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Post-Newtonian effects of gravity on quantum interferometry
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The effects of general relativistic gravity on quantum mechanics are thoroughly investigated. The Schro
dinger equation is derived for a nonrelativistic spinless particle and for a spin-1/2 particle, with the general
relativistic corrections of Earth’s gravity up to the first post-Newtonian or@éi,/c?). The phase differences
due to the post-Newtonian corrections in quantum interferometer experiments are also calculated.
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[. INTRODUCTION Dirac equation in curved spacetime in Sec. IV. Finally we
shall give a brief summary and discussion in Sec. V.

It has been long regarded that the fundamental issues in
quantum mechanics may be studied only by theoretical ex- ||. SPACETIME AND THE OBSERVER'S FRAME
periments. However, recent progress in technology has made S )
these experiments possible in a laboratory and stimulated What we have in mind is the quantum interferometry ex-
new interest in the problem of the interpretation in quantumPeriments in the laboratory on Earth. We assume that the
mechanics. Another interesting and fundamental issue i§xternal gravitational field of Earth is described by the Kerr
quantum mechanics is its relation to gravity. In this respecfnetric. The weak field approximation up to the first post-
the development of a neutron interferomdterhas played a Newtonian order, i.e., up tO(1/c?), gives
decisive role. Although we do not have the fundamental uni- 0 ? oM
fication between qgantum_mecha_mcs and gravity, it is by ds?~ c2+2¢+i;+ 2 3a(x’2+y’2) dt2
now clear that gravity has interesting and observable effects c cr
on quantum interference.

It is expected that the use of an atomic interferomg2égr n 4GMa
will improve the accuracy of the measurement. For example c’r3
the original Colella-Overhauser-Wern6ZOW) experiment
[3]7 using a ngutron interferqmeter has a ser_lsitivity of 1_1‘? (dx'2+dy'2+dz'?), 2.1
10 2g whereg is the acceleration of Earth’s gravity. It has c
been argued that the measurement of the rate of change in
the Doppler shift of a falling atom may reach a sensitivity of whereM is the mass of Earthp is the Newtonian gravita-
10 %g. Moreover, it is becoming possible to use polarizedtional potential,¢=—GM/r with r=yx"?+y’?+2'2, and
neutrons in interferometer experiments and this will give usa is the Kerr parameter which corresponds to the angular
direct information on the interaction between gravity andmomentumJ of Earth per unit mass. Hereafter, we assume
spin. that Earth is a sphere of radigswith uniform density. Then

In this situation it seems useful and desirable to study
higher order effects of gravity as well as of spin-gravity cou- J )
pling on the quantum interferometer experiment. This is the a= M gR w, (2.2
aim of the present paper. We shall derive the Sdimger
equation for a spinless particle and for a Dirac particle with
general relativistic corrections of Earth’s gravity up to the
first post-Newtonian order which i©(1/c?) higher than
Newtonian order. Then the effect of general relativistic grav
ity on the quantum interferometer is investigated.

The organization of the present paper is as follows. W
shall use the Kerr metric as the external gravitational field o
Earth. The metric and coordinates are specified in terms of a
3+1 formalism used in Sec. Il. Then we shall write down the
Schralinger equation with a general relativistic correction

(x'dy’—y'dx")dt

where w is the angular velocity of EarthThe numerical
factor 2/5 might be changed by a factor of order unity, if the
effects of the density inhomogeneity, deviations from the
“spherical shape and so on, are incluji@the observer’s rest
frame ¢,X,y,2) is fixed on the rotating Earth, and the rela-
ion to the asymptotically static coordinateasx’,y’,z’) is

X' =Xxcoswt —ysinwt,

for a nonrelativistic spinless particle and study the phase dif- y' =xsinwt+ycoswt, 2.3
ference in the quantum interferometer. We then turn our at-
tention to the case of a spin-1/2 particle using the covariant z'=z
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For the sake of convenience, we use thel3formalism In this paper, we restrict ourselves to the case that the
for representing the spacetime. In the- 3 formalism, the motion of the particle is nonrelativistic;/"pipj<(mc)2.
four-dimensional metric tensa@,,, is split in the following  Then, the nonrelativistic Hamiltonian up to the order of our

way: interest is
o N - 5
oo=N?—7;;N'NJ, i [N NI Y'pip;  (¥'pip))
| H=—N'p+|--1 mc2+c 5 Sic?
goi=—7iN'=—N;, 2.4 1
+0| —]. (3.9
9ij =~ Vij » c*

whereN is the lapse functionN' is the shift vector, and
vij is the spatial metric 4" is the inverse matrix ofy;;) on ] ) o
the t-constant hypersurface. In this formalism, the slowly ~Once we obtain the classical Hamiltonian, we follow the
rotating, weak gravitational field of Earth in the observer'scanonical quantization procedure to have the quantum

B. Quantum Hamiltonian

p; in Eq. (3.4) by the momentum operatgk , which satisfies
¢ P the canonical commutation relation
N=c| 1+ vl + Fovil
cc 2c . o
[X',pj]1=i%6; (3.5
4GMR? . .
NX= — ( 1— W) wy, and is Hermitian:
, (P @)= (4.Piep). (3.6
y 4GMR
NY=|1- 5c2r3 X, (2.5 Note that we assume that the wave function is a scalar quan-
tity. Therefore, the inner product which is invariant under the
NZ=0 coordinate transformations in the three-dimensional sense is
24 (¢,)= J Y e\ydx. 37
yi=|1- ra 5 -

From the definition of the inner product, we adopt the fol-

Il CASE OF A NONRELATIVISTIC SPINLESS lowing expression for the momentum operator:

PARTICLE 9
N ik~ U4 T 14— 145, 1/4
In this section, we summarize a general relativistic frame- P; ity ax1 7 Y Py @8
work for the quantum mechanics of a spinless particle in the _ )
external gravitational field. wherep; is the momentum operator in flat space.
The quantum Hamiltonian is obtained by replacmgin
A. Classical Hamiltonian Eq. (3.4 with p; and taking the appropriate orderirigote
B, i i ij
The relativistic Lagrangian for a particle with massin that ﬁ,.does not in general commute with and y"). The
the external gravitational field is given by resuftis
"2 "
— — 1 [4GMR?
L=—mC\/gM,,X"X"=—mC\/NZ—yij(N'-f-X')(NJ-f-X'), H=p—+m¢—m-L+—2 3w L— p3
(3.1) 2m C 5r 8m
. . m 3¢p?
where an overdot denotéédt. Using the canonical momen- + =+ ——|, (3.9
tum 2 2m
oL whereL =xXp is the angular momentum in flat space. The
pi=— (3.2 Schralinger equation is then
axt’

. d
we obtain the following classical Hamiltonian for the par- 'ﬁEWZH‘P' (3.10

ticle:
Although the covariant definition of the inner product
|-|Epi5<i_|__m¢2:N,/chhr y"pipj—N‘pi—mcz, naturally arises in the general relativistic framework, it is
(3.3  sometimes convenient to adopt the same definition of the
inner product as that in flat space, instead of the definition in
where the rest mass energy is subtracted from the convetq. (3.7). We can easily convert our result to this case in the
tional definition of the Hamiltonian for later convenience. following way:
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Y=yl H =y (3.12) whereg is the acceleration of gravity is the area inside the
interferometry loop) is the de Broglie wavelength, argdis
Now the wave functionV’ is not a scalar under coordinate the rotation angle of the interferometer relative to the hori-
transformations, but a scalar density. Then, the expectatiorontal plane. The theoretical prediction, £g.18, was first

value of the Hamiltonian, for example, is derived by Overhauser and Cole(l4], and it was in good
agreement with the observations using a neutron interferom-
I\ — I, 1L/’ A3 eter[3].
(H >_f YERTPAX (312 The next contribution is due to the rotation of Earth,

AH,=—w-L. Itis a quantum analogue of the Sagnac effect
Note that no factor of/y is now necessant’ is now Her-  in optical interferometry. The phase difference due to the
mite with respect to the inner product in flat space. Undeisagnac effect is
this definition, the Schidinger equation is

2m
'hé\lﬂ_H/\Iﬂ_ EZ L 1 [4GMR L ABZZTW'A, (3.19
e TR S am Mo et e e
p* m , 3 _ where
_W‘FE(ﬁ +ﬁp-¢ﬁ v, (3.13 L
A=§Eﬁr><dr (3.20

The only difference betweeH andH’ is the ordering op

and¢ in the last term. Each term in E(B.13), including the  ig the area vector of the interferometry loop. The phase shift
last correction term, is now Hermitian in the sense, €.9., s caused by the inertial force, and it does not depend on
gravity. The phase difference, E(.19, was derived first
f (E¢W’)*¢’d3x=f ' *p-ppe’d3x. (3.14 by Page5] from optical analogy, and later by other authors
using various method$—8]. The experimental confirmation
was made in Ref[9]. The Sagnac effect was observed also
C. Phase difference in quantum interferometry in atomic interferometry10].
The third term of the phase shift is a general relativistic

The Hamiltonian in £q(3.13 may be divided into parts effect due to the so-called Lense-Thirring effect:

H'=Ho+ > AHy, (3.15 AGMR2m rx dr
: ABs=~ gz @ f# r3
whereHy=p?/(2m) is the Hamiltonian for a freely propa- omr R R
gating particle in flat space. The ScHinger equatiorf3.13 =—_ 39 w—3(— . m) —|-A, (3.2)
is then formally solved in the following way: 5t R R R

whereR is the position vector of the interferometer from the
\If’:\IfOex;{iE ,8k>, center of Earth, and,=2G M/c? is the Schwarzschild ra-
k dius of Earth. Note that it is very similar to the Biot-Savart
law in the classical electromagnetism. The form of the phase
ihi\pO:HO\po, (3.16 difference in Eq.(S.ZD was derived and discussed by the
ot authors of Ref[11], including two of us.
The fourth correction termAH,=p?*(8m°c?) in Eq.
_ lftAH dt (3.13 is a purely special relativistic correction to the kinetic
Br= 3 e energy. It does not depend on the path, and thus does not
produce the phase difference in the interferometer experi-
Therefore, for a pair of beams in a quantum interferometements.
which split into different paths, say, path A and path B, and The fifth contributionAHs=me?/(2¢?) can be regarded
then recombine, the phase difference at the interference poias the redshift correction to the potential energy. It produces
is the phase difference

1 1r
A B= Bk (path a_ﬁk(pathA):_g jg AH,dt. (3.17 Aﬁsz—zﬁgAﬁl- (3.22

Let us evaluate the phase difference due to each correction Finally, AHg=3p- ¢p/(2mc?) is the redshift correction
term in Eq.(3.13 in order. to the kinetic energy, which produces
In the first place, the gravitational potential term

AH;=m¢ gives the phase shift 3(Ac)?
' ABs=5| | ABi. (3.23
A ——ng o 3.1
Pr= 5 apz SN0, (318 wherel ¢ is the Compton wavelength.
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It should be noted that the phase differenée8; and  The spin connection can also be expressed in terms of the
ABg, due to the redshift corrections, have the same rotatiotetrad andy(®,
angle dependence as that &f3;. Therefore, as far as the
experiments are done only in different rotation angles, these I,=—317y"0,,6,V .80 - (4.6)
post-Newtonian effects are not separable from the conven- )
tional Newtonian effect. On the other hand, the phase shift Based on the 31 formulation, we choose the tetrad
A B3 due to the Lense-Thirring effect depends on the orien- 1 N
tation in a different way from that due to the Sagnac effect ek :c(— -
Ap,. In particular, @ FIN" N

. el =(0g(), 4.7

lrg where the spatial triad‘(k) is defined by
A,83=§ EA,BZ on the equatonRL w), (3.2 o

whereas . . .
Consequently, the Dirac equatiéf.1) can be rewritten as

2r
ABy=— 3 ﬁgA,BZ on the North Pole(R||w). (3.29

. d 0 i .
|hE‘P=HD\IIE[(Na(”e'(j)—N')(pi+|hl"i)+|hl“0
Therefore, it is in principle separable from the Newtonian
effect, if the experiments are done in different places on
Earth. Until now, the Lense-Thirring effect has not yet been .o () gng B are the constant Dirac matrices. Particu-
observed in any interferometer experiments. This is of COUrsg - : . : .

i ; arly in the case of the Minkowski spacetime, E4.9) im-
due to the smallness: The phase shift due to the Lenserﬁediatel ives the well-known form
Thirring effect isr 4 /R~ 10"° times smaller than that due to Y9

the Sagnac effect.

+NmcB]Y, (4.9

J _
iﬁE\PZ(Caﬁp-l— mcp)v. (4.10
IV. CASE OF A SPIN-1/2 PARTICLE
In this section, we obtain the quantum Hamiltonian with The form of Eq.(4.9) is fully valid in general relativistic

the post-Newtonian corrections of Earth’s gravity for a non-Situation.
relativistic spin-1/2 particle. We pay attention to the corre-

spondence to the Hamiltonian for a spinless particle derived B. Nonrelativistic Hamiltonian
in the previous section. As was stated previously, we restrict our consideration to
the case that the particle’s motion is nonrelativistic. The non-
A. Covariant Dirac equation in curved spacetime relativistic Hamiltonian is obtained by applying the Tani-

Here we briefly review the formalism and define the no-F-0ldy-Wouthuysen(TFW) [12,13 transformation toHp .
tation used in this sectiofsee also Ref[14]). Let us start | he basic procedure is to perform an appropriate unitary
transformation to obtain the “even” operator up to the order

from the generally covariant Dirac equation in curved space* :
of our interest:

time:
_ ~ : H, O 1
[—Iﬁ'y'“ W_F” +mc|¥=0, 4.1 Hp=UHpU'= o " +0| /- (4.1
where y* is the covariant Dirac matrix satisfying the rela- The Dirac spinor is also divided into
tions
~ (D
YRy + Yyt =291, (4.2 V= ME (4.12

with the 4X4 unit matrixl,, andT’,, is the spin connection.

. . . where® andy are called the “large” and “small” compo-
It is convenient to introduce the orthogonal tetred, X 9 b

nents, respectively. Using the reduced Hamiltonian

defined by H.=H,—-mc? the Schrdinger equation for the “large”
gwefbme(Vb): Nab > 4.3 component is
where 77,,= diag(c?,—1,—1,—1). Then, iﬁ%@:khq)_ ais
=y ey, (4.4

Before applying the TFW transformation, it should be
where (@ are the constant special-relativistic matrices de-hoted that the invariant scalar product in this case is
fined by

— | gt 3
(@0 (0 (@) = paby 4.5 (IIMP)—J' ¥l o yd3x. (4.149
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Therefore, for the sake of convenience to compare with Eqginterferometers of the first generation, the typical values are
(3.13, we follow the same discussion as in the previous\~10"8 cm and/~ 10 cm. Hence, for such interferom-
section and redefine the state vector and the Hamiltonian isters, the effects of the spin corrections are generally’ 10
the following way: times smaller than those of the orbital angular momentum
terms.
| 71/4‘1’, Hp— 'yl/4H DY 4 (4.15

Under this definition, we get the Scladiager equation with V. SUMMARY AND DISCUSSION

post-Newtonian corrections for a spin-1/2 particle: We have investigated the effect of general relativistic
gravity on a quantum interferometer. We have followed the
iﬁi¢>=H+d> standard canonical quantization procedure to derive the
at curved space version of Scldiager equations for spinless as

well as spin-1/2 particles with the general relativistic correc-

c?

—
z[p_+m¢_w.(|_+s)+ 12 tions of Earth’s gravity up to first post-Newtonian order. In
2m particular we have studied the phase difference in a quantum
AGMR2 7 m 3 intgrferometer du_e to the post-Newtonian corrections and
X| —a—w (L+S)— s—=+—= ¢2+_E¢ﬁ spin-gravity coupling.
Sr 8m® 2 2m It has been discussed from the viewpoint of the equiva-
1 /3GM 6GMR2 lence principle that the effect of gravity is'studied by the
+ ( ——=L- S+ —=—S[rX(rXw)] }@1 coordinate transformation of the flat space Sdimger equa-
¢\ 2mr or tion. This kind of discussion is useless for general-relativistic

(4.16 gravity since the coordinate transformation is unable to
eliminate some of the general-relativistic gravity. Thus it is

where S=# o/2 is the spin of the particle witler the Pauli  very interesting to see that the standard canonical quantiza-
matrix. The details of the calculations to derive £4.16 tion procedure may lead to the correct answer to the quantum
are summarized in the Appendigee also Ref.15]). phenomena in the presence of general-relativistic gravity. It

Comparing Eq.(4.16 with the spinless case E¢3.13, is hoped that the next generation of quantum interferometer
we observe the following points. First, setti®=0 in Eq.  may have enough accuracy to detect the general-relativistic
(4.16 evidently gives the same form as E®.13, which  effect discussed in the present paper and answer to this ques-
assures that the canonical quantization procedure employeidn.
in the spinless case is fully consistent with the covariant
generalization of the Dirac equation. Second, all terms in Eq. ACKNOWLEDGMENTS
(4.16), except the last two terms, are obtained by simply

replacingL in Eqg. (3.13 by the total angular momentum . . L
J=L+S. Finally, the last two terms in Eq4.16 are unique discussions. M.K. thanks G. Bwer for hospitality in Max-

in the spin-1/2 case: The former is a spin-orbit CouplingPlanck-lnstitut fu Astrophysik, where a part of this work

term, and the latter represents a coupling between spin antfes done.
Earth’s rotation due to the dragging of inertia.

Before concluding this subsection, we make one compari-
son with a previous work. Bordet al. [16] derived gravita- Here we summarize the details of the calculations to de-
tional effects for atomic interferometry, starting from cova- rive Eq.(4.16.
riant equations for a two-level spin-1/2 atom interacting with
laser fields in a gravitational background. Their result is 1. Tetrad
mostly consistent with ours. But there is one difference. In : , . :
their paper, all contribution of the spin, except the spin-orbit(2 ;h?,v;egsgif defined in Eq¢4.7) and (4.8). Using Eq.
coupling, appear in the form of the total angular momentum="="

We thank H. Asada, K. Fujita, and H. Hirano for fruitful

APPENDIX

J = L+S. However, in our Eq(4.16), the last term depends b &2
0

only onS. e(0)=1—?+y,

C. Phase difference in quantum interferometry L 1 AM R?

The phase differences due to the spin correction terms can e<0)=[1— 2|2t ) @y

also be calculated in the same way as that in the spinless
case. Instead of doing the calculation, however, we will men- N 1 N AMR? AL
tion just a few points. Let us consider the interferometer €o= c2 ¢ 5r3 wX, (A1)
experiments that the spin is constant along the paths in the
interferometer. Then, the term w- S does not produce the e(?’o)=0,
phase difference between the paths. Concerning the remain-
ing terms, the relative orders of magnitude of the other spin e?i)zo,

correction terms to the orbital angular momentum terms are
typically A//, where\ is again the de Broglie wavelength
and/ is a typical size of the interferometer loop. For neutron

e{i)=(1+? 5{.
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2. Spin connection Note that the terms oD(1/c®) are also necessary to calcu-
The spin connection is defined by E@.6) or, equiva- late the Hamiltonian correctly up to the order o€/
lently, by 3. Hamiltonian
T= =87, v109,,604)V &0 - (A2) Using the above quantities, the Hamiltoniblp, defined

in Eq. (4.9 is
We use the standard representation for the Dirac matrices: _
HD: p3mC2+ Cp 0 p+p3m¢— w: (L + S)

IR
(0)—_ (i) =
c\0 -l —o; 0 t 5P~ 50 (PP +2¢(0p) |+ 2 §P3m¢2
where | is the 2<2 unit matrix, ando; are Pauli’'s spin AGMR2 6GMR2
matrices. +—rm-(L+S)+—5S-[r><(r><w)]}.
It is convenient to use the>4 matrices or or
0 | 0 il I O (A7)
1=\ ol Pl o) PTlo ) The redefined Hamiltoniakl,=y**Hpy 4 is
(A4) 2 o 1 _
HL=psmc+cpio-p+psmd— - (L+S)+ — -
They satisfy the commutation relations . P10 P+ psMep— - ) Cpl[(a P)¢
. . . 2
[p1.p2]=2ips, [p2.ps]=2ip1, [ps.pil=2ip,. — 11 2, AGM
+ P+ =|= + -(L+
It is apparent that terms proportional @@ or p, are “odd” 6GMR?
whereas those proportional tg are “even.” tg 5 Srx(rXe)]|. (A8)
The components of the spin connection are
1 AGMR? oM The difference betweer  andH} is the second line on the
i#To=— - S+ P10 (p¢)+ =53 - S— r_38 right-hand side.
R2 4. Tani-Foldy-Wouthuysen (TFW) transformation
Irx(rxw)]+ 5— S [rX(rXw)], Itis instructive to divide the TFW transformation into two
or steps. The first step uses the unitary operator
_ 1 i  3GMR? o p
|ﬁr1:—ﬁ(¢,203_¢,302)+ ?PlT“’{_ZXygl U1=exr<ip22—mc , (A9)
+(x*~y?) o, yz0o34}, (A6)  which is introduced to make the odd term ®{c) vanish.
i 5 Using the useful formula
) 1 i  3GMR
'hrzz_ﬁ(¢,301_¢,10'3)+ BP1TE5 i2

e'SHe 'S=H+i[S, H]+57[S[SHI]

X w{(X?—y?) o1+ 2Xyo,+ X035}, .
i

. i  3GMR? +§[S,[S,[S,H]]]+--- (A10)
'ﬁrsz_2_02(<75,102_¢,202)+;P1T '
and the commutation relation, EGA5), we obtain the trans-

X w(—Yyzo1+2ZX05). formed HamiltoniarUlHE)UI which is even up t@(c°):
|
v -2
- p 1 1 1 ., p
UiHLUT=psmc+ps %‘Fm(ﬁ ®-(L+9+ P13 [(0' p ¢+ (o p)]— (0' p? 2| Ps Emd’ ~am?
3 __ 3GM AGMR? 6GMR?
p (¢>p)+ 2L S|+ 5.3 w-(L+S)+TS-[r><(r><w)] . (A11)
The second step uses
. 3m’[(a-p) ¢+ d(a-p)]—2(a-p)°
U2—eX[<Ip2 12(mc)3 ’ (Alz)

which makes the odd terms &@f(1/c) vanish. Then, we finally obtain E¢4.16).
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