
Two effects in slowly evolving dissipative self-gravitating spheres

L. Herrera*
Area de Fı´sica Teo´rica, Facultad de Ciencias, Universidad de Salamanca, 37008 Salamanca, Spain

A. Di Prisco†

Departamento de Fı´sica, Facultad de Ciencias, Universidad Central de Venezuela, Caracas, Venezuela
~Received 30 January 1996!

We study the slow evolution of spherically symmetric fluid distributions undergoing dissipation in the form
of a radial heat flow. We analyze three examples and show that, depending on the heat flow distribution,
different signs in the velocity of fluid elements may appear, giving rise to the splitting of the configuration. It
is also shown that whenever the slowly evolving regime is compatible with very strong gravitational fields, the
heat flux becomes negative~directed inward!, and the fluid will eventually expand.@S0556-2821~97!02004-3#

PACS number~s!: 04.40.Dg, 97.10.Cv

I. INTRODUCTION

Dissipation due to the emission of massless particles
~photons and/or neutrinos! is a characteristic process in the
evolution of massive stars.

In fact, it seems that the only plausible mechanism to
carry away the bulk of the binding energy of the collapsing
star, leading to a neutron star or black hole is neutrino emis-
sion @1#.

Usually, it is assumed that the energy flux of radiation~as
that of thermal conduction! is proportional to the gradient of
temperature. This assumption is in general very sensible,
since the mean free path of particles responsible for the
propagation of energy in stellar interiors is in general very
small as compared with the typical length of the object.

Thus, for a main sequence star such as the sun, the mean
free path of photons at the center is of the order of 2 cm.@2#.
Also, the mean free path of trapped neurinos in compact
cores of densities about 1012 g cm23 becomes smaller than
the size of the stellar core@3,4#.

Furthermore, the observational data collected from super-
nova 1987A indicates that the regime of radiation transport
prevailing during the emission process is closer to the diffu-
sion approximation than to the streaming out limit@5#.

In this work we study the slow evolution of spherically
symmetric fluid distribution undergoing dissipation in the
form of heat flow.

By slow evolution we mean that changes of the system
take place on a time scale that is very long compared to the
hydrostatic time scale. As a result of this assumption, physi-
cal variables are functions of time, but the system may be
considered in hydrostatic equilibrium at any moment of its
evolution.

The field equations for systems under consideration are
given in Sec. II and will be used to examine three examples.

The first one corresponds to the shear-free fluid. It will be
shown that in the Newtonian regime, sufficiently large~nega-

tive! temperature gradients and/or thermal conductivity
might, in principle, lead to the occurrence of positive veloci-
ties ~expansion! of outer shells and negative velocities~con-
traction! of the inner shells and this in turn leads to the split-
ting of the fluid distribution.

This effect, which we call ‘‘thermal peeling,’’ is also
present in the relativistic regime. However, as we increase
further and further the intensity of the field~keeping always
the approximation of slow evolution!, the gravitational term
in the transport equation will eventually prevail and the heat
flux becomes negative~directed inward!, giving rise to posi-
tive velocities for all fluid elements.

These two effects are also exhibited in the two examples
examined in Secs. IV and V.

II. FIELD EQUATIONS AND CONVENTIONS

We consider spherically symmetric distributions of col-
lapsing anisotropic fluid, undergoing dissipation in the form
of heat flow, bounded by a spherical surfaceS.

The line element is given in Schwarzschild-like coordi-
nates by

ds25endt22eldr22r 2~du21sin2udf2!, ~1!

where n(t,r ) and l(t,r ) are functions of their arguments.
We number the coordinates:x05t; x15r ; x25u; x35f.

The metric~1! has to satisfy Einstein field equations

Gm
n 528pTm

n , ~2!

which in our case read@6#
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where dots and primes stand for differentiation with respect
to t and r , respectively.

In order to give physical significance to theTn
m compo-

nents, we apply the Bondi approach@6#.
Thus, following Bondi, let us introduce, purely locally,

Minkowski coordinates (t,x,y,z)

dt5en/2dt, dx5el/2dr, dy5rdu, dz5rsinudf.

Then, denoting the Minkowski components of the energy
tensor by a bar, we have

T̄0
05T0

0 , T̄1
15T1

1 , T̄2
25T2

2 , T̄3
35T3

3 ,

T̄015e2~n1l!/2T01.

Next, we suppose that when viewed by an observer mov-
ing relative to these coordinates with velocityv in the radial
direction, the physical content of space consists of an aniso-
tropic fluid of energy densityr, radial pressurePr , tangen-
tial pressureP' , and radial heat fluxq̂. Thus, when viewed
by this moving observer, the covariant tensor in Minkowski
coordinates is

S r 2q̂ 0 0

2q̂ Pr 0 0

0 0 P' 0

0 0 0 P'

D .
Then, a Lorentz transformation readily shows that

T0
05T̄0

05
r1Prv

2

12v2 1
2Qvel/2

~12v2!1/2
, ~7!

T1
15T̄1

152
Pr1rv2

12v2 2
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~12v2!1/2
, ~8!
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25T3

35T̄2
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352P' , ~9!

T015e~n1l!/2T̄01

52
~r1Pr !ve

~n1l!/2

12v2 2
Qen/2el

~12v2!1/2
~11v2!, ~10!

with

Q[
q̂e2l/2

~12v2!1/2
. ~11!

Note that the velocity in the (t,r ,u,f) systemdr/dt is re-
lated tov by

v5
dr

dt
e~l2n!/2. ~12!

At the outside of the fluid distribution, the spacetime is that
of Vaidya, given by

ds25S 12
2M ~u!

R Ddu212dudR2R2~du21sin2udf2!,

~13!

where u is a timelike coordinate such thatu5const is
~asymptotically! a null cone open to the future andR is a null
coordinate (gRR50).

The two coordinate systems (t,r ,u,f) and (u,R,u,f) are
related at the boundary surface and outside it by

u5t2r22M lnS r

2M
21D , ~14!

R5r . ~15!

In order to match smoothly the two metrics above on the
boundary surfacer5rS(t), we have to require the continuity
of the first fundamental form across that surface.

Then,

@en2el ṙS
2 #Sdt

25F12
2M

Rb
12

dRb
du G

S

du2, ~16!

whereR5Rb(u) is the equation of the boundary surface in
(u,R,u,f) coordinates.

From Eq.~16!, using Eqs.~12!, ~14!, and~15!, it follows

enS512
2M

Rb
, ~17!

e2lS512
2M

Rb
, ~18!

where, from now on, subscriptS indicates that the quantity
is evaluated at the boundary surfaceS.

Next, the unit vectornm , normal to the boundary surface,
has components

nm
~1 !5S 2b

dRb
du

,b,0,0D , ~19!

where1 indicates that the components are evaluated from
the outside ofS, andb is given by

b5
1

~122M ~u!/Rb12dRb /du!1/2
. ~20!

The unit vector normal toS, evaluated from the inside, is
given by
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nm
~2 !5~2 ṙSg,g,0,0!, ~21!

with

g5
1

~e2lS2 ṙS
2e2nS!1/2

. ~22!

Let us now define a timelike vectorvm such that

vm~1 !5bdu
m1b

dRb
du

dR
m ~23!

and

vm~2 !5
e2nS/2

~12vS
2 !1/2

d t
m1

vSe
2lS/2

~12vS
2 !1/2

d r
m . ~24!

Then, junction conditions acrossS, require @in addition to
Eq. ~16!#

~Tmnn
mnn!S

~1 !5~Tmnn
mnn!S

~2 ! , ~25!

~Tmnn
mvn!S

~1 !5~Tmnn
mvn!S

~2 ! , ~26!

where the expressions for the energy-momentum tensor at
both sides of the boundary surface are

Tmn
~2 !5~r1P'!umun2P'gmn1~Pr2P'!smsn

1qmun1qnum , ~27!

and

Tmn
~1 !52

1

4pR2

dM

du
dm
0dn

0 , ~28!

with

um5S e2n/2

~12v2!1/2
,

ve2l/2

~12v2!1/2
, 0, 0D , ~29!

sm5S ve2n/2

~12v2!1/2
,

e2l/2

~12v2!1/2
, 0, 0D , ~30!

whereum denotes the four-velocity of the fluid andsm is a
radially directed spacelike vector orthogonal toum, and

qm5Q~ve~l2n!/2, 1, 0, 0!. ~31!

Then it follows, from Eqs.~25! and ~26!,

@Pr #S52F 1

4pR2

dM

du
b2G

S

, ~32!

@Qel/2~12v2!1/2#S52F 1

4pR2

dM

du
b2G

S

. ~33!

Equations~16!, ~32!, and ~33! are the necessary and suffi-
cient conditions for a smooth matching of the two metrics~1!
and ~13! on S. Combining Eqs.~32! and ~33!, we get

@Pr #S5@Qel/2~12v2!1/2#S , ~34!

expressing the discontinuity of the radial pressure in the
presence of heat flow, which is a well-known result@7#.

In this work we shall consider exclusively slowly evolv-
ing systems. That means that our sphere changes slowly on a
time scale that is very long compared to the typical time in
which it reacts on a slight perturbation of hydrostatic equi-
librium, and this typical time is called hydrostatic time scale.
Thus, our system is always in a hydrostatic equilibrium~very
close to! and its evolution may be regarded as a sequence of
static models linked by Eq.~6!.

This assumption is very sensible because the hydrostatic
time scale is very small for almost any phase of the life of a
star. It is of the order of 27 minutes for the Sun, 4.5 seconds
for a white dwarf, and 1024 seconds for a neutron star of one
solar mass and 10 Km radius@2#.

Let us now express this assumption through conditions for
v and metric functions.

First of all, slow contraction~or expansion! means that the
radial velocityv, measured by the Minkowski observer, as
well as time derivatives are so small that their products as
well as second time derivatives may be neglected. Thus, we
shall assume

n̈'l̈'l̇ṅ'l̇2'ṅ2'v2'v̇50. ~35!

Then, it follows from Eqs.~6! and ~10! that Q is of order
O(v), a result that might be deduced from purely physical
considerations, since intense emission is not expected to be
compatible with slow evolution.

Next, takingr derivatives of Eq.~4! and using Eqs.~3!
and ~5!, we obtain in the approximation of slow evolution

Pr81~r1Pr !
n8

2
22

P'2Pr

r
50, ~36!

which is the equation of hydrostatic equilibrium for an an-
isotropic fluid.

Thus, as mentioned before, the system, although evolving,
is in a hydrostatic equilibrium@up to orderO(v)#; this al-
lows for a very simple extension of any static solution to the
slowly evolving case.

Finally, we calculate the shear tensor in the slow motion
approximation. As usual, the components of the shear tensor
are given by

smn5um;n1un;m2uman2unam2
2

3
QPmn , ~37!

where

Pmn5gmn2umun , Q5u;m
m , am5unum;n ~38!

are, respectively, the projection tensor, the expansion scalar,
and the four acceleration.

After tedious but simple calculations, we get~always in
the slow motion approximation!

Q5v8e2l/21
l̇e2n/2

2
1
2ve2l/2

r
1

n8ve2l/2

2
, ~39!
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52
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3
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v

r
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where Eqs.~3!–~6! have been used.
We can solve Eq.~40! for v, to obtain

v5vSS rrS
De~l2lS!/224prel/2

3E
r

rSSQel2
3

16p
e2l

s11

r Ddr. ~41!

III. THE SHEAR-FREE CASE

The first model we shall consider corresponds to the
shear-free case.

Then, it follows from Eq.~41! that

v5FvS

rS
e2lS/22E

r

rS
4pQeldrGel/2r . ~42!

Now, from the relativistic Maxwell-Fourier law@8,9#, we
have

qm5kPmn~T,n2Tan! ~43!

or

q15Q52ke2lS T81
Tn8

2 D , ~44!

whereT is the temperature andk denotes the coefficient of
conduction.

Then, feeding back Eq.~44! into Eq. ~42! and using Eq.
~18!, we obtain

v5FvS

rS
S 12

2M ~u!

rS
D 1/214pk~TS2T!

12pkE
r

rS
Tn8drGel/2r . ~45!

In the Newtonian limit we haveM (u)'l'n'0 and, there-
fore, we get the following expression forv:

vNewt5
vS

rS
r14pk~TS2T!r . ~46!

Thus, unlike the nondissipative case@10#, the shear-free col-
lapse in the Newtonian limit does not yield the linear law of
homologous contraction.

Furthermore, the sign ofv for any value ofr is not nec-
essarily the same as that ofvS ~as is the case in the nondis-
sipative evolution!.

In particular, for sufficiently large~negative! gradient of
temperature, we may havevS.0 andv,0.

In other words, the system may be evolving in such a way
that inner shells collapse, whereas outer ones expand.

This effect, which we call ‘‘thermal peeling,’’ is also
present in the relativistic regime, provided the third term in
the right-hand side of Eq.~45! is not too large.

Two comments are in order at this point. First, observe
that going from geometric to cgs units, one sees that

kT;10259@k#@T# cm21,

where @k# and @T# denote the numerical values of these
quantities as measured in erg s21 cm21 K21 andK, respec-
tively. Therefore, extremely high conductivities and/ornT
are required for thermal peeling to be observed in Newtonian
regime. However, such high thermal conductivities are asso-
ciated with highly compact, degenerate objects where New-
tonian limit is not reliable. In general, it should be clear that
we are only indicating the possibility of thermal peeling to
occur. The appearance of such an effect could only be in-
ferred from a specific temperature distribution.

On the other hand, it should be noticed that in Eq.~46! it
has been assumed that terms of orderO(M /rS) and higher
are negligible with respect tok(TS2T). This, of course, is
not always true, as commented above, in which case Eq.~46!
is not valid.

If the gravitational field becomes too strong~always keep-
ing the slowly evolving regime!, then the third term in Eq.
~45! will prevail over the other two. Since it is positive de-
fined, that means thatv, for any value ofr , will be positive,
i.e., the fluid is expanding.

The same conclusion may be obtained by inspection of
Eqs.~42! and ~44!.

In fact, if the field becomes very strong, then the heat flow
becomes negative and so the second term on the right-hand
side of Eq.~42! becomes positive. Sincee2lS/2 is small in
the limit of strong field, it is clear thatv will be positive for
any value ofr . Of course, all this will be valid only if the
slowly evolving regime may be made compatible with the
presence of strong gravitational fields. Also, it could be ar-
gued that these results depend on the shear-free condition.

However, in the next two sections we shall work out two
examples with shear, which lead to the same conclusions as
the shear-free case above. Furthermore, in the example ex-
amined in Sec. V, the radius of the configuration may be
arbitrarily close to 2M (u), without the system leaving the
slowly evolving regime.

IV. THE HOMOGENEOUS AND LOCALLY ISOTROPIC
SPHERE

Let us now consider a homogeneous (r5r(t)) and lo-
cally isotropic (P'5Pr5P) fluid sphere undergoing dissi-
pation, in slow contraction.

From the definition of the mass function,

m~r ,t !54pE
0

r

T0
0r 2dr, ~47!

we obtain, for this case~in our approximation!,

m5
4p

3
rr 3 ~48!

and, for the total mass,
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M5
4p

3
rrS

3 . ~49!

Also, from Eqs.~3! and ~36!,

e2l512
2m

r
, ~50!

en/25
1

2 F3S 12
2M

rS
D 1/22S 12

2m

r D 1/2G . ~51!

Next, taking time derivative of Eq.~50! and using Eqs.~6!
and ~12!, we find

ṁ

4pr 2
52r

dr

dt
2P

dr

dt
2Qen/2, ~52!

or using Eq.~48!,

ṁ

4pr 2
1
dr

dt

m8

4pr 2
52

dr

dt
P2Qen/2. ~53!

Denoting the convective~comoving! time differentiation by
D/Dt, we write Eq.~53! as

Dm

Dt
524pr 2S Pdrdt 1Qen/2D ~54!

which shows how the mass inside a particular shell of par-
ticles changes with time. The two terms on the right-hand
side of Eq.~54! have a simple physical meaning, so we shall
not comment on them@6#. The change of the total mass
becomes, using Eqs.~17!, ~34!, and~54!,

DM

Dt
524prS

2QSS 12
2M

rS
D 1/21O~v2!. ~55!

On the other hand, we obtain, from Eq.~48!,

Dm

Dt
[ṁ1m8

dr

dt
5
4p

3
ṙr 314prr 2

dr

dt
. ~56!

Equating Eqs.~54! and ~56!, we get

ṙ52
3

r Fdrdt ~r1P!1Qen/2G . ~57!

Or, evaluating atS,

ṙ52
3

rS
@QSe

nS/21~r1PS! ṙS#. ~58!

Now, the pressure is obtained from Eq.~36! with condition
~34!. It is a simple matter to see that

P5P~Q50!1O~v!, ~59!

whereP(Q50) is the pressure for the dissipationless case
@10#.

SinceP appears in Eqs.~57! and ~58!, multiplying terms
of orderO(v), we can neglect the last term on the right-hand
side of Eq.~59!. Thus

P5r
~122m/r !1/22~122M /rS!1/2

3~122M /rS!1/22~122m/r !1/2
. ~60!

Feeding back Eq.~60! into Eqs. ~57! and ~58!, we obtain,
using Eq.~12!,

v5vSS rrS
De~l2lS!/21

QS

rS

r

r
el/22

Q

r
en/2e~l1lS!/2.

~61!

Thus, as in the shear-free case, the last term in Eq.~61! will
prevail in the case of very intense gravitational field. How-
ever, we cannot reach arbitarily strong fields in this model,
since already for 2M /rS58/9 the pressure given by Eq.~60!
becomes singular at the center. Obviously, for this critical
value of the surface potential, the heat flux does not neces-
sarily become negative and, therefore, it is not necessarily
true that, as we approach the critical value 8/9, the velocity
of any fluid element becomes positive.

On the other hand, the possibility of thermal peeling for
this model is suggested by Eq.~61!. In order to exhibit this
effect, let us assume the following trial heat function

4pr 2Qen/25am, ~62!

where the ‘‘opacity’’ factora is given by

a5
Ve2r /rS

M
~63!

andV is a numerical factor of orderO(v). Although the
luminosity implied by Eq.~62! may be too large to accom-
modate in any physically reasonable scenario, we present it
just to illustrate the effect.

Then, Eq.~61! becomes

v5S rrS
Del/2

1

~122M /rS!1/2FvSS 12
2M

rS
D

2
rSV

3eM
~e12~r /rS!21!G . ~64!

Figures 1 and 2 showv as function ofr /rS for different
surface potentials. We shall comment on them in the last
section.

FIG. 1. v as function ofx[r /rS for the locally isotropic case
V51023 and different values of surface gravitational potential.
Curves a, b, c, d, e correspond toM /rS51/90, 1/60, 1/45, 1/30,
1/18, respectively.
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V. HOMOGENEOUS SPHERE SUSTAINED
ONLY BY TANGENTIAL STRESSES

Let us now consider a homogeneous sphere@r5r(t)#
sustained only by tangential stresses (Pr50) undergoing
slow dissipative evolution~the dissipationless version of this
model has been studied in@10#!.

From Eqs.~3!, ~4!, and~36!, it is not difficult to find that

en5
~122M /rS!3/2

~122m/r !1/2
, ~65!

e2l512
2m

r
, ~66!

P'5
2pr2r 2

3S 12
8p

3
rr 2D , ~67!

m5
4p

3
rr 3. ~68!

In this case, Eqs.~57! and ~58! are valid withP50.
Then, we get forv in this case

v5FQS

r
enS/2S rrS

D2
Q

r
en/21vSS rrS

De~nS2lS!/2Ge~l2n!/2.

~69!

However, since in this model the radial pressure vanishes
everywhere, junction condition~34! implies

QS50. ~70!

Thus, the heat flow vanishes at the boundary surface and,
therefore, the total mass remains constant.

Using Eqs.~65!, ~66!, and~70!, we may write, forv,

v5vSS rrS
D ~122M /rS!1/4

~122m/r !1/4
2
Q

r

1

~122m/r !1/2
. ~71!

The important point to stress here is that, in this model,rS

may take values arbitrarily close to 2M , without leaving the
slowly evolving regime@11#. On the other hand, sincen8 is
given by

n85
2m

r 2~122m/r !
, ~72!

it is clear that the ‘‘gravitational term’’ in Eq.~44! will pre-
vail over the temperature gradient, at some stage of the evo-
lution, leading to a negative heat flux.

This, in turn would imply thatv would be positive for
any fluid element, since the second term on the right-hand
side of Eq.~71! would clearly prevail over the first one, as
rS approaches to 2M .

Just for the illustration of the occurrence of thermal peel-
ing in this model, let us consider the following trial heat
function:

4pr 2Qen/25
V

M
~e12~r /rS!21!, ~73!

where as before,V is a numerical factor of orderO(v).
Then,v becomes

v5
~r /rS!

~122m/r !1/4~122M /rS!3/4FvSS 12
2M

rS
D

1
V

3~M /rS!
~12e12~r /rS!!G . ~74!

Figure 3 exhibits the peelings for different surface gravita-
tional potentials. We shall comment on this in the next sec-
tion.

VI. CONCLUSIONS

We have seen that, in the regime of slow evolution, dis-
sipation in the form of heat flow may affect drastically the
evolution of self-gravitating objects, even thoughQ is of
orderO(v).

The thermal peeling defined above may be present even in
the Newtonian regime.

Figures 1 and 2 give the profiles ofv as function of
r /rS for different values ofM /rS , for the locally isotropic
case. Higher potentials involve more layers in the peeling,
until the value 5/18 is reached. For this and higher potentials,
the tendency reverses.

The same is true for the third example (Pr50), as shown
in Fig. 3

The appearance of negative heat flux due to gravitational
term in Eq. ~44! may or may not occur, depending on the
value of temperature gradients and on how strong the gravi-

FIG. 2. Same as Fig. 1, but now curves a, b, c, d correspond to
M /rS53/18, 5/18, 6/18, 7/18. FIG. 3. v as function ofx for the third model (Pr50) and

V51023. Curves a, b, c, d correspond toM /rS51/20, 6/20, 8/20,
9/20.
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tational field can be, without destroying the slowly evolving
regime.

In particular, in the locally isotropic model we know that
the surface gravitational potential cannot be larger than~or
even equal to! 8/9. However, in our last example (Pr50),
we know thatrS can continuously approach 2M , without the
system leaving the slowly evolving regime. In this case,
negative heat flux is unavoidable at some stage of evolution
and the fluid will necessarily expand.

In general, all locally isotropic models have more or less
stringent restrictions in values of their surface gravitational
potentials@12# and, therefore, negative heat fluxes are more
likely to appear in anisotropic fluids.

We would like to conclude with the following three ob-
servations.

~1! We are aware of the fact that the Maxwell-Fourier
type law@Eq.~43!# leads to a parabolic equation for tempera-
ture, a fact which is at the origin of pathologies@13# found in
Eckart @8# and Landau@9# approaches. However, it is clear
that all pertinent relaxation terms appearing in causal dissi-
pative theories@14–17# are of the orderO(Q̇)'O(v̇) and,
therefore, have to be neglected in our approximation.

~2! The two effects mentioned above are predicted under
the strict verification of the slowly evolving regime. Whether
or not they, or some similar effects, appear in the ‘‘dy-
namic’’ regime~far from hydrostatic equilibrium! remains to
be seen.

~3! The appearance of negative heat flux has been already
exhibited in some models obtained in the general~‘‘dy-
namic’’! case@18#.
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