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Robinson-Trautman radiative space-times of Petrov type II with a nonvanishing cosmological constantL
and mass parameterm.0 are studied using analytical methods. They are shown to approach the corresponding
spherically symmetric Schwarzschild–de Sitter or Schwarzschild–anti-de Sitter solution at large retarded
times. Their global structure is analyzed, and it is demonstrated that the smoothness of the extension of the
metrics across the horizon, as compared with the caseL50, can increase forL.0 and decreases for
L,0. For the extreme value 9Lm251, the extension is smooth but nonanalytic. This case appears to be the
first example of a smooth but nonanalytic horizon. The models withL.0 exhibit explicitly the cosmic no-hair
conjecture under the presence of gravitational waves.@S0556-2821~97!02504-6#

PACS number~s!: 04.20.Jb, 98.80.Hw

I. INTRODUCTION

Robinson-Trautman vacuum space-times@1,2# have at-
tracted increased attention in the last decade, in particular, in
the works by Luka´cset al. @3#, Schmidt@4#, Rendall@5#, and,
most recently, by Chrus´ciel and Singleton@6–9#. ~We refer
the reader to the last papers for further references.! In these
studies the Robinson-Trautman space-times were shown to
exist globally for all positive ‘‘times,’’ and to converge as-
ymptotically to a Schwarzschild metric. This global time be-
havior is true for generic, arbitrarily strong, smooth initial
data within the class of the Robinson-Trautman space-times.
Interestingly, the extension of these space-times across the
‘‘Schwarzschild-like’’ event horizon can only be made with
a finite degree of smoothness.

The Robinson-Trautman metrics can easily be generalized
to solve the vacuum Einstein equations with a nonvanishing
L @10#. The results proving the global existence and conver-
gence of the Robinson-Trautman solutions can be taken over
from previous studies sinceL does not explicitly enter the
basic Robinson-Trautman equation. However, the presence
of L has a considerable effect on the global structure of the
space-times. In our previous work@11#, we demonstrated
that the Robinson-Trautman space-times of the Petrov type II
with L.0 such that 9Lm2,1 settle down to the
Schwarzschild–de Sitter space-time at large retarded times.
They admit a smooth future spacelike infinity and continua-
tion of the metric across the ‘‘Schwarzschild–de Sitter-like’’
black-hole horizon can be made with a higher degree of
smoothness than those in the corresponding cases with
L50. These space-times may serve as exact models of
black-hole formation in nonspherical space-times which are

not asymptotically flat. They also represent the only known
exact analytic demonstration of the cosmic no-hair conjec-
ture ~see, e.g.,@12–15#! under the presence of gravitational
waves.

The analysis in@11#, however, covers only the cases with
L andm such that 0,9Lm2,1, implying the existence of
both the black-hole and cosmological horizons. The purpose
of this work is to study the ‘‘extreme’’ case with
9Lm251, in which the two horizons coincide, and the cases
with 9Lm2.1, when the naked singularity arises. We also
analyze the global structure of the Robinson-Trautman
space-times withL,0, which admit one black-hole horizon.

The formation of an extreme Reissner-Nordstro¨m black
hole in collapse with small nonspherical perturbations
@16,17#, as well as motion of particles in extreme black-hole
space-times@18#, exhibit features qualitatively different from
those of generic black holes. Perturbations of extreme black
holes seem to be stable with respect to both classical and
quantum processes, and there are attempts to interpret them
as solitons@19,20#. Extreme black holes with cosmological
constant were discussed by Lake and Roeder@21#, Mellor
and Moss@22,23#, Romans@24#, Brill and Hayward@25#, and
others. They were also studied in the context of the Einstein-
Yang-Mills-Higgs theory~see, e.g.,@26,27# and references
therein!.

Very recently, Kastor and Traschen@28# have given the
solutions with a cosmological constantL.0, containing
many extreme black holes. The solutions were used for ana-
lytic studies of black-hole collisions and cosmic censorship
hypothesis@29#. Horizons of these space-times were ana-
lyzed in detail in@29–31#.

It is noteworthy that multi-black-hole solutions consisting
of the analogues of extremal Reissner-Nordstro¨m black holes
in asymptotically de Sitter space-time have horizons that are
not smooth@29#. In contrast with such black holes in asymp-
totically flat space-times which have smooth horizons and
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are static, the cosmological multi-black-hole solutions are
dynamic with gravitational and electromagnetic radiation.
The fact that horizons are not smooth is interpreted as due to
the existence of radiation which does not have a ‘‘smooth
distribution.’’ It would then seem natural to interpret the
nonsmoothness of the horizons of the Robinson-Trautman
black holes in a similar way. On the other hand, one should
bear in mind that in five or more dimensions some multi-
black-hole solutions tod-dimensional Einstein gravity have
horizons that are not smooth although these solutions are
static @31#. Their lack of smoothness thus cannot be attrib-
uted to the presence of radiation.

In the next section we briefly summarize results of recent
studies of the Robinson-Trautman vacuum space-times with
L50, and, in Sec. III, we review results for the Robinson-
Trautman space-times with 0,9Lm2,1, including their
global structure and asymptotic properties at future infinity.
Sections IV and V are devoted to analysis of the ‘‘extreme’’
case (9Lm251) and ‘‘naked-singularity’’ cases (9Lm2

.1). In Sec. VI the Robinson-Trautman space-times with
L,0 are studied. The results are summarized and some gen-
eral remarks added in Sec. VII.

II. THE ROBINSON-TRAUTMAN SPACE-TIMES
WITH L50

In the standard form the Robinson-Trautman vacuum
metric reads~see@1,2,10#!

ds252Fdu222dudr12r 2P22dzdz̄, ~1!

where P5P(u,z,z̄), z is a complex spatial coordinate,r
P@0,̀ ) is the affine parameter along the raysu5const,
z5const, and

F5D lnP22r ~ lnP! ,u2
2m

r
. ~2!

Here, D52P2]2/]z]z̄ andm is a constant related to the
Bondi mass of the system. The functionP satisfies the
Robinson-Trautman equation

~ lnP! ,u52
1

12m
DD~ lnP!. ~3!

This equation can be formulated~see, e.g.,@7–9#! by intro-
ducing a smooth metricgab

0 (xc) on a two-dimensional mani-
fold ~here we shall concentrate on the physical caseS2) and
a u-dependent family of two-metricsgab5@ f (u,xc)#22gab

0

which, with respect to the coordinatez, takes the form
2P22dzdz̄. Writing

P5 f P0 , P0511
1

2
zz̄, ~4!

we find Eq.~3! becomes

] f

]u
52

f

24m
DgR, ~5!

whereR is the curvature scalar andDg the Laplacian of the
metricgab . UsingR0 andD0 to denote the curvature scalar
and the Laplacian ofgab

0 , one has

R5 f 2~R012D0lnf !, Dg5 f 2D0 . ~6!

Choosing standard coordinates on the sphere,z
5A2eiwtanu/2, we obtain

2P0
22dzdz̄5du21sin2ud2w, D0lnP051, R0512.

~7!

Therefore, the metric~1! with P5P0 is just the Schwarz-
schild metric

ds252S 12
2m

r Ddu222dudr1r 2~du21sin2udw2!

52S 12
2m

r Ddt21S 12
2m

r D 21

dr2

1r 2~du21sin2udw2!, ~8!

whereu5t2r * , andr *5*F21(r )dr5r12m ln(r/2m21)
is the usual ‘‘tortoise’’ coordinate.

The most general analysis of the existence and behavior
of solutions of the Robinson-Trautman equation was recently
given by Chrus´ciel @7,8# and by Chrus´ciel and Singleton@9#
~cf. also @4,6,32#!. The main result is that when
f 0[ f (u5u0 ,x

a) is an arbitrary, sufficiently smooth, initial-
value function forf , then f satisfying Eqs.~5! and~6! exists
for all timesu>u0; an asymptotic expansion off (u,xa) for
largeu has the form

f5 (
i , j>0

f i , ju
je22iu/m

511 f 1,0e
22u/m1 f 2,0e

24u/m1•••1 f 14,0e
228u/m

1 f 15,1ue
230u/m1 f 15,0e

230u/m1•••, ~9!

where f i , j are smooth functions onS2. Therefore, as
u→1`, Robinson-Trautman metrics approach exponen-
tially fast a Schwarzschild metric, f51. ~In general,
f→ f Schw, where fSchw corresponds to a boosted Schwarz-
schild solution; performing this boost, we can without loss of
generality assume thatf Schw51. The analogous assumption
will be made in the cases withLÞ0 in the following.! Some
of the functionsf i , j may vanish, but Chrus´ciel and Singleton
@9# prove that there exist space-times for whichf 15,1 is non-
vanishing. This implies a surprising fact that, although there
exist extensions through the null hypersurfaceH1 given by
u51` which areC117, in general the Robinson-Trautman
metricscannot be extended smoothly. Also, there exists an
infinite number ofC5 extensions throughH1. In particular,
we may join the radiative metrics to the Schwarzschild met-
ric so that the Robinson-Trautman space-time ‘‘settles
down’’ to the Schwarzschild space-time including the inte-
rior of the black hole, as shown in Fig. 1. In order to see the
smoothness acrossH1, one introduces an advanced time co-
ordinate v by v5u12r *5u12r14m ln(r/2m21), and
Kruskal-type coordinatesû,v̂ by ~see, e.g.,@32#!
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û52exp~2u/4m!, v̂5exp~v/4m!. ~10!

The hypersurfaceu51` now becomes a boundary given by
û50. The metric~1! becomes

ds252
32m3

r
exp~2r /2m!dûdv̂216m2F̂dû2

12r 2P22dzdz̄, ~11!

where

F̂5eu/2mS 12R211
r

12m
DgRD , ~12!

with R andDg being given by Eq.~6! ~for f51⇒F̂50 it
reduces to the Schwarzschild space-time in standard Kruskal
coordinates!. In terms ofû, the expansion~9! becomes

f511 f 1,0û
81 f 2,0û

161•••1 f 14,0û
112

24mf15,1~ lnuûu!~ û!1201 f 15,0û
1201•••. ~13!

Because of the presence of the lnuûu terms, the functionf is
not smooth atû50; indeed, it isC119 if f 15,1Þ0. The full

metric ~11! is C117 at û50, sinceF̂ contains the additional
factoreu/2m;1/û2.

III. THE ROBINSON-TRAUTMAN SPACE-TIMES
WITH 0 <9Lm2<1

When a Robinson-Trautman space-time withL50 is
known, it is straightforward to generalize it to the case of a
nonvanishingL ~cf. @10,11#!. The metric still keeps the form
~1! with P satisfying the Eq.~3!. The only place whereL
enters is through the functionF. The cosmological
Robinson-Trautman metric reads

ds252FLdu
222dudr12r 2P22dzdz̄, ~14!

where

FL5D lnP22r ~ lnP! ,u2
2m

r
2

L

3
r 2. ~15!

We may still writeP5 f P0, as in Eq.~4!, whereP0 gives Eq.
~7! and f satisfies Eqs.~5! and ~6!. SinceL does not enter
the equation forf , we may take over the results forL50
described in Sec. II. Therefore, asu→`, the metric~14! will
now approach the Schwarzschild–de Sitter metric given by
f51, corresponding toFL

0 5122m/r2Lr 2/3:

ds252S 12
2m

r
2

L

3
r 2Ddu222dudr

1r 2~du21sin2udw2!

52S 12
2m

r
2

L

3
r 2Ddt21S 12

2m

r
2

L

3
r 2D 21

dr2

1r 2~du21sin2udw2!. ~16!

Again, u5t2r * , but the ‘‘tortoise-type’’ coordinater * for
0,9Lm2,1 is

r *5E dr

FL
0 ~r !

5d1ln
ur2r1u

r1r11r11
2d11ln

ur112r u
r1r11r11

1d1F lnS r11

r1
D2

1

2G , ~17!

where

d15
r1

12Lr1
2 , d1152

r11

12Lr11
2 . ~18!

Here, r15(2/AL)cos(a/314p/3), with cosa523mAL,
describes the black-hole horizon, and r11

5(2/AL)cos(a/3) is the cosmological horizon, see, e.g.,
@11# for more details about dependence of parameters on
L. ~Analytic continuation of the Schwarzschild–de Sitter
metric is discussed, for example, in@21# and in @33–36#.!

The presence of a cosmological constant does not affect
the smoothness of future infinityI1 in these space-times;
however,I1 becomes spacelike forL.0 in contrast with
the cases withL50 ~cf. Fig. 2!. Moreover, the presence of
L has a considerable effect on the smoothness of extensions
throughH1 given by u51`. The approach off to its
Schwarzschild–de Sitter formf51 is again characterized by
the expansion~9! but the transformation to Kruskal-type co-
ordinates is now given by

û52exp~2u/2d1!, v̂5exp~v/2d1!, ~19!

wherev5u12r * , r * being given by Eq.~17!. Hence, in-
stead of Eq.~13!, we get the expansion

f511 f 1,0~2û!4d1 /m1 f 2,0~2û!8d1 /m

1•••1 f 14,0~2û!56d1 /m

FIG. 1. Starting with arbitrary, smooth initial data atu5u0, the
radiative Robinson-Trautman metrics withL50 converge expo-
nentially fast to a Schwarzschild metric asu→`. However, exten-
sion beyond the null hypersurfaceH1 (u51`) can only be done
with a finite degree of smoothness.
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22d1 f 15,1~ lnuûu!~2û!60d1 /m

1 f 15,0~2û!60d1 /m1••• ~20!

at u→1`, i.e., û→02 @cf. Eq. ~19!#. The full metric takes
the form

ds252
4Ld1

2 r1e
1/2

3r11r
~r112r !11d11 /d1

3~r1r11r11!22d11 /d1dûdv̂

24d1
2 F̂Ldû

212r 2P22dzdz̄, ~21!

where

F̂L5eu/d1S 12R211
r

12m
DgRD , ~22!

with f being of the form~20! above. We may join the radia-
tive Robinson-Trautman metrics withL.0 to the
Schwarzschild–de Sitter metric so that the space-time
‘‘settles down’’ to the Schwarzschild–de Sitter black hole
including its interior~see Fig. 2!. Such an extension across
û50 will, in general, beC5 in the case of vanishingL. @For

example,F̂ and all its derivatives vanish forû50 in the
Schwarzschild case, whereas] û

(6)
F̂Þ0 with f given by Eq.

~13!.# With L.0, much higher smoothness can be obtained.
For those values ofL which imply 4d1 /m equals an integer,
the smoothness is always better than that forL50. More-
over, the horizonH1 can be made ‘‘arbitrarily smooth’’ by
letting L approach its extremal value,L→1/9m2 ~i.e.,
r1→3m). Then,d1 becomes arbitrarily large and the terms
;(2û) id1 /m, i54,8, . . . , in Eq.~20! will guarantee arbi-
trarily high smoothness of the functionf at û50.

The Robinson-Trautman metrics withL.0 may serve as
exact analytic models demonstrating the cosmic no-hair con-
jecture under the presence of gravitational waves, they all

approach de Sitter space-time locally close toI1, i.e., near
r→`, u finite ~cf. Fig. 2!. As discussed in detail in@11#, the
transformation of the form

r5xeHt2H22~ f `,u / f `!1 (
n51

`

Ane
2nHt,

eHu5Hx2e2Ht1 (
n53

`

Bne
2nHt,

z5h1 (
n53

`

Cne
2nHt, ~23!

in which An , Bn , Cn are suitable functions ofx,h,h̄, and
H5AL/3 brings the metric~14! into the asymptotic form

ds252dt21e2Ht@dx21 f `
22x2~du21sin2udw2!#

1 (
m50

`

e2mHthab
~m!dxadxb, ~24!

where the coordinatesu, w are reintroduced by

h5A2eiwtan~u/2!, f `5 f ut→`5 f ~u5H21lnuHxu,u,w!,

andhab
(m) depend on$xa%5$x,u,w% only. It is seen explicitly

that fort→`, the metric~24! does not approach the de Sitter
metric globally, the gravitational waves leave ‘‘an imprint’’
on I1 which is demonstrated by the presence of the function
f ` . However, any geodesic observer will seelocally, inside
his past light-cone, space-time approach de Sitter space-time
exponentially fast in accordance with the cosmic no-hair
conjecture~see@11# for details!.

IV. THE ROBINSON-TRAUTMAN SPACE-TIMES
WITH 9 Lm251

Above, we summarized the approach to Schwarz-
schild–de Sitter space-time in the case 0,9Lm2,1 charac-
terized by the existence of two distinct horizonsr1 and
r11 , with 0,2m,r1,3m,r11 . With L approaching its
extremal value,L→1/9m2, the black-hole horizonr1 mono-
tonically increases and the cosmological horizonr11 de-
creases to the common value 3m. In this section we shall
analyze the extreme case 9Lm251 for which there exists
only one ‘‘double’’ Killing horizon atr e53m.

The metric of the Robinson-Trautman space-time is still
given by Eqs.~14! and ~15!, and the corresponding extreme
Schwarzschild–de Sitter metric by Eq.~16!. However, the
‘‘tortoise-type’’ coordinater * is now

r *5
9m2

r23m
12m lnU r16m

r23mU, ~25!

where an additive constant was chosen such thatr *→0 at
r→`. By introducing the Kruskal-type null coordinates

û52arccot~2u/d!, v̂5arctan~v/d!, ~26!

where

d52m~322 ln2!,0, ~27!

FIG. 2. Starting with initial data atu5u0, the Robinson-
Trautman metrics with 0,9Lm2,1 converge to a
Schwarzschild–de Sitter metric asu→`. Although traces of gravi-
tational waves will persist at future infinityI1, for all geodesic
observers the metric will approach the de Sitter metric within their
past light cone. The metric at the horizonH1 has only a finite
degree of smoothness, although this can be higher than that in the
case withL50.
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v5u12r * , r * given by Eq.~25!, the ‘‘extreme’’ Robinson-
Trautman metric can be written in the form

ds252
d2

27m2r

~r16m!~r23m!2

cos2v̂ sin2û
dûdv̂2F̂Ldû

2

12r 2P22dzdz̄, ~28!

where

F̂L5
d2

sin4û
S 12R211

r

12m
DgRD . ~29!

The asymptotic expansion~9! becomes

f5 (
i , j>0

f i , jd
jcotj û e2~2id/m!cotû

511 f 1,0e
2~2d/m!cotû1 f 2,0e

2~4d/m!cotû1•••1 f 14,0

3e2~28d/m!cotû1d f 15,1cotû e
2~30d/m!cotû1•••. ~30!

In particular, if f51 we getF̂L50, P5P0 @see Eqs.~4!,
~6!, and ~7!#, and the metric~28! describes the spherically
symmetric extreme Schwarzschild–de Sitter space-time, see
Fig. 3 for its conformal diagram. It is regular on the horizon
r5r e53m for all finite u andv since

lim
r→3m

~r23m!2

cos2v̂
5 lim

r→3m

~r23m!2

sin2û
5

~18m2!2

d2
. ~31!

As in the previous case, the general Robinson-Trautman
space-times with 9Lm251 approach an extreme
Schwarzschild–de Sitter space-time asu→1`, i.e.,
û→02 @û,0, cf. Eq. ~26!#. Indeed, introducing
gi5aicotû, where ai52(2id/m).0, i51,2,3,. . . , and
hj5exp(gj), j51,2,3, . . . , the expansion of the function
f21 given by Eq.~30! can be written as a linear combina-
tion of terms (gi)

khj , k50,1,2, . . . . Clearly,gi→2` as
û→02 , so that (gi)

khj→0; this implies f→1. All
Robinson-Trautman spacetimes~28!-~30! are thus settling
down to the extreme Schwarzschild–de Sitter space-time as
u→`, i.e., at the null hypersurfaceH1 given byû502 ~see
Fig. 4!. A question again naturally arises, whether one can
extend the space-time throughH1 by glueing to it, for ex-
ample, an extreme Schwarzschild–de Sitter space-time~with
û.0). It is not difficult to see that one can make such an
extension and, in contrast with the cases 0<9Lm2,1, this
extension is smooth.

First, it can be shown by induction and using the relation
dgi /dû52(ai1gi

2/ai) that the nth derivative, n51,

2, . . . , of (gi)
k with respect toû can be expressed as a

polynomial of the (n1k)th order in gi , i.e.,
(gi

k)(n)5(s50
n1kcksgi

s , where the coefficientscks are con-
stants. Similarly,hj

(n)5hj(s50
2n dsgj

s , whereds are constants.
Leibnitz’s formula then gives (gi

khj )
(n)→0 as gi→2`,

which implies

lim
û→02

f51, lim
û→02

f ~n!50. ~32!

Moreover, we find

lim
û→02

~F̂L!~n!50, ~33!

since sin24û;gi
4cos24û, so that F̂L5$ linear combination

of gi
k14hj%cos

24û; an arbitrary derivative of the first factor

tends to zero asû→02 while derivatives of the second factor
remain finite.

Therefore, the radiative Robinson-Trautman space-times
with 9Lm251 can be extendedsmoothlythrough the hori-

FIG. 3. ~a! Conformal diagram of the extreme
Schwarzschild–de Sitter space-time with 9Lm251 and the singu-
larity in the past, corresponding to a white hole. The maximal ana-
lytic extension of the geometry is obtained by glueing an infinite
number of regions shown in the figure, or joining a finite number of
regions via identification of events along two horizonsr53m. ~b!

The time-reversed diagram (û→2û,v̂→2 v̂), corresponding to a
black hole.

FIG. 4. Starting with initial data atu5u0, the Robinson-
Trautman metrics with 9Lm251 converge to an extreme
Schwarzschild–de Sitter space-time asu→`. The extension be-
yond the horizonH1 is smooth but not analytic.
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zon H1 to the spherically symmetric extreme
Schwarzschild–de Sitter space-time with the same values of
L andm, 9Lm251 ~see Fig. 4!. However, such an exten-
sion is not unique. There are other possibilities, the simplest
one can be obtained by glueing a copy of the Robinson-
Trautman space-time with 9Lm251 to itself ~see Fig. 5!.

For û.0 we consider another copy of Eqs.~28!–~30! ob-

tained by the reflectionû→2û, v̂→2 v̂. @The same reflec-
tion connects Figs. 3~a! and 3~b!.# Again, since

lim
û→01

(F̂L)
(n)50, the extension acrossû50 is smooth and the

space-time can be called an ‘‘extreme’’ Robinson-Trautman
black hole in the de Sitter universe. Its conformal diagram
resembles the diagram in Fig. 2, representing the nonextreme
case~cf. @11#!. Any timelike geodesic observer falling from

the regionû,0 will cross the smooth horizonH1 and reach
the singularity atr50, or escape to ‘‘de Sitter-like’’ infinity
given by r5`.

Therefore, the smooth extensions acrossû50 are not
unique. Of course,they are not analytic. In fact, the func-

tions exp(aicotû) in expansion~30! areC` at û502 , but

û50 is an irremovable singularity.
The behavior of the Robinson-Trautman space-times near

future spacelike infinityI1 ~given byr5`) is similar to the
nonextreme case discussed in the previous section. Again,
one can perform the transformation~23! converting the met-
ric into the asymptotic form~24! so that those space-times
approach the de Sitter metric locally ast→`, in correspon-
dence with the cosmic no-hair conjecture.

V. THE ROBINSON-TRAUTMAN SPACE-TIMES
WITH 9 Lm2>1

In this case the corresponding Schwarzschild–de Sitter
space-time~16! admits no horizon in the regionr.0 ~cf.
@21,36#! so that there is only a naked singularity situated at
r50. The metric of the Robinson-Trautman space-time with
9Lm2.1 is again given by Eqs.~14! and ~15! but now the
‘‘tortoise-type’’ coordinater * becomes

r *52
r2

Lr2
2 21

H 1
2
ln

r 222r2r1r2
2

r 21r2r26m/Lr2

1

r2

2
26m/Lr2

2

A~3/4!r2
2 2 3/L

3FarctanS r1r2/2

A~3/4!r2
2 23/L

D 2
p

2 G J , ~34!

where r252(3m/L)1/3@(12C)1/31(11C)1/3#,0 and
C5A121/(9Lm2). It can be shown thatr * monotonically
decreases fromr * (r50).0 to r * (r5`)50. The Kruskal-
type coordinates are

û52arccot~u/m!, v̂5arctan~2v/m!, ~35!

where v5u12r * and r * is given by Eq.~34!. Then, the
Robinson-Trautman metric reads

ds252
Lm2

3r
~r2r2!S r 21r2r2

6m

Lr2
D dûdv̂

sin2û cos2v̂

2F̂Ldû
212r 2P22dzdz̄, ~36!

where

F̂L5
m2

sin4û
S 12R211

r

12m
DgRD , ~37!

and

f5 (
i , j>0

f i , j~2m! jcotj û e2i cotû

511 f 1,0e
2 cotû1 f 2,0e

4 cotû1•••1 f 14,0e
28 cotû

2mf15,1cotûe
30 cotû1•••. ~38!

The metric is regular for all valuesr.0 and, in particular, it
describes spherically symmetric Schwarzschild–de Sitter

space-time with a naked singularity iff51 ~i.e., F̂L50); its

FIG. 5. Another smooth extension of the Robinson-Trautman
metric with 9Lm251 beyond the horizonH1 can be obtained by

glueing two copies of the metric alongu5` (û50). The extreme
black-hole space-time illustrated in Fig. 3~b! can also be joined to
the Robinson-Trautman space-time alongH1.

FIG. 6. Conformal diagram of the Schwarzschild–de Sitter
space-time with 9Lm2.1 describing a spherically symmetric na-
ked singularity in the~asymptotically! de Sitter universe.
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conformal diagram is seen in Fig. 6. Since the expansion
~38! is analogous to Eq.~30!, we can take over the results
~32! and ~33!, implying that any Robinson-Trautman space-
time with 9Lm2.1 approaches smoothly the corresponding
Schwarzschild–de Sitter space-time asu→` (û→02). It
contains no horizon~contrary to the cases discussed in the
previous sections! so that the metrics~36!–~38! need not to
be extended pastû50; it is already geodesically complete
for u.u0, as indicated in Fig. 7. Also, it can be put into the
asymptotic form~24!, again demonstrating explicitly the cos-
mic ‘‘no-hair’’ conjecture under the presence of gravitational
waves.

VI. THE ROBINSON-TRAUTMAN SPACE-TIMES
WITH L<0

We now complete the analysis of the Robinson-Trautman
vacuum space-times withL with the caseL,0. The
Schwarzschild–anti-de Sitter metric, which is again a spheri-
cally symmetric Robinson-Trautman solution given by Eqs.
~14! and~15! with f51 @or ~16! with L,0#, always admits

a black-hole horizon atr h5(23m/L)1/3@(C11)1/32(C
21)1/3#.0, whereC5A121/(9Lm2). The value ofr h de-
creases fromr h52m for L50 to r h→0 asL→2`, as seen
in Fig. 8 @the expansion of r h for small L,0 is
r h52m1(8/3)m3L1O(m5L2)#. Kruskal-type null coordi-
nates are

û52exp~2u/2dh!, v̂5exp~v/2dh!. ~39!

Here, v5u12r * , with the ‘‘tortoise-type’’ coordinater *
for L,0 given by

r *5dhXlnur2r hu2
1

2
ln„r 21r hr2

6m

Lr h
…

1
6m2r h

A~6m1r h!~2m2r h!
H arctanFA2m2r h

6m1r h
S 11

2r

r h
D G

1DJ C, ~40!

where

dh52
3

2Lr h

2m2r h
3m2r h

, ~41!

and D52mA2L/3@11 ln(24Lm2/3)#. Performing the
transformation~39!, the Robinson-Trautman metric~14! be-
comes

ds25
4Ldh

2

3r S r 21r hr2
6m

Lr h
D 3/2

3expX2
6m2r h

A~6m1r h!~2m2r h!

3H arctanFA2m2r h
6m1r h

S 11
2r

r h
D G1DJ Cdûdv̂

24dh
2F̂Ldû

212r 2P22dzdz̄, ~42!

FIG. 7. Starting with smooth initial data atu5u0, the Robinson-
Trautman metrics with 9Lm2.1 approach a ‘‘naked’’
Schwarzschild–de Sitter metric asu→`. No extension of the met-
ric is necessary.

FIG. 8. A plot of the black-hole horizionr h and the parameter
dh ~dashed line! as a function ofL,0 andm.

FIG. 9. Conformal diagram of the Schwarzschild–anti-de Sitter
space-time withL,0 andm.0. Infinity I is timelike.
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where

F̂L5eu/dhS 12R211
r

12m
DgRD . ~43!

If f51, we get F̂L50, and the metric reduces to the
Schwarzschild–anti-de Sitter metric in Kruskal coordinates;
its conformal diagram is indicated in Fig. 9. LettingL→0,
we obtain back the metric~11!. In a general case, the expan-
sion ~9! of f in terms ofû introduced by Eq.~39! becomes

f511 f 1,0~2û!4dh /m1 f 2,0~2û!8dh /m

1•••1 f 14,0~2û!56dh /m22dhf 15,1~ lnuûu!~2û!60dh /m

1 f 15,0~2û!60dh /m1•••. ~44!

Therefore, all radiative Robinson-Trautman metrics with
L,0 ‘‘settle down’’ to the Schwarzschild–anti-de Sitter
metric asu→`, or û→02 ~see Fig. 10!. However, the
smoothness of the extension of the Robinson-Trautman met-
ric across the horizonH1 given by û50 to the
Schwarzschild–anti-de Sitter metricdecreaseswith a grow-
ing value of (2L). Indeed, the parameterdh given by Eq.
~41! monotonically decreases fromdh52m for L50 to
dh→0 asL→2` ~see Fig. 8!. For (2L) small one gets
7,4dh /m,8, so that the functionf is at leastC7 and the
full metric is C5 ~the smoothness of the extension is de-

creased by two due to the factoreu/dh;1/û2 enteringF̂L), as
in the case withL50. For2Lm2.4/9, the black-hole ho-

rizon is situated atr h,3m/2 and 4dh /m,3; the function
f is less thanC3 and the metric is not evenC1. If
2Lm2.3, thenr h,m, 4dh /m,1, andd f /dû diverges at
H1.

However, as expected, the presence of a negative cosmo-
logical constant does not affect the smoothness of infinityI
~although it changes its character:I becomes timelike!. In-
troducing a coordinatel5r21 and a conformal factorV5 l
in Eqs.~14! and ~15!, one finds~cf. @11#!

V2ds252dudl2 l 2FLdu
212P22dzdz̄, ~45!

where

FL5D lnP22l21~ lnP! ,u22ml2
L

3
l22. ~46!

It is easy to see thatl50 is a regular timelike hypersurface
for arbitrary smoothP(u,z,z̄).

VII. CONCLUDING REMARKS

We have shown that all vacuum radiative cosmological
Robinson-Trautman space-times of the Petrov type II with
m.0 settle down to Schwarzschild–de Sitter~if L.0) or
Schwarzschild–anti-de Sitter~if L,0) solutions at large re-
tarded times. This is true for ‘‘arbitrary strong’’ smooth ini-
tial data in the Robinson-Trautman class of metrics. The
space-times can then be extended to include the black-hole
interiors. AsL.0 is increased, the interior of a correspond-
ing Schwarzschild–de Sitter black hole can be joined to an
external cosmological Robinson-Trautman space-time across
the horizon with an increased degree of smoothness. In the
extreme case when 9Lm251, the extension isC`, i.e.,
smooth, but not analytic. In this sense, the conjecture~2.1!
presented for the caseL50 in Ref. @8#, that the only ‘‘posi-
tive mass Robinson-Trautman space-time which is smoothly
extendible throughH1 is ~necessarily! the Schwarzschild
space-time’’ is not true for Robinson-Trautman space-times
with a positive cosmological constant. On the other hand, for
L,0 the extension to a Schwarzschild–anti-de Sitter black
hole has a lower degree of smoothness than those in corre-
sponding cases withL50.

All space-times withL.0 represent exact explicit mod-
els exhibiting the cosmic no-hair conjecture under the pres-
ence of gravitational waves. They may serve as test beds in
numerical studies of more realistic situations.
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FIG. 10. Starting with smooth initial data atu5u0, the
Robinson-Trautman metrics withL,0 converge to a
Schwarzschild–anti-de Sitter metric asu→`. The metric at the
horizonH1 has only a finite degree of smoothness which is lower
than that in the case withL50.
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