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In a previous paper, a bound on the negative energy density seen by an arbitrary inertial observer was
derived for the free massless, quantized scalar field in four-dimensional Minkowski spacetime. This constraint
has the form of an uncertainty-principle-type limitation on the magnitude and duration of the negative energy
density. That result was obtained after a somewhat complicated analysis. The goal of the current paper is to
present a much simpler method for obtaining such constraints. Similar ‘‘quantum inequality’’ bounds on
negative energy density are derived for the electromagnetic field, and for the massive scalar field in both two-
and four-dimensional Minkowski spacetime.@S0556-2821~97!06004-9#

PACS number~s!: 04.62.1v

I. INTRODUCTION

In quantum field theory, unlike in classical physics, the
energy density may be unboundedly negative at a spacetime
point. Such situations entail violations of all the known clas-
sical pointwise energy conditions, such as the weak energy
condition@1#. This fact has been known for quite some time
@2#. Specific examples include the Casimir effect@3,4# and
squeezed states of light@5#, both of which have observational
support. The theoretical prediction of black hole evaporation
@6# also involves negative energy densities and fluxes in a
crucial way. On the other hand, if the laws of quantum field
theory place no restrictions on negative energy, then it might
be possible to produce gross macroscopic effects such as
violation of the second law of thermodynamics@7,8# or of
cosmic censorship@9,10#, traversable wormholes@11,12#,
‘‘warp drive’’ @13#, and possibly time machines@12,14#. As
a result, much effort has been recently directed toward de-
termining what constraints, if any, the laws of quantum field
theory place on negative energy density. One approach in-
volves so-called ‘‘averaged energy conditions’’~see, for ex-
ample,@15–19#!, i.e., averaging the local energy conditions
over timelike or null geodesics. Another method employs
‘‘quantum inequalities’’~QI’s! @7,20#, which are constraints
on the magnitude and duration of negative energy fluxes and
densities. The current paper is another in a series which is
exploring the ramifications of this approach@21–25#. ~For a
more comprehensive discussion of the history of these top-
ics, see the introductions of Refs.@21,22# and the references
therein.!

The QI’s have the general form of an inverse relation
between an integral involving the energy density or flux over
a finite time interval and a power of that interval. More pre-
cise forms of the inequality were originally derived for nega-
tive energy fluxes@20# and, later, for negative energy density

@21,22#. This form of QI involves ‘‘folding’’ the stress en-
ergy tensor into a ‘‘sampling function,’’ i.e., a peaked func-
tion of time whose time integral is unity. For example, it was
shown in Ref.@21# that for a free quantized massless scalar
field in four-dimensional Minkowski spacetime,

r̂[
t0
pE2`

` ^T00&dt

t21t0
2 >2

3

32p2t0
4 , ~1!

for all choices of the sampling timet0. Here ^T00& is the
renormalized expectation value of the energy density evalu-
ated in an arbitrary quantum stateuc&, in the frame of an
arbitrary inertial observer whose proper time coordinate is
t0. The physical implication of this QI is that such an ob-
server cannot see unboundedly large negative energy densi-
ties which persist for arbitrarily long periods of time. The QI
constraints can be considered to be midway between the lo-
cal energy conditions, which are applied at a single space-
time point, and the averaged energy conditions which are
global, in the sense that they involve averaging over com-
plete or half-complete geodesics. The QI’s place bounds on
the magnitude and duration of the negative energy density in
a finite neighborhoodof a spacetime point along an observ-
er’s world line.

These inequalities were derived for Minkowski space-
time, in the absence of boundaries. However, we recently
argued@23# that if one is willing to restrict the choice of
sampling time, then the bound should also hold in curved
spacetime and/or one with boundaries. For example, we
proved that the inequality~1! holds in the case of the Casimir
effect for sampling times much smaller than the distance
between the plates. It turns out that this observation has some
interesting implications for traversable wormholes@23#.
Quantum inequalities, in particular curved spacetimes, which
reduce to Eq.~1! in the short sampling time limit, are given
in Ref. @24#.

In the original derivation of Eq.~1!, we used a rather
cumbersome expansion of the mode functions of the quan-
tum field in terms of spherical waves. The goal of the present
paper is to present a much more transparent derivation of QI
bounds, based on a plane wave mode expansion. In so doing,
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we prove new QI constraints on the negative energy density
for the quantized electromagnetic and massive scalar fields.
In Sec. II, we derive a QI bound for the massive scalar field
in both four- and two-dimensional Minkowski spacetime.
Our earlier result, Eq.~1!, is recovered as a special case
when the massm goes to zero. A similar bound is obtained
for the electromagnetic field in Sec. III. Our results and their
implications for the existence of traversable wormholes are
discussed in Sec. IV. Our metric sign convention is
(2,1,1,1).

II. MASSIVE SCALAR FIELD

A. Four dimensions

In this section we derive a QI bound on the energy density
of a quantized uncharged massive scalar field in four-
dimensional flat spacetime. The wave equation for the field
is

~h2m2!f50, ~2!

whereh[hmn]m]n . We can expand the field operator in
terms of creation and annihilation operators as

f5(
k

~ak f k1ak
†f k* !. ~3!

Here the mode functions are taken to be

f k5
i

A2vV
ei ~k•x2vt !, ~4!

where

v5Auku21m2, ~5!

m is the rest mass, andV is the normalization volume. The
stress tensor for the massive scalar field is

Tmn5f ,mf ,n2
1

2
hmn~f ,af ,a1m2f2!. ~6!

The renormalized expectation value of the energy density, in
an arbitrary quantum stateuc&, is

^T00&5
Re

2V(
k8,k

~v8v1k8•k!

Av8v
@^ak8

† ak&e
i ~v82v!t

1^ak8ak&e
2 i ~v81v!t#

1
Re

2V(
k8,k

m2

Av8v
@^ak8

† ak&e
i ~v82v!t

2^ak8ak&e
2 i ~v81v!t#. ~7!

Here the energy density is evaluated in the reference frame
of an inertial observer, at an arbitrary spatial point which we
choose to bex50. The time coordinatet is the proper time of
this observer. Because of the underlying Lorentz invariance
of the field theory, we may of course choose the frame of any
inertial observer in Minkowski spacetime.

Following Refs.@20,21#, we multiply ^T00& by a peaked
function of time whose time integral is unity and whose
characteristic width ist0. A convenient choice of such a
function ist0 /@p(t21t0

2)#. Define the integrated energy den-
sity to be

r̂[
t0
pE2`

` ^T00&dt

t21t0
2 . ~8!

Substitution of Eq.~7! into Eq. ~8! and performance of the
integration yields

r̂5
Re

2V(
k8,k

~v8v1k8•k!

Av8v
@^ak8

† ak&e
2uv82vut0

1^ak8ak&e
2~v81v!t0#

1
Re

2V(
k8,k

m2

Av8v
@^ak8

† ak&e
2uv82vut0

2^ak8ak&e
2~v81v!t0#. ~9!

Now write k8•k5kx8kx1ky8ky1kz8kz , and apply the lemma
in Appendix B to each of the sums in Eq.~9!, e.g.,

(
k8,k

kx8kx

Av8v
^ak8

† ak&e
2uv82vut0

>(
k8,k

kx8kx

Av8v
^ak8

† ak&e
2~v81v!t0. ~10!

We then obtain

r̂>
Re

2V(
k8,k

~v8v1k8•k!

Av8v
e2~v81v!t0@^ak8

† ak&1^ak8ak&#

1
Re

2V(
k8,k

m2

Av8v
e2~v81v!t0@^ak8

† ak&2^ak8ak&#. ~11!

For the first sum~i.e., the one involvingv8v), apply the
first lemma in Appendix A, where we takehj
5(1/2)(Av/V)e2vt0. Apply the same lemma to each term in
the sum which involvesk8•k, taking hj5(ki /2AvV)e2vt0,
with i5x,y,z. For the last sum, involvingm2, use the second
lemma in Appendix A choosinghj5(m/2AvV)e2vt0. The
result is

r̂>2
1

2V(
k

ve22vt0, ~12!

where we have useduku25v22m2. Now letV→`, in which
limit (k→(V/8p3)*2`

` d3k. Performing the angular integra-
tions and changing variables we get

r̂>2
1

4p2E
m

`

dvAv22m2v2e22vt0. ~13!

Let x[2vt0, y[2mt0. We may then rewrite the integral
in Eq. ~13! as
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r̂>2
1

64p2t0
4E

y

`

dxAx22y2x2e2x. ~14!

If we now let

G~y![
1

6Ey
`

dxAx22y2x2e2x, ~15!

then our QI bound may be written as

r̂>2
3

32p2t0
4G~y!, ~16!

for all t0. A plot of G(y) versusy is given in Fig. 1. We see
that asm→0 ~for fixed t0), y→0 andG(y)→1; hence, in
this case our bound reduces to

r̂>2
3

32p2t0
4 , ~17!

for all t0, which is the QI for the massless scalar field, origi-
nally obtained in@21# by a much more complicated method.
As m→` ~for fixed t0), y→`, and we see from the graph
thatG(y)→0. Note that our bound becomes more stringent
asm increases, and hence it becomes increasingly difficult to
produce large negative energy densities. This result is not
surprising, since now one has to overcome the positive rest
mass energy of the field quanta. Fort0@1/m ~with fixed
m), corresponding to sampling times much larger than the
Compton wavelength of the particle, we also havey→` and
G(y)→0. Note that, because of the factor ofG(y), the right-
hand side of Eq.~16! vanishes more rapidly than the right-
hand side of Eq.~17! in the t0→` limit. This can be inter-
preted as showing that negative energy due to a massive
scalar field must be more highly localized than that due to a
massless field.

B. Two dimensions

The derivation of a QI bound on the energy density of a
massive scalar field in two-dimensional~2D! spacetime is
very similar to the discussion given in the previous section
for the four-dimensional case. One follows the same steps as

in that treatment, but replacing the normalization volumeV
with a periodicity lengthL, andk andx by k andx, respec-
tively. This procedure yields

r̂>2
1

2L(k ve22vt0, ~18!

where we have usedk25v22m2. It is at this stage that the
2D analysis differs from the 4D case. Now letL→`, in
which limit (k→(L/2p)*2`

` dk. Rewriting the integral in
terms ofv, one obtains

r̂>2
1

2pEm
` v2e22vt0

Av22m2
dv. ~19!

Let

I[E
m

` v2e22vt0

Av22m2
dv. ~20!

This expression can be rewritten@26# in terms of modified
Bessel functions of the second kind,Kn(y), as

I52m2K18~2mt0!, ~21!

where the prime denotes differentiation with respect to the
argument. We now employ the relation@27#

K18~y!52
1

2
@K0~y!1K2~y!#, ~22!

where againy[2mt0. The integralI can then be written as

I5
1

8t0
2 y

2@K0~y!1K2~y!#5
1

4t0
2F~y!. ~23!

Thus our QI bound may be written as

r̂>2
1

8pt0
2F~y!, ~24!

for all t0. The functionF(y) is plotted againsty in Fig. 2. As
m→0 ~for fixed t0), F(y)→1, and our inequality becomes

FIG. 1. The graph ofG(y) versusy. FIG. 2. The graph ofF(y) versusy.

2084 55L. H. FORD AND THOMAS A. ROMAN



r̂>2
1

8pt0
2 , ~25!

for all t0, which is the QI for the massless scalar field in 2D
@21#. For largey, the behavior of the graph is qualitatively
similar to the 4D case. However, fory in the approximate
range 0<y<1.2, there appears to be a small peak in the
value ofF(y). In the case of flat spacetime, this seems to be
an artifact of 2D, since no corresponding peak occurs in the
4D case@28#. Rather than indicating that one could actually
supercede them50 bound in the 2D massive case for certain
values ofy, this result may perhaps imply that the bound
given in Eq. ~24! is not optimal over this range. In either
case, the relative height of the peak above the value of
F(y)51 ~corresponding to the massless case! is too small to
produce a dramatic change in the QI bound. As we argued in
Ref. @23#, the constant on the right-hand side of the inequal-
ity would typically have to be larger by many orders of mag-
nitude to result in large macroscopic effects.

III. ELECTROMAGNETIC FIELD

In this section, we derive a QI bound for the energy den-
sity of the free quantized electromagnetic field in 4D
Minkowski spacetime. The absence of source charges and
the imposition of the Coulomb gauge condition imply

A05F50,

¹•A50, ~26!

whereA is the vector potential, andF is the scalar potential.
The wave equation is

hA50. ~27!

The vector potential can be expanded in terms of creation
and annihilation operators as

A~x,t !5(
kl

~aklêkl f k1akl
† êkl f k* !, ~28!

where theêkl are unit linear polarization vectors and thus
l51,2. Here the sum(kl5(k(l . The mode functionsf k
are again given by

f k5
i

A2vV
ei ~k•x2vt ! , ~29!

i.e., we assume periodic boundary conditions in a box with
normalization volumeV. We will adopt the convention that
one of the polarization vectors changes direction as
k→2k, but the other does not. That is, we have

êk13êk25 k̂,

ê2k152êk1 , ~30!

ê2k25êk2 ,

so thatê2k13ê2k252 k̂. The commutation relations for the
creation and annihilation operators are

@akl ,ak8l8
†

#5dkk8dll8, ~31!

@akl ,ak8l8#50, ~32!

@akl
† ,ak8l8

†
#50. ~33!

With the gauge choice made in Eq.~26!, the electric field
operator becomes

E52Ȧ5(
kl

iv~aklêkl f k2akl
† êkl f k* !. ~34!

Similarly the magnetic field operator is given by

B5¹3A5(
kl

iv~aklb̂kl f k2akl
† b̂kl f k* !. ~35!

Here we define

b̂kl5 k̂3êkl , ~36!

so that

b̂k15 k̂3êk15êk2 , ~37!

b̂k25 k̂3êk252êk1 , ~38!

and therefore

b̂2k152 k̂3ê2k15êk25b̂k1 ~39!

and

b̂2k252 k̂3ê2k25êk152b̂k2 . ~40!

The stress energy tensor for the electromagnetic field is

T005
1
2 ~E21B2!. ~41!

If we compute the renormalized expectation value^T00&, in
an arbitrary quantum stateuc&, evaluated atx50, and fold
this into our sampling function we obtain

r̂[
t0
pE2`

` ^T00&dt

t21t0
2

5
Re

2V(
k,k8
l,l8

Av8v@~ êkl•êk8l8!1~ b̂kl•b̂k8l8!#

3@^akl
† ak8l8&e

2uv2v8ut01^aklak8l8&e
2~v1v8!t0#.

~42!

Now write êkl•êk8l85(êkl)x(êk8l8)x1(êkl)y(êk8l8)y
1(êkl)z(êk8l8)z , and similarly for the dot product involving
the b̂ vectors. Expanding Eq.~42! in this fashion, one gets
six terms. To each of these terms we apply the lemma in
Appendix B: e.g.,
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(
k,k8
l,l8

Avv8~ êkl!x~ êk8l8!x^akl
† ak8l8&e

2uv2v8ut0

> (
k,k8
l,l8

Avv8~ êkl!x~ êk8l8!x^akl
† ak8l8&e

2~v1v8!t0.

~43!

Recombining the terms, we then obtain

r̂>
Re

2V(
k,k8
l,l8

Av8v@~ êkl•êk8l8!1~ b̂kl•b̂k8l8!#

3@^akl
† ak8l8&1^aklak8l8&#e2~v1v8!t0. ~44!

An analogous separation of the dot products in Eq.~44! into
components, repeated application of the first lemma in Ap-
pendix A, and a recombination of terms result in

r̂>2
1

2V(
kl

ve22vt0, ~45!

where we have usedhj5(1/2)(êkl) iAv/Ve2vt0 and
hj5(1/2)(b̂kl) iAv/Ve2vt0, with i5x,y,z. Evaluation of the
sum overl gives

r̂>2
1

V(
k

ve22vt0. ~46!

Now let V→`, and so

r̂>2
1

2p2E
0

`

dvv3e22vt0. ~47!

An evaluation of the integral gives us our desired result:

r̂>2
3

16p2t0
4 , ~48!

for all t0. Comparison with the QI bound for the massless
scalar field, Eq.~17!, shows that the right-hand side of the
bound in the electromagnetic field case is smaller~i.e., more
negative! by a factor of 2. This is just what one would expect
due to the two polarization degrees of freedom.

IV. CONCLUSIONS

In the current paper, we have derived ‘‘quantum inequal-
ity’’ ~QI! bounds on the negative energy density for quan-
tized ~uncharged! massive scalar and electromagnetic fields
in Minkowski spacetime. The bounds take the form of
uncertainty-principle-type inequalities on the magnitude and
duration of the negative energy density seen by an arbitrary
inertial observer.~Note, however, that the energy-time uncer-
tainty principle isnot used as input to derive the QI bounds.!
Originally we had derived such a bound for the massless
scalar field in both two- and four-dimensional Minkowski
spacetime@21#. Our earlier four-dimensional derivation was
performed using a rather complicated expansion of the mode

functions in spherical waves. The present treatment is con-
siderably simpler, as the analysis is done in a plane wave
mode representation. We recover our previous results for the
massless scalar field as them50 case of the massive scalar
field. For the massive scalar field, we find that in general it is
more difficult to obtain sustained negative energy densities
than in the massless case. This is not surprising, as now one
must overcome the positive rest mass energy. In the case of
the electromagnetic field, the right-hand side of the bound is
slightly weaker, i.e., by a factor of 2, than in the massless
scalar field case. This is also to be expected, given the two
polarization degrees of freedom in the former case. For all of
our QI bounds on energy density, in the infinite sampling
time limit we sample over the entire timelike geodesic of the
observer and obtain the averaged weak energy condition
~AWEC!

E
2`

`

Tmnu
mundt>0, ~49!

whereum is the unit tangent vector to the geodesic andt is
the observer’s proper time. Hence, in Minkowski spacetime,
the AWEC can be derived from the QI bound.

Note that in Minkowski spacetime, our bounds hold for an
arbitrary choice of the sampling timet0. Recently we argued
that such bounds should also hold in a curved spacetime
and/or one with boundaries, if the sampling time is restricted
to be much smaller than the smallest local radius of curva-
ture and/or the distance to any boundaries in the spacetime
@23#. An explicit example of the validity of this assumption
has been given in Ref.@24#. There a QI is derived in the
static closed and open Robertson-Walker universe models.
For a choice of sampling time which is small compared to
the local radius of curvature, the QI reduces to our flat space-
time bound.

The application of our bound to Morris-Thorne wormhole
spacetimes@23#, in the small sampling time limit, implied
that typically either a wormhole must be only slightly larger
than the Planck size or that the negative energy density must
be concentrated in an extraordinarily thin band near the
throat. As an example, in one case for a wormhole with a
throat radius of 1 m, the negative energy density must be
concentrated in a bandno thickerthan about 1026 of a pro-
ton radius. Even for a wormhole with a throat radius the size
of a galaxy, the band of negative energy must be no thicker
than about ten proton radii~for this particular type of worm-
hole! @29#. That analysis assumed that the stress energy ten-
sor which maintained the wormhole consisted of quantized
massless scalar fields. More specifically, the^Tmn& which
generates the wormhole geometry was assumed to be the
expectation value of the stress energy tensor operator of the
massless scalar field in a suitable quantum state. The results
of the present paper indicate that the same restrictions on the
wormhole length scales will also apply if one tries to make
the stress energy of the wormhole out of electromagnetic or
massive scalar fields. One might hope that the constraints
imposed by these bounds could be circumvented by the su-
perposition of many fields, each of which individually satis-
fies a QI bound. However, we showed@23# that in practice,
to achieve significant macroscopic effects, one needs either
on the order of 1062 fields or a few fields for which the
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numerical constant on the right-hand side of the QI bound is
many orders of magnitude larger than in the cases examined
to date. Neither of these possibilities seems very likely. It
therefore appears probable that nature will always prevent us
from producing gross macroscopic effects with negative en-
ergy.

ACKNOWLEDGMENTS

We would like to thank M. Pfenning for useful discus-
sions. T.A.R. would like to thank the members of the Tufts
Institute of Cosmology for their warm hospitality while this
work was being done. This research was supported in part by
NSF Grant No. PHY-9507351 and by a CCSU/AAUP fac-
ulty research grant.

APPENDIX A

In this appendix we will establish two lemmas on sums of
the expectation values of products of creation and annihila-
tion operators. The discussion is a slight generalization of the
argument presented in the Appendix of Ref.@10#. The idea
for this method of proof was originally suggested to us by
Flanagan@10#. The first lemma was proved by a more com-
plicated argument in Appendix A of Ref.@20#.

Lemma 1. Define the operatorÔj by

Ôj5(
j
hj~aj1aj

†!, ~A1!

where j is a generalized mode label, and thehj ’s are as-
sumed to be real. Then it is easily seen thatÔj is a Hermitian
operator. We may form the expectation value

^Ôj
†Ôj&>0. ~A2!

This follows from the fact that the left-hand side is simply
the norm of the state vectoruC&5Ôj uc&, whereuc& is the
quantum state in which the expectation value is taken. We
may expand this expression as

^Ôj
†Ôj&5(

j , j 8
hj 8hj@^aj 8

† aj&1^aj
†aj 8&1^aj 8aj&1^aj 8

† aj
†&#

1(
j

~hj !
2. ~A3!

Use the fact that̂aj 8
† aj&5^aj

†aj 8&* to write

^Ôj
†Ôj&52 Re(

j , j 8
hj 8hj@^aj 8

† aj&1^aj 8aj&#1(
j

~hj !
2.

~A4!

It follows from Eq. ~A2! that

2Re(
j , j 8

hj 8hj@^aj 8
† aj&1^aj 8aj&#>2(

j
~hj !

2. ~A5!

Lemma 2. Define the operatorP̂j by

P̂j5 i(
j
hj~aj

†2aj !, ~A6!

where j is a generalized mode label, and thehj ’s are again
assumed to be real. Then the operatorP̂j is also Hermitian.
Utilizing the same chain of reasoning used to establish
lemma 1, one can show that

2Re(
j , j 8

hj 8hj@^aj 8
† aj&2^aj 8aj&#>2(

j
~hj !

2. ~A7!

APPENDIX B

In this appendix, we wish to prove a lemma which gen-
eralizes the inequality proven in Appendix B of Ref.@20#.
Consider the sum

Sm[(
j j 8

pj* pj 8^aj
†aj 8&e

2uv j2v j 8ut0. ~B1!

Here the summation is over a finite set of modes with fre-
quenciesv j , with vm5max$v j%, andpj is an arbitrary com-
plex function of the mode labelj . ~In Ref. @20#, it was as-
sumed that thev j} j . That assumption is not needed here.!
We first note thatSm is real as a consequence of the fact that
^aj

†aj 8&*5^aj 8
† aj&. Next we define the sum

S̃m[(
j j 8

pj* pj 8^aj
†aj 8&e

2~v j1v j 8!t0, ~B2!

which is also real. We wish to prove that

Sm>S̃m . ~B3!

First note that

S̃m>0. ~B4!

This follows from the fact that any sum of the form

(
j j 8

pj* pj 8^aj
†aj 8& ~B5!

is non-negative as a consequence of its being the norm of the
state vector

uC&5(
j
pjaj uc&, ~B6!

where uc& is the quantum state in which the expectation
values in Eqs.~B1! and ~B2! are to be taken.

Let us assume that the eigenfrequencies are discrete, as
will be the case with a finite quantization volume, and that
the lowest frequency is greater than zero. We can then order
the modes in increasing frequency so that
0,v0<v1<•••<vm . In general, there can be several
modes with the same frequency. Letl label the distinct fre-
quencies and letn(l ) label the various modes all having
frequencyv l . Then( j5( l (n(l ) .

Define

Aj j 85pj* pj 8^aj
†aj 8&e

2uv j2v j 8ut0 ~B7!

and
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Bj j 85pj* pj 8^aj
†aj 8&e

2~v j1v j 8!t0, ~B8!

so that

Sm2S̃m5(
j j 8

~Aj j 82Bj j 8!. ~B9!

Note that

v j1v j 82uv j2v j 8u52V j j 8, ~B10!

whereV j j 8 is the lesser ofv j andv j 8. We can then write

Aj j 82Bj j 85pj* pj 8^aj
†aj 8&~e

2V j j 8t021!e2~v j1v j 8!t0.
~B11!

If we let gj5e2v j t0pj and define

Cl l 8[ (
n~ l !
n~ l 8!

gj* gj 8^aj
†aj 8& ~B12!

and

D l l 8[~e2V j j 8t021!Cl l 8, ~B13!

then we have that

Sm2S̃m5(
j j 8

~Aj j 82Bj j 8!5 (
l ,l 850

m

~e2V j j 8t021!Cl l 8

5 (
l ,l 850

m

D l l 8. ~B14!

Our goal will be to prove that the right-hand side of this
expression is non-negative.

As a prelude, let us note that any sum of the form
( l l 8Cl l 8, wherel and l 8 range over the same set of val-
ues, is non-negative as a consequence of its being the norm
of a state vector. In particular,Cmm>0. The quantity
( l ,l 850
m D l l 8 is the sum of all of the elements of an

(m11)3(m11) matrix. Our plan is to prove the positivity
of this sum by working our way through the matrix, begin-
ning in the lower right-hand corner. The element in this cor-
ner is

Dmm5~e2vmt021!Cmm>0. ~B15!

Next consider the 232 matrix formed by the four elements
in this corner. The sum over these elements is

Dm21,m211Dm21,m1Dm,m211Dm,m

5~e2vm21t021!~Cm21,m211Cm21,m1Cm,m21!

1~e2vmt021!Cmm

>~e2vm21t021!~Cm21,m211Cm21,m1Cm,m211Cmm!

>0. ~B16!

Here we have used the fact thatCmm>0,
Cm21,m211Cm21,m1Cm,m211Cmm>0, and that
e2vmt021>e2vm21t021.

Now suppose that we have established that

(
l ,l 85L11

m

D l l 8>~e2vL11t021! (
l ,l 85L11

m

Cl l 8>0.

~B17!

We wish to show that this implies that

(
l ,l 85L

m

D l l 8>~e2vLt021! (
l ,l 85L

m

Cl l 8>0. ~B18!

The additional terms which are added in going from Eq.
~B17! to Eq. ~B18! are those which lie in the same row as
and to the right ofDLL and in the same column as and below
DLL ,as illustrated below:

3
D00 D01 •••

D10

A DLL DL,L11 ••• DLm

DL11,L DL11,L11 ••• DL11,m

A A A

DmL Dm,L11 ••• Dmm

4 .
Note thatv l 8 increases to the right andv l increases down-
ward. ThusV l l 85vL for all of these elements. The sum of
these terms is

DDL[DLL1DL,L111•••1DLm1DL11,L1•••1DmL

5~e2vLt021!~CLL1CL,L111•••1CLm1CL11,L

1•••1CmL!. ~B19!

Now we have that

(
l ,l 85L

m

D l l 85DDL1 (
l ,l 85L11

m

D l l 8

>DDL1~e2vL11t021! (
l ,l 85L11

m

Cl l 8

>DDL1~e2vLt021! (
l ,l 85L11

m

Cl l 8

5~e2vLt021! (
l ,l 85L

m

Cl l 8>0 . ~B20!

We have established that Eq.~B18! holds forL5m and for
L5m21. We have further established that if it holds for one
value ofL, then it holds for the next smaller value ofL. It
now follows by induction that

(
l ,l 850

m

D l l 8>0 ~B21!

and, hence, that
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Sm>S̃m . ~B22!

Recall that the sums in bothSm and S̃m are over a finite
set of modes with maximum frequencyvm . However, we
may now take the limit in which both the number of modes
andvm become infinite. As long as the resulting sums are
convergent, which is the case for the systems with which we
are concerned, then we have that

(
j j 8

`

pj* pj 8^aj
†aj 8&e

2uv j2v j 8ut0

>(
j j 8

`

pj* pj 8^aj
†aj 8&e

2~v j1v j 8!t0, ~B23!

which is our final result.
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