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As the universe evolves, it becomes more inhomogeneous due to gravitational clumping. We attempt to find
a function that characterizes this behavior and increases monotonically as inhomogeneity increases. We choose
S=InQ as the candidate ‘“gravitational entropy” function, whefke is the phase-space volume below the
HamiltonianH of the system under consideration. We perform a direct calculatidn &dr transverse elec-
tromagnetic waves and gravitational wave, radiation, and density perturbations in an expanding FLRW uni-
verse. These calculations are carried out in the linear regime under the assumption that the phases of the
oscillators comprising the system are random. Entropy is thus attributed to the lack of knowledge of the exact
field configuration. The time dependence téfleads to a time-dependefX. We find that(}, and, hence,
InQ) behaves as required. We also carry out calculations for Bianchi type 1X cosmological models and find that,
even in this homogeneous case, the function can be interpreted sensibly. We compare our results with Pen-
rose’sC? hypothesis. Becauss is defined to resemble the fundamental statistical mechanics definition of
entropy, we are able to recover the entropy in a variety of familiar circumstances including, evidently, black-
hole entropy. The results point to the utility of the relativistic Arnowitt-Deser-Mig@ddM) Hamiltonian
formalism in establishing a connection between general relativity and statistical mechanics, although fully
nonlinear calculations will need to be performed to remove any d¢8b656-282(197)06604-4

PACS numbd(s): 04.20.Cv, 04.36-w, 98.80.Hw

[. INTRODUCTION the entire proposal. There have been several other efforts to
define the entropy of the gravitational field from various

It has been recognized for some time that gravity behavestandpoint{Smolin[6], Hu and Kandrug7], and Branden-
in an“antithermodynamic” fashion. Whereas ordinary ther- bergeret al. [8]), but none appear to have established an
modynamic systems, a gas for example, tend to becom@Xplicit connection to the Hamiltonian formulation of grav-
more homogenous with time, gravitating systems tend to beity, and none has addressed the arrow-of-time question.
come more inhomogeneous with time. The anomalous be- In this paper we attack the problem of gravitational en-
havior can be viewed as a manifestation of the long-rang&opy by a direct approach. The goal is to find a function that
nature of the gravitational force, which tends to cause th&€haves like entropy, i.e., that increases monotonically as a
components of a gravitating system to clump. If we associat@ravitating system becomes more inhomogeneous. We there-
an increase in homogeneity with an increase in entropy fofore choose a function that resembles entropy as much as
thermodynamic systems, then for gravitating systems an inPossible:
crease in entropy will imply an increase in inhomogeneity.

The “gravitational arrow of time” points in the direction of S=InQ. 1)
increasing inhomogeneity.

There have, apparently, been only a few attempts in thélere,Sis gravitational entropy an€ is the volume of phase
literature to characterize the gravitational arrow of time. Thespace for the systenfUnless stated otherwise, throughout
most well known is the suggestion of Penrogd that the paper we use units in whith=c=k=G=1))

“gravitational entropy” should be measured b®?, the For this choice we have reverted to the fundamental sta-
square of the Weyl tensor. Penrose hoped that the Weyl teitistical mechanics’ definition of entropy. However, although
sor would provide a measure of inhomogeneity and increasee will refer to particle models, it is absolutely crucial to
monotonically in time. This proposal met with some degreerealize our goal is to characterize the phase space and en-
of success with a slight modificatidi2—4]. However, this  tropy of the field itself,not of systems of particles.
“entropy” function is not well defined for all spacetimes; for ~ There are several advantages and disadvantages to the
example, conformally flat or vacuum models. Furthermoreabove definition for gravitational entropy. For thermody-
Bonnor[5] has found an example in which the gravitational namic systems, a direct evaluation of the phase space is ex-
arrow points in the opposite sense when compared to th#gemely difficult, if not impossible. Instead, one chooses the
flow of radiation from a collapsing fluid, throwing doubt on simpler path of evaluating the partition function,
Z=3,e P&, from which the entropy is readily derived as
S=k(InZ+ BE), whereB=1/(kT) andE is the mean energy.
*Present address: Center for Particle Theory, Physics Dept., Uni- Here, however, we encounter the first conceptual diffi-
versity of Texas, Austin, TX 78712. culty in carrying over the procedure to relativity: To evaluate
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the partition function requires knowing the temperature of In Secs. lI-1V of the paper we summarize some prelimi-
the system. In general relativity we usually deal with dy-nary calculations necessary for what follows. In Sec. V we
namical, not thermodynamic, systems, and a temperature &pply our method to the electromagnetic field. In Sec. VI and
not well defined. A macroscopic pendulum executing simpleSec. VIl we treat gravitational waves and density perturba-
harmonic motion, for example, constitutes a dynamical, not ions. In Sec. VIl we give a more formal mathematical basis
thermodynamic system. Of course, one could assign an efor the results of Sec. VI and Sec. VII. Section IX concerns
fective temperatur&T~mo? wherey is the pendulum’s ve-  Bianchi type IX. In Sec. X we compare our method with

locity, but the system is nevertheless not in thermal equilibP€Nrose’sC* suggestion. In Sec. XI we argue that our en-

rium and so the concept of a partition function is not(TOPY is indeed the Bekenstein-Hawking entropy under ap-
obviously useful. propriate circumstances, and in Sec. Xl we discuss further

However, a pendulum’s motion does define a trajectory irfiPPlications of our procedure.
phase space and it can be calculated without recourse to tem-
perature. This is one of the two main reasons for reverting to Il. TWO PARTICLE MODEL
the statistical mechanics expression for entrépy. (1)]. . . .
The other, anticipating the application to cosmology, is that We now present a S|mplle mode| to |Ilus.trate th? b_a5|c
the phase space approach is intimately connected Witﬁpproaqh. This model descnpes the Newtonian gre}vnatlonal
Hamiltonian dynamics, and a Hamiltonian formalism of rela_mteracﬂqn bgtween tV\.IO particles, 'and althqugh It Is an ex-
tivity [the Arnowitt-Deser-MisnetADM) formalism[9]] al- tremely idealized particle model, it does highlight several
ready exists. |mportant_ aspects of our trea_tment that will remain un-
Now, normally, one is not interested in the absolute vaIueChangeq in the more complex field models. .
of the entropy, but in the change of entropy with time. If the Consider two particles, each of massfree to slide on a

above pendulum were given a higher energy, it would in-one-dimensional frictionless track of length with hard

clude a larger phase space and the logarithm of the areé)umpers set at the two ends. The Hamiltonian for this
between the two paths would formally resemble an entrop)f‘yStem IS

change. However, neglecting dissipative forces, the pendu- 9 2

lum does not change its trajectory. Furthermore, the concept H= &+ &+V(x X5) @)

of entropy implies a loss of information, i.e., that we do not 2m  2m 1ok

know the pendulum’s location within this band. This requires

that the system be ergodic, which is not true in the case ofith

the pendulum.

On the other hand, if one imagines a system Wtinde- Gm?
pendent oscillators and assumes that their trajectories are un- V=- ——c—. ()
V(Xg—Xp)“+rg

correlated, in other words, that their phases are random, then

one should be able to compute an entropy via @y. . o .
Thus our approach is basically simple: we calculate thel he factorr, softens the potential and is introduced to avoid

phase space of dynamical systems in relativity, assuming th&ingularities. The system thus represents two objects that can
the trajectories of the components are independent and thBfSS through each other, such as colliding galaxies. In this
consequently each region of phase space is occupied wiff?S€ the Hamiltoniai =E,, is the total energy, which re-
equal probability. We then derive an entropy via Eg). ~ Mains constant. , _

(The number of degrees of freedom need not be large as Ion% The “air-track” model is a closed, isolated system and

as the system is chaotic, as in the case of Bianchi type [¥1€ available phase space can be computed. For two par-
cosmologies. ticles, however, the system cannot be regarded as ergodic

Usually, one computes the entropy as the logarithm of &nd hence an entropy is not rgally dgfined. When generalized
volume of phase space constrained by an en&g@ur ap- to N>1 partlcles and thre_e dimensions the system may be
proach, when applied to cosmological models, forces us tgegarded as a mlcr_ocanonlcal ens_emble and the p_art|cles can
substitute the HamltoniaH for E. This is the most natural P€ assumed to be in random motion and equally likely to be
and conservative extention of the usual definition but itfound in any region of phase space. In that case an entropy
should be emphasized thidt does not always correspond to WOUI‘_j be vyell defined. Unfortunatel_y,_the complexuy Qf a
the energy. In most of the systems we considenill be 2N-dimensional phase space prohlblts anglyt!c solutions;
time dependent, resulting in an entropy change. hence, we demonstrate thg basic results with just two par-

The main advantage of the entire method is its conceptuaﬂCles then argue a connection to more genétdjody sys-
clarity. The main disadvantage of the procedure is that it id€MS- _ _
technically cumbersome. However, we have found a number FOF the two-particle case, we can write the phase space
of systems for which the computation is tractable in the clasP&lOW energyE, as
sical, perturbative limit. In these limits the entropy function Lo y ‘
does appear to increase or decrease monotonically when ap- Q(E<Eo)=f Xmf zmaxdxzf‘“zm(E‘V)
propriate, and by suitable identification of parameters we re- 2 —\ZmE-V)
cover the entropy familiar from a variety of circumstances
including, evidently, black holes. In this way the universality

]|

dp;

- X
2min

2m(E-V)—p?

50 P2
V2m(E—V)—p7

of the phase-space concept is established. Extensions to the
nonpertubative and quantum limits need to be carried out.
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Note this procedure is similar to evaluating the volume of a 15.0 ‘
four-sphere, although the exact topology and hence volume T Eaf'a 7o=05
will depend on the form o¥/. - a0 ;";:g;

Generally one defines the acessible region of phase 10.0 — ]
space as a shell betweeBR, and Ey+AE; thus Q
=Q0[Ey<E<(Ey+AE)]. It is, however, easier to evaluate g 50} ]
the full volumeQ(E<E,), a procedure that we will follow g
throughout the paper. In the limit of a large number of de- &

: 4 . E  00° ]

grees of freedom, the two results are identical, since most of 2
the volume of anN-object resides infinitesimally near the g
surface. B BOf :

The first important step in the phase-space procedure is to
find the limits of integration, which are not always obvious. 100 [ F ]
Because of the quadratic form of the momenta in the Hamil- i
tonian (2), the momentum integrals give the volume of a
two-sphere and the limits are set simply by requiring the 150 7 02 00 ‘ :

2 - - i : -0. 0 0.2 0.4

p; to be positive definite but constrained by the total energy Momenturm
of the system, as in Eq4). After evaluating the momentum
integrals we have FIG. 1. Phase space trajectories for the two particle model, as-

L2 < suming one particle to be at rggir equivalently more massive than
Q(E<E0)=21Tmf dxlf Zmax(E—V)dxz. (5) the_ othey aqd m;=Gm,=1 with my,>m,. Th_ree different trajec-
L2 X2 tories are displayed: a reference curve of intermediate engggy
' and softening parametep, and two other curves varying, and
The lower and upper limits or, are set by restricting our I independently to increase the phase space volume relative to the
attention to bound systems, such tEat0 and by requiring  reference curve.
E—-V=0, which leads to
— formed for scenarios ranging from formation of star clusters
o+ G'm 2 to clusters of superclustef$0—12. Invariably, the softening
Xo=Xq1* > rg- (6) . . )
E length sets the degree of clumping that is observed: As the

) softening lengthr, is decreased, particles clump tighter and
The entire volume of phase space can then be evaluated ang| deeper into the central high density cores.

lytically and is found to be One can relate this behavior to the arrow-of-time question
——> —— as follows: InN-body codes the softening length and the
Q(E<EO)=4wm3GL sinh L \/VO 2E0_ \/VO 2EOJ mesh discretization scale are equivalent insofar as that, be-
Eo V ' low either, no clumping takes placéhe gravitational force

7 tends to zero and we lose all clumping informatjddence,
o o ) by increasing , the universe becomes effectively more ho-
whereVy=—Gm*/rg is the minimum potential. mogeneous, and gravitational entropy decreases. In other
Note several aspects of this result. Fdixed formof the words, by changing the mesh size, we change the entropy.
potential V, there are only two ways to change the phaseryis is an example of “coarse graining.”
space: one must change eittigy or V. As expected, for a Furthermore, inN-body simulations, some particles mi-
larger Eo, the particles are free to roam around in a largergrate to a dense central core at the expense of ejecting a few
region of phase space and thiks increases. Weré, 0 from the system. Thus, the minimum interparticle separation
decrease due to dissipation, the particles would be confined 5 decreasing function of time. We would then expect the
to a smaller volume. This is one example of gravitationalminimum separation to enter into time-dependent limits of
clumping. Now, to chang¥,, one must change,, the soft-  the coordinate integrations. As the separation decreases, the
ening parameter. Decreasing makes the potential deeper depth of the potential well increases and the phase space
and vice-versa. Thus, imposing a finitg has the effect of glso. In terms of the two-particle model, if we associgge
excluding a certain region of phase space compared to thgith the minimum interparticle separation, then rasde-
usual graVitational pOtential, |n whidi— — o asr—>(.)..Th(_=3 creases, the absolute value betwaemin and szax in the
dgpendence of2 on E, andry is shown _more_epr|C|tIy N Jimits of integration would increase ard as well (Fig. 1).
Fig. 1 where we plot phase space trajectories for the two To sum up, the “air-track” model is useful in that it

particle system, assuming one particle to be stationary W'ﬂ%xactly illustrates the calculational procedure we will follow,

zerTohrgti))r;w;r:]tqlérgE merely determines whether the systemand by reasonable interpretationrgfit correctly predicts the
. 0 ) behavior of gravitational entropy iN-body simulations.
is overall bounded. For the behavior of entropyNrbody 9 Py y

systems with constant total enerdsy, ro is the relevant

parameter. It i3, that governs the clumping process within IIl. HARMONIC OSCILLATOR

a bounded cluster of particles. In particulag, dictates the

extent to which particles can form binaries. This is verified Consider a one-dimensional systemMNbsimple harmonic
by a number ofN-body simulations which have been per- oscillators with Hamiltonian
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1N As a further check on Eq13), we point out that if one
H= 52 B+ V() (8)  makes the identificatiorH=E=N/g with g=1KT, then
i=1 _ . . . . . .,
S=kIn(} agrees in the classical limit with Einstein’s formula
for the entropy ofN harmonic oscillatorsS=kN(1—InSBw),
wherew =\ [14].
AN Finally, the usual definition of phase space is the phase
V(i) = 52 7. (9)  space of a shell arounly: Q(AE)=Q(Eq<E<Ey+AE).
=1 This is given by the differential of Eq13). From this dif-
ferential one can derive the partition function

and potential

With the replacemenN—3N this may be regarded as a

three-dimensional system witN oscillators in each of the % 2m\N

Xx,y,z directions. The phase space for this system can be Z=f Q(AE)e_ﬁEdE:(%) : (14
evaluated analytically. With the canonical momentas ¢; °

we have, for any form of potential, Although this formula is not found in texts, if one calculates

Z for N oscillators with the/-function approach textbooks

Q:f do f do f”“dw ---f+/1d77 (10) apply to free particle§l5], one arrives at the same result.

N ! /N N -1 o With these checks it appears that EtR3) gives a reason-
able and meaningful expression for the phase spacH of

with /32=2(H—V)—3N . ,@Z. If we further note that harmonic oscillators. Perhaps the most importamtd use-
/2=/2 —mi, ., then each integral is of the form ful) feature of Eq(13) is that it merely considers the ampli-
tudes of theg, . It ignores the phases. In fact, for its inter-

(n+ 1 pretation as phase space, we must assume random phases for
1 T2 the oscillators. Without this assumption, the motion of the
/ﬂf Xn M 1— %, VA, =7 \/;ﬁ (1)) system cannot be considered ergodic and the entropy is not
0 r— defined. Effectively, we are regarding the oscillators as a
2 microcanonical ensemble, in which one does not know the

exact energy distribution. However, one could use the defi-
nition S=—ZXp;lnp;, which to a high approximation is
equivalent toS=In(), and apply it to other distributions as
well.

wherex,=72//2. (This integral is the so-called Beta func-
tion [13].)

The final result afteN integrations over the momentum
variables vyields the volume of amN-sphere of radius

VvH—V and we have, for the remaining coordinate integra- V. NEAREST NEIGHBOR POTENTIAL

tions,
NJ2 The technique used to derive EG3) can be used without
0= (2m) f”Ndd) ~-~f+/ld¢ (H-V)N2, (12 modification for other potentials of the forki ¢ for even
N+2\ /-, N _ 1 ' powers ofa>0. In addition, as an important application to

1

2

our analysis, we consider the “nearest-neighbor” potential
with Hamiltonian
where now/2=2H/N—3N .. ¢?. In the case of the har- N N
monic oscillator, thep-integrals are identical in form to the 1 2 N 2 2 (15)
X ' ) H=_- = i— b .
m-integrals. Hence, one merely continues the procedure an- 221 ¢ 232 (6= i)

otherN times, and noting that3=2H/\, one gets, finally, . ) )
Note that the product/\(¢;— ¢;.,) is a discrete approxi-

(27m)NHN mation to the gradiend¢/dx; the spatial scale of the gradi-
TAVI(N+1) (13 entis set by YX.

With the substitutiony; = ¢, — ;. 1, the phase space for
The same result can be obtained more simply usinghis nearest neighbor potential can be evaluated in the same
N-dimensional spherical coordinates. However, the methoavay as the harmonic oscillator. Aftét integrations over the
outlined here can be applied to a more general class of pq}gi andN—1 integrations ovet; the result is
tentials.

Because Eq(13) will prove central to much of our analy- Q= (2mH)N-12

sis, it is worth convincing ourselves that the result is mean- ANNTDRR(N+1/2)
ingful. We first note that() decreases as increases, in
accord with our notion that a stiffer spring constant confines The lower dimensionality of) arises from the fact that
the oscillators to a smaller region of phase space. Note alsihe last used in deriving Eq(16) is 7y_1= ¢n—1— DN -
that A —0=(Q—o. This behavior is equivalent to that of The final integration, however, requires one to specify
classical free particles in an infinitely sized box. Indeed, byboundary conditions to ensure the dimensionality of momen-
settingV=0 in Eg. (12), performing eachp-integral over tum space equals that of coordinate space. A natural choice
the volume of the container and letting2— (2m)\?, for  is periodic boundary conditions, such thag ;= ¢, then
massive patrticles, one can recover the usual expression faf= ¢n— ¢1. The assumption of periodic boundary condi-
the entropy of an ideal gas. tions adds an extrag(y— ¢,)? to the first integral, which can

(16)
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be handled by “completing the square” and pushing theand the proper scaling becomeE=¢&(L/N)%? and

unwanted terms up to successively higher integrals. HowB=B(L/N)*2 The Hamiltonian(20) can then be written as

ever, a rather tedious calculation shows that, surprisingly, the

extra terms vanish afted—1 integrations. In other words,

/2_,=2HIX\. The dimension has not increased. One there-

fore is still required to specify limits oy, which we take o

to be = y2H/\. Then, for periodic boundary conditions, whereH =H/N?2.
To evaluate the phase space below this Hamiltonian, we

N
2 (E2+B?), (22

Nl

21 (2mH)" 1 note that for transverse wave§,=V,; E,=B,=0; and
" JaN ART(N+1/2)° 17 B=nx E, wheren is the propagation vector. Faraday’s law,

VX (E+A)=0, implies thatA,=0 andB=—iA, ,+ A, ,.
However, we note that one might instead impose ‘“free-Thus the Hamiltonian can be approximated as
floating” boundary conditions such thaby, = ¢y, and N
merely specify that the limits oy are = y2H/\. In this — 1 z
case the result is the same as Exj) but without they/N in 2~
the denominator. When logarithms are taken, both results are
identical to the harmonic oscillator case except for insignifi-with potential
cant numerical factors.

)+E2 y(D1+V(A), (23

Ay(i+ D PH[A) — A+ 1),
(24

V. APPLICATION TO THE ELECTROMAGNETIC FIELD V(A)= 521 {[Ay(1)

As a sample problem whose technique will carry over to

the gravitational case, we now apply these results to the eleg,y \yheren sets the spatial scale. We see that in this ap-
tromagnetic(EM) field. Because the EM field can be mod- roximation,V is just given by the nearest-neighbor poten-

eled as a collection of harmonic oscillators, we expect th ial, calculated in Sec. IV, with the phase space given by Eq
phase space to re_flect E(q.S). To' show this is the case we (17’)_ In this problem, hOV\;ever, the phase spaceNstmen-
assume a constrained Hamiltonian of the fdr6] sions, hence substituting\2for N in Eq. (17) yields

1 _
=5 | (&+B)d%, (19 (2 (@aHA
Zf Qev= VNI T 2N+ 1D (29

where€ andB are the electric and magnetic field densities. It
is important to remember that in the Hamiltonian formalism,
the canonical variables are not the densities but the full fiel
guantities; in this case=E andg=A, the vector potential.

To write Eq.(18) in terms ofE andA, we first discretize
H as follows:

For the interpretation of) as phase space we need to assume
&he phases of the electromagnetic waves are random, which

merely means the source is incoherent. This is, in fact, the
general case.

A closed solution to the problem requires an evaluation of
N, the number of oscillators. Because we are primarily inter-
N N N ested in the time dependence@f(which is here time inde-
~ZD DD (24 B2 E LadyLe AN,AN,AN,. (19 penden), it is enough to know thal is finite; in the quan-
X y z NxNy N tum limit it will be the number of photons.

To make contact, however, with the usual expression for

Here, the sums are understood to be overxhg, andz  he entropy of electromagnetic radiation, we imagine trans-
coordinates covering the enclosed volumg L,. We have  yerse waves in a three-dimensional box, assuming each di-
also approximatedx asLAN/N, with N being the number (ection is independent. The phase space for that system is
of oscillators in each direction aniN=1. Let us further  gptained by lettingN— 3N in the above equation. We as-
restrict our attention to transverse waves propagating in thgume that = 3Ne , wheree= w/(27) is the average energy
z-direction. Then thex and y summations can be easily per oscillator an’d the coupling constant=w?. With

evaluated with the result Stirling’s approximation I'(N+1/2)~27Ne "NV, Eq.

I\)IH

1 N L3 (25) yields S=InQ)~6N(1—In2). For a photon gas at tem-
bl z &2+ B%)—, (20) perature T, the energy of most photons is of order
2 = N w=k~T, wherek is the wave vector. In three dimensions,
3 3 the number of states is proportional to the volume ispace
whereL"=L,L,L, andN"=N,NyN_. for a sphere of radiuf¢|. The mean number of photons at a

Now, E~+/e/L3, if e=energy. Similarly, ifA is the po- temperatureT is thus proportional tdN~ 3~ T3, and we
tential density, then B~.e/L3>~VXA~A/L. Hence recover the usual scaling for the entropy N~ T3,

EA~elL?. We also point out that Eq24) gives some insight into the
The product of the canonical variabl&A must equal an  question of coarse graining. The concept of entropy is sub-
action=eL in these units. Consequently, jective in the sense that to calculate an entropy requires that

an averaging procedure be selected. If one regards the cou-
EAL®=action=EA, (21)  pling constant in Eq(24) to be A=N?/L?, whereL is an
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arbitrary length scale, then by increasingone increases the The inverted nature of this term is due to the background
volume per oscillator and hence increases the phase space,@svature of spacetime and its rate of expansion. The poten-
can be seen from Eq25). Therefore the coarse graining tial, then, serves as a reflection barrier in an unbounded
scale evidently appears in these calculations as the couplinghase space. Any calculation must therefore include an arbi-

constant. trary cutoff. We discuss this point in detail in Sec. VIII.
There we show tha€) can be calculated by the use of hy-
V1. EXTENSION TO GRAVITATIONAL WAVES pergeometric functions with a result that is formally similar

_ _ _ ~ to that already achieved for the harmonic oscillator and we
The extension of the previous formalism to gravitationalcan continue to us®~H"/AN2 to compute the time depen-

waves is fairly straightforward except for one crucial point, gence ofQ).

which we discuss below. . To compute)(7) we imagine thaf) is constant on each
We first consider inhomogeneous perturbations of thfhypersurface of constant time. Thaa can be taken as,

spatially flat metric the coupling constant. We then need to comptte;) and

_ 52 .2 A h. iy N(7). To find H(#) note that the equation of motion for
ds*=a(y){=dn*+[o+hy(n2)ldxdx}, (26 resulting from varying the actio27) is
where 7 is the conformal timea(#) is the expansion scale
factor and theh;; < §;; represent gravitational wave perturba-
tions. Their equation of motion can be found by expanding
the Einstein action to second order in the perturbation vari-
ablesh,,,. The result is Because the waves are linear perturbations, they do not in-
teract except through a linear superposition. The time devel-
1 22 a4 opment of each individual componetdr a wave of a par-
I= Ef a“(h"=h"9)d%x, 2D ficular frequency or phageevolves according to Eq31),
which can be regarded as representing a family of solutions.
where ()=d/d» and ()=d/dz Equation(27) is the action ~ That is, we may assume a separable solution
appropriate for singly polarized gravitational waves in the
transverse traceless gauge. The varidblé=h,,= —hy,) 2
represents the single degree of freedom for theolariza-
tion state (Brandenbergeet al.[8] have shown that a similar
fprm is achieved even when one considers two polarizawith arbitrary or random phaseq , Where herq’ is an index
tions) over the differentvaves(not overz). This is, in effect, say-

We will find it convenient(particularly when making a ing that different spatial regions are taken to be oscillating
connection to density perturbation® work with a trans-  independently of one another, or that the source is incoher-
formed perturbation functiog=ah/\327. The Lagrangian ent. We therefore assume the perturbations to be random,
density can then be written as and that the field variables describe, not a singly polarized

wave, but an ensemble of incoherent plane waves. Entropy is
_ (29) thus attributed to the lack of knowledge in the exact field
configuration.
With a=a,#%? for the matter dominated period and as-
By definition, if ¢ is the canonical coordinate, then sumingh~e'*? Eq.(31) has the solutions
7=dLId¢p= ¢, and the Hamiltonian densit{=mq— L is _
found to be hoe 5y~ 32) 3 k) €2, (33

. a.
h+2_h—h"=0. (31

2a.
hj+ —hj—hj | =

2a, _
h+;h—h”)z e“i=0, (32
J

ot
"2

12 412 E
e

where J.. 3, are Bessel functions. To construct the Hamil-
: (29 tonian (30), we then sum over the coordinate Simplified
expressions can be obtained by substituting the standard as-

Following the same procedure used in the EM case, w¥mptotic (k7<1 andkz>1) forms ofJ.3,. We can then

1|. a
_ gy 42 S 2
H=3| #7412~ ¢

find, for the Hamiltonian, write for the metric perturbations in the limity<<1
1 A h=[hy(kn) ~*+h,]e'?, (34)
H=52, (??+ $i*= 27|, (30
2i31 a where h; and h, are constants and ¢=ah

L _ _ «(hyn~t+h,7?)e*% The constant$; andh, can thus be
where 7=m(LIN)*?%,  ¢=¢(L/IN)*% H=HIN?, and interpreted as defining the decaying and growing mode solu-
H = ["Hd3x. We see that the Hamiltonian contains potentialstions, respectively. In this limit spatial gradients are negli-
similar to the others we have considered with one crucialible. Fork»>1, we have
difference: the sign on the last term. In the matter dominated
period,a~ 2 anda/a>0, hence the sign on the quadratic 2k®
term in Eq.(30) is negative and we have a nearest-neighbor ho 7(@
potential plus an “antiharmonic oscillator(br inverted po-
tential. «(kn)~2x[oscillationg. (35

2
[cogkz) +sin(kz)]e'?
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and ¢«constank[oscillationy. We note that kp>1 actually be an advantage, because in order to ensur@tisat
(kp<<1) represents perturbations with wavelengths mucHinite, we must ensure that the number of mollesiust also
shorter(longep than the Hubble radiuaisually referred to as  be finite. This requires us to put the system in a box and
the “horizon™). consider only a finite spatial region. The horizon thus pro-
The Hamiltonian(30), in the limit k»>1, then becomes vides a natural upper limit to wavelengths. An absolute
Ho 2+ k?¢p? which is simply the harmonic oscillator lower limit can obviously be chosen as the Planck scale. We
Hamiltonian at a fixed time with coupling constakt H will find that similar considerations are necessary for radia-
therefore oscillates in time at constant amplitude and weion perturbationgbelow).
have for the phase space

N VII. DENSITY PERTURBATIONS

Qo w7z > constank [ oscillation. (36) The analysis of the previous section can be repeated for
density perturbations in dust- and radiation-filled models. In
As expected in this approximation, the phase space does nite longitudinal gauge, the spacetime metric is written as
change. Recall that is defined on a single time slice. How-

ever, assuming incoherency in time as well as in space, one ds’=a%(n){—[1+2®(7,2)]d»?
can averagél over several cycles by defining a general four- _ i i
Hamiltonian +[1-2®(75,2)]y;dx'dxX}, (39

where

(37

<4>H=f dix| w2+ k22— 2 2.
a K -2
. . N . %ij= 8| 1+ —(C+y*+2%) | (40)
Over intervals of time greater than the dynamical time, this 4
will be a monotonic function and, in then>1 case() will _ ) _ o )
be strictly constant. However, in a nonlinear reginge, @ is the gauge invariant gravitational potential, a@id-= 0,
would increase, which is encouraging for the interpretation— 1, +1 for flat, open, and closed universes, respectively.
of InQ as entropy. Mukhanovet al.[17] give the following general equation for
Fork»<1, spatial gradients are, again, negligible and weddiabatic density perturbations:
haveH« w2—a¢?/a and QocHN/(a/a)V?. Therefore

. 0
Vz’ [7;3’\‘ for growing modes, u—cgu”—gu:O, (41)
Hoot ", and Qocj gy .
n 9, 7 for decaying modes,
(39 where
with the caveat that we have not yet shoveee Sec. VIIi ad ( a2 é) -1z
that for the inverted oscillator this form @} is justified. U=—|\23—¢ : (42
At first these last results strike one as strange because as Jamla® a
seen from Eq.34), for growing modesh is frozen-in at ) ) 1
superhorizon scales. That is, there are no oscillations and the 3al a’> a
assumption of random phases is not well motivated. In that o= 552( 232_ a : (43

case, the phase space trajectories are known precisely and

0 =0. One can see this clearly by examining the Hamil-gng ()=d/dy, (")=d/dz andc§ is 1/3 for radiation and
tonian in the variablén. For superhorizon growing modes, zero for dust. The corresponding action from which the
this Hamiltonian is zero, and the increase (h above is  (ADM) Hamiltonian and equations of motion are derived is
t'antlr.ely d'ue' to the expansion of the universee.,  given by writing the Einstein action

¢=ah+ah=ah). Only thea term causesp to increase in

amplitude, and hence increases the effective coarse graining 1

scale and}, in accord with the gravitational arrow of time. I=- 167G f RV=-gd*x- f eV=gd', (44)
(The decaying modes on superhorizon scales also no longer

oscillate but damp out monotonically at a rate faster than thg heree is the energy density of matter, in terms of the ADM
universe expands; the associated entropy thus decre®&®s. matric and expanding to second perturbative order.
will discuss the significance of the growing and decaying

modes further in Sec. VIII B. For now we point out that,
certainly for the growing modeg) is nonzero only if one
continues to regard the phases as random. Otherwise, if the 1. ¢2=1/3, radiation
phases are assumed known, then the entropy is(pemon- . - 5 . )
stan}, in agreement with Brandenberget al. [8]. It would For radlatligzna~ 7 and 6/ 6=2/,°. Assuming the spatial
be of interest to establish a more quantitative comparison dP'm u(z)~e™, the field equatiori41) becomes
our results to Brandenberget al.

These considerations suggest that our definition of en-
tropy is only appropriate for subhorizon scales. This may

A. K=0, flat universe

k2

.2
U—?U-F?U—O. (45)
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The general solution to Eq45) involves Bessel functions Thus, in distinction to the previous cases, one should not
similar to Eq(33). The asymptotic superhorizork<1)  examine® to determine whether the modes are frozen-in or

solutions are not. One should rather examine E§2). We see that on

_ subhorizon scalesk@>1) Sp/p exhibits growing modes,

u=(uyn’+un e, (46) i.e., actually collapse takes place even widleemains con-

stant. On scales larger than the horizép/p remains con-

representing both growing and decaying modes. As in thtant for the dominant growing modes. Given tidatp is

case for gravitational waves, these solutions are taken to be@nstant on superhorizon scales for growing modes, this
family of functions with random phase angles From now  gnce again suggests that our definition of entropy should be

on the presence of these phase angles is understood but Watricted to subhorizon regimes, consistent with our earlier
do not write them out explicitly. In addition, we note that the ggits.

results presented here are independent of the exact form of
perturbations, and we could replaeé s ;e'* with an ar-
bitrary function of the three spatial coordinates.

For K=0 dust we have simpl{ 72— u?/ 6. From Eq.
(50) and the results from Sec. VIII B for the inverted oscil-
lator potential, we find

Forkn>1
4 5N ;
n, 7 for growing modes,
Kn . K7 G Hoe{ s and Qocy o J .
uoc| cos— +sin—|e'"“?, (47 7 °, 7 for decaying modes.

and, as for gravitational waves, perturbations on these su
horizon scales are oscillatory. )

The Hamiltonian for the caskn<1 is Hxw?— 6u?/ 0,
which results in the following evolution

2
7 7

Hx( 74 and ro[ n 3N for decaying modes.
(48)

l?/'\/e again point out that the fact that and () are time
dependent while the conformal metric componelits
equivalently ) are constant is not a contradiction. The
growth of H andQ is an indication that collapse is taking
place on somésubhorizon scale. Note once more the mono-
tonic behavior of these quantities.

SN for growing modes,

B. K=+1, dust-filled open and closed universes

Forkz>1, we haveH o 2+ c2u’? which oscillates at con- The gauge invariant potential in the case of a dust-filled
stant amplitude, and therefofk is constant over sufficiently open universe can be written Ek7]
long intervals of time. Notice that these results for radiation

perturbations are identical to those of gravitational waves P=c (Z)25inh’-77—6nsinh77+8003m—8
=Cy

and the remarks concerning the superhorizon application of (coshy—1)3
our definition of entropy apply here as well. i
sinhy »
2. ¢2=0, dust +C2(2) (coshy—1)3 (54)
In this casea=a,5? and 8/ 6=6/7% Then Eq.(41) be- .
comes o7 7 a.(41 where a~(coshy—1) is the expansion factog,=u,e’?,
andc,=u,e'% Also
. 6
u——u=0, (49 sp 1
Y ?25[(coshr;— 1)V2d+9d —6¢,]. (55)
with solution
3 2 ik Expanding Eq(54) in the small time limity<<1, we obtain
u=(uyn°+un °)e" (50) the flat space solutiofbl). Egs.(43) and(42), taken together
) with the approximate asymptotic solution for the scale factor
or equivalently a~ 72, yield the same result fod and Q as the flat space
— case(53). In the opposite late time limity>1, the hyper-
_ 5)ai(k2)
= (uytupn)elt, (52) bolic  functions become exponentials and®

xc,e” 7+ c,e 27, As expected® decays in this limit, and
Eq. (55), along with the asymptotic form of the scale factor
a~e”, shows that the matter density fluctuations do not
r_Fjrow on either super- or subhorizon scales. Equatid3s

1d (42) yield 6/ 6=constant andi<c,+c,e” 7. H and Q
then evolve as

whereu, u,, u; andu, are constants.

Notice the important point that E¢49) does not suggest
a natural scaléthe horizon in particularfor modes to grow
or decay as found in the gravitational wave and radiatio
cases. However, the horizon scale does appear in the expr
sion for the density fluctuation8p/p [17]

constant, constant for growing modes,

op
and Qo o 2Ny

1 )
(k2,2 (2.2 _ -5 i(kz)
p gl (K +19ui—(k 187 "uz]e . He e 27, for decaying modes.
(52 (56)
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This is consistent with the fact thap/p=constant for the x-space(which here corresponds to momentum spaEer-
dominant modes and no collapse takes place on either suther defininguma,=R2A/H andw=(u—1)/(Una—1) the

or superhorizon scales. above expression becomes
The growing modes for the closed modél«€ +1) can
be obtained by lettingy—i7 in Eq. (54). In this case 0- aNHN 1 N’Z(u e
0<y<2mw. For <1, the closed model gives the same re- N\ [N+2) | éx max
sult as the open and flat cases. Equatfa®) also holds for F(E)F T)

the closed model, and so the same consistency among the
behaviors oH, (1, and ép/p is found here as well. There is 2-N 2+N 4+N

no asymptotic limity>1 in the X=+1 case. However, by f( 2 o o 11—Umax),
expanding Eq(54) around »=, we find to lowest order

thatq)OCUNCOHSt, 6/6""C0nst, and that thereforld and () Where].' is a hypergeometric function

are constant as well, again consistent with the density pertur-

bationsép/p~ const. In the neighborhood of maximum ex- 2-N 2+N 4+N

pansion, then, the model acts like the open case. As recol- f( 5 T2 o vl_umax)
lapse takes place, one finds that toward the singularity
n~2m, ®oce > uxe 2, and 6/ 9xe 2, wheree=2m— 7.
These dependences vyielthe ® and Qe 5N, Sincee is
decreasing, all these quantities are increasing, as expected;

oplp grows again as well. Taken with the behavior at The function F s absolutely convergent for

7~0 and ’é” 7 we see thaH and() behave monotonically |y —1|<1. In that limit, the power serigd 3] for F gives
as required.

(60)

1
=f [1+ (Upax— 1) W] N =272y N2gwy, (61)
0
2’7TN H(N—Z)/Z
VIII. ANTIHARMONIC OSCILLATOR POTENTIAL O~ (N+2)F N - N=+2
2 2
We now consider in detail a Hamiltonian of the form ) . . . .
found in Eq.(30) without the gradient term, that is, which can also be obtained by direct integration of E&f)
if one keeps only thav\’? term in the integrand. Thus to

e R (62)

A. Time dependence of(2

N N evaluate the time dependence®fwe will consider
H=)Y X2 v (57
i=1 i=1 N+2
Qo —nmHN=272 for R2 =constvﬂ (63)
We first justify the expressions found fér in Sec. VI, then R max N’

interpret the meanings di <0 andH>0 for the inverted
oscillator potential in Sec. VIIIB. The inverted nature of the wherek=2¢ is the “spring constant.” With the definition of
potential in Eq(57) results in a reflection barrier and a phaseUmax this can be rewritten as
space that is unbounded. To compkethen, we will need
to put in arbitrary cutoffs to the allowable phase space. How
this is done will become clearer below.

First consider the case whd#h>0. From Eq.(57) the
y; then correspond to the canonical coordinafgsand the  assumingu,,.xis constant. That is, which form used depends
X; correspond to the previous;. One can easily evaluate on which variable is assumed constant. Conceptually, it is
Q using N-dimensional spherical coordinates. Integrationeasier to visualize the meaning Bf,.,, Which puts an ab-
over they; coordinates yields solute limit on the allowable momentum of oscillations. We

stress that these limits are meant to be constant in time. If,

HN
QOCKWE for |umax_1|~1v (64)

AN NTX HY? however, we allowR,,, to evolve withH, then we get the
Q= N+2\ | & Z’l Xi—x| (58 condition Umax= CONstant in time. The parametey,,, effec-
r > tively scales the ratio of the allowable kinetic energy to the
total energyH.
and then over the; . We can also derive an analogous scgling in the opposite
limit, Ryax:Umax— - In this case, Eq(60) is approximately
N N/2 N/2
7N H) J’ A
Q= — —R2-1 N A\ N2 Rﬁq,\;x HNUmax
N+2 N+2 g RZ=H/\ H O— Nt 2 Nt 2 E Rﬁ]’\;‘XMWOCWZ—
2 2 r—=Ir—=
2 2
XRN71dR, (59 (65
whereR?=3N x?. Now we turn toH<O0. In this case the meanings of the

This integral will be unbounded &2 — . We therefore x; andy; in Eq. (57) are reversed. If we leti=|H|, then a
let R, =maximumEN  x?) be the assumed cutoff in repetition of the previous analysis gives
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HNuma JKN2, Upmax= CONSt, as the constanti,,, case for both growing and decaying

modes.
Q~{ kHN-2R2RIZZ - R =const-H/k,  (66)

N/2R2N 2 _
K™ Riaxs Rihax= const—ce,

B. Meaning of H>0 and H<0

In the previous section we consideredfor both H<0
andH>0. We now wish to explore the meaning of positive
and negative Hamiltonians in the present context. Classi-
; . cally, one associates negative energy states with bound sys-
sponds to a cutoff inp-space(or places a limit on the am- o mq and positive energy states with unbound systems. Here,
plitude of oscillations _ however, the situation is slightly different.

At this point we reiterate that our approach is to compute  The equations describing the evolution of dust and super-
phase space with the assumed cutoffs at each time slice af@rizon radiation and gravitational wayeith the identifica-
then allow the system to evolve in time. Since the Ham”'tion u=¢=ah) perturbations can be unified into a single
tonian is, in general, a function of time, it is reasonable togifferential equationi—cu» 2=0, wherec=6 for dust and
impose cutoffs that scale witd. This implies that we should 2 for radiation and gravitational waves. For both cases we
hold un,. constant, thereby preserving the self-similarity in can write the solution as=A#»"1+B7"2, where A and B
the energy distribution. This choice of cutoff is also compu-are constants anch(,n,)=(3, —2) for dust and(2, —1) for
tationally convenient in that it results in a scaling forthat  radiation and waves. In sho, and B define the growing
is similar to the harmonic oscillator case, namely and decaying modes, respectively. From our previous solu-
«HN/KN2. However, we have verified that the other cutoff tions to the equations of motion on superhorizon scales, the

criteria(constanIR%a,) gives qualitatively the same behavior HamiltonianH~u?—cu?7z 2 can be written as

where the “spring constant” is now=2\ andR,,, corre-

3A%5*—2B?%5 6—24AB%~ ! for dust,

~ o 6
2A%79?—B?7p 4—8ABxn !  forradiation and waves. 7
|
Now, note thatA=0 results in We can also make contact with the “qualitative cosmol-
ogy” approach of Hamiltonian cosmology. The turning
—2B27 %<0 for dust, points of trajectories with the inverted potential Hamiltonian
H~ L 68 i
—B2;7%<0 for radiation and Waves.( ) take place when the momenta are zero BindV. Since for

the inverted potentialV<<0, H>0 necessarily implies
H>V. The motion here is “unbounded,” in the sense that
there are no turning points and perturbations continue to
grow. For H<0, we have|H|=¢3N 4?7 at the turning

3A25*>0 for dust points. The potential barrier is thus ahsphere of radius
H~[ '

That is, in both casesd<0 corresponds to a decaying
mode.Similarly, settingB=0 leads to

69) r=\[H[/é&. However, in general, SN ¢?=|H|/¢
+ A=, 7w/ E>|H|/£, so the world point is actuallgutside

h q d . q this sphere.
In ot'er. wordsH>0 corresponds to a growing mode. For decaying modes, the sphere shrinks in time and the
It is important now to attach a physical picture to these

. X world point attempts to catch up with it. However by com-
results because they are, in a sense, opposite from what one

intuitively expects from a particle model. In a particle model paringu for decaying dust and radiation modes with the time

one associatel <0 with bound systems undergoing gravi_’dependence of for_the potential barrier, one easily shc_>ws_
tational collapse. Growing modes, then, correspond t ha}t thg system pomt can never caich up with the barrier in
H<0 and particles moving together, ' inite time. The barrier, then, serves as an attractor for the

However, it is crucial to bear in mind that we are Consid_decaymg modes but it is never actually reached except in an

ering not a particle model but an oscillator model, where@Symptotic sense. This picture is similar to that of the Bian-

growing modes correspond to increasing amplitudes of oscil(-:hI cosmologies, in which the universe is often represented

lation. One therefore can imagine a lattice of points underS & Point moving in a potential well. We turn to Bianchi

going perturbations that eventually lead to gravitational colyPe IX cosmologies now.
lapse. As the perturbations grow, the grid points move
farther from their initial unperturbed, or “uniformly” ar-
ranged positions. For decaying modes, the grid points relax
to their homogeneously spaced positions. This is why in Sec. For the Bianchi type IX cosmological models, we adopt a
VI, Q) grew for growing modes and decreased for decayingnmetric of the form

modes. In the oscillator picture, then, increasing inhomoge-

neity automatically gives an increase in phase space and

hence gravitational entropy. ds?=—dt?+e?*(e?f);;o'd), (70

2A%72>0 for radiation and waves.

IX. BIANCHI TYPE IX COSMOLOGY
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FIG. 2. Contour plot of the Bianchi type IX potentidl Seven o
level surfaces are shown at equally spaced decades ranging from
107! to 1CP. For V>1, the potential is open and exhibits a strong  FIG. 3. The Hamiltonian and entropy for Bianchi type IX as a
triangular symmetry with three narrow channels extending to spatialunction of . The evolution is initialized atx=0 with the follow-
infinity. For V<1, the potential closes and is approximately circu- ing data:;8,. =5_=0, B, =2, andg_=1, and run both forward in
lar. time and backward towards the singularity- — .

wherea=e® is the mean expansion scale factof,are the  contours describe a circle. The motion of the universe point
dual one-forms for the rotation group SOR, and €*#);; i this potential well is chaoti§20], so we can regard any
is an exponential of a 83 symmetric traceless matrix de- region of phase space to be filled with equal probability and
fining the anisotropy of the spatial hypersurfaces and paranthe concept of an associated entropy is reasonable.

etrized as The phase space is formally calculated as we have done
] with the other cases:
||Bl|=diad| B+ V38 .8+ =3B, =28, (7D
The Bianchi models are anisotropic but homogeneous cos- Q|><:f d,8+f dﬁ_f dp+f dp_. (74)

mologies, so by definition they cannot show the effects of

gravitational clumping. Nevertheless, there are three reasong facilitate integration, however, we elimingpe. in favor

for investigating Type IX. First, it can be conveniently castof H. The integral then becomes from HF2)
into a Hamiltonian form and a phase space can be formally

calculated. Second, if one regards anisotropy as the long- Hmax B max B max + dp,
wavelength limit of inhomogeneity, we might hope to make Q'X:J HJ d,3+J B- \//2=
contact with our previous results. Finally, it provides a tran- Himin B+ min B~ min TONZTTRY
sition to the full ADM formalism, which one will necessarily (79)
employ in nonperturbative models. where/2=H?-36m2e**(V—1). We note that this problem

The ADM Hamiltonian for Bianchi type IX i$18,19 is very similar to the two-particle model of Sec. II, except for
22 4 2 2 4a the more complicated potential. The integral operis sim-
=pi+ps+ )=1). ; .
H=p5 +p=+36m e V(B .f-)~ 1) (72 ply an arcsin and the result after applying the boundary con-
Hence’ Bianchi type IX can be cast into a System of tW0d|t|0nS is 7. The IOWer- limit onH is 0, and.dye to the
degrees of freedonimeaning two canonical paijsin Eq. ~ Symmetry of the potential, we can take tBe limits to be
(72) V is Misner’s anisotropy potential, which is a function 0 andB_max, the maximum value of_, and double the
of the canonical coordinate8, and 5_, the independent result. Therefore we are left with
components of the metric anisotropy. The precise form of
.. Hmax B—max ,3+ma><
Vis: Q=2 HdH dg_ dg.. (76
0 0 B+ min
V=1+ e 88+ 4 e 2B:cosh2/35_ S _
The remaining integrals are evaluated numerically. To do

+ §e4ﬁ+(cosh4d§ﬂ_—1). (73)  this requires first determining the limits of integration. As
with the two-particle model, we set limits by equating the
This potential(shown in Fig. 2 is symmetric about the_ momenta in Eq(72) to zero and finding the reflection points.

axis and has exponentially steep walls. For large isocontourl other words, we demand thkit® always remain positive:
of V (>1), the potential exhibits a strong triangular symme-

2
try with three narrow channels that extend to infinity. For H2=36m2et*(\V—1)= V< H +1 7
V<1, the potential is closed and asymptotjg.(<1) iso- e )=Vs 36wt T (77
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For a fixed value oH andB_, we march across the poten-  Assuming the boundary triangles for the unboun@®zen

tial well varying 8. until this inequality is violated. We then potentia) phase space are equilateral, the enclosed area is
perform interpolations at the two endpoints to find the mini-approximatelyA~ 382 . Also, for large values of3_ , the
mum and maximum values ¢, . Theng_ is incremented asymptotic form oV is from Eq.(73) V~(1/3)e4"337. Thus

and the process is repeated. The limitsgnare found ina A~ (In3V)2. Now, at the potential wall, Eq72) shows that
similar manner. For large values @f., we treat the equi- V~HZ2e 4%/367+2 and we can write

potentials as equilateral triangles. For intermediate values of

B+ we take into account the deformation of the contours and H2e 42\ ]2

follow them part way into the channel¢he area here be- A~|In 1272 ;

comes vanishingly small For a closed potential in which

B-<<1, the area is approximated as a circle of radius dA 1 dH H2e 4«

\//82++,82_. At each time step the integrals in E(6) are @Ng(ﬁﬁ_l)m(W)' (85

evaluated with a 40-point Gaussian quadrature scheme.

To evolve the system in time, we integrate the evolution Analytic approximations for the behavior & can be

equations for3.. and «,

. 1 _,. 9V

found for two limiting cases(i) “Free-patrticle trajectories.”
Such trajectories correspond to the plateaus in Fig. 3. In

B.=—3aB,— §e_2 —, (78)  these regions, the universe point is sufficiently far from the
IB+ potential walls that the potential terms in EJ.2) can be
neglected. The universe point propagates like a free particle
,'1'37 __ 351,8, _ }e* ZQﬂ (79 with constant “energy”H, so thatdH/da~0.
8 apB_’ (i) “Wall collisions.” At or near the potential barriers the
momenta inH are negligible so thatdH/da~2H or
) PP S, 172 H~e?*. In Fig. 3, wall collisions correspond to the places
a=\pL+p- Ze 1=V, B0 whereH suddenly increases. Here the system is gaining en-

ergy from the gravitational field. During wall collisions the
using a fourth-order Runge-Kutta scheme. The Hamiltoniarrea remains approximately constantds®/'da~0.
is then updated at each time step by From Eq.(83) we then have for the free and bounce cases,
respectively,

H=127ae’. (81 i
. 2 —Ay— 2 —
This value ofH is then used for the upper limit of the outer da ~ ~8H%(2InH—-4a—In127%), G—~0, (86)
integral in Eq.(76).
We note that thgg-integrals basically give the area of the and
triangular potential. Thus we can estimate the size of the
phase space as dQ dH
—~H? —~H. (87)
2 da da

H H
lezsz H'dH'fA~27T— (82)

2 3 Equation (86) shows that for large negativeq,
i . . dQ/da<0, as observed in Fig. 3. Furthermore, this scales
whereA is the area of largest triangle and the factor of 1/3 iSroughly as~H?2, so asH increasesdQ/da becomes more

introduced to approximate the size of an average triangle iRegative and the phase space evolves more rapidly, which is
the inverted pyramid of the potential well. Estimates per-5,so observed.

formed this way typically agree with the computed results to  note thatdQ/da in Eq. (87) is positive definite, so at

within a factor of two or better. wall collisions Q) always increases and, for a large enough

Results of the numeriqal integrations are shown in Fig. Senergy,Q increases more rapidly than. Furthermore, the
where we plot the Hamiltonian and the volume of phasey eater the value of, the greater the slope, as observed.

space as a function ok. We note that the limitw— —=  gqgather, the competing behaviors in the two limiting cases
corresponds to the “Big Bang” singularity. One of the most 4ccoynt for the oscillations observed in the figure.

striking features is that both t.he Hamiltoniath and the In terms of finding a monatonic function to call entropy,
phase spacé) are seen to oscillate. We now demonstratee rejterate thaH is time dependent but also that this sytem
that these oscillations are real. From E&2) we have g inhomogeneous. However, two aspects of Fig. 3 are highly

Q~AH? Then encouraging. For late timesx0), the phase space—and
hence entropy—is seen to increase monotonically in the di-
@NZAHd_H+ sz_A (83) rection of increasing anisotropy. Furthermore, in the oscilla-
da da da’ tory regime, along the plateaus, where the model most

closely resembles a typical “closed” systera+£ const), the
entropy is again seen to increase in the direction of increased
anisotropy. Both behaviors correspond with the notion that
anisotropy represents the long-wavelength limit of inhomo-
geneity.

where from Eq(72) we have the fundamental equation

dH 7272

i 4o\ _
da H e (V—-1).

(84
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In the limit of small anisotropyw~8(82 + 8%)<1, Egs. Following the suggestion of Wainwright and Anderson
(78)—(80) become [2] we also calculate
a. 2 5, 4 2 4 2
Bs+3 B+ 28+=0, (88) Cap?’Cys™ _ 4a%(D ) _ (@)
RyR¥  9(a%—aa?a+a?a?) 27
e, €2 (92)
a* =B+ B (89

] . ) . Equation(92) does have the correct behavior. In fact, it is
where we have definegl=e* anda=a/a. Equation(88) is  interesting to note that to this order the time dependence is
similar to Eqg. (31) for gravitational wave perturbations. jgentical to that found for the corresponding Hamiltonian
However, the type IX solution is further complicated by Eq. (53) e, 7* and 5~ © for the growing and decaying modes,
(89 which couples the anisotropy to the expansion factoryegpectively.

Nevertheless, at late times, we expcto behave similarly  The generalization to nonflat spacetimes is rather compli-
in both the Bianchi type IX and gravitational wave casescated and not qualitatively different from the flat case, so we
increase monotonically with increasing anisotropy or inho-4g not include it here. However, we do compute the Weyl
mogeneity. tensor for spacetimes of the for{@6), containing singly po-
larized (+) small amplitude gravitational waves propagating

) in an expanding universe. In this case
X. COMPARISON WITH C

Penrose[1] had suggested that the square of the Weyl
tensorC?=C,;”°C.s*# might act as an arrow of time, in- - . .
creasing monotonically in time as the universe becomes R, gR*” 12(a*—aa?a+a’a?)
more inhomogeneous. Of course, this presupposes an initial
low entropy state at the singularity, in which the matter dis- . B . .
tribution is homogeneous and the Weyl tensor tends to zerd¥oting thatRaﬁ_R , 10 zero pert_urbatwe 2order, is the same
However, Wainwright and Andersd@] (see also Goode and as for the metriq39), we again find thaC< alone does not

. . . 2
Wainwright [3]) have shown that cosmological models Preduce the right monotonic behavior, tmf,/R does. To
which admit an isotropic singularity contradict Penrose’s hy_evaluate the latter, we assume the expansion of the universe

pothesis. They also noted that the Ricci tensor diverges, bit 90verned by glensity perturbations and that the scale factor
in such a way as to dominate the Weyl tensor. This led ther§V0IVeS asi~ 7°. For superhorizon scaleky»<1, we may

to propose a weakened form of Penrose’s hypothesis iffnore spatial gradients so that only the last term in @)
which the quantity survives. TherfC2%/R?|~ 75, In the limit k»>1, only the

first term survives andiC%/ R?| oscillates at nearly constant
Cc? Caﬁ75075‘1ﬁ amplitude. It is also interesting to note that the subhorizon
R- R.R¥ (90) perturbations evolve similarly to the Hamiltoni&g3), i.e.,
ap with constant amplitude. The superhorizon evolutions, on the

might be the appropriate indicator. However, subsequerther hand, differ from the Hamiltonian time dependence.
work by Bonnor[5] has thrown even this weakened form Superhorizon perturbations are coupled to the backgound ex-
into question. pansion and, in this case, the expansion is driven by density
Here we calculate the two variants of Penrose’s proposdperturbations. So it is not surprising to find a scaling
for cosmological density perturbations in an expanding flat=7_° Similar to that of decaying density perturbations.
universe. Assuming, for simplicity, the perturbations to be _ Finally we present results for the Bianchi type IX metric
functions only of conformal time; and a single spatial co- (70), although due to the complexity of the Weyl tensor, we
ordinatez, the spacetime metric is given by E9) with do not write .outCIZ here. Because Bianchi type IX is a
K=0. We find (using MATHTENSOR and MATHEMATICA) to  acuum solution wittR,,,=0, we compute onlyC?, shown

Caﬁ7§ Cy(?aﬁ _ a4(h,222_ 4h12772+ 2hlzzhl 7777+ h12777/) (93)

lowest order in the smallness parametes1, in Fig. 4 using the same initial data as in Fig. 3. For com-
parison, we also sho®* (introduced to bring out the struc-
5 16(P ,,)? ture at the scale of variations |€?|). Notice that although
Cap”’Cys™P= 324 (9) 2 oscillates(the kinks evident ifC?|, and which correlate

with the peaks iff), are points wher€? becomes negative

and the solution ford is given by Eq.(51). During the thg apsolute magnitude diverges exponentially as the singu-
matter dominated regime, the scale factor evolves alfiity is approached. The rate of divgrgen_ce can_be esti_mated
a~ 72, and we immediately see that E@1) does not pro- f_rom_ the “free fall” part of the trajectories during which
duce the right behavior for the growing modes. The Weyla~ 8~e 3%, and the dominant terms in the square of the
tensor decreaseswith increasing time and inhomogeneity. Weyl tensor scale d<?|~e™ 2 for a<0.

Because the overall time dependence is monotonic, one The above results continue to throw doubt on the utility of
might think to correct this by introducing a negative sign:the C? definition of entropy. Indeed, the simp@? measure
However, then for the decaying mod€s is increasing for seems to be again ruled out because of its inability to handle
decreasing inhomogeneity. both the decaying and growing modes in a sensible fashion.



55 PHASE SPACE APPROACH TO THE GRAVITATIONA. .. 1961

‘ : ‘ known entropy of black holes. To establish the connection

400 - — g ! would strengthen any claim that the entropy function of this

paper is in fact entropy. We now give a Bekenstein-style
argument[21] that the logarithm of the phase space does
reduce to the entropy of black holes in the appropriate cir-
cumstance. The argument resembles the one we gave in Sec.
V for the EM field and is also somewhat similar to one found

in Zurek and Thorn¢22]; we have, however, not seen this
demonstration elsewhere.

In Sec. Ill we showed that the phase space of harmonic
oscillators, Eq.(13), gives the classical limit for Einstein’s
formula and results in a reasonable expression for the en-
tropy of the electromagnetic field. This phase space was,
with a slight change in notation,

30.0

2 4
log,IC1, log,,2
n
o
o

—

o

[=]
T

0.0 -

9.0 7.0 -5.0 30 10 1.0 (2m)"H" (94)
o NI
FIG. 4. A comparison plot of the phase space voluimepre-
sented byQ?) and the magnitude of the Weyl tensor squared
|C.z"°C,s*|. The kinks evident in théC? curve represent re-
gions whereC2<0, which are correlated with the regions in which
() drops after reaching a peak value, i.e., the wall collisions.

wherew is the angular frequency.

Suppose we wish to construct a black hole out of photons,
i.e., qguantum oscillators. To do this, we must squeeze the
oscillator system to within a Schwarzschild volume and the
total energy of the oscillator system should eqivh) the
mass of the black hole. The latter condition implies that

Our results also point to important differences betweer! =M =Ne, thre_f is the average energy of an oscillator.
the phase space a@f measures of entropy, as well as sev- "€ &lS0 havee=v=1/A, wherex is the wavelength of the

eral other functions one might consider. As can be seen frofRN0ton- The minimum energy per oscillator needed to con-
above,C? is a local quantity, which will vary from point to struct the _hole corresponds to the longest allgweq wave-
point. As such it is not a useful measure of the global prop_Iength, which should be of order the Schwarzschild diameter,

erties of spacetime, unless some sort of spatial average f§ N =4M. Let us, however, parametrize the wavelength as

introduced. By the same token, even though they are gaugs— M- Hencee=1/(fM) and

invariant to first order, one can rule out the metric perturba-

tions ® andh for the density and gravitational wave pertur- N=fM?2, (95

bations. These are also local quantities.

_ The Hamiltonian in our e_xamples com_JId l?e co_n_sidered ON ith the above expression foM,w=2me=2m/fM and

its own to be a measure of inhomogeneity since it is Summeyirjing's formula, we quickly find by taking the logarithm of

over the spatial coordinates and has a sensible time depegq_ (94) that

dence. In regard to monotonicity in the time dependence,

Q) appears to offer no advantages ottefexcept perhaps in

the case of Bianchi type IX, where we found that along the

plateaus of constaritl, ) increased in the direction of in-

creasing anisotropy However,H alone does not provide a The exact value of therefore depends ofi A priori, we

statistical description of a system in that it can be changed bgxpect\~4M or f=4. However, ifAp~1/\, the uncer-

the addition of an arbitrary phas@.,, on the other hand is a tainty relationship implies thal may be as large as

truly global quantity that expresses the entire allowable dy167M. In the former case we are a factor of2lower than

namical range equally for each of the oscillators in the spacethe Bekenstein-Hawkinf23] value of 87°M?, in the latter

like hypersurfaces. It is not restricted to a particular phasease a factor ofr/2 lower. Alternatively, if one chooses

realization, unlike any combination of variables constructech =(2T)"! where the black-hole temperaturel —*

from metric components, which i€} thus presents the ad- =167?M=0S/JM [23], one recovers the exact result

vantage ove€?, H or any single solution to the differential f=82.

equations in that it is global, shows a sensible time depen- One might object that we have basically given a dimen-

dence and reduces to familiar entropy under appropriate cisional argument. Nevertheless, that the phase space of har-

cumstances. This is apparently true even in one area we haweonic oscillators comes so close to the accepted result is

not yet addressed. striking. With hindsight, the phase-space approach makes

clear that I§2~N, so black-hole entropy must be of order

M2. A Hamiltonian modified for quantum mechanical sys-

tems would, we expect, reproduce the usual result. Note,

however, that unlike the cosmological models we have con-
One of the questions one naturally wishes to answer isidered, the Hamiltonian here is not the ADM Hamiltonian

whether the entropy we have defined results in the wellfor the black hole itself. The Hamiltonian for the Schwarzs-

S=InQ=fM?2. (96)

XI. CONNECTION WITH BLACK HOLES



1962 TONY ROTHMAN AND PETER ANNINOS 55

child metric would presumably result in zero entropy sincein which the holecan decrease the surrounding entrof@t

the canonical momenta are zero in the static case. Thus thhe expense of increasing its surface arétowever, since
harmonic oscillator Hamiltonian must be regarded either asur entropy becomes black hole entropy, this situation is
perturbations on the background or as the Hamiltonian foevidently taken care df.A more detailed investigation of
the infalling oscillators; this latter corresponds to the usuathis question may be warranted.

approach for calculating black-hole entropy. We will explore  We reiterate that all our calculations have been performed
these matters further and attempt a quantum mechanical cafh the classical limit. We will present a quantum calculation
culation in a future paper. As it stands our current resulffor the black hole case in a future paper.

shows that black-hole entropy can be treated profitably as a Full, nonperturbative ADM calculations for inhomoge-
classical quantity. We also emphasize that, in contrast to theeous model systems would also be desirable. One system to
cosmological case, the black-hole Hamiltonian is easily in-examine is spherically symmetric collapse. However, in this
terpreted as the energy and it is constant; the resulting phasase(as in classical orbital problemshe canonical coordi-
space should then be the usual one. The main leap, evidentigates and momenta appear to be coupled, making it difficult
in accepting the function we have termed gravitational ento perform the integrations. If the system is tractable, it may
tropy as genuine entropy lies not in the classical treatmente possible to get black hole entropy by calculating the phase
but in the use of time-dependent Hamiltonians. space available to a collapsing star or dust shells.

These are a few problems we hope to examine in future
work. The phase space approach is a generic one, applicable
to a wide range of systems, including dust, radiation,
N-body simulations, Newtonian and relativistic problems.

We have evaluated the phase space for a number of modience, the cases we have mentioned are probably only a
els in the perturbative limit under the assumptions tkat:  small subset of those that can be examined. The more impor-
the phases of the various components can be igné@gthat  tant message is that a consideration of the phase space avail-
the system can be defined on spacelike hypersurfaces wigtble to general-relativistic systems appears to open a direct
some prescription for choosing boundarié®; the system is  connection to statistical mechanics. This connection is well
constrained by a Hamiltonian on each hypersurface. Undeworth investigating.
these assumptions (happears to be a reasonable entropy
function in that it increases with increasing inhomogeneity
a_md not otherW|se. Because the phage space for the_ perturba- ACKNOWLEDGMENTS
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