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Two effects in slowly evolving dissipative self-gravitating spheres
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We study the slow evolution of spherically symmetric fluid distributions undergoing dissipation in the form
of a radial heat flow. We analyze three examples and show that, depending on the heat flow distribution,
different signs in the velocity of fluid elements may appear, giving rise to the splitting of the configuration. It
is also shown that whenever the slowly evolving regime is compatible with very strong gravitational fields, the
heat flux becomes negativdirected inwarg, and the fluid will eventually expanfiS0556-282(197)02004-3
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[. INTRODUCTION tive) temperature gradients and/or thermal conductivity
might, in principle, lead to the occurrence of positive veloci-

Dissipation due to the emission of massless particlegies (expansion of outer shells and negative velocitiéson-
(photons and/or neutrinpss a characteristic process in the traction of the inner shells and this in turn leads to the split-
evolution of massive stars. ting of the fluid distribution.

In fact, it seems that the only plausible mechanism to This effect, which we call “thermal peeling,” is also
carry away the bulk of the binding energy of the collapsingPresent in the relativistic regime. However, as we increase
star, leading to a neutron star or black hole is neutrino emisfurther and further the intensity of the fie(deeping always
sion[1]. the approximation of slow evolutignthe gravitational term

Usually, it is assumed that the energy flux of radiatias  in the transport equation will eventually prevail and the heat
that of thermal conductioris proportional to the gradient of flux becomes negativeirected inwarg, giving rise to posi-
temperature. This assumption is in general very sensibldive velocities for all fluid elements.
since the mean free path of particles responsible for the These two effects are also exhibited in the two examples
propagation of energy in stellar interiors is in general veryexamined in Secs. IV and V.
small as compared with the typical length of the object.

Thus, for a main sequence star such as the sun, the mean
free path of photons at the center is of the order of 2[&h.

Also, the mean free path of trapped neurinos in compact We consider spherically symmetric distributions of col-
cores of densities about g cm~* becomes smaller than |apsing anisotropic fluid, undergoing dissipation in the form
the size of the stellar core,4]. of heat flow, bounded by a spherical surfate

Furthermore, the observational data collected from super- The line element is given in Schwarzschild-like coordi-
nova 1987A indicates that the regime of radiation transporhates by
prevailing during the emission process is closer to the diffu-
sion approximation than to the streaming out lifft.

In this work we study the slow evolution of spherically
symmetric fluid distribution undergoing dissipation in the
form of heat flow. where »(t,r) and \(t,r) are functions of their arguments.

By slow evolution we mean that changes of the systenwe number the coordinates®=t; x'=r; x?=6; x°= ¢.
take place on a time scale that is very long compared to the The metric(1) has to satisfy Einstein field equations
hydrostatic time scale. As a result of this assumption, physi-
cal variables are functions of time, but the system may be ) ,
considered in hydrostatic equilibrium at any moment of its G,=—87T,, @
evolution.

. Thg field equationg for systems undgr consideration arghich in our case reafs]
given in Sec. Il and will be used to examine three examples.

The first one corresponds to the shear-free fluid. It will be

Il. FIELD EQUATIONS AND CONVENTIONS

ds’=e’dt?—erdr?—r?(d#?+sirf6d ¢?), (1)

shown that in the Newtonian regime, sufficiently latgega- 0 1 1 A
—877T0=—r—2+e I'_Z_T , 3)
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—87T5=—87T} Ge M2
QE(l_T)m- (11)

-V

[2\+ NN —1)]

4 Note that the velocity in thet(r,,¢) systemdr/dt is re-
e\ =\ lated tow by
+—( 2"+ 2= NV +2 , (5
4 ' dr (N=w)/2
w= ae . (12)
A
—8mTo=— 1, (6) At the outside of the fluid distribution, the spacetime is that
of Vaidya, given by
where dots and primes stand for differentiation with respect 2M(u)
to t andr, respectively. ds’= ( 1-—— du?+2dudR— R?(d#?+ sir? 6dg?),

In order to give physical significance to tfié¢’ compo- (13)
nents, we apply the Bondi approafdl.

Thus, following Bondi, let us introduce, purely locally, where u is a timelike coordinate such that=const is

Minkowski coordinates £,X,y,z) (asymptotically a null cone open to the future aitis a null
) / _ coordinate ¢rr=0).
dr=e"2dt, dx=e2dr, dy=rdg, dz=rsinfde. The two coordinate systems,(, 8, ¢) and (U,R, 6, ¢) are

related at the boundary surface and outside it by

Then, denoting the Minkowski components of the energy

tensor by a bar, we have e r

2 a B B u=t—r 2Mln(2|vI 1), (14
To=TS, Ti=Ti, T3=T3, T3=T3,

R=r. (15

T A (vFN)/2 )

Tor=e™! Tos- In order to match smoothly the two metrics above on the

) boundary surface=ry(t), we have to require the continuity
~ Next, we suppose that when viewed by an observer movps the first fundamental form across that surface.
ing relative to these coordinates with velocityin the radial Then,

direction, the physical content of space consists of an aniso-

tropic fluid of energy density, radial pressuré®, , tangen- L a2 ) 2M  dR, )
tial pressureP, , and radial heat fluj. Thus, when viewed [e"—e'rs]sdt®=|1~ R—b+2m dus,  (16)
. . . . . . 3
by this moving observer, the covariant tensor in Minkowski
coordinates is whereR=R,(u) is the equation of the boundary surface in
(u,R, 6,¢) coordinates.
p —a 0O ©O From Eq.(16), using Egs(12), (14), and(15), it follows
-qg P, 0 O 2M
. Vs —1 — —
O 0 P, O € Ry’ (7
0 0O 0 P
+ 2M
) ) e M=1—-—, (18
Then, a Lorentz transformation readily shows that Rp
. =5 p+Pw?  2QweM? yvhere, from now on, subscri@ indicates that the quantity
To=To=—7—,2 +(1_ 27 (7)  is evaluated at the boundary surfate

Next, the unit vecton,,, normal to the boundary surface,
) o has components
P +pw 2Quwe

T%:Ti:_ 1— w2 _(1_w2)1/Za (8

dR
()| _ b
n, B au ,B,0,0), (19

2_13_T2_13_ _
To=T3=T3=Ts=~P,, ©) where + indicates that the components are evaluated from
_ the outside o, andg is given by
Toi= elr+ x)/z-l—Ol .

(1162, (10 A= = 2M(W)/Ry+ 2dR, /A1) ™

(p+ Pr)we(v+)\)/2 Qevl2e)\ (20)

1_w2 _(1_w2)l/2

The unit vector normal t&,, evaluated from the inside, is
with given by
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ny,'=(-rs7,7,00), (1)
with
= ! 22
Y= (ef}\z_fzefvz)l/ZI ( )
Let us now define a timelike vector* such that
d
uﬂ<+>=/355+ﬂ%5§ (23)
and
e vsi2 wep M52
opH( )= : (24

o+ o,
(1_w§)1/2 t (1_(,()%)1/2 r

Then, junction conditions across, require[in addition to
Eq. (16)]
(T,,n*n")$"=(T,,n*n")§), (25)

(Tu* 0”8 =(T 008, (26)

expressing the discontinuity of the radial pressure in the
presence of heat flow, which is a well-known redift.

In this work we shall consider exclusively slowly evolv-
ing systems. That means that our sphere changes slowly on a
time scale that is very long compared to the typical time in
which it reacts on a slight perturbation of hydrostatic equi-
librium, and this typical time is called hydrostatic time scale.
Thus, our system is always in a hydrostatic equilibrituary
close tg and its evolution may be regarded as a sequence of
static models linked by Ed86).

This assumption is very sensible because the hydrostatic
time scale is very small for almost any phase of the life of a
star. It is of the order of 27 minutes for the Sun, 4.5 seconds
for a white dwarf, and 10* seconds for a neutron star of one
solar mass and 10 Km radi(g].

Let us now express this assumption through conditions for
o and metric functions.

First of all, slow contractiorfor expansiopmeans that the
radial velocity w, measured by the Minkowski observer, as
well as time derivatives are so small that their products as
well as second time derivatives may be neglected. Thus, we
shall assume

2 2

A~ A v~ 2~ 12~ w2~ w=0. (35)

where the expressions for the energy-momentum tensor at

both sides of the boundary surface are

Tfu,_v): (p+ Pi)u,uuv_ Pig;/,v—'_ ( Pr - PL)SMSV

+q,uuV+un,u,l (27)
and
1 dMm
(+)— _ __
T = g2 qu % @8
with
e—V/2 we—)\/Z
UM:((l_wz)uza(l_wz)yz: 0, 0), (29
we "2 e M2
SM:((l_wz)l/Za(l_wz)uz: 0, 0): (30

whereu* denotes the four-velocity of the fluid arst is a
radially directed spacelike vector orthogonalu®, and

g“=Q(we* "2 1,0, 0. (31
Then it follows, from Eqgs(25) and (26),
Prls= M o 32
(Pls=—l7r2 qu P . (32
1 dM
1209 _ . 2\1/ — 2
[Qe"*(1- 0?2 LWdeuﬁ ;@

Then, it follows from Eqs(6) and (10) that Q is of order
O(w), a result that might be deduced from purely physical
considerations, since intense emission is not expected to be
compatible with slow evolution.

Next, takingr derivatives of Eq.(4) and using Eqs(3)
and(5), we obtain in the approximation of slow evolution

, V’ PL_PI’
Pr+(p+Pr)7_2 v =0,

(36)

which is the equation of hydrostatic equilibrium for an an-
isotropic fluid.

Thus, as mentioned before, the system, although evolving,
is in a hydrostatic equilibriunfup to orderO(w)]; this al-
lows for a very simple extension of any static solution to the
slowly evolving case.

Finally, we calculate the shear tensor in the slow motion
approximation. As usual, the components of the shear tensor
are given by

2
owzuW+uy;u—uﬂav—uva#—g(@PW, (37)
where
Pu=0u—Uu,, O=uf, a,=u"u,, (38

are, respectively, the projection tensor, the expansion scalar,
and the four acceleration.
After tedious but simple calculations, we getways in

Equations(16), (32), and (33) are the necessary and suffi- the slow motion approximation

cient conditions for a smooth matching of the two mettits
and(13) onX. Combining Eqs(32) and(33), we get

[P ]s=[QeM¥(1-w?) 3y, (34)

}'\e— vI2 Zwe—)\/Z V/we—xlz

O=w'e M+ + + ,
2 r 2

(39



55 TWO EFFECTS IN SLOWLY EVOLVING DISSIPATIVE ... 2047

209 203 This gffect, whi(_:h_ we ca_II “thermgl peeling,’j is also_
T1uT T 2 €=~ rzsinzae present in the relativistic regime, provided the third term in
the right-hand side of Eq45) is not too large.
A, N e -~ Two comments are ir_1 order at this point. First, observe
3 @' m -~ —4mrQe™* ], (40 that going from geometric to cgs units, one sees that

—5 —1
where Egs(3)—(6) have been used. kT~10"«][T] cm™*,

We can solve Eq(40) for o, to obtain where[ ] and [T] denote the numerical values of these

. quantities as measured in erg’scm~! K~ andK, respec-
w:ﬂ,E(_) e =X3)2_ g a2 tively. Therefore, extremely high conductivities and/&iT
s are required for thermal peeling to be observed in Newtonian
rs 3 o1 regime. However, such high thermal conductivities are asso-
xf (Qe”——e"‘— dr. (42 ciated with highly compact, degenerate objects where New-
r 16m r tonian limit is not reliable. In general, it should be clear that
we are only indicating the possibility of thermal peeling to
Ill. THE SHEAR-FREE CASE occur. The appearance of such an effect could only be in-
. . ferred from a specific temperature distribution.
The first model we shall consider corresponds to the o the other hand, it should be noticed that in E) it
shear-free case. has been assumed that terms of or@éM/ry) and higher
Then, it follows from Eq.(41) that are negligible with respect te(Ts—T). This, of course, is
not always true, as commented above, in which caséZ&.
eM?r (42) is not valid.
If the gravitational field becomes too strotaways keep-
L ) ing the slowly evolving regime then the third term in Eq.
Now, from the relativistic Maxwell-Fourier 1aw8,9], we  (45) will prevail over the other two. Since it is positive de-
have fined, that means thai, for any value ofr, will be positive,
i.e., the fluid is expanding.

w=

w r
—Ee‘}‘E/Z—J 247rQe"dr
s r

q#=«P*(T,,~Ta,) (43 The same conclusion may be obtained by inspection of
or Egs.(42) and(44).
In fact, if the field becomes very strong, then the heat flow
/ becomes negative and so the second term on the right-hand
qt=Q=—ke M T'+ T) (44  side of Eq.(42) becomes positive. Sinog s is small in

the limit of strong field, it is clear thab will be positive for
any value ofr. Of course, all this will be valid only if the

whereT is the temperature and denotes the coefficient of ) ) . .
slowly evolving regime may be made compatible with the

Cor]l'(:lue%t:ofgeding back Eq44) into Eq. (42) and using Eq. presence of strong gravitational fields. Also, it could be_e_ar-
(18), we obtain gued that these results depend on the shear-free condition.
However, in the next two sections we shall work out two

ws 2M(u)\ 2 examples with shear, which lead to the same conclusions as

0= G( 1- s +47k(Ty—T) the shear-free case above. Furthermore, in the example ex-

amined in Sec. V, the radius of the configuration may be
arbitrarily close to M (u), without the system leaving the

rs
+2m<f Tv'dr|eMr. (45  slowly evolving regime.
r

IV. THE HOMOGENEOUS AND LOCALLY ISOTROPIC

In the Newtonian limit we havé/ (u)~\~v~0 and, there-
SPHERE

fore, we get the following expression far:

Let us now consider a homogeneoys=(p(t)) and lo-
wNewt:%r+47TK(TE_T)r- (46) caII_y isqtropic P, = P,=_ P) fluid sphere undergoing dissi-
r pation, in slow contraction.
From the definition of the mass function,
Thus, unlike the nondissipative caskd], the shear-free col-
lapse in the Newtonian limit does not yield the linear law of
homologous contraction.
Furthermore, the sign ab for any value ofr is not nec-
essarily the same as that o (as is the case in the nondis- we obtain, for this casén our approximatioh
sipative evolution
In particular, for sufficiently largénegative gradient of 4T
temperature, we may haves >0 andw<O. m=-—3-pr (48)
In other words, the system may be evolving in such a way
that inner shells collapse, whereas outer ones expand. and, for the total mass,

r
m(r,t)=4wf Tor2dr, 47
0
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41 3
M=?pr2. (49

Also, from Egs.(3) and(36),

e h=1-—, (50)

2M 1/2 2m 1/2
o 1- 2 (1- 27
s r

ev/ZZE

5 (51)

Next, taking time derivative of Eq50) and using Eqs(6)
and(12), we find

m o dr Pdr " -
a2 Par Par Q¢ (52)

or using Eq.(48),

m dr m’ dr

[ U i J vl2
47Tr2+dt 4r? dtP Qe (53

Denoting the convectivécomoving time differentiation by

D/Dt, we write Eq.(53) as

Dm

dr
Dt dt

+ V/2
at T Qe

(59

=—477r2(P
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FIG. 1. & as function ofx=r/ry for the locally isotropic case
0=10"2% and different values of surface gravitational potential.
Curves a, b, ¢, d, e correspond /ry=1/90, 1/60, 1/45, 1/30,
1/18, respectively.

oo (1-2m/r)?—(1-2M/ry)*?
~P3(I—2M/ry) Y= (1—2m/n)¥?

(60)

Feeding back Eq(60) into Egs.(57) and (58), we obtain,
using Eq.(12),

L) s, T an QL
s rs p p

w=ws Vg +Ag)/2

(61)

Thus, as in the shear-free case, the last term in(&L). will
prevail in the case of very intense gravitational field. How-

which shows how the mass inside a particular shell of parever, we cannot reach arbitarily strong fields in this model,
ticles changes with time. The two terms on the right-handsince already for B1/ry = 8/9 the pressure given by EO)

side of Eq.(54) have a simple physical meaning, so we shallbecomes singular at the center. Obviously, for this critical
not comment on theni6]. The change of the total mass value of the surface potential, the heat flux does not neces-

becomes, using Eq$l7), (34), and(54),

DM

1/2
ﬁ:_4WY§QE(1_E) +O(w2)- (55)

On the other hand, we obtain, from E¢48),

Dm . N ,dr_477. 344 2dr 56
D—t=m m a—?pr mpr a ( )
Equating Egs(54) and (56), we get
.3 dr P4 Oe? 5
p=—1| g PP+ Qe (57)
Or, evaluating ak,,
. 3 vy /2 .
P:_E[Qie ¥+ (ptPy)rs]. (58)

Now, the pressure is obtained from E86) with condition
(34). It is a simple matter to see that

P=P(Q=0)+0O(w), (59

where P(Q=0) is the pressure for the dissipationless case

[10].

SinceP appears in Eq957) and (58), multiplying terms

sarily become negative and, therefore, it is not necessarily
true that, as we approach the critical value 8/9, the velocity
of any fluid element becomes positive.

On the other hand, the possibility of thermal peeling for
this model is suggested by E@1). In order to exhibit this
effect, let us assume the following trial heat function

47r?Qe?=am, (62)
where the “opacity” factora is given by

Qe—'/fz
M

(63

a=

and Q) is a numerical factor of orde®(w). Although the
luminosity implied by Eq.(62) may be too large to accom-
modate in any physically reasonable scenario, we present it
just to illustrate the effect.

Then, Eq.(61) becomes

() 1 1 2M
T/ @—2Miry) | O\ T
rEQ 1—(rlr
= s)
2o (© 1. (64)

Figures 1 and 2 show as function ofr/ry for different

of orderO(w), we can neglect the last term on the right-handsurface potentials. We shall comment on them in the last

side of Eq.(59). Thus

section.
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FIG. 2. Same as Fig. 1, but now curves a, b, c, d correspond to

M/ry=3/18, 5/18, 6/18, 7/18.

V. HOMOGENEOUS SPHERE SUSTAINED
ONLY BY TANGENTIAL STRESSES

Let us now consider a homogeneous sphgre p(t)]

sustained only by tangential stressd®,£0) undergoing
slow dissipative evolutiofithe dissipationless version of this

model has been studied @0]).

From Egs.(3), (4), and(36), it is not difficult to find that

L (1=2M/ry)%?

¢ T 1—2min™" (65)
2m
et=1-—, (66)
2mp2r?
Pl=——g— (67
™ o2
3( 1— ?pr )
_ 41 B 68
In this case, Eq957) and(58) are valid withP=0.
Then, we get fow in this case
o= %epz/z( L) _ gey/er os L) e(rs A2 g\ =v)2
p rs/p s
(69)

FIG. 3. w as function ofx for the third model P,=0) and
Q=10"3. Curves a, b, c, d correspond kd/ry =1/20, 6/20, 8/20,
9/20.

it is clear that the “gravitational term” in Eq44) will pre-
vail over the temperature gradient, at some stage of the evo-
lution, leading to a negative heat flux.

This, in turn would imply thatw would be positive for
any fluid element, since the second term on the right-hand
side of Eq.(71) would clearly prevail over the first one, as
rs approaches told.

Just for the illustration of the occurrence of thermal peel-
ing in this model, let us consider the following trial heat
function:

Q
47TI’2Q8V/2=M(61_U”2)_ 1), (73
where as before() is a numerical factor of ordeD(w).
Then, w becomes
B (riry) 1 2M
T @—2minT 1—2Mir) 2 T Ty
(1—e1<”f2>)} (74)

T 3(Miry)

Figure 3 exhibits the peelings for different surface gravita-
tional potentials. We shall comment on this in the next sec-
tion.

However, since in this model the radial pressure vanishes

everywhere, junction conditio(84) implies

Qs=0.

(70

VI. CONCLUSIONS

We have seen that, in the regime of slow evolution, dis-
sipation in the form of heat flow may affect drastically the

Thus, the heat flow vanishes at the boundary surface anéyolution of self-gravitating objects, even thoughis of

therefore, the total mass remains constant.

Using Eqgs.(65), (66), and(70), we may write, forw,

B r\(1-2m/rg)¥* Q
T T a—2min™ T (1—2min 7

The important point to stress here is that, in this model,
may take values arbitrarily close tdve, without leaving the
slowly evolving regimg 11]. On the other hand, sinc€ is

given by

, 2m
YT i—2mir)’

(71)

(72

orderO(w).

The thermal peeling defined above may be present even in
the Newtonian regime.

Figures 1 and 2 give the profiles @f as function of
r/rs for different values ofM/ry, for the locally isotropic
case. Higher potentials involve more layers in the peeling,
until the value 5/18 is reached. For this and higher potentials,
the tendency reverses.

The same is true for the third example,&0), as shown
in Fig. 3

The appearance of negative heat flux due to gravitational
term in Eqg.(44) may or may not occur, depending on the
value of temperature gradients and on how strong the gravi-
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tational field can be, without destroying the slowly evolving

regime.
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(1) We are aware of the fact that the Maxwell-Fourier
type law[Eq(43)] leads to a parabolic equation for tempera-

In particular, in the locally isotropic model we know that ture, a fact which is at the origin of pathologids3] found in

the surface gravitational potential cannot be larger tf@n
even equal tp8/9. However, in our last exampld®(=0),
we know thatrs can continuously approachv?, without the

Eckart[8] and Landay9] approaches. However, it is clear
that all pertinent relaxation terms appearing in causal dissi-

pative theorie§14—17 are of the ordeO(Q)~O(w) and,

system leaving the slowly evolving regime. In this case.therefore, have to be neglected in our approximation.
negative heat flux is unavoidable at some stage of evolution (2) The two effects mentioned above are predicted under

and the fluid will necessarily expand.

the strict verification of the slowly evolving regime. Whether

In general, all locally isotropic models have more or lessor not they, or some similar effects, appear in the “dy-
stringent restrictions in values of their surface gravitationalnamic” regime(far from hydrostatic equilibriunnremains to
potentials[12] and, therefore, negative heat fluxes are morebe seen.

likely to appear in anisotropic fluids.

We would like to conclude with the following three ob-

servations.

(3) The appearance of negative heat flux has been already

exhibited in some models obtained in the gendtaly-
namic”) case[18].
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