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Département d’Astrophysique Relativiste et de Cosmologie, UPR 176 du CNRS, Observatoire de Paris, F-92195 Meudon Cedex, France

~Received 10 July 1996!

We study the possibility to detect the gravitational wave background generated by all the neutron stars in the
Galaxy withonly onegravitational wave interferometric detector. The proposed strategy consists in squaring
the detector’s output and searching for a sidereal modulation. The shape of the squared signal is computed for
a disk and a halo distribution of neutron stars. The required noise stability of the interferometric detector is
discussed. We argue that a possible population of old neutron stars, originating from a high stellar formation
rate at the birth of the Galaxy and not emitting as radio pulsars, could be detected by the proposed technique
in the low frequency range of interferometric experiments.@S0556-2821~97!04704-8#

PACS number~s!: 04.30.Db, 97.60.Gb, 97.60.Jd

I. INTRODUCTION

Rotating neutron stars~NSs! are possible astrophysical
sources of gravitational radiation in the frequency range of
the interferometric detectors such as the Laser Interferomet-
ric Gravitational Wave Observatory~LIGO!, VIRGO, and
GEO600 currently under construction@1–3#. Indeed, pro-
vided it deviates from axisymmetry, a rotating NS emits con-
tinuous wave~CW! gravitational radiation mainly at its rota-
tion frequency and twice this frequency@4#. The
nonaxisymmetric shape of an NS can be caused by aniso-
tropic stresses from the nuclear interactions, irregularities in
the solid crust~‘‘mountains’’! @5,6#, the internal magnetic
field @7,8#, some precessional motion@9#, or the development
of triaxial instabilities~for the most rapidly rotating NS!: the
Chandrasekhar-Friedman-Schutz instability@10,11# and the
MacLaurin-Jacobi-type instability induced by viscosity
@12,13#. Estimates of upper bounds on the individual gravi-
tational wave amplitude from a sample of 334 observed NS
~radio pulsars! have been provided by Baroneet al. @14# @see
Ref. @15# ~Ref. @16#! for recent values based on a sample of
558 ~706! pulsars#. The amplitude of gravitational waves
~GWs! emitted by a rotating NS can be expressed in terms of

the NS rotation periodP, its distance to the Earthr , its
moment of inertiaI about the rotation axis, and its ellipticity
~triaxial deformation! e as @cf. Eq. ~A5! below#

h054.21310224SmsP D 2S kpcr D S I

1038kg m2D S e

1026D . ~1!

The crucial parameter entering this formula is the ellipticity
e. Its value depends on the physical mechanism that makes
the star nonaxisymmetric~cf. the references given above!
and is highly uncertain. Upper bounds one can, however, be
derived from the observed slowing down (Ṗ) of pulsars by
assuming that this latter is entirely due to the loss of angular
momentum by gravitational radiation. Let us note that this
provides an absolute upper bound; most of theṖ is usually
thought to result instead from losses via electromagnetic ra-
diation and/or magnetospheric acceleration of charged par-
ticles, at least for Crab-like pulsars. The maximum values of
e obtained in this way, as well as the corresponding maxi-
mum values ofh0, are given in Table I for five pulsars. The
first three of them correspond to the three highest values of
h0,max among the 706 pulsars of the catalog by Tayloret al.

TABLE I. Gravitational radiation data for five selected pulsars. The GW amplitudes on Earthh0 are computed according to Eq.~1! by
assuming thatI51038 kg m2 ~a representative value for a 1.4M( neutron star!. e26 is the ellipticity in units of 1026. The maximum
ellipticity and maximum GW amplitudes are derived by attributing the totality of the observed pulsar spin-down rate to the emission of
gravitation radiation.

Pulsar Distance GW GW Maximum Maximum Ellipticity
name frequencies amplitude ellipticity GW amplitude to geth0510226

r @kpc# f @Hz# 2 f @Hz# h0 emax h0,max edetect

Vela 0.5 11 22 1.1310227 e26 1.831023 1.9310224 9.1310265531023 emax
Crab 2 30 60 1.9310227 e26 7.531024 1.4310224 5.3310265731023 emax
Geminga 0.16a 4.2 8.4 4.7310228 e26 2.331023 1.1310224 2.1310255931023 emax

B1957120 1.5 621 1242 1.1310224 e26 1.631029 1.7310227 9.131029.emax
J0437-4715b 0.14 174 348 9.1310225 e26 2.931028 2.6310226 1.13102850.4 emax

aThis is the recently determined distance from the measure of Geminga parallax@45#.
bRef. @28#.
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@17,18#. The two remaining entries are two millisecond pul-
sars: the second fastest one, PSR B1957120, and the nearby
pulsar PSR J0437-4715. The figuresh0,max;10224 for the
Crab-like pulsars~three first entries in Table I! are almost
certainly too optimistic because, as already said, electromag-
netic phenomena can be invoked to explain most of, if not
all, the observed pulsar spin down. In addition, one may
notice, following Newet al. @19#, that if the mean ellipticity
of pulsars is taken to be of the order of theemax of millisec-
ond pulsars, i.e.,e;1029 ~cf. Table I!, then the Crab pulsar
is revealed to be a much worse candidate than PSR B1957
120, as can be seen by settinge51029 in Eq. ~1! for these
objects:h0

Crab.2310230 versush0
1957120.1310227.

The detectability ofindividual NS by existing and future
gravitational wave detectors has been discussed by various
authors, including Schutz@20#, Jotania and collaborators
@21,22#, Suzuki@23#, New et al. @19#, and Dhurandharet al.
@24#. For VIRGO-like instruments, it can be hoped that any
pulsar that produces a GW amplitude on Earthh0 greater
than 10226 in the frequency bandwidth where the sensitivity
of the detector is better than 10222 Hz21/2, can be detected
with three years of integration@16#. The last column of Table
I gives the minimum value ofe required to produce
h0.10226. Notice that for Crab-like pulsars this value is
below 1% of the maximum ellipticity allowed by the mea-
sured spin-down rate of the pulsar, whereas for millisecond
pulsars both values are of the same order.

In the present article we study the possibility to detect the
total CW emission fromthe whole populationof NSs in our
Galaxy by using only one LIGO- or VIRGO-type detector.
The proposed strategy consists in measuring the square of
the gravitational signalh2 and in detecting the sidereal
modulation of this signal which results from the directivity
of the detector and the anisotropy of the NS distribution.
This technique~referred to hereafter asquadratic detection!
is very similar to the one used in radioastronomy when only
one antenna is used and differs from the strategy proposed
by Schutz@20# that consists in searching for NSs one by one
within a four-dimensional space~frequency, phase, and po-
sition on the sky! ~technique referred to hereafter aslinear
detection!. The advantages and drawbacks of the two strate-
gies are discussed and it will be shown that if the number of
the emitting stars is larger than 23106, then the signal squar-
ing technique is more convenient and more computer time
saving than the linear one. Actually, the two techniques ap-
pear to be complementary.

The paper is organized as follows. In Sec. II the statistical
properties of the squared signal are briefly recalled. The ef-
ficiency of the method as a function of the NS number and of
the range of frequency at which they are supposed to radiate
is computed, the comparison with the linear analysis for
single NS search being performed in Sec. III. In Sec. IV, the
constraints on the stability of the instrumental noise are com-
puted. In Sec. V, we try to evaluate the number of gravita-
tionally emitting NSs in our Galaxy and the range of fre-
quencies at which they are supposed to radiate. Section VI
contains the conclusions.

II. STATISTICAL PROPERTIES OF THE SQUARED
SIGNAL

The responseh(t) of an interferometric detector to the
gravitational radiation emitted byN NSs spread out on the

sky is detailed in the Appendix. For the purpose of this sec-
tion, let us consider thath(t) is the sum ofN elementary
periodic functionshi with unknown frequenciesn i and
phasesf i , the precise form being given by Eqs.~A2!–~A5!
below.

The time average value ofh(t), ^h(t)& is zero, but the
average of its square is not. Therefore, the strategy to detect
the gravitational emission of an ensemble of NSs, the fre-
quencies of which spread out fromn1 to n2, consists in mea-
suring the square of the signalh2(t). It is easy to see that
^h2(t)& is proportional to the sum of the squares of the shear
from each NS@cf. Eq. ~A13!#:

^h2~ t !&.(
i51

N

a i~ t !
Ai
2

r i
2 , ~2!

where r i is the distance of thei th NS, Ai its gravitational
wave amplitude at one unit distance,a i(t) some factor in-
volving the direction of the NS and the polarization of its
radiation with respect to the detector arms. For the purpose
of the present discussion, Eq.~2! can be recast in the ap-
proximate form

^h2~ t !&.K~ t !N
A2

Dq
2 , ~3!

whereA2 is the mean value ofAi
2 ,

Dq :5F 1N(
i51

N
1

r i
2G21/2

~4!

is the inverse-square average distance of the NS population,
andK(t) is a time-varying factor, with the periodicity of one
sidereal day. Its nonconstancy is induced by the directivity of
the detector and the anisotropy of the NS distribution.

The study of the efficiency of the quadratic technique is
made easy by the close analogy with the radioastronomy
observation technique. Radioastronomers measure the square
of the electromagnetic field emitted by a large ensemble of
collective modes of a plasma. They are confronted with the
problem of extracting some signal from the noise of the re-
ceiver. One possible technique consists in scanning the sky
around the source, and in measuring the differences of the
total noise on or off of the source. In the case of gravitational
waves, the source is scanned by the interferometric detector
via the rotation of the Earth.

Let us also notice that the problem of detection of the
gravitational wave emission from an ensemble of NSs is very
close to the search for a gravitational cosmological back-
ground discussed in great detail by Flanagan@25# ~see also
@26#!. The main and basic difference is the daily modulation
of the signal from the NS ensemble, which allows the search
to be performed withonly onedetector instead of two detec-
tors required for the cosmological background detection
@25#.

Let s(t)5h(t)1n(t) be the output of the detector,h(t)
being the gravitational radiation signal andn(t) the detec-
tor’s noise. The frequency bandwidth of the detector is sup-
posed to beDn5n22n1. By squaring and by averaging
s(t), we obtain
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^s2~ t !&5^h2~ t !&1^n2~ t !& ~5!

because noise and signal are not correlated and, conse-
quently, the average of the cross product^2n(t)h(t)& van-
ishes. Here, the average must be understood as the average
on the outputs of an infinite number of detectors.

If the noise is stationary,̂n2(t)& is a constant, and its
value is

^n2~ t !&5E
n1

n2
G~n!n̂2~n!dn, ~6!

wheren̂2(n) andG(n) are, respectively, the noise power per
Hz and the frequency response of the detector. For simplic-
ity, we shall assume the noise being white@ n̂ independent of
n andG(n)51 for n1<n<n2#. The above expression then
reads

^n2~ t !&5n̂2Dn. ~7!

The quantity^h2(t)& is time dependent: there are high fre-
quency time variations with a typical frequency of NS rota-
tion, and a low frequency time variation due to the slow
change of the orientation of the interferometer arms with
respect to the Galaxy induced by the Earth rotation. This
latter frequencynsid is equal to the inverse of one sidereal
day: 1/nsid586164.092055 s. It is this modulation that must
be searched for.

In practice, observations are performed with only one de-
tector; consequently, the ensemble average^& must be re-
placed by an average on time. In what follows we shall con-
sider a simplified case in order to allow the reader who is not
familiar with the radioastronomy technique to understand the
basic ideas. The reader will find more details in the excellent
book by Kraus@27# and in the already quoted paper by
Flanagan@25#. Let T be the averaging time. We can write

1

TEt
t1T

n2~ t8!dt85^n2~ t !&1c~ t !, ~8!

wherec(t) is a random function. Under the ergodicity hy-
pothesisc(t) vanishes whenT→`. WhenT is finite, c(t)
has the statistical properties

^c~ t !&50, ^c2~ t !&5Cn̂4Dn/T. ~9!

Here,C is a constant of the order of unity and depends on
G(n). For the rectangular filter considered aboveC52. Val-
ues ofC for different filters can be found in Chap. 7 of Ref.
@27#.

If T is much shorter than one sidereal day,^h2(t)& can be
considered as constant, and the signal-to-noise ratioRquad
can be easily computed from Eqs.~3! and ~8!:

Rquad5
NA2

Dq
2A^c2~ t !&

5
NA2

Dq
2n̂2
A T

CDn
. ~10!

If H5N/Dn is the number of the NSs per unit frequency,
Rquad reads

Rquad5
HA2ADnT

n̂2Dq
2AC

. ~11!

Note thatRquadis magnified by the factorADnT, well known
by radioastronomers.

If T is much longer than one sidereal day, we have to take
into account the periodicity of the signal. Let us suppose for
simplicity1 that the factorK(t) appearing in Eq.~3! is har-
monic with periodPsid equal to one sidereal day and with a
known phase:̂ h2(t)&5NA2cos(2pt/Psid)/D q

2 . In this case
the best way to proceed is to make a Fourier transform of the
squared signal. The signal-to-noise ratioRquad is then

Rquad5
NA2

Dq
2Aĉ2~n!dn

, ~12!

wheredn52/T is the width of a single bin of the Fourier
transform andĉ2(n) is the spectral power of the noise
c(t)2. At very low frequencyĉ2(n)5Cn̂4Dn, so that Eq.
~12! becomes

Rquad5N
A2

Dq
2A T

2CDn

1

n̂2
. ~13!

In the realistic case~cf. the Appendix!, the signal is periodic
~period Psid) but not harmonic. Its shape depends on the
galactic NS distribution. Figures 1 and 2 show its variation
during one sidereal day for two different NS distributions.
These shapes can be used as templates to optimize the ex-
traction of the signal.

1The actual time variation of̂h2(t)& is given in the Appendix.

FIG. 1. Variation during one day of the total squared signal
from an NS distribution concentrated in the galactic disk, according
to Eqs. ~A20! and ~A21! with the parametersē25(1028)2,
Ī 25(1038 kg m2)2, P̄245(5 ms)24, R053.8 kpc, andz50.5 kpc.
The localization and orientation of the detector are those of
VIRGO. t50 corresponds to a zero local sidereal time.
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III. COMPARISON WITH THE LINEAR SEARCH
FOR A SINGLE NS

Let us compare the efficiency of the quadratic analysis
with respect to the linear one proposed by Schutz@20# for
single NSs searches. If the frequency and the position of the
NSs one searches for are known, the signal-to-noise ratio of
the linear technique is given by

Rlin5
A

D i
A T

4n̂2
, ~14!

whereD i is the distance to the individual NS that is searched
for. The factor 4 in the denominator is due to the product of
the bandwidth times an extra-factor two coming from the
fact that the phase is not known.

The ratioE5Rlin /ARquad is a good quantity to character-
ize the advantages and drawbacks of the two methods. We
have, from Eqs.~13! and ~14!,

E5
Dq

D i

~CDnT!1/4

23/4 N1/2 . ~15!

Taking Dn51kHz, T51 yr, C52, andD i5Dq , the qua-
dratic technique appears to be more efficient (E<1) than the
linear one if the number of NSs is larger than 93104. The
above result is based on the two underlying hypotheses:~i!
the frequency and the position of the isolated NS are known
exactly,~ii ! the distanceD i of the isolated NS is equal to the
averaged distanceDq5^1/r i

2&21/2 of the NSs of the en-
semble.

Let us consider now the caseDq5D i . Dq depends on the
distribution of NSs in the Galaxy. If their distribution corre-
sponds to the galactic disk~see Sec. V!, thenDq55.1 kpc
@value resulting from the distribution function~A21! with the
parametersR053.8 kpc andz050.5 kpc#. D i can be taken to
be the distance of the closest NS. For example, for the
nearby millisecond pulsar, PSR J0437-4715@28#, D i5140

pc. Let us takeD i5100 pc. The two methods become then
equivalent forN52.23108 NSs.

However, in searching for a single NS, its position has to
be known with an accuracy high enough to compensate for
the Doppler shift of the frequency induced by the rotation of
the Earth and its motion around the Sun. The last effect is the
most important one. The accuracy of the declinationd and in
the azimuthf is aboutdf5fR%nmaxc whereR% , nmax,
and c are, respectively, the radius of the Earth orbit
(1503106 km!, the expected maximum frequency of the
NSs, and the speed of light. A similar precision is needed on
the declination of the source. This means that the sky must
be divided in about 431010 (n/100 Hz)2 boxes and we have
to try to detect a periodic source~by Fourier transform! in
each box, after compensation of the variation of the fre-
quency of the source due to the Earth motion. In the above
rough analysis, we have neglected the less important Doppler
shift induced by the Earth rotation. In this section, we do not
discuss the technical possibility of performing more than
1010 Fourier transforms, each of them containing 33109

(nmax/100 Hz)(T/1 yr! bins. The detection will be consid-
ered as positive if the probability of a random fluctuation of
the signal inall the boxes times the number of bins is less
than a prefixed value. If we take the probability to be lower
than 0.16~corresponding to the 1s criterion!, the value of the
corresponding signal-to-noise ratioRlin is about 9.5 for
nmax5100 Hz and 10.5 fornmax51kHz. Consequently, Eq.
~15! becomes

E5103
Dq

D i

~CDnT!1/4

23/4 N1/2 . ~16!

The two methods become then equivalent forN52.23106.

IV. STABILITY OF THE NOISE

A. Nonstationary noise

The above results hold under the hypothesis that the term
^n2(t)& in Eq. ~8! is constant, i.e., that the noise is stationary.
Now, the actual noise is not stationary: low frequency fluc-
tuations are always present. Let us recall that the sources of
noise in interferometric detectors are the photon shot noise
~at high frequency! and the Brownian noise of the mirrors~at
low frequency!. There are at least two sources of low fre-
quency fluctuations:~i! the fluctuations of the optical power
of the laser and~ii ! the temperature fluctuations of the mir-
rors. When the interferometer is in lock, the fluctuations of
the laser power can be taken under control within few
1025 and are, therefore, not dangerous at all. However, the
interferometer may be falling out of lock occasionally or the
laser may be shut down and switched on some time later. In
either case, this will induce a temperature fluctuation in the
mirrors. However, its amplitude will be at most 0.1 K@29#.
This falls within the range of the required accuracy on the
temperature measurement of nonperiodic fluctuations, as de-
rived in Sec. IVB below.

We shall thus consider only the mirror temperature fluc-
tuations and estimate the constraints they impose. We will
discuss the possibility of monitoring the temperature fluctua-
tions to keep their effects under control.

FIG. 2. Variation during one day of the total squared signal
from a NS distribution corresponding to a galactic halo, according
to Eqs. ~A20! and ~A22! with the parametersē25(1028)2,
Ī 25(1038 kg m2)2, P̄245(5 ms)24, anda0510 kpc. The localiza-
tion and orientation of the detector are those of VIRGO.t50 cor-
responds to a zero local sidereal time.
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In what follows, we suppose that the fluctuations in the
term ^n2(t)& of Eq. ~8! have a small amplitude and that their
typical time scale is much longer than 1/n1. Let us introduce
the new random variablea(t) by

^n2~ t !&5^n2~ t !&@11a~ t !#, ~17!

where the symbolX̄ means the average on time~if it exists!.
The hypothesis of small amplitude fluctuations implies that
A^a2(t)&!1. As stated above, we consider only the contri-
bution to the noise due to the temperature. In this case, the
noisen̂2(n) is proportional to the temperatureQ @30,31#:

n̂2~n!5bQ. ~18!

Under the above hypotheses, Eq.~8! reads

1

TEt
t1T

n2~ t8!dt85^n2~ t !&@11a~ t !#1c~ t !, ~19!

wherec(t) has the same properties as those stated in Eq.~9!.
Within quadratic terms ina(t), Eq. ~19! reads

1

TEt
t1T

n2~ t8!dt85n̂2Dn1n̂2Dna~ t !1c~ t !. ~20!

The random variablea(t) has a zero mean value,a(t)50,
and its variancea2(t) is proportional to the temperature fluc-
tuations of the mirrors. Consequently, the typical time scale
for a(t) is of the order of 1 h, much longer than 1/n1;0.1 s.
The typical amplitude of the temperature variation is a few
kelvins, much smaller than the room temperature~300 K!;
therefore, the above hypotheses are satisfied. It is worth not-
ing that in defininga(t) and its statistical properties we have
averaged on time, instead of averaging on an infinite en-
semble of identical detectors. The reason is that foridentical
detectors in the same environment, the daily variation of the
temperature and, consequently, the amplitude of the thermal
noise, are the same forall the detectors.

B. Nonperiodic temperature fluctuations

The fluctuations of the mirrors temperature are not known
today. Only in situ measurements of the temperature, once
the detector will be operational, will provide us with the
statistical properties ofa(t). However, let us try to guess the
temperature trends of the mirrors, in order to see if the pre-
cision needed on the temperature control can be achieved
with the present technology. One reasonable hypothesis is to
take a power law for the Fourier spectrum of the temperature

fluctuationsdQ̂(n)2:

dQ̂~n!25
a2

nT
S n

nT
D 2g

, ~21!

wherea, g, andnT are some constants. These parameters can
be estimated in the following way. According to Eq.~21!, the
temperature variation on a time scalet is given by

^dQ2&5
a2

nT
E

n

`S n8

nT
D 2g

dn85
a2

g21 S n

nT
D 12g

, ~22!

wheren51/t. As already said, we do not have yet any real
measurements of the temperature variations of the detector’s
mirrors. Consequently, we shall proceed by guessing the
temperature variations in the environment of the experiment.
It seems reasonable to assume that the temperature variation
on a time scalet51h cannot exceed 1 K, and 10 K on a time
scalet512 h. SettingnT5(1h)2151/3600 Hz in Eq.~22!,
we obtain theng53 anda51.41 K.

Let us now estimate the precision required in the tempera-
ture monitoring in order that the amplitude of the tempera-
ture noise be lower than the ‘‘ordinary’’ noisec(t). From
Eq. ~20!, this requirement writesn̂4Dn2â(n)2,ĉ(n)2. Tak-

ing into account thatâ(n)25dQ̂(n)2/Q2, ĉ2(n)5Cn̂4Dn
@Eq. ~9!#, andg53, one obtains from Eq.~21! the condition
~for C52)

a,A2Q
n3/2

nTDn1/2
54.831023S Q

300 KD
3S n

1025 HzD
3/2S 100 HzDn D 1/2 K. ~23!

For n5(12 h)21, Dn5100 Hz, andQ5300 K, we get
a,1.731022 K. This value is 100 times smaller than the
actual value ofa obtained above from the expected daily
temperature variation (a51.41 K!. Since at this frequency
@(12h)21#, the amplitude of the temperature variation is
about 10 K, this means that the temperature fluctuations have
to be monitored with a precision of 1022310 K50.1 K for
the extra noise to be extracted from the ‘‘ordinary’’ noise
c(t).

C. Periodic temperature fluctuations

A periodic modulation due to the variation of the solar
flux might be present in the power spectrum of the mirror
temperature fluctuations. Maybe, this will not be the case,
given the amount of shielding the vacuum system and sus-
pension will provide to the mirrors. We, however, consider
temperature fluctuations correlated with the solar flux be-
cause they represent the most dangerous obstacle to the pro-
posed method of detection. Indeed, the solar flux spectrum
contains, in addition to the solar day frequency, the sidereal
day one, which may pollute the GW signal from galactic
NSs. Table II shows the Fourier spectrum of the solar flux at
the latitude of Pisa~VIRGO site! computed by taking a pe-
riod of four years. There are important lines at frequencies
corresponding to multiples of the inverse of one solar day
(nsol51.157407431025 Hz), as well as important lines at
frequencies that are multiple of the inverse of one sidereal
day (nsid51.160576331025 Hz). These latter lines can be
explained by looking at the expression giving the solar flux
as a function of time: the daily solar flux is modulated by the
annual variation of the declination of the Sun. Consequently,
there exists a line resulting from the beating of the solar
frequencynsol with the frequency corresponding to the in-
verse of the tropical year (n ty53.168876531028 Hz).
Therefore, around the solar frequency, the two frequencies
nsol6n ty are present and, in particular, the sidereal day fre-
quencynsid5nsol1n ty .
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The possible temperature fluctuation spectrum induced by
the solar flux can be written

dQ̂~n!25(
j
bj
2d~n2n j !, ~24!

where then j are the solar flux frequencies displayed in Table
II.

Let us compute the level at which the temperature of the
mirrors has to be taken under control, in order to have the
amplitude of this extra noise lower than the ‘‘ordinary’’
noisec(t). Taking into account Eq.~20!, the relationship
between the coefficientsbj @Eq. ~24!# and the periodic com-
ponentsa j of the noisea(t) reads

^bj
2&5b2Q2Dn2^a j&

2. ~25!

For a given multiple of the sidereal frequencyjnsid we have
thus to compare the contribution of the extra noise
a j n̂

2(n)Dncos(2pjnsidt1f) with the termc(t) @Eqs. ~8!,
~9!, and~19!#. Taking into account that the thickness of the
bin of a Fourier transform of a signal of lengthT is 2/T, we
have a j<A2C/DnT; the corresponding periodic tempera-
ture variation A^dQ2& must be less than 1022

(Dn/100 Hz)21/2Tyr
21/2 K (C52).

D. Conclusions

From the above analysis it appears that the nonperiodic
temperature fluctuations of the mirrors are not very danger-
ous, because an accuracy of 0.1 K in the mirror temperature
measurement seems easily reachable. On the contrary, the
periodic fluctuations must be kept under control within a few
1023 K for observation times longer than one year. This
seems to be a challenging task. However, it must be noticed
that the periodic temperature fluctuations can be measured
on time intervals of the order of one year and, therefore, are
easier to control. Note also that measures of the noise at
frequenciesnsol andnsol2n ty allow one to deduce the noise
at the sidereal frequencynsid5nsol1n ty for the spectral com-
ponents at the frequenciesnsol2n ty andnsol1n ty are almost
identical ~cf. Table II!. The required accuracy of these mea-
surements is about 1023.

To conclude, we recommend that all the detector param-
eters~temperature of the mirrors, power of the laser, and so
on! be monitored. In fact, as already said, we do not need
any regulation of the temperature, but only to know, with the
accuracy discussed above,how the temperature varies.

V. NUMBER OF NEUTRON STARS AND THEIR
GALACTIC DISTRIBUTION

A. Number of rapidly rotating neutron stars in the Galaxy

1. General considerations

From the star formation rate and the outcome of super-
nova explosions, the total number of NSs in the Galaxy is
estimated to be about 109 @32#. The number ofobservedNSs
is much lower:;700 NSs are observed as radio pulsars
@17,18#, ;150 as x-ray binaries@33,34# ~among which
;30 are x-ray pulsars!, and a few as isolated NSs, through
their x-ray emission@35#.

For our purpose, the relevant number is given by the frac-
tion of these;109 NSs which rotates sufficiently rapidly to
emit gravitational waves in the frequency bandwidth of
VIRGO-like detectors. The upper bound of this bandwidth
(nmax; a few kHz!, is sufficiently high to encompass even
the most rapidly rotating NSs, at the centrifugal breakup
limit, which, depending on the nuclear matter equation of
state and on the NS mass, ranges from 1 kHz to 2 kHz@36#.
On the other hand, the lower bound of the interferometer
bandwidth (nmin;10 Hz! is a sensitive parameter for in-
creasing the number of accessible NSs. If the observed radio
pulsars are representative of the population of rotating NSs,
loweringnmin from 10 Hz to 5 Hz would increase the number
of observable NSs by a factor 2.3.

In the following, we set the low frequency threshold of
VIRGO to the valuenmin55 Hz, which may be reachable in
a second stage of the experiment. Using the fact that the
highest gravitational frequency of a star which rotates at the
frequencyn is 2n, this means that the rotation period of a
detectable NS must be lower thanPmax50.4 s. The NSs that
satisfy to this criterion can be divided into three classes:~C1!
young pulsars which are still rapidly rotating~e.g., Crab or
Vela pulsars!; ~C2! millisecond pulsars, which are thought to

TABLE II. Fourier spectrum of the solar flux at the latitude of Pisa.

Frequency Period Identification Spectral component
n @Hz# n21 @h# ~arbitrary units!

3.168808931028 8766.000 1 yr 0.6391195
6.337617731028 4383.000 6 months 1.437866231022

1.151069831025 24.13214 nsol22n ty 4.033365131022

1.154238631025 24.06589 nsol2n ty 0.4005030
1.157407431025 24.00000 nsol ~solar day! 1.836788
1.160576231025 23.93447 nsol1n ty ~sidereal day! 0.4006524
1.163745031025 23.86930 nsol12n ty 3.958260631022

2.308477331025 12.03294 2nsol22n ty 5.257574831022

2.311645931025 12.01645 2nsol2n ty 1.207840431022

2.314814831025 12.00000 2nsol 0.7087801
2.317983731025 11.98359 2nsol1n ty 1.417807531022

2.321152431025 11.96724 2nsol12n ty 5.26610231022
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have been spun up by accretion when member of a close
binary system~during this phase the system may appear as a
low-mass x-ray binary!; ~C3! NSs withP,0.4 s but which
do not exhibit the pulsar phenomenon.

In the examples given in Table I, the first three entries
belong to class~C1!, while the other two ones belong to class
~C2!.

The number of millisecond pulsars in the Galaxy is esti-
mated to be of the orderN2;105 @37#. The number ofob-
servedmillisecond pulsars (P,10 s! is about 50 and is con-
tinuously increasing.

The number of young~nonrecycled! rapidly rotating NSs
is more difficult to evaluate. An estimate can be obtained
from the fact that the observed nonmillisecond pulsars with
P,0.4 s represent 28% of the number of cataloged pulsars
and that the total number of active pulsars in the Galaxy is
around 53105 @38#. The number of rapidly rotating nonre-
cycled pulsars obtained in this way isN1;1.43105.

Adding N1 andN2 gives a number of;23105 NSs be-
longing to the populations~C1! and~C2! defined above. This
number can be considered as a lower bound for the total
number of NSs withP,0.4 s. The final figure depends on
the amount of members of the population~C3!. This latter
number is~almost by definition! unknown. We present below
a scenario leading to a large and potentially detectable popu-
lation ~C3!.

2. The specific case of NS relics of the Galaxy formation

It seems now well established that the birth of galaxies
has been accompanied by a burst of massive-star formation.
This took place at a cosmological redshiftz;2 @39,40#, i.e.,
when the Universe was;20% of its present age. The rem-
nant of these first generations of massive stars could contrib-
ute significantly to the population~C3!, as we are going to
see.

The massive stars formed in the infancy of the Galaxy,
somet;10 G yr ago, should have given birth to a large
population of rapidly rotating (P21.20 Hz! NSs. Let us
assume that these NSs have a mean ellipticity ofe.1026,
which amounts to only one-thousandth of the maximum el-
lipticity permitted for the Crab pulsar~cf. Table I!. Let us
consider the fraction of these stars for which the spin down is
driven by gravitational radiation and not by electromagnetic
processes. This may happen in the following cases:~i! the
magnetic field is quite low (B,1010 G! either because the
NSs have been formed with such a field, given our poor
knowledge of magnetohydrodynamical processes during stel-
lar collapse and the protoneutron star phase this cannot be
excluded, or because it has been destroyed during an accre-
tion phase in a close binary system@41#, ~ii ! the magnetic
field configuration is such that the energy losses are small
~for a review of the possible magnetic field structure of NSs
and their evolution see, e.g., Ref.@42#!. Under these assump-
tions, the considered NSs do not show up at present as radio
pulsars, i.e., they belong to population~C3!. Note that New
et al. @19# have also suggested that there could exist a large
population of NSs whose spin down is driven by gravita-
tional radiation. The differences with our hypothesis are that
~i! they consider these NSs to be presently rapidly rotating
~millisecond periods! and ~ii ! they do not provide any spe-
cific scenario to create this population.

An easy calculation shows that withe.1026 and in 10
G yr, the emission of gravitational radiation has slowed
down these NSs to rotational period ofP50.075 s, quite
independently of their initial period. This corresponds to a
frequency of 13 Hz, which fits in the low frequency part of
interferometric detectors~contrary to the population sug-
gested by Newet al. @19#!. The present gravitational wave
amplitude emitted by such an NS at one distance unit is
given by Eq. ~A5! below and amounts to
A.7.5310228 kpc21. Inserting this value into Eq.~13! and
taking the inverse-square average distance of this NS popu-
lation to beDq55 kpc ~cf. Sec. III! leads to the following
signal-to-noise ratio for the quadratic detection of these NSs,
the number of which isN:

Rquad50.34S N

1010D S T

3 yrD S 10 HzDn D 1/2S 10221 Hz21/2

n̂
D 2,

~26!

where 10221 Hz21/2 is the ~present day! expected VIRGO
sensitivity at the frequency of 10 Hz@43# and 1010 is a pos-
sible value for the total number of relic NSs. Note that since
the considered NS population is supposed to radiate at low
frequencies, one can take a narrow bandwidthDn510 Hz in
order to increase the signal-to-noise ratio. Note also that im-
proving the low frequency detector sensitivity at from
10221 Hz21/2 to, say, 10222 Hz21/2, would lead to a signal-
to-noise ratio of;30 if there areN;1010 relic NSs with a
mean ellipticity of 1026.

B. Galactic distribution

Theobservedpulsars are concentrated toward the galactic
plane, with a scale height above that plane of about 0.5 kpc
@38#. This latter value is almost an order of magnitude
greater than the scale height of their progenitors~massive
stars!, reflecting the high ‘‘kick’’ velocities that pulsars ac-
quire at their birth~see, e.g.,@44# and references therein!. If
the rapidly rotating NSs considered in Sec. VA follow this
distribution, their distribution function can be represented by
Eq. ~A21! and the corresponding time variation of the
squared GW signal̂h2(t)& is shown in Fig. 1. The Fourier
spectrum of this signal is given in Table III. In addition to
the constant part, it involves four frequencies, which are the
first four harmonics of the sidereal day frequencynsid. The
amplitude of the GW signal read in Fig. 1 is

A^h2~ t !&.2310226A N

105
. ~27!

TABLE III. Fourier spectrum of the total squared signal
^h2(t)& corresponding to a disk distribution of NSs and depicted in
Fig. 1.

Frequency Cosine coeff. Sine coeff.
~arbitrary units! ~arbitrary units!

0 7.895 0
nsid 0.923 0.593
2nsid 20.738 20.065
3nsid 20.079 0.124
4nsid 0.005 0.087
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This value can be compared with the GW amplitude of an
individual NS which would have the same parameters as the
mean ones used in the computation leading to Fig. 1, namely,
e51028, P55 ms, andI51038 kg m2 @cf. Eq. ~1!#:

h0.2310227S kpcr D . ~28!

Because of the important kick velocities mentioned above, it
cannot be excluded that the actual distribution of NSs con-
stitutes a halo around our Galaxy, instead of being concen-
trated in the galactic disk. A corresponding distribution func-
tion is then given by Eq.~A22! and the resulting signal is
shown in Fig. 2.

From Figs. 1 and 2, it appears that, from the detection
point of view, the disk distribution is more favorable than the
halo one. Indeed, the relative variation of^h2(t)& during one
day is 100% in the case of the disk, but only;15% for the
halo. This is due to the fact that the halo distribution is more
isotropic than the disk one.

VI. CONCLUSION

The detection of the gravitational waves emitted by rotat-
ing NSs is a difficult task, but a positive result will give
important information on the evolution of massive stars. Two
strategies are conceivable: the detection of the coherent sig-
nal from some isolated NSs~linear detection! and the detec-
tion of the incoherent signal emitted by a large ensemble of
NSs ~quadratic detection!. The two strategies are comple-
mentary. The first one is well suited to detect the gravita-
tional radiation emitted by a few very close NSs, whereas the
second one allows us to detect the gravitational radiation
emitted byall the NSs of the Galaxy. We have shown that if
the distance of the closest NS is about 100 pc, the two meth-
ods give the same probability of detection if the number of
radiating NSs in the Galaxy is about 106.

The two strategies have their own drawbacks. Searching
for individual radiating NSs requires an extraordinary
amount of computational time. It is possible that the overall
sensitivity of this method will be limited by the power of
future computers. The second method needs a high noise
stability if it is to be used byonly one detector. Moreover,
this method has more chances to succeed if the number of
emitters in the frequency bandwidth of the detector is large,
which motivates the attempts to keep the low frequency
threshold of interferometric detectors as low as possible. In
addition, we have argued that a possible first generation of
NSs originating from an important stellar formation rate at
the birth of the Galaxy should have been spun down in 10
G yr to periods of the order 0.1 s by the gravitational radia-
tion reaction. This population could be detected by the qua-
dratic method provided that the sensitivity of interferometric
detectors is sufficiently good, around 5 to 10 Hz. It should be
noticed that since the wavelengths corresponding to these
frequencies are between 33104 km and 63104 km, detec-
tors at different locations onto the Earth can be employed for
a search in cross correlation.

Finally, let us note that the quadratic technique presented
in this article can also be applied to detect a single strong
source of continuous wave gravitational radiation.
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APPENDIX: SQUARED SIGNAL
FROM THE NS ENSEMBLE

The detector output is

s~ t !5h~ t !1n~ t !, ~A1!

where n(t) is the detector’s noise andh(t) the detector’s
response to the gravitational radiation from theN galactic
NSs:

h~ t !5(
i51

N

@F1
i ~ t !h1

i ~ t !1F3
i ~ t !h3

i ~ t !#. ~A2!

In the above equation,h1
i (t) andh3

i (t) are the two polar-
ization modes of the gravitational waves emitted by thei th
NS and F1

i (t) and F3
i (t) are the ~time-varying! beam-

pattern factors taking into account the direction and polariza-
tion of the radiation from thei th NS with respect to the
detector’s arms~cf. Sec. 5.1 of Ref.@8#!. h1

i andh3
i can be

expressed in terms of thei th NS’s angular velocityV i , el-
lipticity e i , distancer i , inclination of the rotation axis with
respect to the line of sighti i , and distortion anglex i , ac-
cording to@cf. Eqs.~20!, ~21!, and~25! of Ref. @8##

h1
i ~ t !5

Ai

r i
sinx iF12cosx isini icosi icos~V i t1f i !

2sinx i

11cos2i i
2

cos2~V i t1f i !G , ~A3!

h3
i ~ t !5

Ai

r i
sinx iF12cosx isini isin~V i t1f i !

2sinx icosi isin2~V i t1f i !G , ~A4!

Ai5
16p2G

c4
I ie i
Pi
2 , ~A5!

where Pi52p/V i is the rotation period of the star,I i its
moment of inertia, andf i some phase angle.

Let us consider the mean value

^h2~ t !&:5
1

tEt
t1t

h2~ t8!dt8 ~A6!

of h2(t) on a timet such that

V21!t!1day, ~A7!

whereV is a typical NS rotation frequency:V21,1 s ~for
instancet510 s!. From Eqs.~A3! and ~A4!, and using Eq.
~A7! @t@V21 implies that integrals of products such as
cos(Vit)3cos(Vjt) are negligibly small wheni5 j and
t!1day implies thatF1

i andF3
i are approximatively con-

stant on a timet#, one obtains
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^h2~ t !&.I 1~ t !1I 2~ t !1I 3~ t !, ~A8!

with

I 1~ t !5(
i51

N
~F1

i !2

t E
t

t1t

~h1
i !2dt8, ~A9!

I 2~ t !52(
i51

N F1
i F3

i

t E
t

t1t

h1
i h3

i dt8, ~A10!

I 3~ t !5(
i51

N
~F3

i !2

t E
t

t1t

~h3
i !2dt8. ~A11!

It can be seen easily thatI 1(t)5I 3(t) and, by virtue of Eq.
~A7!, uI 2u!I 1. Hence,

^h2~ t !&52(
i51

N
@F1

i ~ t !#2

t E
t

t1t

@h1
i ~ t8!#2dt8. ~A12!

Using Eq.~A3! for h1
i and performing the time integration

leads to

^h2~ t !&5
1

4(i51

N Ai
2

r i
2 @F1

i ~ t !#2sin2x i@cos
2x isin

2i icos
2i i

1sin2x i~11cos2i i !
2#. ~A13!

For a given NS distribution, the expression~A13! can be
computed step by step, using the property that for twoinde-
pendent random variablesu and v, and for large N,
( i51
N uiv i.ū( i51

N v i , whereū denotes the mean value ofu:
ū.( i51

Nui /N. The variablesA, x, and i being indepen-
dent, Eq.~A13! results in

^h2~ t !&5
Ā2

4
@sin2xcos2xsin2icos2i1sin4x

3~11cos2i i !
2#(

i51

N
@F1

i ~ t !#2

r i
2 . ~A14!

Taking for x and i distributions that correspond, respec-
tively, to the probability lawP(x)51/p ~uniform distribu-
tion in @0,p#) andP(i)51/2sini ~uniform distribution on the
celestial sphere!, results in

^h2~ t !&5
43Ā2

240(
i51

N
@F1

i ~ t !#2

r i
2 . ~A15!

F1
i (t) depends on~i! the orientation of the detector’s arms,

which varies with time due to the Earth motion,~ii ! the di-
rection of thei th NS, which can be represented by its equa-
torial coordinates on the celestial sphere, namely, the right
ascensiona i and the declinationd i , and~iii ! the polarization
anglec i of the gravitational wave with respect to the equa-
torial coordinates:

F1
i ~ t !5F1~a i ,d i ,c i ,t !. ~A16!

The exact dependence is quite complicated and can be found
in Sec. 5.1 of Ref.@8#. Let us first take the mean value of
F1
i (t) with respect to the polarization anglec, which is

uniformly distributed in@0,2p#. Let us denote the result by
cF 1 :

cF 1~a i ,d i ,t !5^F1~a i ,d i ,c,t !&c . ~A17!

Equation~A15! then becomes

^h2~ t !&5
43Ā2

240(
i51

N @cF 1~a i ,d i ,t !#
2

r i
2 . ~A18!

Let f (r ,a,d) be the spatial distribution function of NSs in
the Galaxy, normalized so thatNf(r ,a,d) is the number
density of NSs:

E
r50

r5`E
d52p/2

d5p/2 E
a50

a52p

f ~r ,a,d!r 2cosddrddda51.

~A19!

Equation~A18! becomes

^h2~ t !&5
688

15

p4G2

c8
Ī 2ē2P24̄N

3E
r50

r5`E
d52p/2

d5p/2 E
a50

a52p

@cF 1~a,d,t !#2f ~r ,a,d!

3cosddrddda, ~A20!

where use has been made of Eq.~A5! to expressĀ2.
A galactic disk distribution of NSs can be modeled by the

choice

f ~r ,a,d!5H exp~2R/R0!

4pR0
2z0

if uzu<z0 ,

0 if uzu.z0 ,

~A21!

whereR5R(r ,a,d) is the distance to the galactic rotation
axis andz5z(r ,a,d) is the height above the galactic plane.
Figure 1 shows the value of^h2(t)& computed according to
this distribution withR053.8 kpc andz050.5 kpc.

On the opposite, an NS distribution corresponding to a
galactic halo can be modeled by the choice

f ~r ,a,d!5
64

63p2a0
3

~a/a0!
2

A~a0 /a!21
, ~A22!

wherea5a(r ,a,d) is the distance from the galactic center
anda0 is the radius of the halo. Figure 2 shows the value of
^h2(t)& computed according to this distribution with
a0510 kpc.
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