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We compute gravitational radiation waveforms, spectra, and energies for a point particle of massm0 falling
from rest at radiusr 0 into a Schwarzschild hole of massM . This radiation is found to lowest order in
(m0 /M ) with the use of a Laplace transform. In contrast with numerical relativity results for head-on collisions
of equal-mass holes, the radiated energy is found not to be a monotonically increasing function of initial
separation; there is a local radiated-energy maximum atr 0'4.5M . The present results, along with results for
infall from infinity, provide a complete catalog of waveforms and spectra for particle infall. We give a
representative sample from that catalog and an interesting observation: Unlike the simple spectra for other
head-on collisions~either of particle and hole, or of equal mass holes! the spectra for̀ .r 0.;5M show a
series of evenly spaced bumps. A simple explanation is given for this. Lastly, our energy versusr 0 results are
compared with approximation methods used elsewhere, for small and for large initial separation.
@S0556-2821~97!03404-8#

PACS number~s!: 04.70.Bw, 04.30.Db

I. INTRODUCTION AND OVERVIEW

Among the earliest calculations of astrophysical sources
of gravitational radiation is the ‘‘Davis-Ruffini-Press-Price’’
~DRPP! calculation @1,2# of radiation emitted when a par-
ticle, starting from rest at infinity, falls into a nonspinning
black hole. In this work, the mass of the particle is treated as
a perturbation of the Schwarzschild spacetime, and the Ein-
stein equations, to first order in this perturbation, are orga-
nized into the Zerilli equation@3,4#, a single linear wave
equation. This work was later elaborated by Ferrari and
Ruffini @5# who considered the head-on plunge of a particle
which starts with nonzero inward velocity at spatial infinity.

There is now renewed interest in such calculations. The
advent of laser interferometric gravity wave detectors@6# has
directed attention at black hole collisions as one of the most
plausible, and surely the most fascinating, sources of detect-
able waves. But the generation of strong waves is a process
without simplifying symmetries and one which involves
strong field interactions. The challenge of finding energies
and waveforms generated in these processes helped to spur
the recent effort in numerical relativity and, in particular, in
the binary black hole supercomputing Grand Challenge@7#.
Because of the difficulty of direct supercomputer solutions,
approximate methods, as checks and guides, are very valu-
able. The ‘‘particle limit,’’ in which the mass of one of the
holes is very small, is in this category, and models of holes
in binary orbits are a fundamental tool.

We are interested here in using a particle model to help in
the understanding of numerical relativity results for colli-
sions of holes. To date those computations have been limited
to head-on, axisymmetric collisions@8,9#. The codes have
also been limited in the time for which they can evolve so-
lutions. Infall from very large distances cannot at present be
evolved; computations start from a finite separation of the
holes, and so direct comparison with the DRPP results can-

not be made. We present here an extension of the DRPP
calculation to the case of infall from a finite radius.

The extension is not at all straightforward. If the particle
starts at infinity, the initial value data can be taken as zero, so
that the spacetime is unperturbed Schwarzschild until the
gravitational influence of the particle is felt. If the particle
starts from a finite radius, the specification of compatible
initial value data cannot be avoided. Understanding the in-
fluence of the initial data is, in fact, a major motivation for
the present work. Supercomputer evolution will be limited,
for the foreseeable future, to evolving the interaction of holes
for short times. The starting point for these evolutions will be
initial data from some approximation method~e.g., a post-
Newtonian expansion!. The way to make the bridge from the
approximation to the strong field realm of supercomputing
requires that we understand what the crucial features are of
the initial value data. It seems to us that the particle limit
provides a very useful probe of this issue.

The remainder of the paper is organized as follows. In
Sec. II we start by presenting the basic mathematical ap-
proach. Like the DRPP calculation, our approach uses fre-
quency components. A Laplace transform converts the lin-
earized Einstein equation for eachl pole, from a partial
differential equation in Schwarzschild coordinatesr ,t to a set
of ordinary differential equations inr . The Laplace transform
treats the initial data mathematically as if it were a source
and helps with insight into the relation of the initial value
data and the stress-energy source. Two points in particular
should be noted in Sec. II. The first concerns the linearized
wave equation. The equation presented by Zerilli was formu-
lated in the Regge-Wheeler gauge@10#, a specific first-order
coordinate choice. The Zerilli equation was presented
through a Fourier transform and has no direct equivalent as a
partial differential equation. This is not a fundamental ob-
stacle, but it does complicate the relationship of the Zerilli
wave function and the initial data. To avoid these problems
we use the Moncrief formulation of the problem@4#. Mon-
crief’s wave function is constructed explicitly from initial
data and is equivalent to the Zerilli wave function except for*Electronic address: lousto@mail.physics.utah.edu
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sourcelike terms. The second point to notice has to do with
conventions. A variety of conventions has been used for nor-
malizing the Zerilli ~or Moncrief! functions and their trans-
forms. In Sec. II, we present a definition of all our conven-
tions and their relationship to those used elsewhere.

Aspects of the numerical approach, a Green function in-
tegral, are discussed in Sec. III. A major issue is the need for
a highly accurate evaluation of the Green function integrals
in order to preclude numerical errors from giving rise to an
erroneous initial burst of radiation. Numerical results are pre-
sented in Sec. IV for energy, spectra, and waveforms. Plots
are given for infall starting from rest at radii ranging from
r 0/2M51.1 to r 0/2M515. These are combined with results
for infall from infinity to give a complete picture of the de-
pendence of the radiation on the initial physical conditions.
The numerical results are discussed in Sec. V and are com-

pared with predictions based on other results and approxima-
tions, especially those of the close-limit approximation.

Throughout the rest of the paper we usec5G51 units,
the signature2111, and other conventions of the text-
book of Misner, Thorne, and Wheeler@11#.

II. MATHEMATICAL APPROACH

A. Variables and conventions

For the straight-line plunge of a particle into a nonspin-
ning hole the perturbations of the Schwarzschild spacetime
are all even parity. We take the particle to be moving along
thez axis, so that the perturbations are not dependent on the
azimuthal anglef. To describe the perturbations we use the
notation of Regge and Wheeler@10#, here specialized to the
axisymmetricl -pole case (m50):

ds25ds0
21~122M /r !~H0Yl 0!dt

21~122M /r !21~H2Yl 0!dr
21r 2~KYl 01G]2Yl 0 /]u2!du2

1r 2~sin2uKYl 01G sinu cosu]Yl 0 /]u!df212H1Yl 0dtdr12h0~]Yl 0 /]u!dtdu12h1~]Yl 0 /]u!drdu, ~2.1!

whereds0
2 is the unperturbed line element for a Schwarzs-

child spacetime of massM , H0, H1, H2, h0, h1, K, andG are
functions ofr ,t, andYl 0(u) are them50 spherical harmon-
ics. We then follow the prescription given by Moncrief@4#
in his Eqs.~5.8!–~5.12! and ~5.27! to arrive at a wave func-
tion. Rather than choose the normalization of Moncrief’s
‘ ‘ Q’ ’ we choose a normalization closely related to Zerilli’s
@3# wave function. In the Regge-Wheeler@10# gauge
(G5h05h150) this ‘‘Moncrief-Zerilli’’ function is

c~r ,t !5
r

l11 FK1
r22M

lr13M
$H22r ]K/]r %G , ~2.2!

where we have used Zerilli’s notation

l[~ l 12!~ l 21!/2. ~2.3!

We now give the relationship of this variable, which we shall
use throughout the paper, to the following wave functions:
~i! Q appearing in Moncrief’s@4# Eq. ~5.27! and~ii ! cpert and
cnum appearing in Ref.@12#. For l 52 the wave function
appearing asc̃ in Eq. ~II-31! of Cunningham, Price, and
Moncrief @13#, andc defined in Eq.~13! of Price and Pullin
@14#, agree withcpert. The relations are

c52Q/@ l ~ l 11!#52@~ l 22!!/ ~ l 12!! #cpert

5A2@~ l 22!!/ ~ l 12!! #cnum. ~2.4!

Zerilli @3# derives his equation only in the frequency do-
main, and so no direct comparison can be made with func-
tions of r ,t. It is, however, straightforward to use the same
steps as Zerilli in the Regge-Wheeler gauge, but confined to
the r ,t domain. It turns out that to decouple the even-parity

variables in the perturbed Einstein equations, one needs to
take an extra time derivative. One can then define the vari-
ablecZer(r ,t) by

ċZer5
r 2K̇2~r22M !H1

lr13M
, ~2.5!

where the overdot indicates a derivative with respect tot.
The Fourier transform of this variable, divided by2 iv, is
the function defined in Zerilli’s papers. For vacuum pertur-
bationsċZer5ċ, and so the Zerilli wave function, in vacuum,
can be chosen to agree with ourc.

By computing the stress-energy pseudotensor in a radia-
tion gauge, we find that radiated power per solid angle is

dP

dV
5

1

64p F]c

]uG2S cotu ]

]u
Yl 02

]2

]u2
Yl 0D 2 ~2.6!

~whereu is retarded time andP is power!, so that the gravi-
tational wave power, integrated over all angles, is

P5
1

64p

~ l 12!!

~ l 22!! F]c

]uG2. ~2.7!

Our wave functionc satisfies a second-order wave equa-
tion with a source term,

2
]2c

]t2
1

]2c

]r * 2
2Vl ~r !c5Sl ~r ,t !. ~2.8!

Here r *[r12M ln(r/2M21) is the Regge-Wheeler@10#
‘‘tortoise’’ coordinate,Vl is the Zerilli potential
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Vl ~r !5S 12
2M

r D
3
2l2~l11!r 316l2Mr 2118lM2r118M3

r 3~lr13M !2
,

~2.9!

andSl (r ,t) is the source term.
We are interested in the case in which the source is a

point particle, of massm0, following a spacetime trajectory
given byt5T(t), andr5R(t), wheret is proper time along
the particle world line:

Tmn5~m0 /U
0!UmUnd~r2R!d2~V!/r 2. ~2.10!

Here Um[dxm/dt is the particle four-velocity, and the
0-component isU05«0 /(122M /R), where«052U0, the
‘‘energy-at-infinity per unit particle mass,’’ is a constant of
motion that takes the valueA122M /r 0 for infall from rest at
r 0. The two-dimensional delta functiond2(V) gives the an-
gular location of the particle trajectory:

d2~V!5(
l ,m

Yl m~u,f!Yl m* ~u,f!

5(
l

Yl 0~u!A~2l 11!/4p, ~2.11!

with the last expression applying for infall along the positive
z axis.

We now need to write the Einstein (Gmn) and Ricci
(Rmn) tensors, in a tensor spherical harmonic decomposition
like that in Eq.~2.1!. The components we shall need are

G00[(
l

G44Yl 0 , R00[(
l

R44Yl 0 ,

Ruu[(
l

~R22KYl 01R22G]2Yl 0 /]u2!. ~2.12!

~Here, and below, we omitl indices where the meaning of
the symbols, such asG44, is clear from the context.! By
rearranging the expressions for the perturbed Einstein and
Ricci components, we find that the source term in Eq.~2.8!,
for an axisymmetric problem, is

Sl ~r ,t !5
2~122M /r !

r ~l11!~lr13M ! F r 2S 12
2M

r D ]

]r
R22K

2~lr1M !R22K2
r 4l

lr13M
G441r 3R44G .

~2.13!

The Einstein equations can now be used to replace the per-
turbed Ricci and Einstein components with components of
the particle stress energy:

G445kU0~122M /r !2d~r2R!/r 2,

R445kF ~122M /r !2U02
1

2U0 ~122M /r !Gd~r2R!/r 2,

~2.14!

R22K5k@d~r2R!/2U0#,

where

k[8pm0A~2l 11!/4p. ~2.15!

When these are used in Eq.~2.13! the result is

Sl ~r ,t !52
2~122M /r !k

r ~l11!~lr13M ! F2r 2~122M /r !

3
1

2U0 d8~r2R!1H r ~l11!2M

2U0

2
3MU0r ~122M /r !2

rl13M J d~r2R!G . ~2.16!

When the source term is included, the relation between our
wave functionc and the Zerilli wave function of Eq.~2.5!
becomes

ċ5ċZer2
kU0~r22M !

~l11!~lr13M !

dR

dt
d~r2R!. ~2.17!

B. Initial data

For comparison with established results of numerical rela-
tivity we want initial data representing an initially stationary
spacetime, and so we takeċ0, the initial time derivative of
c, to be zero. To determine ourc0, the initial value ofc, we
choose an initial three-geometry with the conformally flat
form that is used in numerical relativity@15,16#:

ds25F~ r̄ ,u!4@dr̄ 21 r̄ 2~du21sin2udf2!#, ~2.18!

whereF satisfies a flat-space Laplace equation¹2F50. We
chooseF to represent a throat of massm1 on thez axis at
z5z1 and a throat of massm2 at z5z2. The simplest such
solution has the form

F511
1

2 S m1

Ar̄ 2sin2u1~ r̄ cosu2z1!
2

1
m2

Ar̄ 2sin2u1~ r̄ cosu2z2!
2D . ~2.19!

We now identify M[m11m2 and choose
z152z2(m2 /m1) so that the dipole moment vanishes for
r̄.z2. We treat the mass ratiom2 /M as small and keep
terms in Eq.~2.19! only to first order in this ratio. We ignore
the nonradiativel 50,1 perturbations and writeF as

F511
M

2r̄
1
m2

2r̄ (
l 52,3, . . .

Fl ~ r̄ !Pl ~cosu!, ~2.20!

where
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Fl ~ r̄ !5H ~z2 / r̄ ! l if r̄.z2 ,

~ r̄ /z2!
l 11 if r̄,z2 .

~2.21!

We next change radial variables, from isotropicliker̄ to a
Schwarzschild-like coordinater , with the transformation

r̄5~Ar1Ar22M !2/4. ~2.22!

When this is used in Eq.~2.18! and terms higher order in
m2 are omitted, the result is

ds25S 11
2m2 / r̄

11M /2r̄ (
l 52,3, . . .

Fl ~ r̄ !Pl ~cosu! D
3F dr2

122M /r
1r 2~du21sin2udf2!G . ~2.23!

From this we can infer that the initial value perturbations in
the Regge-Wheeler notation of Eq.~2.1! areG5h150 and

K5H25
2m2 / r̄

11M /2r̄
Fl ~ r̄ !A 4p

2l 11
. ~2.24!

We must now complete the identification of this confor-
mally flat solution with the point particle solution. Clearly
the locationr̄5z2 of the perturbative throat must be set to

z2[ r̄ 05~Ar 01Ar 022M !2/4. ~2.25!

The massm2 of the throat mustnot be set to the massm0 of
the particle. The particle massm0 can be viewed as the
‘‘bare’’ mass of the particle, the mass that is measured very
close to the location of the particle. On the other hand,m2 is
a formal parameter of the initial value solution; since the
total Arnowitt-Deser-Misner~ADM ! mass for Eq.~2.19! is
m11m2, gravitational binding energy is included inm2. We
give here two arguments for the correct relationship. The
first is based on the definition, given by Brill and Lindquist
@15#, of ‘‘bare’’ mass for a solution with the form~2.19!, a
mass exclusive of binding energy. To find an expression for
this bare mass they look at the extension of the geometry
through the perturbative throat into an asymptotically flat
universe; the bare mass of the perturbative throat is the mass
measured at infinity in that universe. From Eq.~13! of Ref.
@15# the bare mass of the perturbative throat~to first order in
m2 /M ) is

m2
bare5m2~11M /2r̄ 0!. ~2.26!

We identify the bare mass with the particle massm0 and
conclude

m25m0S 11
M

2r̄ 0
D 21

5
1

2
m0S 11A12

2M

r 0
D .

~2.27!

An independent way of finding the relationship is to look at
the perturbed Hamiltonian constraint. For a conformally flat
(H05H25K) initial three-geometry @equivalent to Eq.
~C7a! of Ref. @17## this gives us

S 12
2M

r D 2 ]2K

]r 2
1S 12

2M

r D S 22
3M

r D 1r ]K

]r

2S 12
2M

r D l ~ l 11!

r 2
K52G44

528pm0A2l 11

4p
U0S 12

2M

r D 2 1r 2 d~r2r 0!.

~2.28!

By integrating across the discontinuity and by using Eqs.
~2.21!, ~2.22!, and~2.24!, we find

DK,r[dK/drur5r
0
12dK/drur5r

0
2

528pm2

A~2l 11!/4p

r̄ 0
1/2r 0

3/2A122M /r 0

528pm0

A~2l 11!/4p

r 0
2A122M /r 0

, ~2.29!

which gives us the same relationship as in Eq.~2.27!.

C. Laplace transforms

We now define the Laplace transformC of c to be

C~r ,v![E
0

`

eivtc~r ,t !dt. ~2.30!

We takec to vanish for t,0, which means thatC(r ,v)
must be analytic in the upper half of the complexv plane. At
large r , for outgoing waves,c(r ,t) is a function only of
t2r * , and soC takes the form

C~r ,v!→A~v!eivr* . ~2.31!

We callA the amplitude of the outgoing radiation. Since the
outgoing radiationc(r ,t) is pure real, the amplitude satisfies
the crossing relationA(2v)5A* (v).

The waveform for outgoing radiation, as a function of
retarded timeu[t2r * , can be found by the inverse trans-
form

c~u!5
1

2pE2`

1`

A~w!e2 ivudv5ReF 1pE0`A~w!e2 ivudvG .
~2.32!

For a particle falling in from infinity the waveform extends
to u→2`, and there is no initial data to deal with. In this
caseA(v) is to be interpreted as a Fourier, rather than
Laplace, transform. If the particle has«0.1, then the wave-
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form does not vanish atu→2`, and the transform exists
only for v in the lower half plane, and will have a pole at
v50. For the inverse transform@the first integral in Eq.
~2.32!# the contour should be interpreted as going below the
real v axis, and so the integral is the equivalent of the
Cauchy principal value plus half the contribution of the resi-
due of the pole atv50:

c~u!5 ReF lim
e→0

1
pEe

`

A~w!e2 ivudv G
1 i
2
lim
v→0

$vA~v!%. ~2.33!

From Parseval’s theorem and Eq.~2.7!, we have that the
radiated energy at Scri1 is

E5
1

64p

~ l 12!!

~ l 22!! E2`

` S dc

duD
2

dt

5
1

128p2

~ l 12!!

~ l 22!! E2`

`

v2uA~v!u2dv

5
1

64p2

~ l 12!!

~ l 22!! E0
`

v2uA~v!u2dv. ~2.34!

The energy spectrum is, therefore, given by

dE

dv
5

1

64p2

~ l 12!!

~ l 22!!
v2uA~v!u2. ~2.35!

We now multiply Eq.~2.8! by eivt, integrate fromt50 to
`, and integrate by parts in the integral involving]2c/]t2.
The result is an ordinary differential equation forC:

]2C

]r * 2
1@v22Vl ~r !#C52ċ0~r !1 ivc0~r !1S~r ,v!,

~2.36!

wherec0(r ) is the initial value ofc(t,r ), ċ0(r ) is the initial
value of ċ(t,r ), and the source termS is defined as

S~r ,v![E
0

`

eivtSl ~r ,t !dt. ~2.37!

For the particle source we substitute Eq.~2.16! into Eq.
~2.37!, to get

S~r ,v!5
2~122M /r !k

r ~l11!~lr13M ! F2r 2~122M /r !

3H 1

uṘu

d

dt S eivt

2U0Ṙ
D J 1

1

uṘu H r ~l11!2M

2U0

2
3MU0r ~122M /r !2

rl13M J eivtG
T~r !

. ~2.38!

The subscript ‘‘T(r )’’ indicates that functions of time, such
as Ṙ[dR/dt,U0,eivt, are to be evaluated at the value of
t5T(r ) whereT5T(t) with r5R(t). For infall from rest at
radiusr 0, this givest as a function ofr through

T~r !5«0S r 0
2M D S r

2M D 1/2A12
r

r 0
1S 11

4M

r 0
D

3S r 0
2M D 3/2«0 arctanFAr 0

r
21G

12 arctanhF«0
21A2M

r
2
2M

r 0
G . ~2.39!

The result in Eq.~2.38! for S(r ,v), however, is not valid for
r5r 0. Whenr5r 0 thed functions in Eq.~2.16!, as functions
of t, have vanishing arguments att50, the end point oft
integration in Eq.~2.37!, and so the integration is not well
defined. The way to deal with this will be explained in the
next section.

III. COMPUTATIONAL IMPLEMENTATION

A. Green function formal solution

We start by rewriting Eq.~2.36! in the form

]2C

]r * 2
1@v22Vl ~r !#C5Stot~r ,v!, ~3.1!

whereStot is the complete right-hand side of Eq.~2.36!, in-
cluding both the stress-energy term and the initial value
terms:

Stot~v,r !52ċ0~r !1 ivc0~r !1S~r ,v!. ~3.2!

This equation is to be solved for the boundary conditions of
ingoing waves at the horizon and outgoing waves at spatial
infinity: C→e2 ivr* for r *→2` and C→eivr* for
r *→1`. The Green function solution is found in the usual
way. We defineyL(r * ,v) and yR(r * ,v) as the homoge-
neous solutions of Eq.~3.1! with asymptotic forms

yL~r * ,v! →
r*→2`

e2 ivr* ,

yR~r * ,v! →
r*→`

eivr* . ~3.3!

We define the Wronskian of the homogeneous solutions, an
r * -independent constant, to be

W~v![yL
d

dr*
yR2yR

d

dr*
yL . ~3.4!

With the above definitions, the Green function solution is
written

C~r ,v!5
1

W~v! FyR~r * ,v!E
2`

r*
Stot~ r̃ ,v!yL~ r̃ * ,v!dr̃ *

1yL~r * ,v!E
r*

`

Stot~ r̃ ,v!yR~ r̃ * ,v!dr̃ * G . ~3.5!

In the limit of larger * this gives us

A~v!5
1

W~v!
E

2`

`

Stot~r ,v!yL~r * ,v!dr* . ~3.6!
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B. Evaluation of the Green function integral

The first two terms in Eq.~3.2! are straightforward to
integrate in Eq.~3.6!, but the stress-energy source term
S(r ,v) cannot be evaluated atr 0. @The expression in Eq.
~2.38! formally diverges as (r2r 0)

23/2 and hence cannot be
used in Eq.~3.6!.# To make sense of this we start by writing
the source in Eq.~2.16! as

S~r ,t !5F~r ,t !d8~r2R@ t# !1G~r ,t !d~r2R@ t# !,
~3.7!

whereF andG contain nod functions. The troublesome part
of the Green function integral can then be written as

E
2`

1`

S~r ,v!yL~r * ,v!dr*5I11I2 , ~3.8!

whereI1 is the integral involvingG andI2 involvesF. The
first of these is

I15E
0

1`

eivtdtE
2`

`

yL~r * ,v!dr*G~r ,t !d~r2R!5E
0

`

eivtdtE
2M

`

yL~r * ,v!G~r ,t !d~r2R!
dr

122M /r

5E
0

`

eivtyL„r * ~ t !,v…G„R~ t !,t…dt/@122M /R~ t !#52E
2`

r0*
eivT~r !yL~r * ,v!G„r ,T~r !…dr* /Ṙ. ~3.9!

In the final integral, the factor 1/Ṙ;(r2r 0)
21/2 diverges but is integrable. A similar set of transformations is now applied to

I2:

I25E
0

1`

eivtdtE
2`

`

yL~r * ,v!F~r ,t !d8~r2R!dr*5E
0

`

eivtdtE
2M

`

yL~r * ,v!F~r ,t !d8~r2R!
dr

122M /r

52E
0

`

eivtdtFyL„r * ~ t !,v…
]

]r S F

122M /r D1
F

~122M /r !2
]

]r *
@yL„r * ~ t !,v…#G

r5R~ t !

5E
2`

r0*
eivT~r !F S 12

2M

r D ]

]r S F

122M /r D yL~r * ,v!1S F

122M /r D ]

]r
„yL~r * ,v!…Gdr*

Ṙ
. ~3.10!

To evaluate these explicitly we need the fact that for free fall from rest atr 0:

Ṙ52S 12
2M

r DA2M /r22M /r 0
122M /r 0

. ~3.11!

We can now use the explicit expressions forF(r ,t) andG(r ,t) from Eq. ~2.16! to write

I11I252
k

l11E2`

r0* eivT~r !dr*

A2M /r22M /r 0

~122M /r !

~lr13M ! F r ]

]r *
yL1yLH l112

M

r
1

~2l23112M /r 0!M

lr13M J G . ~3.12!

From Eqs.~3.6! and ~3.2! and the definitions ofI11I2, we have that

A~v!5
1

W~v! FI11I21 ivE
2`

`

c0~r !yL~r * ,v!dr*2E
2`

`

ċ0~r !yL~r * ,v!dr* G . ~3.13!

Since we are considering an initially stationary problem, we haveċ050. The initial data forc comes from putting Eq.~2.24!
into Eq. ~2.2!:

c05
2m2

l11

A4p/~2l 11!

11M /2r̄

r

lr13M F S ~l11!r1M2rA122M /r
M /2r̄

11M /2r̄ D H r̄ 0l / r̄ l 11

r̄ l / r̄ 0
l 11J

2rA12
2M

r
r̄ H 2~ l 11! r̄ 0

l / r̄ l 12

l r̄ l 21/ r̄ 0
l 11 J G , ~3.14!
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where the upper expressions apply in the caser̄. r̄ 0 and the
lower for r̄, r̄ 0.

It should be noted thatc0 approaches a nonzero constant,
andyL(r * ,v)→e2 ivr* , asr→2M , and so the integral over
c0, in Eq. ~3.13!, is improper at large negativer * . We must
recall that we are really computingA in the upper half of the
complexv plane. To deal with this computationally we re-
cast the integral in Eq.~3.13! into the form

E
2`

`

c0~r !yL~r * ,v!dr*→ iv21c0~2M !e2 ivr start*

1E
r start*

`

c0~r !yL~r * ,v!dr* ,

~3.15!

wherec0(2M ) is the limit of c0 at r52M . The value of
r start* must be chosen such that there is negligible variation of
c betweenr start* and the horizon.

C. Numerical method

The first step in the solution is to determine the Wronsk-
ian in Eq.~3.4!. We denote the form ofyL at larger by

yL ;
r→`

a~v!eivr*1b~v!e2 ivr* . ~3.16!

We findb(v) by solving Eq.~3.1! with the right-hand side
set to zero and with the starting conditionyL5e2 ivr* im-
posed at a large negative value ofr * . A fourth-order Runge-
Kutta routine is used to integrateyL out to large values of
r * where it is matched to approximate forms of the asymp-
totic solution. In practice, good accuracy was difficult to
achieve with the asymptotic form in Eq.~3.16! and asymp-
totic solutions one order higher in 1/vr were used. From
b, the Wronskian follows immediately:

W~v!52ivb~v!. ~3.17!

With b in hand, withċ050, and with the substitution in Eq.
~3.15!, the problem consists of computing

A~v!5
1

2ivb~v! FI11I22c0~2M !e2 ivr start*

1 ivE
r start*

`

c0~r !yL~r * ,v!dr* G , ~3.18!

whereI11I2 is the integral given in Eq.~3.12! andc0 is
given in Eq.~3.14!. A numerical solution forA(v) is found
by using a fourth-order Runge-Kutta routine to solve foryL
and dyL /dr* , and the integral in Eq.~3.18! is done by

Simpson’s rule. From the solution forA the energy spectrum
is computed with Eq.~2.35! and the waveform from
Eq. ~2.32!.

The numerical solution used a routine to find the ‘‘particle
contribution,’’ I11I2, and one for the ‘‘initial value contri-
bution,’’ the integral overc0 in Eq. ~3.18!. For both routines,
second-order convergence was found and Richardson ex-
trapolation was used. The step size in the Runge-Kutta and
integration routines were halved until the Richardson ex-
trapolate agreed with that from the next larger grid within a
preset error limit. The initial value contribution could be usu-
ally be found within an error of 0.2%, while the particle
contributions required an error preset of 0.5%. For most val-
ues ofl ,v,r 0, these precision requirements were easily met.
The exception was a relatively small number of points at
which the real and imaginary parts of a contribution differed
by more than an order of magnitude. In this case it was
difficult to get high accuracy in the smaller part.

An estimate of the error in our results is complicated by
the fact that the physically important results are a superposi-
tion of the particle and initial value contributions, and sig-
nificant cancellations occur in this superposition. These can-
cellations, in principle, mean that the error may be much
larger than the small relative error in each contribution. To
arrive at an estimate of the error in our determinations of the
radiated energy we have recomputed the energy for four tri-
als, in which60.5% was added to the particle contribution,
and then to the initial value contribution. The results for
energies and errors are given in Table I. We see that for
many cases the computed energy is not highly sensitive to
the cancellation; the estimated error of around 1% is just
what we would expect in the square~energy! of a quantity
~amplitude! with an error of 0.5%. For some cases, however,
especially those with higherl , there is a significant magni-
fication of error. We emphasize that the error estimates given
in Table I are extremely conservative. In arriving at them we
have used the maximum 0.5% error applied to all values of
v, whereas this maximum error actually applies only to a
small subset of the points. The smoothness of~most! wave-
forms reported in the next section, and the consistent varia-
tion of results with changingr 0, is evidence that the actual
errors are rather smaller than those reported in Table I.

In addition to the infall from finiter 0 we also have com-
puted spectra and waveforms for infall from infinity. We
characterize these cases with the same parameter«0 we use
for infall from r 0. Here it has the value of the Lorentzg
factor

«0[1/A12v`
2 ~3.19!

for a particle with velocityv` at infinity. For computation of
infall from infinity the above computational scheme is modi-
fied only in the following ways.~i! The form ofT(r ) in Eq.
~2.39! must be changed to

T~r !52
«0

«0
221

S r

2M
DA«0

2211
2M

r
2

~2«0
223!«0

~«0
221!3/2

lnFA~«0
221!S r

2M
D 1A11~«0

221!S r

2M
D G

1 lnF ~2«0
221!~r /2M !1112«0~r /2M !A«0

22112M /r

~r /2M !21 G . ~3.20!
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~ii ! The initial value contributions in Eq.~3.18! must be
omitted. ~iii ! The limit of integration in Eq.~3.12! must be
changed fromr 0* to `. The computed energy for these
«0>1 cases are given in Table II. Since there is only a
particle contribution in these cases, there is no issue of can-
cellation affecting the errors. The errors in the energy are, in
fact, primarily due to the cutoff in the solution at a finite
radius~with an analytic addition to represent the source con-
tribution to infinity!. Error estimates were made by varying
the cutoff radius and were found to be around 1% for all
«0>1 cases.

IV. WAVEFORMS AND SPECTRA

Results for quadrupole waveforms and spectra naturally
divide themselves into three ranges, smallr 0/2M ~less than
;2), moderater 0/2M ~from ;2 to ;5), and larger 0/2M .
Waveforms are given as functions of retarded time
u[t2r * . For smallr 0, as shown in Fig. 1~a!, the shape of
the waveform is that of simple quasinormal ringing. This
shape is the same for allr 0 and the single example shown
suffices for all smallr 0. Since the waveforms have the same
shape, the energy spectra, shown in Figs. 1~b! and 1~c!, also
have the same shape, changing only in magnitude asr 0 in-
creases.

As r 0 increases further, the early negative excursion of
the waveform begins to broaden, and the spectrum shifts
slightly. Figure 2 shows ther 0/2M52 spectrum along with

the spectra for the two limiting cases, the DRPP infall from
rest atr 0→`, and the close-limit spectrumr 0→1. ~The lat-
ter is normalized to have the same energy as ther 052 spec-
trum.! The r 0/2M52 spectrum has an appearance that inter-
polates between the two limits, as might be expected. As
r 0 increases further, however, changes in the spectrum de-
velop that might not be expected. As shown in Fig. 3, the
simple spectrum for smallr 0 develops a secondary peak and
the secondary peak grows withr 0. As r 0 continues to in-
crease, the initial shape of the waveform becomes a very
broad depression, extending from the moment infall begins
to the beginning of quasinormal ringing. This is illustrated in
the waveform in Fig. 4~a!, for r 0/2M510. The start of infall,
at t50, r 0/2M510, corresponds tou/2M5212.2, and it is
at this value ofu that the waveform begins to take on non-
zero values. The initial part of the waveform, then, represents
the gravitational bremsstrahlung from the early nonrelativis-
tic part of the particle motion. The small wiggles around
u/2M'212 are a numerical artifact due to imperfect can-
cellation of contributions from the initial value and particle
parts of the source.~To verify this we changed the initial
value contribution by610% and found the change in the
initial wiggles to be much greater than in other features of
the waveform.! For comparison, a DRPP waveform, for in-
fall from infinity, is also shown in Fig. 4.~For infall from
infinity, of course, the zero of time cannot be set to the be-
ginning of infall. The time was arbitrarily shifted for the
DRPP curve.! This waveform has a similar ringing pattern as
the infall from a finite radius, but lacks the initial waveform
depression.

The end of the initial waveform depression is, roughly,
the beginning of quasinormal ringing, as can be seen in Fig.
4~a!. The generation of quasinormal ringing@18# is associ-
ated with the peak of the potential in Eq.~2.9!. The time
t/2M'54 at which the particle reaches the peak, at around
r /2M'1.5, is at retarded timeu/2M'53. This is consistent
with Fig. 4~a!, which shows ringing beginning somewhere
around this value ofu.

It is interesting to compare the waveforms for a particle
falling from rest to the waveform of a particle on a time-
symmetric geodesic trajectory, a particle that long in the past
was moving radially outward just outside a hole, that reaches
a certain maximum radiusr 0 at time t50, and that subse-
quently falls into the hole. The analysis of this case requires
only a simple modification of Eq.~3.13!; the initial value
terms are omitted and~due to time symmetry of the source!
the complex conjugate ofI11I2 is added toI11I2. The
resulting waveform is shown in Fig. 5~a!, and has also been
given in Ref. @12#. That waveform shows two periods of

TABLE II. Radiated energy for infall from infinity.

«0 (2M /m0
2)E2 (2M /m0

2)E3 (2M /m0
2)E4

1 1.8231022 2.1831023 2.9631024

1.1 2.7531022 3.4831023 5.0631024

1.3 6.4831022 9.9031023 1.7331023

1.5 1.28531021 2.4031022 5.2131023

1.8 2.7031021 6.3431022 1.7631022

3 1.285 4.46331021 1.88531021

TABLE I. Radiated energy for infall fromr 0 .

r 0/2M l (2M /m0
2)El Error

15 2 1.6431022 1%

3 1.9831023 1%

4 2.8831024 5%

5 2 1.4331022 1%

3 1.6231023 2%

4 2.2331024 6%

3 2 1.4031022 2%

3 1.6531023 4%

4 2.6131024 11%

2 2 1.4931022 3%

3 2.2131023 5%

4 3.5631024 11%

1.5 2 8.1131023 3%

3 2.1031023 5%

4 5.6631024 10%

1.1 2 9.0231024 ,1%

3 1.8531024 1%

4 4.0631025 4%
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quasinormal ringing, an early one excited when the particle
goes outward through the region around the potential peak
and a later one due to motion inward through the peak. This
later period of ringing and, in fact, all features of the wave-
form generated afteru/2M'210 agree very closely with the
waveform for the particle falling from rest. Because the ear-
lier ringing has a higher amplitude, the energy spectrum for
the symmetric trajectory, shown in Fig. 5~b!, is dominated by
this early ringing and has very large amplitude. In the figure
it is seen to be much larger than the DRPP spectrum, which
~see Fig. 4! approximates the spectrum for infall from
r 0/2M57.5.

Since the spectra for infall from both smallr 0 and from
` have a single peak~see, e.g., Fig. 2!, it is interesting that

FIG. 1. Thel 52 waveforms and spectra for smallr 0. In ~a! the
waveform is shown as a function of retarded timeu[t2r * , with
t50 corresponding to the moment at which the infall begins. In-
cluded for comparison are the predictions of the close-limit ap-
proximation. For ther 0/2M51.1 case, shown in~b!, the close-limit
energy is larger than the computed energy by 11%. For the
r 0/2M51.5 case, in~c!, the close-limit energy is 2.9 times the
computed energy.

FIG. 2. Thel 52 spectra forr 0/2M52 and for the two limiting
cases of DRPP and the close limit. The close-limit case is normal-
ized to have the same energy as ther 0/2M52 spectrum. For the
three spectra, close-limit case,r 0/2M52, and DRPP case, the
maxima of the spectra occur, respectively, atvmax(2M )5 0.765,
0.675, and 0.625.

FIG. 3. Spectra ofl 52 energy forr 053.5 and 4. For compari-
son, the DRPP spectrum for infall from infinity is also shown.
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for intermediate values ofr 0 the spectra are characterized by
a row of more-or-less evenly spaced bumps. Asr 0 grows, the
number of bumps increases, and the bumps decrease in spac-
ing and in height. The origin of these modulations can be
understood by considering a simple example: Suppose a
waveform consists of nothing but a single period of quasi-
normal ringing with the transformA(v). The transform of
the same waveform shifted later in time byTshift would be
A(v)eivT shift. A wave consisting oftwo periods of ringing,
the original and the later one, would then have a transform
A(v)(11eivTshift) and, hence, an energy spectrum

v2uA~v!u24 cos2S 12 vTshiftD . ~4.1!

The combined spectrum would have the shape of the single
waveform spectrum modulated on a frequency scale
dv52p/Tshift . If the two waveforms were not identical, we
would expect modulation of the spectrum, but less than
100% modulation, and not the same for all frequencies.

This explanation can be tested on time-symmetric motion,
where there are two well-separated periods of ringing in Fig.
5~a!. The amplitudes of the ringing are different, of course,
and so we should not expect 100% modulation of the spec-
trum and, indeed, the modulations in Fig. 5~b! are not 100%.
The time shift between the first and second ringing periods is
on the order of 75(2M ) ~roughly the time it takes for the
particle to rise up fromr 0/2M51.5 to r 0/2M57.5 and
fall back to r 0/2M51.5). This suggests that the spacing
of the spectral bumps should bedv52p/@75(2M )#
50.84/2M , which is in good agreement with what is seen in
Fig. 5~b!. The application to a nonsymmetric waveform, like
that in Fig. 4~a!, is less obvious. The spacing of bumps
dv'0.11/2M in Fig. 4~c! suggests that the time shift is on
the order of 57(2M ). This, presumably, represents the time
between the descent of the waveform atu/2M'0 and the
start of ringing atu/2M'50.

The interpretation works as well as a predictor of the
bump spacing for other values ofr 0 and seems clearly to be
qualitatively correct and to explain the progression of the

FIG. 4. Thel 52 waveforms and spectra for larger 0. In ~a! the waveform forr 0/2M510 is shown as a function of retarded timeu and
is contrasted with the DRPP waveform~for which the zero of retarded time has a different meaning!. Energy spectra are shown in~b!–~d!
for three large values ofr 0 and are contrasted with ther 0→` DRPP limit ~dashed curves!.

55 2133HEAD-ON COLLISIONS OF BLACK HOLES: THE . . .



spectra. Asr 0 approaches the horizon, the time between the
initial moment and the onset of ringing goes to zero, and so
the spacing of bumps is infinite and there are no modulations
of the spectrum. We get the single-humped close-limit spec-
trum. As r 0 grows, the time between the initial motion and
the start of ringing increases, and so the spacing of the
bumps gets smaller, and hence more bumps appear. Asr 0 is
becoming larger, however, the early waveform is becoming
less dramatic~the initial depression is decreasing in ampli-
tude!, and so in interacting with the later ringing it is pro-
ducing smaller modulation; the height of the bumps is de-
creasing. Finally, asr 0→`, we can think of the spectrum
approaching one that has an infinite number of infinitesi-
mally spaced zero-height bumps, bumps that are invisible in
the DRPP spectrum.

Results for higherl poles are shown in Fig. 6. The wave-

forms for l .2 show a more complicated structure of the
preringing radiation, resulting in more complex spectra. The
total energy radiated in differentl poles is shown in Fig. 7.
Results are given for several different values ofr 0 and for
particles falling in from infinity, both with no initial velocity
~the DRPP case! and with«0.1. The distribution of energy
among the multipoles is dominated by the quadrupole for
small r 0. As r 0/2M increases to around 1.5, the higher mul-
tipoles become more important, but with further increase of
r 0/2M to;2 the trend is reversed, and the ratio of multipole
energies take on values that remain constant for further in-
creases inr 0. For infall from infinity, the ultrarelativistic
cases, with high«0, radiate more heavily in higher multi-
poles, as would be expected. To find the total energy, given
in Fig. 8, we computed energy radiated inl 52,3,4 modes
and assumed that the energies from eachl decreased as a
geometric series. This allowed us to add an estimate of the
contributions froml .4. The addition was typically around
2% of the energy. The energy is plotted as a function of
proper distanceL5*2M

r0 dr/A122M /r , rather thanr 0, to
show more clearly the details for small separation.

Aspects of infall from infinity are given in Fig. 9, which
shows waveforms and spectra. The waveforms are character-
ized by a large early amplitude that is an increasing function
of «0, and the spectra show strong low frequency radiation,
extending tov50, due to this early phase of the radiation.
The total energy radiated in the lowest three multipoles is
also shown.~Since the relative importance of higher multi-
poles increases with«0, extrapolation to total radiated energy
is not immediate.! The energy results are extended to include
infall from finite radius where «0 takes the value
A122M /r 0.

V. DISCUSSION

One of the interesting questions that can be clarified with
the above results is the validity of the close approximation.
This approximation, for two holes, assumes that the holes are
initially close enough so that the structure of the initial data
at small radius is inside an initial all-encompassing horizon.
Only the larger features of the initial data therefore are
relevant to the production of outgoing radiation. We can im-
mediately apply this method to the particle problem by com-
paring our initial geometry, in Eqs.~2.23! and ~2.21!, with
the initial geometry in Eq.~4.25! of Ref. @12#. We see that
the results of that reference can be applied to the particle
problem by the replacement

8Mk l ~m0!→m2~z2 /M ! l . ~5.1!

With Eqs.~2.25! and ~2.27! this can be rewritten as

k l ~m0!→
1

2l 12 S m0

2M D S r 0
2M D l ~11A122M /r 0!

2l 11.

~5.2!

By the methods of Refs.@12,14#, El /2M , the radiated energy
in units of 2M , for each multipole, is shown to be
1.2631022k2

2 ,3.1031023k3
2 ,8.3331024k4

2 , . . . , respec-
tively for l 52,3,4,. . . . If we replacek l with Eq. ~5.2!, we

FIG. 5. Thel 52 waveform and spectrum for a time-symmetric
trajectory. In~a! the waveform~dotted curve! is given for a particle
that moves outward and reaches a maximum atr 0/2M57.5 before
falling inward and is compared with the waveform for infall from
r 0/2M57.5. In ~b! the spectrum of energy generated by the time-
symmetric motion is compared with the DRPP spectrum for infall
from infinity. The DRPP spectrum contains less than 5% as much
energy as that for the time-symmetric motion.
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find the close limit predictions for energy. In Refs.@12,14#
the outgoing radiation is computed from an evolution of
c l , using a finite difference representation of Eq.~2.8! ~with
no source term!. Here we have also computed waveforms
and energies in the close limit directly by the transform

methods of Secs. II and III, with only the following changes:
The integralsI11I2 are omitted from Eq.~3.13!, and only
the r̄.z2 form of Fl ( r̄ ) is used in Eq.~2.21!. The results of
the two methods are energy values that agree to better than
1% and waveforms that are almost indistinguishable.@The

FIG. 6. Results for higher multipole moments. Forr 0/2M55, waveforms and spectra are shown forl 52,3,4. Dashed curves are spectra
for infall from infinity.
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numerically evolved waveforms are rather smoother than the
waveforms from the transform method. They lack the small
amplitude wiggles that can be seen, e.g., in the waveform in
Fig. 1~a! at early times.#

In Fig. 10, we plot thel 52 close-limit energy prediction
and compare it to the full computation for the particle infall.
It is clear that the close limit method is acceptable out to
r 0'2.2M22.3M and fails by a large factor atr 053M . This
is in accordance with the general picture that the close limit
should be a reasonably good approximation when the par-
ticle starts inside the peak, aroundr'3M , of the potential

~2.9!. The waveforms in the close limit all have precisely the
same shape; only the amplitudes differ. The computed wave-
forms are in excellent agreement with the smallr 0 wave-
forms @see, e.g., the waveforms forr 0/2M51.5 in Fig. 1~a!#.
The close-limit predictions of waveform shape are even bet-
ter than the energy predictions. Only forr 0/2M larger than
around 1.5 does the waveform start to change from the close-
limit shape.

The dependence of radiated energy onr 0, shown in Fig. 8,
is perhaps the most interesting result of our computations.
One has the intuitive instinct that the radiated energy should
decrease with decreasingr 0. At the crudest level this intu-
ition is based on the idea that infall from a larger radius
results in a particle which ‘‘strikes’’ the black hole harder
and excites more quasinormal ringing. Since a decrease of
energy with smallerr 0 is expected, a natural first guess for
approximating the decrease is to multiply the DRPP energy
by a reduction factor (12k2M /r 0), wherek is some fitting
parameter of order unity. This approximation, withk51.5 is
shown in Fig. 11 and is compared with the computed results,
and with the DRPP limit. The choicek51.5 was made to
give good agreement atr 0/2M515 and, presumably, at
larger values ofr 0. ~It is difficult to compute energies at
much larger values ofr 0, due to the rapid modulation of the
spectrum.!

A more physical justification for decrease of radiation
with decreasingr 0 can be constructed starting with the quad-
rupole formula. A faster moving particle from a largerr 0
implies a larger value of the time derivatives of the quadru-
pole moment. This argument has been used@19# as the basis
of a simple quantitative model for the effect of varyingr 0.
The energy for infall from infinity, in that model, is reduced
by a reduction factorFr0

based on the quadrupole formula.

@See Eq.~23! of Ref. @19#.# @For larger 0 that reduction factor
reduces toFr0

512(60/27)(2M /r 0)1O(2M /r 0)
2.# In Fig.

11, we show the result of that simple model. It is clear that
the Fr0

factor captures the correct qualitative feature of a

decrease of radiation with decrease ofr 0 but implies too
dramatic a decrease.

As r 0 continues to decrease, a rather unexpected effect
appears. Belowr 0'7M the energy begins to increase with
decreasing separation. At yet smaller radii (r 0 less than
around 4.5M ! the energy again decreases with decreasing
r 0, as the close limit dictates it must. Thus the relationship of
radiated energy andr 0 has the expected nature in the two
regimes where simple arguments apply: large separations
and small separations. The anomalous behavior in the range
4.5M –7M underscores the fact that the generation of outgo-
ing radiation is tied closely to the nature of the potential
~2.9!, which peaks aroundr 053M and cannot be understood
in terms of close or far approximations. This anomaly, it
should be noted, appears to have no equivalent feature in the
case of the head-on collision of two equal-mass holes@12#.
Presumably this is because the replacement of the particle by
a hole means that the infalling hole is not localized at a
particular value of the potential of the other hole. As the
mass ratio of the infalling holes becomes smaller and smaller
there must come a point at which an anomalous bump devel-
ops in the dependence of radiation on initial separation.

FIG. 7. Energy in different multipoles. Energy forl 52,3,4 is
shown for several values ofr 0 in the case of infall from finite radius
and for several different values of«0 in the case of infall from
infinity. The energies forr 0/2M51.01 are multiplied by 10 to im-
prove the plot.

FIG. 8. Total energy radiated by a falling particle, as a function
of the initial proper distance of the particle from the horizon. The
points shown are atr 0/2M5 1.01, 1.1, 1.2, 1.3, 1.5, 1.8, 2, 2.25,
2.5, 2.75, 3, 3.5, 4, 5, 6, 7.5, 10, 15. The local maximum is at
r 0/2M'2.25 and the minimum atr 0/2M'3.5.
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FIG. 9. Results for infall from infinity. Plots are given of waveforms~a! and spectra~b!, ~c!, for a particle falling in from infinity with
nonzero energy. The total radiation emitted in the first three multipoles is shown as a function of«0. This curve also extends to particles
falling from finite radius, with«05(122M /r 0)

1/2. The local maximum of the spectrum occurs for«0'0.75 and the local minimum at about
«0'0.84.

FIG. 10. Quadrupole energy for an infalling particle as a func-
tion of the particle’s initial proper distance from the horizon. The
computed energy is compared with the close-limit approximation.

FIG. 11. Total radiated energy as a function ofr 0/2M . Com-
puted results are compared with a simple model and with the best
1/r 0 fit.
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We have seen that the particle limit provides a relatively
easy tool for understanding some aspects of the generation of
radiation and of the collisions of holes. We intend next to use
this formalism to study what features on initial data are im-
portant for determining how much energy is radiated for par-
ticle infall and, presumably, for black hole collisions.
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