﬁ WOl_JId_be particle to rise up fromry/2M=1.5 to ro/2M=7.5 and
A(w)e'“Tsnit. A wave consisting otwo periods of ringing,  fa)| back to ro/2M=1.5). This suggests that the spacing
the original :%md the later one, would then have a transformy e spectral bumps should b&w=2m/[75(2M)]
A(w)(1+e'*'sn) and, hence, an energy spectrum =0.84/2M, which is in good agreement with what is seen in
Fig. 5b). The application to a nonsymmetric waveform, like
, 5 1 that in Fig. 4a), is less obvious. The spacing of bumps
w’|A(w)|?4 cog 5 @Tshite - (4.1 5,b~0.11/M in Fig. 4(c) suggests that the time shift is on
the order of 57(®1). This, presumably, represents the time
The combined spectrum would have the shape of the singleetween the descent of the waveformu#2M~0 and the
waveform spectrum modulated on a frequency scalétart of ringing at/2M ~50.
Sw=2m/Tgyy. If the two waveforms were not identical, we ~ The interpretation works as well as a predictor of the
would expect modulation of the spectrum, but less tharbump spacing for other values of and seems clearly to be
100% modulation, and not the same for all frequencies.  qualitatively correct and to explain the progression of the
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® Jm, \ \ \ \ - \ forms for />2 show a more complicated structure of the
‘ ey preringing radiation, resulting in more complex spectra. The

1e2 1  total energy radiated in different poles is shown in Fig. 7.
Results are given for several different valuesrgfand for
~ nonsymmetric trajectory ' particles falling in from infinity, both with no initial velocity

- symmetric Irajectory (the DRPP casgeand withey>1. The distribution of energy
07 1 1 among the multipoles is dominated by the quadrupole for
smallry. Asrg/2M increases to around 1.5, the higher mul-
tipoles become more important, but with further increase of
ro/2M to ~ 2 the trend is reversed, and the ratio of multipole
energies take on values that remain constant for further in-
creases inry. For infall from infinity, the ultrarelativistic
cases, with highey, radiate more heavily in higher multi-
poles, as would be expected. To find the total energy, given
in Fig. 8, we computed energy radiated4r=2,3,4 modes

1.2

=50 -30 -10 10 30 50 70 and assumed that the energies from edcHecreased as a
(@ u/(2M) geometric series. This allowed us to add an estimate of the
04 ‘ ‘ . contributions from/>4. The addition was typically around
2% of the energy. The energy is plotted as a function of
(m; dE/do r{2M=7.5 proper distancel= [ rz?wdr/\/l—ZM/r, rather thanr,, to
=2 show more clearly the details for small separation.
031 —erer Aspects of infall from infinity are given in Fig. 9, which
infall from infinity shows waveforms and spectra. The waveforms are character-

ized by a large early amplitude that is an increasing function
of &4, and the spectra show strong low frequency radiation,
extending tow=0, due to this early phase of the radiation.
The total energy radiated in the lowest three multipoles is
also shown(Since the relative importance of higher multi-
poles increases withy,, extrapolation to total radiated energy
is not immediatg.The energy results are extended to include
infall from finite radius where ¢, takes the value

JI—2Mry,

(b) @M V. DISCUSSION

02 r

0.1

0.0

One of the interesting questions that can be clarified with
the above results is the validity of the close approximation.
This approximation, for two holes, assumes that the holes are
initially close enough so that the structure of the initial data
at small radius is inside an initial all-encompassing horizon.
Only the larger features of the initial data therefore are
elevant to the production of outgoing radiation. We can im-
mediately apply this method to the particle problem by com-
paring our initial geometry, in Eq$2.23 and (2.21), with
the initial geometry in Eq(4.25 of Ref.[12]. We see that

spectra. A3 approaches the horizon, the time between thehe results of that reference can be applied to the particle
initial moment and the onset of ringing goes to zero, and sgroblem by the replacement

the spacing of bumps is infinite and there are no modulations
of the spectrum. We get the single-humped close-limit spec-
trum. Asr, grows, the time between the initial motion and
the start of ringing increases, and so the spacing of th
bumps gets smaller, and hence more bumps appeary &s
becoming larger, however, the early waveform is becoming L ,
less dramatidthe initial depression is decreasing in ampli- Mo\ To |" 241
tude, and so in interacting with the later ringing it is pro- K/(MO)HW(W)(W (1+1-2M/rg)* %,
ducing smaller modulation; the height of the bumps is de- (5.2
creasing. Finally, asg—o, we can think of the spectrum
approaching one that has an infinite number of infinitesi-By the methods of Ref$12,14, E,/2M, the radiated energy
mally spaced zero-height bumps, bumps that are invisible ifn units of 2M, for each multipole, is shown to be
the DRPP spectrum. 1.26X10 2k3,3.10< 10 3«3,8.33< 10«3, ..., respec-
Results for higher” poles are shown in Fig. 6. The wave- tively for /=2,3,4,. ... If wereplacex  with Eq. (5.2), we

FIG. 5. The/=2 waveform and spectrum for a time-symmetric
trajectory. In(a) the waveform(dotted curveis given for a particle
that moves outward and reaches a maximum,&M = 7.5 before
falling inward and is compared with the waveform for infall from
ro/2M =7.5. In (b) the spectrum of energy generated by the time-
symmetric motion is compared with the DRPP spectrum for infall
from infinity. The DRPP spectrum contains less than 5% as muc
energy as that for the time-symmetric motion.

8M k(o) —My(25/M)” . (5.9

Svith Egs.(2.25 and(2.27) this can be rewritten as
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FIG. 6. Results for higher multipole moments. Fgi2M =5, waveforms and spectra are shownfor 2,3,4. Dashed curves are spectra
find the close limit predictions for energy. In Refd2,14 methods of Secs. Il and Ill, with only the following changes:
the outgoing radiation is computed from an evolution of The integralsZ; +Z, are omitted from Eq(3.13, and only
¢, using a finite difference representation of E8) (with

ther>z, form of F,(r) is used in Eq(2.21). The results of
no source term Here we have also computed waveformsthe two methods are energy values that agree to better than
and energies in the close limit directly by the transform1% and waveforms that are almost indistinguishapléne
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(2.9. The waveforms in the close limit all have precisely the
same shape; only the amplitudes differ. The computed wave-
forms are in excellent agreement with the snrgllwave-
forms[see, e.g., the waveforms fog/2M = 1.5 in Fig. Xa)].
107 ¢ ] The close-limit predictions of waveform shape are even bet-
DRPP e g=15 ter than the energy predictions. Only fog/2M larger than
- [ around 1.5 does the waveform start to change from the close-
Ll e Ea— limit shape.
§ ‘ TN T The dependence of radiated energyr gishown in Fig. 8,
< ' T N is perhaps the most interesting result of our computations.
e ' SSI One has the intuitive instinct that the radiated energy should
~ o decrease with decreasimg. At the crudest level this intu-
VT ition is based on the idea that infall from a larger radius
results in a particle which “strikes” the black hole harder
T~ and excites more quasinormal ringing. Since a decrease of
10° - energy with smaller is expected, a natural first guess for
2 Mumpoi index 1 4 approximating the decrease is to multiply the DRPP energy
by a reduction factor (+ k2M/r), wherek is some fitting
parameter of order unity. This approximation, with 1.5 is
FIG. 7. Energy in different multipoles. Energy fat=2,3,4is  shown in Fig. 11 and is compared with the computed results,
shown for several values of in the case of infall from finite radius gnd with the DRPP limit. The choick= 1.5 was made to
fsm.d.for several di.fferent values afy in the cgsg of infall frqm give good agreement at,/2M =15 and, presumably, at
|nf|n|ty'.[hTheI etnergles foro/2M =1.01 are multiplied by 10 to im- larger values ofr,. (It is difficult to compute energies at
prove the piot. much larger values afy, due to the rapid modulation of the

1.01  (x10) T

numerically evolved waveforms are rather smoother than th&PeCtrum. S o
waveforms from the transform method. They lack the small A more physical justification for decrease of radiation
amplitude wiggles that can be seen, e.g., in the waveform iMith decreasing, can be constructed starting with the quad-
Fig. 1(a) at early times. rupole formula. A faster moving particle from a largey

In Fig. 10, we plot the”=2 close-limit energy prediction implies a larger value of the time derivatives of the quadru-
and compare it to the full computation for the particle infall. pole moment. This argument has been uskd] as the basis
It is clear that the close limit method is acceptable out toof a simple quantitative model for the effect of varying
ro~2.2M —2.3M and fails by a large factor ay=3M. This  The energy for infall from infinity, in that model, is reduced
is in accordance with the general picture that the close limiby a reduction factoF, based on the quadrupole formula.
should be a reasonably good approximation when the pafsee Eq(23) of Ref.[19].] [For larger , that reduction factor
ticle starts inside the peak, aroune-3M, of the potential | gqyces td:r0=l—(60/27)(2M/r0)+O(2M/r0)2.] In Fig.

11, we show the result of that simple model. It is clear that

the Fro factor captures the correct qualitative feature of a

DRPP Limit decrease of radiation with decrease rgf but implies too

: - 1 dramatic a decrease.

R As ry continues to decrease, a rather unexpected effect

/"\\S\VQ/M//V/ appears. Below,~7M the energy begins to increase with

0.02

decreasing separation. At yet smaller radip (less than
/ around 4.81) the energy again decreases with decreasing
é/ ro, as the close limit dictates it must. Thus the relationship of
001 / | radiated energy and, has the expected nature in the two
regimes where simple arguments apply: large separations
l and small separations. The anomalous behavior in the range
4.5M —-7M underscores the fact that the generation of outgo-
/ ing radiation is tied closely to the nature of the potential
. ; ‘ (2.9, which peaks aroundy,=3M and cannot be understood
/ in terms of close or far approximations. This anomaly, it
000 5 10 15 should be noted, appears to have no equivalent feature in the
(Proper distance)/2M case of the head-on collision of two equal-mass hples.
Presumably this is because the replacement of the particle by
FIG. 8. Total energy radiated by a falling particle, as a function@ hole means that the infalling hole is not localized at a

of the initial proper distance of the particle from the horizon. TheParticular value of the potential of the other hole. As the
points shown are at/2M= 1.01, 1.1, 1.2, 1.3, 1.5, 1.8, 2, 2.25, mass ratio of the infalling holes becomes smaller and smaller

2.5, 2.75, 3, 3.5, 4, 5, 6, 7.5, 10, 15. The local maximum is atthere must come a point at which an anomalous bump devel-
ro/2M~2.25 and the minimum aty/2M ~3.5. ops in the dependence of radiation on initial separation.

(2 M/moz) ETo(al
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We have seen that the particle limit provides a relatively ACKNOWLEDGMENTS
easy tool for understanding some aspects of the generation of
radiation and of the collisions of holes. We intend next to use This work has been partially supported by the National
this formalism to study what features on initial data are im-Science Foundation under Grant No. PHY0507719. We
portant for determining how much energy is radiated for parthank Eric Poisson for useful discussions of computational
ticle infall and, presumably, for black hole collisions. aspects of the problem.

[1] M. Davis, R. Ruffini, W. H. Press, and R. H. Price, Phys. Rev. [9] A. M. Abrahams, S. L. Shapiro, and S. A. Teukolsky, Phys.

Lett. 27, 1466(19712). Rev. D51, 4295(1995.
[2] L. I. Petrich, S. L. Shapiro, and I. Wasserman, Astrophys. J[10] T. Regge and J. A. Wheeler, Phys. R&08 1063(1957.
Suppl. Ser58, 297 (1985. [11] C. W. Misner, K. S. Thorne, and J. A. Wheel@ravitation
[3]F.J. Zeri!li, Phys. Rev. Let24, 737 (1970. (Freeman, San Francisco, 1973
[4] V. Moncrief, Ann. Phys(N.Y.) 88, 323(1974. [12] P. Anninos, R. H. Price, J. Pullin, E. Seidel, and W.-M. Suen,
[5] R. Ruffini, Phys. Rev. D7, 972 (1973; V. Ferrari and R. Phys. Rev. D52, 4462 (1995.
Ruffini, Phys. Lett.98B, 381 (1981). [13] C. T. Cunningham, R. H. Price, and V. Moncrief, Astrophys. J.
[6] A. A. Abramovici et al, Science256, 325 (1992; K. S. 230, 870(1979.

Thorne, inParticle and Nuclear Astrophysics and Cosmology [14] R. H. Price and J. Pullin, Phys. Rev. Lete, 3297 (1994
in the Next Millenium, Snowmass ®roceedings of the Sum- [15] D. R. Brill and R .W Lin’dquist- phys. Re\zl_sj, 471(1965
mer Study, Snowmass, Colorado, edited by W. W. Kolb and R[16] A. Al.)rahams an(.j R. H. Price lPh < .Rev5B 1972(1996.
Peccei(World Scientific, Singapore, 1995 #17] F. J. Zerilli, Phys. Rev. [2, 2141(1970

[7] Proceedings of the November 1994 meeting of the Gran 181 C. T. Cunninah R H. Pri dV. M ief Astrophvs. J
Challenge Alliance to study black hole collisions may be ob- | C. T. Cunningham, R. H. Price, and V. Moncrief, Astrophys. J.

tained by contacting E. Seidel at NCSAnpublished 224 64.3(1978)' ) )
[8] P. Anninos, D. Hobill, E. Seidel, L. Smarr, and W.-M. Suen, [19) P- Anninos, D. Hobill, E. Seidel, L. Smarr, and W.-M. Suen,

Phys. Rev. Lett71, 2851(1993. Phys. Rev. D562, 2044(1995.



