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Pseudo-Minkowskian coordinates in asymptotically flat space-times
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For a rich class of asymptotically flat vacuum space-times, we show that it is possible to introduce a global
coordinate system in a canonical fashion that is analogous to the standard Minkowskian coordinate systems
used in flat space. This is accomplished by studying the intersection of the future light cone of interior
space-time points with future null infinity. This intersection, referred to as a light cone cut of future null
infinity, is piecewise a two-surface which can be described analytically by a function of the coordinates of null
infinity. This function (the light cone cut functioncan be given a special spherical-harmonic decomposition
with the coefficients depending on the interior points. The canonical pseudo-Minkowskian coordinates are
defined from the four coefficients of the-0,1 spherical harmonics. In Minkowski space-time this prescription
yields precisely the standard Cartesian flat coordinf&3556-282197)05304-9

PACS numbd(s): 04.20.Gz, 04.20.Ha

I. INTRODUCTION future null infinity on a two-sphepehat are sufficiently close
to the Minkowski space data. The solutions are “global” to
It is the purpose of this paper to argue that for suitablythe future of the initial data surface and possess a smooth
defined classes of asymptotically flat vacuum space-times;onformal extension, “above” the data surface, through null
sufficiently close to Minkowski space, there exists a specialnfinity, Z*. We will refer to such space-times bi§ spaces.
set ofglobal coordinates, chosen in a canonical fashion, thaifhe second class, originally conjectured by Penrose, has not
are, in a precise sense, the counterparts of the ordinary flayet been shown to exist, though there appears to be some
space Minkowski coordinates. These coordinates, which wiope[4] that in the near future its existence can be demon-
will denote byx® and refer to as a canonical set of coordi- strated. This class, which we will refer to B® spaces, is the
nates(or as pseudo-Minkowski coordinajesare such that special case of future asymptotically simple space-tifbgs
when the radiation datdhe Bondi asymptotic sheagoes to  where thevacuumEinstein equations are imposed. It is char-
zero(i.e., to flat-space datdahe x* become the conventional acterized by the condition that the conformal structure can be
Minkowski coordinates. There is a 10-parameter transformaextended, in all null directions, through null infinity. TP
tion freedom in their choice that is analogous to the Poincarépaces presumably contain tHE& spaces.
transformations; this freedom does become the Poincare In principle, our argument for the existence of the pseudo-
group in the limit of vanishing datdThe boost freedom can Minkowskian coordinates applies to generic asymptotically
sometimes be eliminated by requiring that the Bondi mo-simple spaces, since it makes no use of the Einstein equa-
mentum have only a nonvanishing “time” component attions. Its value resides, however, in the fact that it applies
i°, leaving only the Poincargranslations. That we can ob- equally well to theHF spaces and thRP spaces, if the latter
tain this canonical choice of global coordinates is rather surcan be shown to exist.
prising. For many years it was believed that theymptotig There are subtle technicalities underlying the ideas used
coordinate freedom associated with asymptotically flathere, which we have not addressed, and thus we have not
space-times was that of the Bondi-Metzner-SadBMS)  attempted to state our results in a mathematically formal
group[1,2]. It was then shown that with the data chosen in amanner. We can think of our proofs as being essentially heu-
special clas$2], defined by certain asymptotic fall-off prop- ristic.
erties (but still very generag| the BMS group could be re-
duced to the Poincargroup [2]. Nevertheless, it was be-
lieved that the coordinates associated with these Poincare
transformations could only be defined in the neighborhood of e begin with a brief discussion of some background
future null infinity, Z*. It is our claim that these pseudo- jssyes.
Minkowski coordinates can be extended throughout the since, in either cas&}P or HF, we are dealing with as-
space-time. _ _ _ ymptotically flat space-times with smooth conformal exten-
~ We will be concerned with two different “suitably de- sjons to null infinity, we can begin with the existence of
fined” classes of asymptotically flat vacuum space-timesz+ with its usual properties, e.g., it B2XR, and that we
The first class, which has been shown to ek8jt are the  can introduce standard Bondi coordinates76f, namely,
asym_ptotlcally fl_at spaces obta}lned from hyperbol0|dz_il initial u,z,¢) with ue R and (¢,2) the complex stereographic co-
data(i.e., data given on spacelike hypersurfaces that interse dinates ors2. Two-dimensional subsurfaces B will be

described by functions of the form

Il. THE ARGUMENT
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They need not be differentiable or single valued, though they r=r(y°,¢ £.9). (60)
will be piecewise differentiable and piecewise single valued. 0 Torro

From the fact that the space-times we are dealing with ar
R* with a boundary(the boundary being either the initial
data surface of), there will exist global coordinate systems
(on R*), any one of which we will refer to ag?. In addition — —
to the globaly?, there will also be local space-time Bondi u=u(yp,¢,.¢,®)=Uy2.4,.L,), (7a)
coordinates in the neighborhoodBf obtained by extending
the Bondi coordinates &, (u,¢,¢), into the interior viaan — y=¢(y2 ¢ ¢ )=Y(y?,¢ ,z) and complex conjugate.
affine parameter;, along the null geodesics normal to the 0°moro 0-roro (7b)
spheresy = const, onZ". These local Bondi coordinates,

%\s our interest is in the behavior of the null geodesics at
I*, we lets (andr) —oe, thus we have

a — 5 In principle, Eqs(7) are known functions for any asymptoti-
Yo~ (U440, 2) cally flat space-time. Moreover, our earlier remark estab-

; b b 3
must be connected to the globgl, in a neighborhood of lishes that bothU(y;.¢,.¢,) and Y(y,,¢;.¢;) are suff

7", by some transformation, ciently differentiable functions oyg Ll
X Future null-geodesic completeness implies that Eds.
ye=Ya4(y"). (3 determine a unique pointu(Z,¢) on Z* for every initial

pointyg and every initial direction g(o,go). As (go,go) range
over the sphere of all initial directions, Eq¥) parametri-
cally describe a mapping from the two-sphere iffo;
nhamely, a two-surface afi". It is the intersection of all null
geodesics fronyg’ with Z". This surface can be described in
the form(1) by inverting Eq.(7b) and using the inversion in
Eq. (7a). We refer to the surface, when expressed in this

form, as thelight cone cutof Z* from the interior point
a

Y,
wherey® is an initial point, ¢ g_) are a choice of stereo- Because of future nu_II-g_eodesw completeness, the light
7o ) 0'%0 o cone cuts stay away fromi (i.e., they do not blow up but

graphic coordinates on the sphere of null directionyat generically they will not be single valued or differentiable.
labeling the initial null directions, and is an affine param- This can be seen from the fact that, in general, due to the
eter_along the null geodesic§That the null directions development of caustics in the space-time, &) will not
(£,:¢,) at the various pointsg can be related to each other have a unique inversg.e., there will be several values of
smoothly follows from the existence of a global orthonormal(¢,¢,) for each ¢,)]. If, however, Eq.(7b) is inverted
tetrad] locally, so that, locally =Y (v§,{,¢) and the( is elimi-

Remark.The theorem on the differentiability of solutions : : T
to ordinary differential equatior[$] guarantees that the null Puagggofrr]oir: tigqoar)r’nwoef %t;[?i? tih§p|§;: ewisg light cone cut

geodesicsya(yg ., ¢,»5) are sufficiently differentiable func-
tions of the initial conditionsyg .{,¢, in an open interval of u=Z(ya,§,5. (8)
the parametess (later, our argument requires them to be °
twice differentiable. The degree of differentiability of Eq.
(4) actually extends to the boundafy . This can be seen
clearly by conformally compactifying the space-tintine
null geodesics are conformally invarign8ince the confor- 4 return to this point later.

mally compactified space-time can be extended pasthen As an important digression we look at both E¢®. and

n - : )
7" becomes a finite surface contained in an open range qlé) in Minkowski space. In a given Minkowski frame with

the parameter along the null geodesics. _ standard coordinateg, the null geodesic&) can be written
Using Eq.(4) in Eq. (3), we have the expression for the .o

null geodesics in the neighborhood Bf in the Bondi coor-

It is this transformation that allows us to connect or “tie”
the interior of the space-time ©".

We now assume that, in the class of “suitable space
times,” the vacuum metrics are known in the gloly&lco-
ordinate systeng®’=g°(y®), and that, in principle, the null
geodesic equations can be integrated in the form

YA =y*(y?.£,.L,.9), @

Emphasizing an essential point, we stress that thougli&kqg.
is given only piecewise and is not globally smooth or single
valued, however, Eq.7a) is single valued and smooth. We

dinates; Le., X=X +5/%(L, ), ©)
Ya=YAY(Ye £ 09))- (5 _ _
where/a(go,go) is a null vector for all values off ,{ ) that
or can be given in the form
u=u(y?.£,,£,9), (6a)

— 1 - S
7L )=———(1 , A(C=0),—1 .
o (£,0) \/§(1+§g)( +{8,0+ (=), =1+ {0

(= g(yg ,go,go,s) and complex conjugate, (6b) (10)
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For later use, we note that the four components’dfare wherefI m(yb) are the appropriate coefficients in the expan-
linear_combinations of the first four spherical harmonicssjon. By’ comparison with Eq14), thex? coordinates could

Yoo(¢,§) andY1n(£,0). then be obtained from
The transformation3), between thex® and the Bondi
a_ ; ; I —
yB (U,Lg,r), IS given by lem: fSZZO(yaigig)Yl,m(glg)dSZEfl’m(ya)v (16)
Xa:uta_i_r/a(g,z, ta=i(1,0,0,0. (1 for1=0.1, whered S’ is the area element on the unit sphere,
V2 dS?=(2/)[d¢/\d¢l(1+ ££)?]. This relationship, which can

be expressed equivalently b= f2(y®), gives the coordi-
Finally, for Minkowski space, after a brief calculation by nate transformation frorg® to the canonicak?.

following null geodesics and passing to the lirit-o, Egs. It is precisely this observation that we will use to obtain
(7) become]7-9] the pseudo-Minkowskian coordinate8 in the HF and RP
_ spaces.
u=x3"a(¢{,.¢,) (1239 The basic idea is to consider the curved space light cone
cut function(8),
and _
. u=2Z(y%¢,¢,)
(LO=(L,8,), (12 _ _ o
(in the following, we are dropping the sublabel Oyf), find
hence, for the light cone cut functia8) we have the coefficients of its first four spherical harmonics, and
identify them as the pseudo-Minkowskian coordinates. More
U=Zo(X§,§,55X§/a(§,5, (13)  explicitly, in the HF and RP spaces, we intend to define the

four pseudo-Minkowskian coordinates by the transformation

which describes a smooth embedding of a sphereZon L
Using our observation that thé? are combinations of the X =J Z(ya,g,g)Y,'m(g“,g)dSZEfI (y», (@17
first four spherical harmonics, and dropping the label 0, Eq. moJg "

(13) can be rewritten as for 1=0,1. There is a difficulty with this definition: namely,

o can we give meaning to the integrals’), since the cut func-
u= E X mY|m(§,§) (14)  tion Z(y3¢,¢) is multivalued(or is given piecewis® The

m:!|1| solution is actually quite simple; the integral is pulled back
' to the sphere of null directions at the poyit The integral in

with Eq. (17) becomedfrom Eqgs.(7a) and(7b)]

X = Jszu<ya,zo,z_o>v_.,m<z<ya,go,§_o>,Hya,zo,z_o))
0

X
I

ﬁ‘
S

m XY, ¢)dS
=t _(y?), (18

an
X = \/;(x—iy), for 1=0,1, whereJ(y?,¢{ ,¢,) is the Jacobian of the transfor-
mation(7b) and the integral is taken over the sphere of initial
p null directions. That the Jacobian exists follows from the
s \@(XH)’), (15 smoothness of (y?,¢.,¢,) [Eq.(7b)]. As all the functions in
the integrand are now well defined, the integral is well de-
or fined. We thus have E¢18), or

X X2, x2=f3(y") (19
L . . . . as our proposed transformation from the glohalto the
In other words, in Minkowski space, the Minkowski coordi- ~,nonicalx?.

natesx® are the coefficients of the first four spherical har- The only remaining issue is whether Ea9) is well be-

monics of the light cone cut function. If the Minkow;ki haved globally: i.e., does the Jacobian of B exist and is
space had been described by some other global coordinatgSyitterent from zero for ally®? This can be answered affir-

" - i
y4, then the light cone cuts would still have had the form matively by first remembering thaﬂ(yg,ﬁo,go) [from Eq.

X _ o= (7a)] is a smooth function oj/g and then observing that for
u=2(y%¢,0)= 201 f L YYim(EO=F4Y")7a(4.0), sufficiently small values of the data the HF aipesumably

m=—1 the RP spaces are smoothly connected to Minkowski space
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and, second, that the transformatiofl9) applied to lomb gauge; i.e., for the linearized metP= 722+ ha,
Minkowski space[namely, Eq.(16)] has a nonvanishing we haveh®=0. o
Jacobian. It now follows, by continuity, that for sufficiently  (4) The cut functionu=Z(y?,{,¢) contains all conformal
small data the Jacobian of E@.9) is nonvanishing. We have information of the space-time. This includes an explicit
thus shown that the transformatid¢f©8) and (19) yields a means of calculating the conformal metric from knowledge
special or canonical set of coordinates that in the flat-spacef Z. If, in addition, an appropriate conformal factéo
case are the standard Cartesian flat coordinates. make the conformal metric into a vacuum metiig given
[say w(y®)] then the space-time metric can be obtained. In
the situation discussed her2,was obtained by integrating
1. DISCUSSION the null geodesic equations from the knowledge of an as-
. ) ) ymptotically flat vacuum metric. A new point of view is that
There are several issues that need further discussion. ihe cut functionZ and the conformal factos are to be the
(1) We began with a given asymptotically flat space-timeg,ngamental variables of the theory and the metric is to be a

and from aspt_acificchoice of Bo_ndi coordinate sy_stem ON derived concept. One can reformulate general relatiGy)
f ;’f\]’e CO_UId f|nthhebpl)sefudod-MmIfoz\;]skmt? .coor?wéaté‘;. completely in terms of th&(y?,£,¢) andw(y?). We refer to
S nere IS considerablé Ireedom In the cholce Of BONGI COyyis tormylation as the null surface formulatighlSP of

ordinategthe freedom of the BMS groupit appears that our GR. The vacuum Einstein equations can be replaced by

“canonical” coordinates are not very canonical. However, (coupled differential equations foZ and w [13,14,. There

ke the phvsicall bl tricti f the data to th bre actually two versions of the NSF, a general version that
make the physically reasonable restriction of the data to a'épplies, locally, to any vacuum space-time, and a more spe-

Lorﬂ\:v'hlch tdhgo moagnetlc Tﬁrt of ﬂj[e. It?a?r?mle\:gar vams;heti atial version that is applied to asymptotically flat space-times.
oth1 — andi=. ne can then restrict the group 10 the, 1he Jatter case, one begins with the choice of a Bondi

Poincafegroup by requiring that the BMS frame be Chosenframe onZ", and the choice of the Bondi shear as free char-
such that the(full) Bondi shear(the characteristic datum acteristic data(With no loss of generality this data can be

vanishes ati *; 1e., the shea_r vanlsh¢§ in the limit as chosen to vanish at eithéf or i° to obtain either thédF or
u—co. The remaining freedom is Fhe Poincgmup.[In the RP spaceg. A very attractive result obtained from this ap-
case ofRP spaces one can regtn_ct the freedom even moreproach is thathe space-time points themselves arise as con-
the shear can be made to van.|sh°a(asu—>—oo) _aqq the stants of integratiorand are, in fact, the coefficients of the
boost frame can be chosen uniquely so that th? ”?'“a' _Bondfirst four spherical harmonics; i.e., our canonical coordinates,
four-momentum(a_t U— —o) ha_s only a honvanishing time x3, arise naturally as four constants of integration. We actu-
component. In this case one is left with only the Poincare,; first observed the appearance of the canonical coordi-

translationg. S : ) ;
. nates in this manner. A detailed paper is being prepared ex-
(2) In the case where we cann@r do not wish to re- unding this point of view.

: : . 0
strict ourselves to just the translations, we can study how thg (5) We note that for asymptotically flat space-timest
pseudo-Minkowskian coordinates transform under boosﬁecessarily vacuum Einsteimwith a definite choice of a
transformations. They transform, in fact, as part of an infiniteBondi frame onT". there is. in addition to the canonical
dimensional representation of the Lorentz group. In the Ians(a a canonically oiefined fla,lt metricy, that exists on the
guage of Gelfandet al. [10,11, the function Z(y*.{,{)  same manifold. Given the cut functiad(x?,¢,¢) for the
Fransforms under théredumble, but not completely reduc- space-time, we also have the natural flat-space cut function
ible, infinite-dimensional D, ;) representation which pos- (13), namelyu=Z,(x* gg_)zxa/’ (gg_) which leads(with

H H — 1 15 “a 1 ’
SESSEs an mvangnt subspaE@,.l) spapned by thd =0,1 w=1) to the standard flat metric in thé coordinategsee
spherical harmonics (4 1)/E 1,1y is an irreducible represen- the Appendiy

tation andE, y by itself is the vector representatiorihe (6) There is an important subtle issue that should be raised
effect of this is that ifZ is expanded in spherical harmonics, ; o ) :
and discussed. If not clarified, it could lead to confusion.

the coefficients of thé=0,1 harmonics do not enter into the Consider the situation that we have two metrics in our “suit-

[>1 harmonics under the transformation, but the higher- . ” : :
harmonic coefficients do enter and affect fhe0,1 coeffi- ably defined classes” that are given on the same manifold

cients. Thex? “sit” in the invariant subspace but do not using the same global coordinalg’s Using the same Bondi
. . " :

transform just among themselves; the higher-harmonic Coeﬁoordmates @.£.9) _on 1", we can caIF;uIate and obtain the
ficients get mixed in. light cone cut functions for each metric, s&j(y?,¢,¢) and

We point out that by taking different inverse powers of Zo(y*,¢,{). We can thean introduce our canonical pseudo-
Z(y?3,¢,0) itis possible to construct objects that do transformMinkowski coordinatesc* [via Eq. (19)] for each cut func-
as finite irreducible representatiofiscalars, vectors, sym- tion and obtain
metric tensors, etgunder the Lorentz transformatioh$1].
Some of these objects are under study, though at the moment x2=f3(y?) and x3=f3(y). (20)
we are not able to advance any interpretation associated with
them.

(3) One might ask what coordinate conditions on the met-The point that we want to make is that the two s:ﬁtsand
ric are implied by the use of the canonicdl. Though in X5 cannot be identified; i.e., the two functiorig(y”) and
general we do not know the answer to this question, in lineaf5(y®) are always different when the two metrics are differ-
theory the metric comes oft2] in the analogue of the Cou- ent(see the Appendix
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(7) Though it is not at all clear at this time what uses theseclear thatZ, and Z, are indeed the cut functions of two
canonical cordinates might have, their very existence is surdifferent flat metrics.
prising. They, however, do appear to be needed in the at- We begin with the cut function
tempt[15] to apply Ashtekar's asymptotic quantizatiptb] _ _ —
procedure to the quantization of the NSF of GR. Here a u=Zy(y%8,0=fy") /WL, + (L,0), (A1)
unigue gaugein this case analogous to the Coulomb gauge areb o
of electrodynamidsis needed. where the fourf?(y”) are chosen arbitrarilywith a nonvan-

(8) Asymptotically flat self-dual space-times can be ob-ishing Jacobiap and«({,{) is an arbitrary regular function
tained fromw=1 andZ(x?,¢,¢)’s that are regular and sat- ©n the spher¢hat has no F 0,1 spherical harmonicdntro-
. w Y : s ——_ .- ducing the canonical coordinates, in this case, is straightfor-
isfy the “good cut” equation[17], namelyd<Z=o(Z,{,{)

) _ 1 ward; i.e.,x3=f3(y"), and Eq.(A1) becomes
for an arbitrary choice of the function(Z,¢,¢). The space-

time points enter the solutiori(x?,¢,{) as the constants of u=Zl(xa,§,BExi‘/a(§,5+ a(g,g. (A2)
integration, and appear as the coefficients of the first four
spherical harmonics; i.e., thq or x2 appear here again in The coordinate transformatidqi 2] betweenx$ and the inte-

the same canonical fashion as earlier. rior Bondi coordinatey:=(u,¢,{,r) is given implicitly by
(9) We wish to point out a shortcoming in the use of the

canonical coordinates for theéF spaces; there will certainly u=Zl(xi‘,§,§),=xi‘/’a(§,§)+a(5,§),

be “ghost”’coordinates for anyHF space; i.e., there will be .

numerical values of the coordinate® such that no point in 0=7Z,(x3,4,0)

the HF space exists that corresponds to them. Intuitively, — —

these missing points lie to the past of the past Cauchy hori- ~ =xim,(¢,{)+7a({,{) and complex conjugate,

zon. It seems likely to us, however, that this problem will _ _ _ -

disappear for th&kP spaces. r=7921(x5,4,0)=x5(na(£,) =7 (£, 0))+T9a(L,0).
(20) It might be conjectured that canonical coordinates of (A3)

this kind could exist in the Christodoulou-Klainerman spaces
[18]. However, theZ* of the Christodoulou-Klainerman Here m?=7/2 and n=79/2+/2. The four vectors

spaces is not smooth; thus it is not clear that our constructior®,m?,m?,n? satisfy /2n,= —m?m,=1 while all the other
applies to this case. possible scalar products among them are zero. This fact can
be used to find the transformation explicitly:
ACKNOWLEDGMENTS 3= (U— @) (N®+ /) + (1 —F9a)/2+F amP+ T am?.
(A4)
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The flat metric(A5) can be “tied” or connected t@* via
E (A4), and its light cone cuts are described by E42).

The “natural” flat-space cuts df* are obtained from the
cut function[see Eq(13)]

u:ZO(nggig):XS/‘a(grg)a (AG)
We will describe here an illustrative example of what hasWhich, in turn, leads to the flat metric

been discussed in the main text. We will compare the canoni- _ 2 2 2 2 (0)quaqub

cal coordinates of two different flat space-times, namely, two dso=(dto)~ (dxo)*~ (dyo)*~ (d2o)*= né‘b)dxodxo('An
different flat metrics on the same manifold; with future
null boundaryZ™. For computational ease, however, we be-The transformation from theg to the interior Bondi coordi-
gin with a fixed Bondi frame \(,{,{) at T and give two nates is now

knowncut functions,Z, andZ,, in terms of the same Bondi _ _

frame, rather than obtainirg;, andZ, by integrating the null uU=Zy(x5,4,0)=x5/a(£,0),

geodesics of the two metrics. From knowledge of the cut

function, a prescription is available for the transformation 0=7Z(x§,¢, g) x§m, (¢, g) and complex conjugate,
between the Bondi coordinates and an arbitrary set of interior . L L L
coordinates in the neighborhood f. We give this pre- r=79Zo(X5,4,0) =x5(Na( £, 0) — 7 a(L,0)), (A8)
scription explicitly in the case of the two canonical sets of

x¥'s obtained from the two cut functions. We make use ofor, explicitly,

these two transformations to find the relationship between a Q. a a

the two sets of canonical coordinates. It eventually becomes Xg=u(n?+/%)+r/2 (A9)

APPENDIX
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The light cone cuts of the metri?\7) are described by Eq. X3=X3— a(n?+ /) —FFa/ *+ T ami+Jam?,

(AB). (A11)
If the Bondi coordinates are eliminated between E44)

and(A9), we can obtain the relation between the two sets of
global coordinatesty andx?. To eliminate the Bondi coor- where¢, on the right-hand side, is given by EGA10). As

dinates, we first solvegm,=0 for ¢, and obtair19] this is not a Lorentz transformatidit is not even linegrwe
;4R see that we have two distinctly different flat metrics. Notice,
=070 and complex conjugate, furthermore, that none of the two flat metrics is more “natu-
Xo~ 1Yo ral” than the other one. Had we chosen to describe the cuts
where in an alternative Bondi slicingl’=u— «, supertranslated
with respect to the original one, the cut functidn would
Ro= \/m_ (A10)  have had =0,1 spherical harmonics only, whereggswould
have had higher-order harmonics as well. Thus, in this alter-
The transformation is then native Bondi framez*) would look “natural.”
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