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The effects of general relativistic gravity on quantum mechanics are thoroughly investigated. The Schro¨-
dinger equation is derived for a nonrelativistic spinless particle and for a spin-1/2 particle, with the general
relativistic corrections of Earth’s gravity up to the first post-Newtonian order,O(1/c2). The phase differences
due to the post-Newtonian corrections in quantum interferometer experiments are also calculated.
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I. INTRODUCTION

It has been long regarded that the fundamental issues in
quantum mechanics may be studied only by theoretical ex-
periments. However, recent progress in technology has made
these experiments possible in a laboratory and stimulated
new interest in the problem of the interpretation in quantum
mechanics. Another interesting and fundamental issue in
quantum mechanics is its relation to gravity. In this respect
the development of a neutron interferometer@1# has played a
decisive role. Although we do not have the fundamental uni-
fication between quantum mechanics and gravity, it is by
now clear that gravity has interesting and observable effects
on quantum interference.

It is expected that the use of an atomic interferometer@2#
will improve the accuracy of the measurement. For example
the original Colella-Overhauser-Werner~COW! experiment
@3# using a neutron interferometer has a sensitivity of
1022g whereg is the acceleration of Earth’s gravity. It has
been argued that the measurement of the rate of change in
the Doppler shift of a falling atom may reach a sensitivity of
10212g. Moreover, it is becoming possible to use polarized
neutrons in interferometer experiments and this will give us
direct information on the interaction between gravity and
spin.

In this situation it seems useful and desirable to study
higher order effects of gravity as well as of spin-gravity cou-
pling on the quantum interferometer experiment. This is the
aim of the present paper. We shall derive the Schro¨dinger
equation for a spinless particle and for a Dirac particle with
general relativistic corrections of Earth’s gravity up to the
first post-Newtonian order which isO(1/c2) higher than
Newtonian order. Then the effect of general relativistic grav-
ity on the quantum interferometer is investigated.

The organization of the present paper is as follows. We
shall use the Kerr metric as the external gravitational field of
Earth. The metric and coordinates are specified in terms of a
311 formalism used in Sec. II. Then we shall write down the
Schrödinger equation with a general relativistic correction
for a nonrelativistic spinless particle and study the phase dif-
ference in the quantum interferometer. We then turn our at-
tention to the case of a spin-1/2 particle using the covariant

Dirac equation in curved spacetime in Sec. IV. Finally we
shall give a brief summary and discussion in Sec. V.

II. SPACETIME AND THE OBSERVER’S FRAME

What we have in mind is the quantum interferometry ex-
periments in the laboratory on Earth. We assume that the
external gravitational field of Earth is described by the Kerr
metric. The weak field approximation up to the first post-
Newtonian order, i.e., up toO(1/c2), gives

ds2.S c212f1
2f2

c2
1
2GMa

c2r 3
~x821y82! Ddt2

1
4GMa

c2r 3
~x8dy82y8dx8!dt

2S 12
2f

c2 D ~dx821dy821dz82!, ~2.1!

whereM is the mass of Earth,f is the Newtonian gravita-
tional potential,f[2GM/r with r5Ax821y821z82, and
a is the Kerr parameter which corresponds to the angular
momentumJ of Earth per unit mass. Hereafter, we assume
that Earth is a sphere of radiusR with uniform density. Then

a5
J

M
5
2

5
R2v, ~2.2!

wherev is the angular velocity of Earth.~The numerical
factor 2/5 might be changed by a factor of order unity, if the
effects of the density inhomogeneity, deviations from the
spherical shape and so on, are included.! The observer’s rest
frame (t,x,y,z) is fixed on the rotating Earth, and the rela-
tion to the asymptotically static coordinates (t,x8,y8,z8) is

x85xcosvt2ysinvt,

y85xsinvt1ycosvt, ~2.3!

z85z.
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For the sake of convenience, we use the 311 formalism
for representing the spacetime. In the 311 formalism, the
four-dimensional metric tensorgmn is split in the following
way:

g005N22g i j N
iNj ,

g0i52g i j N
j[2Ni , ~2.4!

gi j52g i j ,

whereN is the lapse function,Ni is the shift vector, and
g i j is the spatial metric (g i j is the inverse matrix ofg i j ) on
the t-constant hypersurface. In this formalism, the slowly
rotating, weak gravitational field of Earth in the observer’s
rest frame is expressed by the quantities

N5cS 11
f

c2
1

f2

2c4D ,
Nx52S 12

4GMR2

5c2r 3 Dvy,

Ny5S 12
4GMR2

5c2r 3 Dvx, ~2.5!

Nz50,

g i j5S 12
2f

c2 D d i j .

III. CASE OF A NONRELATIVISTIC SPINLESS
PARTICLE

In this section, we summarize a general relativistic frame-
work for the quantum mechanics of a spinless particle in the
external gravitational field.

A. Classical Hamiltonian

The relativistic Lagrangian for a particle with massm in
the external gravitational field is given by

L52mcAgmnẋ
mẋn52mcAN22g i j ~N

i1 ẋi !~Nj1 ẋ j !,
~3.1!

where an overdot denotesd/dt. Using the canonical momen-
tum

pi5
]L

] ẋi
, ~3.2!

we obtain the following classical Hamiltonian for the par-
ticle:

H[pi ẋ
i2L2mc25NAm2c21g i j pipj2Nipi2mc2,

~3.3!

where the rest mass energy is subtracted from the conven-
tional definition of the Hamiltonian for later convenience.

In this paper, we restrict ourselves to the case that the
motion of the particle is nonrelativistic,g i j pipj!(mc)2.
Then, the nonrelativistic Hamiltonian up to the order of our
interest is

H52Nipi1SNc 21Dmc21
N

c Fg i j pipj
2m

2
~g i j pipj !

2

8m3c2 G
1OS 1c4D . ~3.4!

B. Quantum Hamiltonian

Once we obtain the classical Hamiltonian, we follow the
canonical quantization procedure to have the quantum
Hamiltonian. The essential point is to replace the momentum
pi in Eq. ~3.4! by the momentum operatorp̂i , which satisfies
the canonical commutation relation

@xi ,p̂ j #5 i\d j
i ~3.5!

and is Hermitian:

~ p̂ic,w!5~c,p̂iw!. ~3.6!

Note that we assume that the wave function is a scalar quan-
tity. Therefore, the inner product which is invariant under the
coordinate transformations in the three-dimensional sense is

~c,w![E c*wAgd3x. ~3.7!

From the definition of the inner product, we adopt the fol-
lowing expression for the momentum operator:

p̂ j52 i\g2 1/4
]

]xj
g1/4[g2 1/4p̄ jg

1/4, ~3.8!

wherep̄ j is the momentum operator in flat space.
The quantum Hamiltonian is obtained by replacingpi in

Eq. ~3.4! with p̂i and taking the appropriate ordering~note
that p̂i does not in general commute withN and g i j ). The
result is

H5
p̄2

2m
1mf2v•L1

1

c2 S 4GMR2

5r 3
v•L2

p̄4

8m3

1
m

2
f21

3fp̄2

2m D , ~3.9!

whereL5x3p̄ is the angular momentum in flat space. The
Schrödinger equation is then

i\
]

]t
C5HC. ~3.10!

Although the covariant definition of the inner product
naturally arises in the general relativistic framework, it is
sometimes convenient to adopt the same definition of the
inner product as that in flat space, instead of the definition in
Eq. ~3.7!. We can easily convert our result to this case in the
following way:
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C85g1/4C, H85g1/4Hg21/4. ~3.11!

Now the wave functionC8 is not a scalar under coordinate
transformations, but a scalar density. Then, the expectation
value of the Hamiltonian, for example, is

^H8&[E C8*H8C8d3x. ~3.12!

Note that no factor ofAg is now necessary.H8 is now Her-
mite with respect to the inner product in flat space. Under
this definition, the Schro¨dinger equation is

i\
]

]t
C85H8C85F p̄22m1mf2v•L1

1

c2 S 4GMR2

5r 3
v•L

2
p̄4

8m3 1
m

2
f21

3

2m
p̄•fp̄D GC8. ~3.13!

The only difference betweenH andH8 is the ordering ofp̄
andf in the last term. Each term in Eq.~3.13!, including the
last correction term, is now Hermitian in the sense, e.g.,

E ~ p̄•fp̄c8!*w8d3x5E c8* p̄•fp̄w8d3x. ~3.14!

C. Phase difference in quantum interferometry

The Hamiltonian in Eq.~3.13! may be divided into parts

H85H01(
k

DHk , ~3.15!

whereH05p̄2/(2m) is the Hamiltonian for a freely propa-
gating particle in flat space. The Schro¨dinger equation~3.13!
is then formally solved in the following way:

C85C0expS i(
k

bkD ,
i\

]

]t
C05H0C0 , ~3.16!

bk52
1

\E
t

DHkdt.

Therefore, for a pair of beams in a quantum interferometer
which split into different paths, say, path A and path B, and
then recombine, the phase difference at the interference point
is

Dbk5bk ~path B!2bk ~path A!52
1

\ R DHkdt. ~3.17!

Let us evaluate the phase difference due to each correction
term in Eq.~3.13! in order.

In the first place, the gravitational potential term
DH15mf gives the phase shift

Db15
m2gAl

2p\2 sinu, ~3.18!

whereg is the acceleration of gravity,A is the area inside the
interferometry loop,l is the de Broglie wavelength, andu is
the rotation angle of the interferometer relative to the hori-
zontal plane. The theoretical prediction, Eq.~3.18!, was first
derived by Overhauser and Colella@4#, and it was in good
agreement with the observations using a neutron interferom-
eter @3#.

The next contribution is due to the rotation of Earth,
DH252v•L . It is a quantum analogue of the Sagnac effect
in optical interferometry. The phase difference due to the
Sagnac effect is

Db25
2m

\
v•A, ~3.19!

where

A5
1

2 R r3dr ~3.20!

is the area vector of the interferometry loop. The phase shift
is caused by the inertial force, and it does not depend on
gravity. The phase difference, Eq.~3.19!, was derived first
by Page@5# from optical analogy, and later by other authors
using various methods@6–8#. The experimental confirmation
was made in Ref.@9#. The Sagnac effect was observed also
in atomic interferometry@10#.

The third term of the phase shift is a general relativistic
effect due to the so-called Lense-Thirring effect:

Db352
4GMR2m

5c2\
v• R r3dr

r 3

5
2m

5\

r g
R Fv23SRR •vD RRG•A, ~3.21!

whereR is the position vector of the interferometer from the
center of Earth, andr g[2GM/c2 is the Schwarzschild ra-
dius of Earth. Note that it is very similar to the Biot-Savart
law in the classical electromagnetism. The form of the phase
difference in Eq.~3.21! was derived and discussed by the
authors of Ref.@11#, including two of us.

The fourth correction termDH45p̄4/(8m3c2) in Eq.
~3.13! is a purely special relativistic correction to the kinetic
energy. It does not depend on the path, and thus does not
produce the phase difference in the interferometer experi-
ments.

The fifth contributionDH55mf2/(2c2) can be regarded
as the redshift correction to the potential energy. It produces
the phase difference

Db552
1

2

r g
R

Db1 . ~3.22!

Finally, DH653p̄•fp̄/(2mc2) is the redshift correction
to the kinetic energy, which produces

Db65
3

2 S lC

l D 2Db1 , ~3.23!

wherelC is the Compton wavelength.
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It should be noted that the phase differencesDb5 and
Db6, due to the redshift corrections, have the same rotation
angle dependence as that ofDb1. Therefore, as far as the
experiments are done only in different rotation angles, these
post-Newtonian effects are not separable from the conven-
tional Newtonian effect. On the other hand, the phase shift
Db3 due to the Lense-Thirring effect depends on the orien-
tation in a different way from that due to the Sagnac effect
Db2. In particular,

Db35
1

5

r g
R

Db2 on the equator~R'v!, ~3.24!

whereas

Db352
2

5

r g
R

Db2 on the North Pole~Riv!. ~3.25!

Therefore, it is in principle separable from the Newtonian
effect, if the experiments are done in different places on
Earth. Until now, the Lense-Thirring effect has not yet been
observed in any interferometer experiments. This is of course
due to the smallness: The phase shift due to the Lense-
Thirring effect isr g /R;1029 times smaller than that due to
the Sagnac effect.

IV. CASE OF A SPIN-1/2 PARTICLE

In this section, we obtain the quantum Hamiltonian with
the post-Newtonian corrections of Earth’s gravity for a non-
relativistic spin-1/2 particle. We pay attention to the corre-
spondence to the Hamiltonian for a spinless particle derived
in the previous section.

A. Covariant Dirac equation in curved spacetime

Here we briefly review the formalism and define the no-
tation used in this section~see also Ref.@14#!. Let us start
from the generally covariant Dirac equation in curved space-
time:

F2 i\gmS ]

]xm 2GmD1mcGC50, ~4.1!

wheregm is the covariant Dirac matrix satisfying the rela-
tions

gmgn1gngm52gmnI 4 , ~4.2!

with the 434 unit matrix I 4, andGm is the spin connection.
It is convenient to introduce the orthogonal tetrade(a)

m

defined by

gmne~a!
m e~b!

n 5hab , ~4.3!

wherehab5 diag(c2,21,21,21). Then,

gm5g~a!e~a!
m , ~4.4!

whereg (a) are the constant special-relativistic matrices de-
fined by

g~a!g~b!1g~b!g~a!52habI 4 . ~4.5!

The spin connection can also be expressed in terms of the
tetrad andg (a),

Gm52 1
4g~a!g~b!glne~a!

l ¹me~b!
n . ~4.6!

Based on the 311 formulation, we choose the tetrad

e~0!
m 5cS 1N ,2

Ni

N D , e~k!
m 5~0,e~k!

i !, ~4.7!

where the spatial triade(k)
i is defined by

g i j e~k!
i e~ l !

j 5dkl . ~4.8!

Consequently, the Dirac equation~4.1! can be rewritten as

i\
]

]t
C5HDC[@~Na~ j !e~ j !

i 2Ni !~ p̄i1 i\G i !1 i\G0

1Nmcb#C, ~4.9!

wherea ( j ) andb are the constant Dirac matrices. Particu-
larly in the case of the Minkowski spacetime, Eq.~4.9! im-
mediately gives the well-known form

i\
]

]t
C5~ca•p̄1mc2b!C. ~4.10!

The form of Eq.~4.9! is fully valid in general relativistic
situation.

B. Nonrelativistic Hamiltonian

As was stated previously, we restrict our consideration to
the case that the particle’s motion is nonrelativistic. The non-
relativistic Hamiltonian is obtained by applying the Tani-
Foldy-Wouthuysen~TFW! @12,13# transformation toHD .
The basic procedure is to perform an appropriate unitary
transformation to obtain the ‘‘even’’ operator up to the order
of our interest:

H̃D5UHDU
†5S H̃1 0

0 H̃2
D 1OS 1c4D . ~4.11!

The Dirac spinor is also divided into

C̃5S F

x
D , ~4.12!

whereF andx are called the ‘‘large’’ and ‘‘small’’ compo-
nents, respectively. Using the reduced Hamiltonian
H1[H̃12mc2, the Schro¨dinger equation for the ‘‘large’’
component is

i\
]

]t
F5H1F. ~4.13!

Before applying the TFW transformation, it should be
noted that the invariant scalar product in this case is

~c,w![E c†wAgd3x. ~4.14!
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Therefore, for the sake of convenience to compare with Eq.
~3.13!, we follow the same discussion as in the previous
section and redefine the state vector and the Hamiltonian in
the following way:

C→g1/4C, HD→g1/4HDg21/4. ~4.15!

Under this definition, we get the Schro¨dinger equation with
post-Newtonian corrections for a spin-1/2 particle:

i\
]

]t
F5H1F

5F p̄22m1mf2v•~L1S!1
1

c2

3S 4GMR2

5r 3
v•~L1S!2

p̄4

8m31
m

2
f21

3

2m
p̄•fp̄D

1
1

c2 S 3GM2mr3
L•S1

6GMR2

5r 5
S•@r3~r3v!# D GF,

~4.16!

whereS5\s/2 is the spin of the particle withs the Pauli
matrix. The details of the calculations to derive Eq.~4.16!
are summarized in the Appendix~see also Ref.@15#!.

Comparing Eq.~4.16! with the spinless case Eq.~3.13!,
we observe the following points. First, settingS50 in Eq.
~4.16! evidently gives the same form as Eq.~3.13!, which
assures that the canonical quantization procedure employed
in the spinless case is fully consistent with the covariant
generalization of the Dirac equation. Second, all terms in Eq.
~4.16!, except the last two terms, are obtained by simply
replacingL in Eq. ~3.13! by the total angular momentum
J[L1S. Finally, the last two terms in Eq.~4.16! are unique
in the spin-1/2 case: The former is a spin-orbit coupling
term, and the latter represents a coupling between spin and
Earth’s rotation due to the dragging of inertia.

Before concluding this subsection, we make one compari-
son with a previous work. Borde´ et al. @16# derived gravita-
tional effects for atomic interferometry, starting from cova-
riant equations for a two-level spin-1/2 atom interacting with
laser fields in a gravitational background. Their result is
mostly consistent with ours. But there is one difference. In
their paper, all contribution of the spin, except the spin-orbit
coupling, appear in the form of the total angular momentum
J 5 L1S. However, in our Eq.~4.16!, the last term depends
only onS.

C. Phase difference in quantum interferometry

The phase differences due to the spin correction terms can
also be calculated in the same way as that in the spinless
case. Instead of doing the calculation, however, we will men-
tion just a few points. Let us consider the interferometer
experiments that the spin is constant along the paths in the
interferometer. Then, the term2v•S does not produce the
phase difference between the paths. Concerning the remain-
ing terms, the relative orders of magnitude of the other spin
correction terms to the orbital angular momentum terms are
typically l/l , wherel is again the de Broglie wavelength
andl is a typical size of the interferometer loop. For neutron

interferometers of the first generation, the typical values are
l;1028 cm and l ; 10 cm. Hence, for such interferom-
eters, the effects of the spin corrections are generally 1029

times smaller than those of the orbital angular momentum
terms.

V. SUMMARY AND DISCUSSION

We have investigated the effect of general relativistic
gravity on a quantum interferometer. We have followed the
standard canonical quantization procedure to derive the
curved space version of Schro¨dinger equations for spinless as
well as spin-1/2 particles with the general relativistic correc-
tions of Earth’s gravity up to first post-Newtonian order. In
particular we have studied the phase difference in a quantum
interferometer due to the post-Newtonian corrections and
spin-gravity coupling.

It has been discussed from the viewpoint of the equiva-
lence principle that the effect of gravity is studied by the
coordinate transformation of the flat space Schro¨dinger equa-
tion. This kind of discussion is useless for general-relativistic
gravity since the coordinate transformation is unable to
eliminate some of the general-relativistic gravity. Thus it is
very interesting to see that the standard canonical quantiza-
tion procedure may lead to the correct answer to the quantum
phenomena in the presence of general-relativistic gravity. It
is hoped that the next generation of quantum interferometer
may have enough accuracy to detect the general-relativistic
effect discussed in the present paper and answer to this ques-
tion.
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APPENDIX

Here we summarize the details of the calculations to de-
rive Eq. ~4.16!.

1. Tetrad

The tetrad is defined in Eqs.~4.7! and ~4.8!. Using Eq.
~2.5!, we obtain

e~0!
0 512

f

c2
1

f2

2c4
,

e~0!
1 5F12

1

c2 S f1
4MR2

5r 3 D Gvy,
e~0!
2 52F12

1

c2 S f1
4MR2

5r 3 D Gvx, ~A1!

e~0!
3 50,

e~ i !
0 50,

e~ i !
j 5S 11

f

c2D d i
j .
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2. Spin connection

The spin connection is defined by Eq.~4.6! or, equiva-
lently, by

Gm52 1
8 @g~a!,g~b!#glne~a!

l ¹me~b!
n . ~A2!

We use the standard representation for the Dirac matrices:

g~0!5
1

c S I 0

0 2I D , g~ i !5S 0 s i

2s i 0 D , ~A3!

where I is the 232 unit matrix, ands i are Pauli’s spin
matrices.

It is convenient to use the 434 matrices

r15S 0 I

I 0D , r25S 0 2 i I

i I 0 D , r35S I 0

0 2I D .
~A4!

They satisfy the commutation relations

@r1 ,r2#52ir3 , @r2 ,r3#52ir1 , @r3 ,r1#52ir2 .
~A5!

It is apparent that terms proportional tor1 or r2 are ‘‘odd’’
whereas those proportional tor3 are ‘‘even.’’

The components of the spin connection are

i\G052v•S1
1

2c
r1s•~ p̄f!1

1

c2 H 4GMR2

5r 3
v•S2

GM

r 3
S

•@r3~r3v!#1
6GMR2

5r 5
S•@r3~r3v!#J ,

i\G152
1

2c2
~f ,2s32f ,3s2!1

i

c3
r1
3GMR2

5r 5
v$22xys1

1~x22y2!s22yzs3%, ~A6!

i\G252
1

2c2
~f ,3s12f ,1s3!1

i

c3
r1
3GMR2

5r 5

3v$~x22y2!s112xys21zxs3%,

i\G352
1

2c2
~f ,1s22f ,2s2!1

i

c3
r1
3GMR2

5r 5

3v~2yzs11zxs2!.

Note that the terms ofO(1/c3) are also necessary to calcu-
late the Hamiltonian correctly up to the order of 1/c2.

3. Hamiltonian

Using the above quantities, the HamiltonianHD defined
in Eq. ~4.9! is

HD5r3mc21cr1s•p̄1r3mf2v•~L1S!

1
1

c
r1F2

1

2
s•~ p̄f!12f~s•p̄!G1

1

c2 F12 r3mf2

1
4GMR2

5r 3
v•~L1S!1

6GMR2

5r 5
S•@r3~r3v!#G .

~A7!

The redefined HamiltonianHD8 [g1/4HDg21/4 is

HD8 5r3mc21cr1s•p̄1r3mf2v•~L1S!1
1

c
r1@~s•p̄!f

1f~s•p̄!#1
1

c2 F12 r3mf21
4GMR2

5r 3
v•~L1S!

1
6GMR2

5r 5
S•@r3~r3v!#G . ~A8!

The difference betweenHD andHD8 is the second line on the
right-hand side.

4. Tani-Foldy-Wouthuysen „TFW … transformation

It is instructive to divide the TFW transformation into two
steps. The first step uses the unitary operator

U15expS ir2 s•p̄

2mcD , ~A9!

which is introduced to make the odd term ofO(c) vanish.
Using the useful formula

eiSHe2 iS5H1 i @S,H#1
i 2

2!
@S,@S,H##

1
i 3

3!
@S,@S,@S,H###1••• ~A10!

and the commutation relation, Eq.~A5!, we obtain the trans-
formed HamiltonianU1HD8U1

† which is even up toO(c0):

U1HD8U1
†5r3mc21r3S p̄22m1mf D2v•~L1S!1

1

c
r1F12 @~s•p̄!f1f~s•p̄!#2

1

3m2 ~s•p̄!3G1
1

c2 Fr3S 12mf22
p̄ 4

8m3

1
3

2m
p̄•~fp̄!1

3GM

2mr2
L•SD1

4GMR2

5r 3
v•~L1S!1

6GMR2

5r 5
S•@r3~r3v!#G . ~A11!

The second step uses

U25expS ir2 3m2@~s•p̄!f1f~s•p̄!#22~s•p̄!3

12~mc!3 D , ~A12!

which makes the odd terms ofO(1/c) vanish. Then, we finally obtain Eq.~4.16!.
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