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Restrictions on negative energy density in flat spacetime
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In a previous paper, a bound on the negative energy density seen by an arbitrary inertial observer was
derived for the free massless, quantized scalar field in four-dimensional Minkowski spacetime. This constraint
has the form of an uncertainty-principle-type limitation on the magnitude and duration of the negative energy
density. That result was obtained after a somewhat complicated analysis. The goal of the current paper is to
present a much simpler method for obtaining such constraints. Similar “quantum inequality” bounds on
negative energy density are derived for the electromagnetic field, and for the massive scalar field in both two-
and four-dimensional Minkowski spacetin{&0556-282197)06004-9

PACS numbd(s): 04.62+v

I. INTRODUCTION [21,22. This form of QI involves “folding” the stress en-
ergy tensor into a “sampling function,” i.e., a peaked func-
In quantum field theory, unlike in classical physics, thetion of time whose time integral is unity. For example, it was
energy density may be unboundedly negative at a spacetingown in Ref[21] that for a free quantized massless scalar
point. Such situations entail violations of all the known clas-field in four-dimensional Minkowski spacetime,
sical pointwise energy conditions, such as the weak energy
condition[1]. This fact has been known for quite some time ~_ t_O * <T00>dt> _ 3
[2]. Specific examples include the Casimir eff¢8t4] and L 2+t~ 32m%tt
squeezed states of ligki], both of which have observational
support. The theoretical prediction of black hole evaporatiorfor all choices of the sampling timg,. Here (Tqo) is the
[6] also involves negative energy densities and fluxes in aenormalized expectation value of the energy density evalu-
crucial way. On the other hand, if the laws of quantum fieldated in an arbitrary quantum staftg), in the frame of an
theory place no restrictions on negative energy, then it migharbitrary inertial observer whose proper time coordinate is
be possible to produce gross macroscopic effects such ag. The physical implication of this QI is that such an ob-
violation of the second law of thermodynamiE8] or of  server cannot see unboundedly large negative energy densi-
cosmic censorshig9,10], traversable wormhole§l1,12, ties which persist for arbitrarily long periods of time. The QI
“warp drive” [13], and possibly time maching42,14. As  constraints can be considered to be midway between the lo-
a result, much effort has been recently directed toward decal energy conditions, which are applied at a single space-
termining what constraints, if any, the laws of quantum fieldtime point, and the averaged energy conditions which are
theory place on negative energy density. One approach irglobal, in the sense that they involve averaging over com-
volves so-called “averaged energy conditionee, for ex- plete or half-complete geodesics. The QI's place bounds on
ample,[15-19), i.e., averaging the local energy conditions the magnitude and duration of the negative energy density in
over timelike or null geodesics. Another method employsa finite neighborhoof a spacetime point along an observ-
“quantum inequalities”(QlI's) [7,20], which are constraints er's world line.
on the magnitude and duration of negative energy fluxes and These inequalities were derived for Minkowski space-
densities. The current paper is another in a series which ime, in the absence of boundaries. However, we recently
exploring the ramifications of this approaf®1—-25. (For a  argued[23] that if one is willing to restrict the choice of
more comprehensive discussion of the history of these topsampling time, then the bound should also hold in curved
ics, see the introductions of Ref21,22 and the references spacetime and/or one with boundaries. For example, we
therein) proved that the inequalitl) holds in the case of the Casimir
The QI's have the general form of an inverse relationeffect for sampling times much smaller than the distance
between an integral involving the energy density or flux overbetween the plates. It turns out that this observation has some
a finite time interval and a power of that interval. More pre-interesting implications for traversable wormhol§23].
cise forms of the inequality were originally derived for nega- Quantum inequalities, in particular curved spacetimes, which
tive energy fluxe$20] and, later, for negative energy density reduce to Eq(1) in the short sampling time limit, are given
in Ref. [24].
In the original derivation of Eq(1), we used a rather
*Electronic address: ford@cosmos2.phy.tufts.edu cumbersome expansion of the mode functions of the quan-
TPermanent address: Department of Physics and Earth Sciencdsm field in terms of spherical waves. The goal of the present
Central Connecticut State University, New Britain, CT 06050. Elec-paper is to present a much more transparent derivation of QI
tronic address: roman@ccsu.ctstateu.edu bounds, based on a plane wave mode expansion. In so doing,
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we prove new QI constraints on the negative energy density Following Refs.[20,21], we multiply (To) by a peaked
for the quantized electromagnetic and massive scalar fieldéunction of time whose time integral is unity and whose
In Sec. Il, we derive a QI bound for the massive scalar fieldcharacteristic width is,. A convenient choice of such a
in both four- and two-dimensional Minkowski spacetime. function isty/[ 7(t2+t3)]. Define the integrated energy den-
Our earlier result, Eq(1), is recovered as a special casesity to be

when the mass goes to zero. A similar bound is obtained

for the electromagnetic field in Sec. Ill. Our results and their ~ o [ (Topdt

implications for the existence of traversable wormholes are P= . 2412 8)
discussed in Sec. IV. Our metric sign convention is

(=, +,+,1). Substitution of Eq(7) into Eq. (8) and performance of the

integration yields

Il. MASSIVE SCALAR FIELD
.~ Req (0'w+k’-k)

A. Four dimensions p= WE - [(alrak>eflw’7w‘t0
. . ) ) k' k ®'w

In this section we derive a QI bound on the energy density
of a quantized uncharged massive scalar field in four- +(aa)e (@ tolt)
dimensional flat spacetime. The wave equation for the field
is Req m* :

+ Wz = [<ak,ak>e_|w —w‘tO
(O-m?)$=0, 2 Kk Vo @

_ — (0" +ow)t
where 0= 7""3,9,. We can expand the field operator in (acage °l. ©

terms of creation and annihilation operators as Now write Kk’ - k=k,’(kx+k)’,ky+k;kz, and apply the lemma

in Appendix B to each of the sums in E@®), e.g.,

o= (af+alf*). 3
k k)’(kX ’
) 2 —<al,ak>eflw —wltg
Here the mode functions are taken to be Kk Vo'
i ) k! k
fk: el(k-X—a)t), (4) - XX (aT a >e_(wl+“’)to (10)
= _—— 1 Ak .
2(1)V k’,k \ w,w K
where We then obtain
w=\[k[?+m?, (5 ~_Req (@w+k k) _ .o
p= WE ?e o[(ay ak +(axay]
m is the rest mass, and is the normalization volume. The k' k w ©
stress tensor for the massive scalar field is Re m2
+ WE me_(‘" +w)t0[<allak>_<ak’ak>]- (11
k' .k

1

T/U/: ¢,,u,¢,v_ Enﬂv(¢,a¢ya+m2¢2)' (6)

For the first sum(i.e., the one involvingw’w), apply the

The renormalized expectation value of the energy density, ififSt lemma in Appendix A, where we takeh,
an arbitrary quantum stafe), is =(1/2)(Jw/V)e~“%. Apply the same lemma to each term in

the sum which involvek’ -k, taking h;= (ki/2\wV)e™ “'o,

_Reg (0'w+k' k) (o — o)t with i =x,y,z. For the last sum, involving?, use the second

To = szk T[(ak,ak>e lemma in Appendix A choosing; = (m/2\wV)e™ “'. The

’ result is
+(aeahe N

= — 2wty
Re m2 , . p 2V§k) we , (12)
+W2 —[(a,,ay)e

Kk Vo'o

where we have usdit|?= w?—m?2. Now letV— o, in which

—(agaye i@ o, (7)  limit 2, —(v/87°) [ .d°k. Performing the angular integra-
tions and changing variables we get

Here the energy density is evaluated in the reference frame 1

of an inertial observer, at an arbitrary spatial point which we ~ * 27 2. 2t

choose to b&=0. The time coordinatgisrzhe pr%per time of p=- me doVo'=m-we . (13

this observer. Because of the underlying Lorentz invariance

of the field theory, we may of course choose the frame of any Let x=2wtg, y=2mt,. We may then rewrite the integral

inertial observer in Minkowski spacetime. in Eq. (13) as
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FIG. 1. The graph of5(y) versusy. FIG. 2. The graph of(y) versusy.

R 1 ° s 5y in that treatment, but replacing the normalization voluvhe
Ly to4f dxyx“—y™xe . (14 with a periodicity length, andk andx by k andx, respec-
Y tively. This procedure yields

If we now let A 1
p=— >, we 2k, (18)
2L%

G(y)zé dxyxZ—y?x2e ™, (15)

y where we have usekf=w?—m?. It is at this stage that the
2D analysis differs from the 4D case. Now let-«, in
which limit =,— (L/27) [~ dk. Rewriting the integral in
terms ofw, one obtains

then our QI bound may be written as

- 3
p=" 327r2t04G(y)’ (16 A 1 (o g2e—20% | 19
p=—5—| ——dw.
for all ty. A plot of G(y) versusy is given in Fig. 1. We see 2mJm Jw?—m
that asm—0 (for fixed ty), y—0 andG(y)—1; hence, in Let
this case our bound reduces to €
3 oca)Ze*ZoutO
P = ——=——=do. 20
p2 327T2t041 (17) m r—z—zw “m ( )

for all to, which is the QI for the massless scalar field, origi- 1hiS expression can be rewritt¢@6] in terms of modified
nally obtained in21] by a much more complicated method. Bessel functions of the second kirid,(y), as

As m—oo (for fixed tg), y—oo, and we see from the graph
that G(y) — 0. Note that our bound becomes more stringent
asm increases, and hence it becomes increasingly difficult to
produce large negative energy densities. This result is n
surprising, since now one has to overcome the positive re
mass energy of the field quanta. Fe1/m (with fixed 1
m), corresponding to sampling .t|mes much larger than the Ki(y)=— E[Ko(y)+|<2(y)], (22
Compton wavelength of the particle, we also hgve«~ and
G(y)—0. Note that, because of the factor®(y), the right-
hand side of Eq(16) vanishes more rapidly than the right-
hand side of Eq(17) in the ty—c limit. This can be inter- 1 1
preted as showing that ne_gatlve energy due to a massive IZWyZ[KO(yHKZ(y)]:PF(y)' (23
scalar field must be more highly localized than that due to a 0 0

massless field.

| =—m?K}(2mty), (21)

here the prime denotes differentiation with respect to the
grgument. We now employ the relatip7]

where agairy=2mt,. The integrall can then be written as

Thus our QI bound may be written as

B. Two dimensions

The derivation of a QI bound on the energy density of a p== 87rtoz|:(y)' 249
massive scalar field in two-dimension@D) spacetime is
very similar to the discussion given in the previous sectiorfor all ty. The functionF(y) is plotted againsy in Fig. 2. As
for the four-dimensional case. One follows the same steps an— 0 (for fixed ty), F(y)—1, and our inequality becomes
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. 1 so thate_,; X e_,»,= —k. The commutation relations for the
p=- 8ty (29 creation and annihilation operators are
for all ty, which is the QI for the massless scalar field in 2D (2 valw]: Sk Oanr s (31)
[21]. For largey, the behavior of the graph is qualitatively
similar to the 4D case. However, forin the approximate [aky ,ak\/]1=0, (32
range Gsy=<1.2, there appears to be a small peak in the + i
value ofF(y). In the case of flat spacetime, this seems to be [y 3y ]=0. (33

an artifact of 2D, since no corresponding peak occurs in the ] ] o
4D case[28]. Rather than indicating that one could actually ~ With the gauge choice made in E@6), the electric field
supercede the=0 bound in the 2D massive case for certain 0Perator becomes

values ofy, this result may perhaps imply that the bound

given in Eqg.(24) is not optimal over this range. In either E=—-A=), i (a0 fk—am, e fi* ). (34)
case, the relative height of the peak above the value of kX

F(y)=1 (corresponding to the massless gasdoo small to o L L

produce a dramatic change in the QI bound. As we argued irpmilarly the magnetic field operator is given by
Ref.[23], the constant on the right-hand side of the inequal-

ity would typically have to be larger by many orders of mag- B=VXA=>, iw(anbnfi—albuf*). (39
nitude to result in large macroscopic effects. kA

Here we define
I1l. ELECTROMAGNETIC FIELD

In this section, we derive a QI bound for the energy den- b =kXey,, (36)
sity of the free quantized electromagnetic field in 4D
Minkowski spacetime. The absence of source charges ant? that
the imposition of the Coulomb gauge condition imply A ~

bra=Kkx e =e,, (37
A’=d=0, o .
bro=kX €= —e, (38)
V-A=0, (26) and therefore
whereA is the vector potential, an® is the scalar potential. T
The wave equation is b1 =—kXe_n=ew=bi (39
OA=0. n and
b_io=—kxe_,=eu=—Dby,. (40

The vector potential can be expanded in terms of creation

and annihilation operators as The stress energy tensor for the electromagnetic field is

~ - _1/p2 2

AXD =2 (B it aleafi), (28) Too=2 (E°+B7). “D
3N

If we compute the renormalized expectation va{lgy), in

an arbitrary quantum stafe/), evaluated ak=0, and fold

where theék}\ are unit linear polarization vectors and thus ;. © . ; .
this into our sampling function we obtain

A=1,2. Here the sunk,,=2,2,. The mode functiong,

are again given by to [+ (Topdt

i L B Y
fk: ei(k~X—wt)’ (29)
2oV Re — ~ o
:WE, Vo' ol (e €y r) (b beryr)]

i.e., we assume periodic boundary conditions in a box with f';
normalization volume/. We will adopt the convention that : , .
one of the polarization vectors changes direction as X[(ahagn e e ot (ay, ay, yem@r @],
k— —k, but the other does not. That is, we have (42)

eklxek2:k1 NOYV V}\/rite ék)\' ék’)\':(ék)\)x(ék')\’)x+(ék)\)y(ék/)\')y

R R +(ex) A€knr),, and similarly for the dot product involving

€-k1= ~ & (B0 the b vectors. Expanding Eq42) in this fashion, one gets

. A six terms. To each of these terms we apply the lemma in
€_1o=€2, Appendix B: e.g.,
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R - ‘ | o functions in spherical waves. The present treatment is con-
’ —|w—® . . . . .
2 Voo (B &) dahaw, e 0 siderably simpler, as the analysis is done in a plane wave
’ - -
kik mode representation. We recover our previous results for the

M massless scalar field as the=0 case of the massive scalar
A A , field. For the massive scalar field, we find that in general it is
7 T —(0+o')t T ] . ! ; o
2%, Voo (€0)x( & )x(an)e °. more difficult to obtain sustained negative energy densities
AN than in the massless case. This is not surprising, as now one

must overcome the positive rest mass energy. In the case of
(43 the electromagnetic field, the right-hand side of the bound is

Recombining the terms, we then obtain slightly weaker, i.e., by a factor of 2, than in the massless
scalar field case. This is also to be expected, given the two

~ Re o . polarization degrees of freedom in the former case. For all of

p= WE, Vo' ol (e - €\ r)+ (b - brrar)] our QI bounds on energy density, in the infinite sampling

‘;‘; time limit we sample over the entire timelike geodesic of the

’ observer and obtain the averaged weak energy condition

X [(afyawn )+ (anag,)]e @ re o, (449  (AWECQ)

An analogous separation of the dot products in @4) into %
components, repeated application of the first lemma in Ap-
pendix A, and a recombination of terms result in

T, U u’d7=0, (49)

1 whereu# is the unit tangent vector to the geodesic and
p=—=—>, we 2wl (45  the observer’s proper time. Hence, in Minkowski spacetime,
2V the AWEC can be derived from the QI bound.

R Note that in Minkowski spacetime, our bounds hold for an
where we have usedh;=(1/2)(ey)iVw/Ve “' and  arbitrary choice of the sampling tintg. Recently we argued
hj=(1/2)(6kx)i w/Ve Yo, with i=x,y,z. Evaluation of the that such bounds should also hold in a curved spacetime
sum over\ gives and/or one with boundaries, if the sampling time is restricted
to be much smaller than the smallest local radius of curva-
ture and/or the distance to any boundaries in the spacetime

p=- Vzk: we™ 2%, (46) [23]. An explicit example of the validity of this assumption
has been given in Ref24]. There a QI is derived in the
Now letV—o, and so static closed and open Robertson-Walker universe models.
For a choice of sampling time which is small compared to
~_ o 3 20t the local radius of curvature, the QI reduces to our flat space-
p== 52, dowe 7o (47 time bound.

The application of our bound to Morris-Thorne wormhole
An evaluation of the integral gives us our desired result: ~Spacetimes23], in the small sampling time limit, implied
that typically either a wormhole must be only slightly larger
- 3 than the Planck size or that the negative energy density must
T = (48)  pe concentrated in an extraordinarily thin band near the
throat. As an example, in one case for a wormhole with a

for all to. Comparison with the QI bound for the masslessthroat radius of 1 m, the negative energy density must be
scalar field, Eq(17), shows that the right-hand side of the concentrated in a bamb thickerthan about 10> of a pro-

bound in the e|ectromagnetic field case is Smdile[, more ton radius. Even for a wormhole with a throat radius the size
negative by a factor of 2. This is just what one would expect f @ galaxy, the band of negative energy must be no thicker

due to the two polarization degrees of freedom. than about ten proton radior this particular type of worm-
hole) [29]. That analysis assumed that the stress energy ten-

sor which maintained the wormhole consisted of quantized
massless scalar fields. More specifically, {¥,,) which

In the current paper, we have derived “quantum inequal-generates the wormhole geometry was assumed to be the
ity” (QI) bounds on the negative energy density for quan-expectation value of the stress energy tensor operator of the
tized (unchargefl massive scalar and electromagnetic fieldsmassless scalar field in a suitable quantum state. The results
in Minkowski spacetime. The bounds take the form ofof the present paper indicate that the same restrictions on the
uncertainty-principle-type inequalities on the magnitude andvormhole length scales will also apply if one tries to make
duration of the negative energy density seen by an arbitrarthe stress energy of the wormhole out of electromagnetic or
inertial observer(Note, however, that the energy-time uncer- massive scalar fields. One might hope that the constraints
tainty principle isnot used as input to derive the QI bounds. imposed by these bounds could be circumvented by the su-
Originally we had derived such a bound for the masslesperposition of many fields, each of which individually satis-
scalar field in both two- and four-dimensional Minkowski fies a QI bound. However, we showg23] that in practice,
spacetimg 21]. Our earlier four-dimensional derivation was to achieve significant macroscopic effects, one needs either
performed using a rather complicated expansion of the moden the order of 1% fields or a few fields for which the

IV. CONCLUSIONS
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numerical constant on the right-hand side of the QI bound isvherej is a generalized mode label, and thgs are again

many orders of magnitude larger than in the cases examinegssumed to be real. Then the operdtpris also Hermitian.

to date. Neither of these possibilities seems very likely. Itytilizing the same chain of reasoning used to establish
therefore appears probable that nature will always prevent Usmma 1, one can show that

from producing gross macroscopic effects with negative en-
ergy.
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Sv=2, pfpj(alajyeleierl, (B1)

APPENDIX A i’

In this appendix we will establish two lemmas on sums ofHere the summation is over a finite set of modes with fre-
the expectation values of products of creation and annihilaquenciesw; , with w,,=max w;}, andp; is an arbitrary com-
tion operators. The discussion is a slight generalization of thglex function of the mode labgl. (In Ref. [20], it was as-
argument presented in the Appendix of Rf0]. The idea  sumed that thew;oj. That assumption is not needed hgre.
for this method of proof was originally suggested to us byWe first note thas,, is real as a consequence of the fact that
Flanagan 10]. The first lemma was proved by a more com- (a;raj,>* =(a;r,aj>. Next we define the sum
plicated argument in Appendix A of Ref20].

Lemma 1 Define the operato®j by

Sw=2 PPy (afay)e e, (B2)
i’
0;=2 hj(a;+a)), Al - .
! 2 i@ +ay) (A1) which is also real. We wish to prove that
where | is a generalized mode label, and thgs are as- Sn=Sh. (B3)
sumed to be real. Then it is easily seen fais a Hermitian .
operator. We may form the expectation value First note that
(0]6))=o0. (A2) Sn=0. (B4)

This follows from the fact that the left-hand side is simply This follows from the fact that any sum of the form

the norm of the state vect®)=0O;|4), where|y) is the
quantum state in which the expectation value is taken. We > pipi(ala;) (B5)
may expand this expression as i’

Ata t + ot is non-negative as a consequence of its being the norm of the
<OJ OJ>:2 hjrhj[<aj,aj>+<ajajr>+<ajraj>+<ajraj>] state vector
i

+2 ()2, (A3) |\If>=; Pyl ), (B6)
J

Use the fact tha(a.T,aJ-):(a;raj,}* to write where |¢) is the quantum state in which the expectation
! values in Eqs(B1) and(B2) are to be taken.
Ata t ) Let us assume that the eigenfrequencies are discrete, as
(0j0))=2 ReZI hj’hj[<aj'ai>+<ai’aj>]+z. (hy*. will be the case with a finite quantization volume, and that
= J (A4) the lowest frequency is greater than zero. We can then order
the modes in increasing frequency so that
It follows from Eq. (A2) that O0<wo<wi<---<wy. In general, there can be several
modes with the same frequency. Létabel the distinct fre-
2Re> hj,hj[(af,aj>+<ajraj)]>—2 (hj)z_ (A5) guencies and len(/) label the various modes all having
oL J 7 frequencyw, . ThenX;==,3 .
. Define
Lemma 2 Define the operatoP; by
Ajj=p}pj(ala;yeleerlt (B7)

A-:- . T— .
P; @ hi(a]—a), ORI
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Bjj =P} pj(ajay)e” (i, (B8)
so that
i’
Note that

whererj, is the lesser Ofuj and w;j. We can then write

Ajj —Bjj = pj pj(ajay ) (€2 o—1)e (@it ei,
(B11)
If we let gj=e~“i'op; and define
C//rE % grgjr<a}.ajr> (812)
n
n(’)
and
D, =(e*i—1)C, ./, (B13)
then we have that
m
Sn—Sw=2 (Aj—Bjj)= 2 (e¥"-1)C .
i’ /./"=0
m
= > D, (B14)

/,/"'=0

Our goal will be to prove that the right-hand side of this
expression is non-negative.

As a prelude, let us note that any sum of the form
=,,C,,, where/ and/’ range over the same set of val-
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m m
Y, D,=(e?sio—1) > C,,=0.
77 =L+1 7/ =L+1
(B17)
We wish to show that this implies that
m m
> D,,=(e?h-1) > C,,=0. (B1§

/7 =L /=L

The additional terms which are added in going from Eg.
(B17) to Eq. (B18) are those which lie in the same row as
and to the right oD | and in the same column as and below
D, ,as illustrated below:

Doo Do
Do
: Do Dii+1 Dim
Dryir Disvag+a DLiim
L DmL Dmi+1 Dmm ]

Note thatw,, increases to the right and, increases down-
ward. ThusQ, = w, for all of these elements. The sum of
these terms is

AD =D +Dy 41+ - +Dm+ Dyt +Dme

=(e?0—1)(C +CLygt - +CmtCLigy

ues, is non-negative as a consequence of its being the norNow we have that

of a state vector. In particularC,,,=0. The quantity
E/m’/,:OD//, is the sum of all of the elements of an
(m+1)X(m+1) matrix. Our plan is to prove the positivity
of this sum by working our way through the matrix, begin-
ning in the lower right-hand corner. The element in this cor-
ner is

D= (€2¢mo—1)C;, =0, (B15)

Next consider the 2 matrix formed by the four elements
in this corner. The sum over these elements is

Dm—l,m—l+ Dm—l,m+ Dm,m—1+ Dm,m
= (eme,lto_ 1)(Cm—1,m—1+ Cm- 1m™t Cm,m— 1)
+ (EZwmto_ 1)Cmm

= (ezwm_lto_ 1)(Cmfl,m71+ Cmf 1,m+ Cm,mfl"' Cmm)

=0. (B16)
Here we have used the fact thatC,,,=0,
Cm—l,m—l+Cm—1,m+Cm,m—1+ Cin=0, and that

ez“’mtO— 1= ezwm—ltO— 1

Now suppose that we have established that

o 4Crp). (B19)
m m
> D, =AD i+ X D,
/" =L /. =L+1
m
=AD, +(e2o+1o—1) D C,,.
/. =L+1
m
=AD, +(e?h—1) > C,,.
/" =L+1
m
=(e?»to—1) > C,,=0. (B20)
/.7 =L

We have established that E@18) holds forL=m and for
L=m—1. We have further established that if it holds for one
value ofL, then it holds for the next smaller value bf It
now follows by induction that

m
> D,,=0 (B21)

/,/"=0

and, hence, that
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Sm=Sn. (B22)

Recall that the sums in bot§,, and S, are over a finite
set of modes with maximum frequeney,,,. However, we *
may now take the limit in which both the number of modes => P} pj,<a;raj,>e*(‘”j“’j’>t0, (B23)
and w,, become infinite. As long as the resulting sums are i’
convergent, which is the case for the systems with which we
are concerned, then we have that which is our final result.
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