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As the universe evolves, it becomes more inhomogeneous due to gravitational clumping. We attempt to find
a function that characterizes this behavior and increases monotonically as inhomogeneity increases. We choose
S5 lnV as the candidate ‘‘gravitational entropy’’ function, whereV is the phase-space volume below the
HamiltonianH of the system under consideration. We perform a direct calculation ofV for transverse elec-
tromagnetic waves and gravitational wave, radiation, and density perturbations in an expanding FLRW uni-
verse. These calculations are carried out in the linear regime under the assumption that the phases of the
oscillators comprising the system are random. Entropy is thus attributed to the lack of knowledge of the exact
field configuration. The time dependence ofH leads to a time-dependentV. We find thatV, and, hence,
lnV behaves as required. We also carry out calculations for Bianchi type IX cosmological models and find that,
even in this homogeneous case, the function can be interpreted sensibly. We compare our results with Pen-
rose’sC2 hypothesis. BecauseS is defined to resemble the fundamental statistical mechanics definition of
entropy, we are able to recover the entropy in a variety of familiar circumstances including, evidently, black-
hole entropy. The results point to the utility of the relativistic Arnowitt-Deser-Misner~ADM ! Hamiltonian
formalism in establishing a connection between general relativity and statistical mechanics, although fully
nonlinear calculations will need to be performed to remove any doubt.@S0556-2821~97!06604-6#

PACS number~s!: 04.20.Cv, 04.30.2w, 98.80.Hw

I. INTRODUCTION

It has been recognized for some time that gravity behaves
in an‘‘antithermodynamic’’ fashion. Whereas ordinary ther-
modynamic systems, a gas for example, tend to become
more homogenous with time, gravitating systems tend to be-
come more inhomogeneous with time. The anomalous be-
havior can be viewed as a manifestation of the long-range
nature of the gravitational force, which tends to cause the
components of a gravitating system to clump. If we associate
an increase in homogeneity with an increase in entropy for
thermodynamic systems, then for gravitating systems an in-
crease in entropy will imply an increase in inhomogeneity.
The ‘‘gravitational arrow of time’’ points in the direction of
increasing inhomogeneity.

There have, apparently, been only a few attempts in the
literature to characterize the gravitational arrow of time. The
most well known is the suggestion of Penrose@1# that
‘‘gravitational entropy’’ should be measured byC2, the
square of the Weyl tensor. Penrose hoped that the Weyl ten-
sor would provide a measure of inhomogeneity and increase
monotonically in time. This proposal met with some degree
of success with a slight modification@2–4#. However, this
‘‘entropy’’ function is not well defined for all spacetimes; for
example, conformally flat or vacuum models. Furthermore,
Bonnor @5# has found an example in which the gravitational
arrow points in the opposite sense when compared to the
flow of radiation from a collapsing fluid, throwing doubt on

the entire proposal. There have been several other efforts to
define the entropy of the gravitational field from various
standpoints~Smolin @6#, Hu and Kandrup@7#, and Branden-
bergeret al. @8#!, but none appear to have established an
explicit connection to the Hamiltonian formulation of grav-
ity, and none has addressed the arrow-of-time question.

In this paper we attack the problem of gravitational en-
tropy by a direct approach. The goal is to find a function that
behaves like entropy, i.e., that increases monotonically as a
gravitating system becomes more inhomogeneous. We there-
fore choose a function that resembles entropy as much as
possible:

S5 lnV. ~1!

Here,S is gravitational entropy andV is the volume of phase
space for the system.~Unless stated otherwise, throughout
the paper we use units in whichh5c5k5G51.!

For this choice we have reverted to the fundamental sta-
tistical mechanics’ definition of entropy. However, although
we will refer to particle models, it is absolutely crucial to
realize our goal is to characterize the phase space and en-
tropy of the field itself,not of systems of particles.

There are several advantages and disadvantages to the
above definition for gravitational entropy. For thermody-
namic systems, a direct evaluation of the phase space is ex-
tremely difficult, if not impossible. Instead, one chooses the
simpler path of evaluating the partition function,
Z[( ie

2bEi, from which the entropy is readily derived as
S5k(lnZ1bĒ), whereb[1/(kT) andĒ is the mean energy.

Here, however, we encounter the first conceptual diffi-
culty in carrying over the procedure to relativity: To evaluate
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the partition function requires knowing the temperature of
the system. In general relativity we usually deal with dy-
namical, not thermodynamic, systems, and a temperature is
not well defined. A macroscopic pendulum executing simple
harmonic motion, for example, constitutes a dynamical, not a
thermodynamic system. Of course, one could assign an ef-
fective temperaturekT;mv2 wherev is the pendulum’s ve-
locity, but the system is nevertheless not in thermal equilib-
rium and so the concept of a partition function is not
obviously useful.

However, a pendulum’s motion does define a trajectory in
phase space and it can be calculated without recourse to tem-
perature. This is one of the two main reasons for reverting to
the statistical mechanics expression for entropy@Eq. ~1!#.
The other, anticipating the application to cosmology, is that
the phase space approach is intimately connected with
Hamiltonian dynamics, and a Hamiltonian formalism of rela-
tivity @the Arnowitt-Deser-Misner~ADM ! formalism@9## al-
ready exists.

Now, normally, one is not interested in the absolute value
of the entropy, but in the change of entropy with time. If the
above pendulum were given a higher energy, it would in-
clude a larger phase space and the logarithm of the area
between the two paths would formally resemble an entropy
change. However, neglecting dissipative forces, the pendu-
lum does not change its trajectory. Furthermore, the concept
of entropy implies a loss of information, i.e., that we do not
know the pendulum’s location within this band. This requires
that the system be ergodic, which is not true in the case of
the pendulum.

On the other hand, if one imagines a system withN inde-
pendent oscillators and assumes that their trajectories are un-
correlated, in other words, that their phases are random, then
one should be able to compute an entropy via Eq.~1!.

Thus our approach is basically simple: we calculate the
phase space of dynamical systems in relativity, assuming that
the trajectories of the components are independent and that
consequently each region of phase space is occupied with
equal probability. We then derive an entropy via Eq.~1!.
~The number of degrees of freedom need not be large as long
as the system is chaotic, as in the case of Bianchi type IX
cosmologies.!

Usually, one computes the entropy as the logarithm of a
volume of phase space constrained by an energyE. Our ap-
proach, when applied to cosmological models, forces us to
substitute the HamltonianH for E. This is the most natural
and conservative extention of the usual definition but it
should be emphasized thatH does not always correspond to
the energy. In most of the systems we consider,H will be
time dependent, resulting in an entropy change.

The main advantage of the entire method is its conceptual
clarity. The main disadvantage of the procedure is that it is
technically cumbersome. However, we have found a number
of systems for which the computation is tractable in the clas-
sical, perturbative limit. In these limits the entropy function
does appear to increase or decrease monotonically when ap-
propriate, and by suitable identification of parameters we re-
cover the entropy familiar from a variety of circumstances
including, evidently, black holes. In this way the universality
of the phase-space concept is established. Extensions to the
nonpertubative and quantum limits need to be carried out.

In Secs. II–IV of the paper we summarize some prelimi-
nary calculations necessary for what follows. In Sec. V we
apply our method to the electromagnetic field. In Sec. VI and
Sec. VII we treat gravitational waves and density perturba-
tions. In Sec. VIII we give a more formal mathematical basis
for the results of Sec. VI and Sec. VII. Section IX concerns
Bianchi type IX. In Sec. X we compare our method with
Penrose’sC2 suggestion. In Sec. XI we argue that our en-
tropy is indeed the Bekenstein-Hawking entropy under ap-
propriate circumstances, and in Sec. XII we discuss further
applications of our procedure.

II. TWO PARTICLE MODEL

We now present a simple model to illustrate the basic
approach. This model describes the Newtonian gravitational
interaction between two particles, and although it is an ex-
tremely idealized particle model, it does highlight several
important aspects of our treatment that will remain un-
changed in the more complex field models.

Consider two particles, each of massm free to slide on a
one-dimensional frictionless track of lengthL with hard
‘‘bumpers’’ set at the two ends. The Hamiltonian for this
system is

H5
p1
2

2m
1

p2
2

2m
1V~x1 ,x2!, ~2!

with

V52
Gm2

A~x12x2!
21r 0

2
. ~3!

The factorr 0 softens the potential and is introduced to avoid
singularities. The system thus represents two objects that can
pass through each other, such as colliding galaxies. In this
case the HamiltonianH5E0, is the total energy, which re-
mains constant.

The ‘‘air-track’’ model is a closed, isolated system and
the available phase space can be computed. For two par-
ticles, however, the system cannot be regarded as ergodic
and hence an entropy is not really defined. When generalized
to N@1 particles and three dimensions the system may be
regarded as a microcanonical ensemble and the particles can
be assumed to be in random motion and equally likely to be
found in any region of phase space. In that case an entropy
would be well defined. Unfortunately, the complexity of a
2N-dimensional phase space prohibits analytic solutions;
hence, we demonstrate the basic results with just two par-
ticles then argue a connection to more generalN-body sys-
tems.

For the two-particle case, we can write the phase space
below energyE0 as

V~E,E0!5E
2L/2

L/2

dx1E
x2min

x2max
dx2E

2A2m~E2V!

A2m~E2V!
dp1

3E
2A2m~E2V!2p1

2

A2m~E2V!2p1
2

dp2 . ~4!
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Note this procedure is similar to evaluating the volume of a
four-sphere, although the exact topology and hence volume
will depend on the form ofV.

Generally one defines the acessible region of phase
space as a shell betweenE0 and E01DE; thus V
[V@E0,E,(E01DE)#. It is, however, easier to evaluate
the full volumeV(E,E0), a procedure that we will follow
throughout the paper. In the limit of a large number of de-
grees of freedom, the two results are identical, since most of
the volume of anN-object resides infinitesimally near the
surface.

The first important step in the phase-space procedure is to
find the limits of integration, which are not always obvious.
Because of the quadratic form of the momenta in the Hamil-
tonian ~2!, the momentum integrals give the volume of a
two-sphere and the limits are set simply by requiring the
pi
2 to be positive definite but constrained by the total energy

of the system, as in Eq.~4!. After evaluating the momentum
integrals we have

V~E,E0!52pmE
2L/2

L/2

dx1E
x2min

x2max
~E2V!dx2 . ~5!

The lower and upper limits onx2 are set by restricting our
attention to bound systems, such thatE<0 and by requiring
E2V>0, which leads to

x25x16AG2m4

E2 2r 0
2 . ~6!

The entire volume of phase space can then be evaluated ana-
lytically and is found to be

V~E,E0!54pm3GLFsinh21AV0
22E0

2

E0
2 2AV0

22E0
2

V0
2 G ,

~7!

whereV052Gm2/r 0 is the minimum potential.
Note several aspects of this result. For afixed formof the

potentialV, there are only two ways to change the phase
space: one must change eitherE0 or V0. As expected, for a
largerE0, the particles are free to roam around in a larger
region of phase space and thusV increases. WereE0 to
decrease due to dissipation, the particles would be confined
to a smaller volume. This is one example of gravitational
clumping. Now, to changeV0, one must changer 0, the soft-
ening parameter. Decreasingr 0 makes the potential deeper
and vice-versa. Thus, imposing a finiter 0 has the effect of
excluding a certain region of phase space compared to the
usual gravitational potential, in whichV→2` asr→0. The
dependence ofV on E0 and r 0 is shown more explicitly in
Fig. 1 where we plot phase space trajectories for the two
particle system, assuming one particle to be stationary with
zero momentum.

The parameterE0 merely determines whether the system
is overall bounded. For the behavior of entropy inN-body
systems with constant total energyE0, r 0 is the relevant
parameter. It isr 0 that governs the clumping process within
a bounded cluster of particles. In particular,r 0 dictates the
extent to which particles can form binaries. This is verified
by a number ofN-body simulations which have been per-

formed for scenarios ranging from formation of star clusters
to clusters of superclusters@10–12#. Invariably, the softening
length sets the degree of clumping that is observed: As the
softening lengthr 0 is decreased, particles clump tighter and
fall deeper into the central high density cores.

One can relate this behavior to the arrow-of-time question
as follows: InN-body codes the softening length and the
mesh discretization scale are equivalent insofar as that, be-
low either, no clumping takes place.~The gravitational force
tends to zero and we lose all clumping information.! Hence,
by increasingr 0, the universe becomes effectively more ho-
mogeneous, and gravitational entropy decreases. In other
words, by changing the mesh size, we change the entropy.
This is an example of ‘‘coarse graining.’’

Furthermore, inN-body simulations, some particles mi-
grate to a dense central core at the expense of ejecting a few
from the system. Thus, the minimum interparticle separation
is a decreasing function of time. We would then expect the
minimum separation to enter into time-dependent limits of
the coordinate integrations. As the separation decreases, the
depth of the potential well increases and the phase space
also. In terms of the two-particle model, if we associater 0
with the minimum interparticle separation, then asr 0 de-
creases, the absolute value betweenx2min and x2max in the

limits of integration would increase andV as well ~Fig. 1!.
To sum up, the ‘‘air-track’’ model is useful in that it

exactly illustrates the calculational procedure we will follow,
and by reasonable interpretation ofr 0 it correctly predicts the
behavior of gravitational entropy inN-body simulations.

III. HARMONIC OSCILLATOR

Consider a one-dimensional system ofN simple harmonic
oscillators with Hamiltonian

FIG. 1. Phase space trajectories for the two particle model, as-
suming one particle to be at rest~or equivalently more massive than
the other! andm15Gm251 with m2@m1. Three different trajec-
tories are displayed: a reference curve of intermediate energyE0

and softening parameterr 0, and two other curves varyingE0 and
r 0 independently to increase the phase space volume relative to the
reference curve.
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H5
1

2(
i51

N

ḟ i
21V~f i !, ~8!

and potential

V~f i !5
l

2(
i51

N

f i
2 . ~9!

With the replacementN→3N this may be regarded as a
three-dimensional system withN oscillators in each of the
x,y,z directions. The phase space for this system can be
evaluated analytically. With the canonical momentap i5ḟ i
we have, for any form of potential,

V5E dfN•••E df1E
2l N

1l N
dpN•••E

2l 1

1l 1
dp1 , ~10!

with l n
2[2(H2V)2( i5n11

N p i
2 . If we further note that

l n
25l n11

2 2pn11
2 , then each integral is of the form

l n
nE

0

1

xn
21/2@12xn#

~n21!/2dxn5l n
nAp

GS n11

2 D
GS n12

2 D ~11!

wherexn5pn
2/l n

2 . ~This integral is the so-called Beta func-
tion @13#.!

The final result afterN integrations over the momentum
variables yields the volume of anN-sphere of radius
AH2V and we have, for the remaining coordinate integra-
tions,

V5
~2p!N/2

GSN12

2 D E2l N

1l N
dfN•••E

2l 1

1l 1
df1~H2V!N/2, ~12!

where nowl n
252H/l2( i5n11

N f i
2 . In the case of the har-

monic oscillator, thef-integrals are identical in form to the
p-integrals. Hence, one merely continues the procedure an-
otherN times, and noting thatl N

252H/l, one gets, finally,

V5
~2p!NHN

lN/2G~N11!
. ~13!

The same result can be obtained more simply using
N-dimensional spherical coordinates. However, the method
outlined here can be applied to a more general class of po-
tentials.

Because Eq.~13! will prove central to much of our analy-
sis, it is worth convincing ourselves that the result is mean-
ingful. We first note thatV decreases asl increases, in
accord with our notion that a stiffer spring constant confines
the oscillators to a smaller region of phase space. Note also
that l→0⇒V→`. This behavior is equivalent to that of
classical free particles in an infinitely sized box. Indeed, by
settingV50 in Eq. ~12!, performing eachf-integral over
the volume of the container and letting 2N/2→(2m)N/2, for
massive particles, one can recover the usual expression for
the entropy of an ideal gas.

As a further check on Eq.~13!, we point out that if one
makes the identificationH5Ē5N/b with b51/kT, then
S5k lnV agrees in the classical limit with Einstein’s formula
for the entropy ofN harmonic oscillatorsS5kN(12 lnbv),
wherev5Al @14#.

Finally, the usual definition of phase space is the phase
space of a shell aroundE0: V(DE)5V(E0,E,E01DE).
This is given by the differential of Eq.~13!. From this dif-
ferential one can derive the partition function

Z5E
0

`

V~DE!e2bEdE5S 2p

bv D N. ~14!

Although this formula is not found in texts, if one calculates
Z for N oscillators with thez-function approach textbooks
apply to free particles@15#, one arrives at the same result.

With these checks it appears that Eq.~13! gives a reason-
able and meaningful expression for the phase space ofN
harmonic oscillators. Perhaps the most important~and use-
ful! feature of Eq.~13! is that it merely considers the ampli-
tudes of thef i . It ignores the phases. In fact, for its inter-
pretation as phase space, we must assume random phases for
the oscillators. Without this assumption, the motion of the
system cannot be considered ergodic and the entropy is not
defined. Effectively, we are regarding the oscillators as a
microcanonical ensemble, in which one does not know the
exact energy distribution. However, one could use the defi-
nition S52(pi lnpi , which to a high approximation is
equivalent toS5 lnV, and apply it to other distributions as
well.

IV. NEAREST NEIGHBOR POTENTIAL

The technique used to derive Eq.~13! can be used without
modification for other potentials of the formV;fa for even
powers ofa.0. In addition, as an important application to
our analysis, we consider the ‘‘nearest-neighbor’’ potential
with Hamiltonian

H5
1

2(
i51

N

ḟ i
21

l

2(
i51

N

~f i2f i11!
2. ~15!

Note that the productAl(f i2f i11) is a discrete approxi-
mation to the gradient]f/]x; the spatial scale of the gradi-
ent is set by 1/Al.

With the substitutionh i[f i2f i11, the phase space for
this nearest neighbor potential can be evaluated in the same
way as the harmonic oscillator. AfterN integrations over the
ḟ i andN21 integrations overh i the result is

V5
~2pH !N21/2

l~N21!/2G~N11/2!
. ~16!

The lower dimensionality ofV arises from the fact that
the lasth used in deriving Eq.~16! is hN215fN212fN .
The final integration, however, requires one to specify
boundary conditions to ensure the dimensionality of momen-
tum space equals that of coordinate space. A natural choice
is periodic boundary conditions, such thatfN115f1, then
hN5fN2f1. The assumption of periodic boundary condi-
tions adds an extra (fN2f1)

2 to the first integral, which can
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be handled by ‘‘completing the square’’ and pushing the
unwanted terms up to successively higher integrals. How-
ever, a rather tedious calculation shows that, surprisingly, the
extra terms vanish afterN21 integrations. In other words,
l N21
2 52H/l. The dimension has not increased. One there-

fore is still required to specify limits onfN , which we take
to be6A2H/l. Then, for periodic boundary conditions,

V5
2

ApN

1

lN/2

~2pH !N

G~N11/2!
. ~17!

However, we note that one might instead impose ‘‘free-
floating’’ boundary conditions such thatfN115fN , and
merely specify that the limits onfN are6A2H/l. In this
case the result is the same as Eq.~17! but without theAN in
the denominator. When logarithms are taken, both results are
identical to the harmonic oscillator case except for insignifi-
cant numerical factors.

V. APPLICATION TO THE ELECTROMAGNETIC FIELD

As a sample problem whose technique will carry over to
the gravitational case, we now apply these results to the elec-
tromagnetic~EM! field. Because the EM field can be mod-
eled as a collection of harmonic oscillators, we expect the
phase space to reflect Eq.~13!. To show this is the case we
assume a constrained Hamiltonian of the form@16#

H5
1

2E ~E21B2!d3x, ~18!

whereE andB are the electric and magnetic field densities. It
is important to remember that in the Hamiltonian formalism,
the canonical variables are not the densities but the full field
quantities; in this casep[E andq[A, the vector potential.

To write Eq.~18! in terms ofE andA, we first discretize
H as follows:

H'
1

2(
x

N

(
y

N

(
z

N

~E21B2!
LxLyLz
NxNyNz

DNxDNyDNz . ~19!

Here, the sums are understood to be over thex, y, and z
coordinates covering the enclosed volumeLxLyLz . We have
also approximateddx asLDN/N, with N being the number
of oscillators in each direction andDN51. Let us further
restrict our attention to transverse waves propagating in the
z-direction. Then thex and y summations can be easily
evaluated with the result

H5
1

2
N2(

i51

N

~E21B2!
L3

N3 , ~20!

whereL35LxLyLz andN
35NxNyNz .

Now, E;Ae/L3, if e[energy. Similarly, ifA is the po-
tential density, then B;Ae/L3;¹3A;A/L. Hence
EA;e/L2.

The product of the canonical variables,EA must equal an
action5eL in these units. Consequently,

EAL35action5EA, ~21!

and the proper scaling becomesE5E(L/N)3/2 and
B5B(L/N)3/2. The Hamiltonian~20! can then be written as

H̄5
1

2(
i51

N

~E21B2!, ~22!

whereH̄5H/N2.
To evaluate the phase space below this Hamiltonian, we

note that for transverse waves,¹[¹z ; Ez5Bz50; and
B5n3E, wheren is the propagation vector. Faraday’s law,
¹3(E1Ȧ)50, implies thatAz50 andB52 î Ay,z1 ĵ Ax,z .
Thus the Hamiltonian can be approximated as

H̄5
1

2(
i51

N

@Ex
2~ i !1Ey

2~ i !#1V~A!, ~23!

with potential

V~A!5
l

2(
i51

N

$@Ay~ i !2Ay~ i11!#21@Ax~ i !2Ax~ i11!#2%,

~24!

and wherel sets the spatial scale. We see that in this ap-
proximation,V is just given by the nearest-neighbor poten-
tial, calculated in Sec. IV, with the phase space given by Eq.
~17!. In this problem, however, the phase space is 4N dimen-
sions, hence substituting 2N for N in Eq. ~17! yields

VEM5A 2

pN

~2pH !2N

lNG~2N11/2!
. ~25!

For the interpretation ofV as phase space we need to assume
the phases of the electromagnetic waves are random, which
merely means the source is incoherent. This is, in fact, the
general case.

A closed solution to the problem requires an evaluation of
N, the number of oscillators. Because we are primarily inter-
ested in the time dependence ofV ~which is here time inde-
pendent!, it is enough to know thatN is finite; in the quan-
tum limit it will be the number of photons.

To make contact, however, with the usual expression for
the entropy of electromagnetic radiation, we imagine trans-
verse waves in a three-dimensional box, assuming each di-
rection is independent. The phase space for that system is
obtained by lettingN→3N in the above equation. We as-
sume thatH̄53Ne , wheree5v/(2p) is the average energy
per oscillator and the coupling constantl5v2. With
Stirling’s approximation G(N11/2)'A2pNe2NNN, Eq.
~25! yields S5 lnV'6N(12ln2). For a photon gas at tem-
perature T, the energy of most photons is of order
v5k;T, wherek is the wave vector. In three dimensions,
the number of states is proportional to the volume ink space
for a sphere of radiusuku. The mean number of photons at a
temperatureT is thus proportional toN;k3;T3, and we
recover the usual scaling for the entropyS;N;T3.

We also point out that Eq.~24! gives some insight into the
question of coarse graining. The concept of entropy is sub-
jective in the sense that to calculate an entropy requires that
an averaging procedure be selected. If one regards the cou-
pling constant in Eq.~24! to be l5N2/L2, whereL is an
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arbitrary length scale, then by increasingL, one increases the
volume per oscillator and hence increases the phase space, as
can be seen from Eq.~25!. Therefore the coarse graining
scale evidently appears in these calculations as the coupling
constant.

VI. EXTENSION TO GRAVITATIONAL WAVES

The extension of the previous formalism to gravitational
waves is fairly straightforward except for one crucial point,
which we discuss below.

We first consider inhomogeneous perturbations of the
spatially flat metric

ds25a2~h!$2dh21@d i j1hi j ~h,z!#dxidxj%, ~26!

whereh is the conformal time,a(h) is the expansion scale
factor and thehi j!d i j represent gravitational wave perturba-
tions. Their equation of motion can be found by expanding
the Einstein action to second order in the perturbation vari-
ableshmn . The result is

I5
1

64pE a2~ ḣ22h82!d4x, ~27!

where (•)[d/dh and (8)[d/dz. Equation~27! is the action
appropriate for singly polarized gravitational waves in the
transverse traceless gauge. The variableh ([hxx52hyy)
represents the single degree of freedom for the1 polariza-
tion state.~Brandenbergeret al. @8# have shown that a similar
form is achieved even when one considers two polariza-
tions.!

We will find it convenient~particularly when making a
connection to density perturbations! to work with a trans-
formed perturbation functionf5ah/A32p. The Lagrangian
density can then be written as

L5
1

2 F ḟ22f821
ä

a
f2G . ~28!

By definition, if f is the canonical coordinate, then
p[]L/]ḟ5ḟ, and the Hamiltonian densityH[pq̇2L is
found to be

H5
1

2 F ḟ21f822
ä

a
f2G . ~29!

Following the same procedure used in the EM case, we
find, for the Hamiltonian,

H̄5
1

2(
i51

N S p̄ i
21f̄ i8

22
ä

a
f̄ i
2D , ~30!

where p̄5p(L/N)3/2, f̄5f(L/N)3/2, H̄5H/N2, and
H5*Hd3x. We see that the Hamiltonian contains potentials
similar to the others we have considered with one crucial
difference: the sign on the last term. In the matter dominated
period,a;h2 and ä/a.0, hence the sign on the quadratic
term in Eq.~30! is negative and we have a nearest-neighbor
potential plus an ‘‘antiharmonic oscillator’’~or inverted! po-
tential.

The inverted nature of this term is due to the background
curvature of spacetime and its rate of expansion. The poten-
tial, then, serves as a reflection barrier in an unbounded
phase space. Any calculation must therefore include an arbi-
trary cutoff. We discuss this point in detail in Sec. VIII.
There we show thatV can be calculated by the use of hy-
pergeometric functions with a result that is formally similar
to that already achieved for the harmonic oscillator and we
can continue to useV;HN/lN/2 to compute the time depen-
dence ofV.

To computeV(h) we imagine thatV is constant on each
hypersurface of constant time. Thusä/a can be taken asl,
the coupling constant. We then need to computeH̄(h) and
l(h). To find H̄(h) note that the equation of motion forh
resulting from varying the action~27! is

ḧ12
ȧ

a
ḣ2h950. ~31!

Because the waves are linear perturbations, they do not in-
teract except through a linear superposition. The time devel-
opment of each individual component~or a wave of a par-
ticular frequency or phase! evolves according to Eq.~31!,
which can be regarded as representing a family of solutions.
That is, we may assume a separable solution

(
j

S ḧ j1 2ȧ

a
ḣj2hj9D 5S ḧ1

2ȧ

a
ḣ2h9D(

j
eia j50, ~32!

with arbitrary or random phasesa j , where herej is an index
over the differentwaves~not overz). This is, in effect, say-
ing that different spatial regions are taken to be oscillating
independently of one another, or that the source is incoher-
ent. We therefore assume the perturbations to be random,
and that the field variables describe, not a singly polarized
wave, but an ensemble of incoherent plane waves. Entropy is
thus attributed to the lack of knowledge in the exact field
configuration.

With a5aoh
2 for the matter dominated period and as-

sumingh;eikz, Eq. ~31! has the solutions

h}h23/2J63/2~kh!eikz, ~33!

where J63/2 are Bessel functions. To construct the Hamil-
tonian ~30!, we then sum over the coordinatez. Simplified
expressions can be obtained by substituting the standard as-
ymptotic (kh!1 andkh@1) forms ofJ63/2. We can then
write for the metric perturbations in the limitkh!1

h5@h1~kh!231h2#e
ikz, ~34!

where h1 and h2 are constants and f5ah
}(h1h

211h2h
2)eikz. The constantsh1 andh2 can thus be

interpreted as defining the decaying and growing mode solu-
tions, respectively. In this limit spatial gradients are negli-
gible. Forkh@1, we have

h}A2k3

p S 1

kh D 2@cos~kh!1sin~kh!#eikz

}~kh!223@oscillations#. ~35!
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and f}constant3@oscillations#. We note that kh@1
(kh!1) represents perturbations with wavelengths much
shorter~longer! than the Hubble radius~usually referred to as
the ‘‘horizon’’!.

The Hamiltonian~30!, in the limit kh@1, then becomes
H}p21k2f2 which is simply the harmonic oscillator
Hamiltonian at a fixed time with coupling constantk. H
therefore oscillates in time at constant amplitude and we
have for the phase space

V}
HN

kN/2
}constant3@oscillations#. ~36!

As expected in this approximation, the phase space does not
change. Recall thatH is defined on a single time slice. How-
ever, assuming incoherency in time as well as in space, one
can averageH over several cycles by defining a general four-
Hamiltonian

~4!H5E d4xS p21k2f22
ä

a
f2D . ~37!

Over intervals of time greater than the dynamical time, this
will be a monotonic function and, in thekh@1 case,V will
be strictly constant. However, in a nonlinear regime,V
would increase, which is encouraging for the interpretation
of lnV as entropy.

For kh!1, spatial gradients are, again, negligible and we
haveH}p22äf2/a andV}HN/(ä/a)N/2. Therefore

H}H h2,

h24,
and V}H h3N for growing modes,

h23N for decaying modes,
~38!

with the caveat that we have not yet shown~see Sec. VIII!
that for the inverted oscillator this form ofV is justified.

At first these last results strike one as strange because as
seen from Eq.~34!, for growing modesh is frozen-in at
superhorizon scales. That is, there are no oscillations and the
assumption of random phases is not well motivated. In that
case, the phase space trajectories are known precisely and
V50. One can see this clearly by examining the Hamil-
tonian in the variableh. For superhorizon growing modes,
this Hamiltonian is zero, and the increase inV above is
entirely due to the expansion of the universe~i.e.,
ḟ5ȧh1aḣ5ȧh). Only the ȧ term causesf to increase in
amplitude, and hence increases the effective coarse graining
scale andV, in accord with the gravitational arrow of time.
~The decaying modes on superhorizon scales also no longer
oscillate but damp out monotonically at a rate faster than the
universe expands; the associated entropy thus decreases.! We
will discuss the significance of the growing and decaying
modes further in Sec. VIII B. For now we point out that,
certainly for the growing modes,V is nonzero only if one
continues to regard the phases as random. Otherwise, if the
phases are assumed known, then the entropy is zero~or con-
stant!, in agreement with Brandenbergeret al. @8#. It would
be of interest to establish a more quantitative comparison of
our results to Brandenbergeret al.

These considerations suggest that our definition of en-
tropy is only appropriate for subhorizon scales. This may

actually be an advantage, because in order to ensure thatV is
finite, we must ensure that the number of modesN must also
be finite. This requires us to put the system in a box and
consider only a finite spatial region. The horizon thus pro-
vides a natural upper limit to wavelengths. An absolute
lower limit can obviously be chosen as the Planck scale. We
will find that similar considerations are necessary for radia-
tion perturbations~below!.

VII. DENSITY PERTURBATIONS

The analysis of the previous section can be repeated for
density perturbations in dust- and radiation-filled models. In
the longitudinal gauge, the spacetime metric is written as

ds25a2~h!$2@112F~h,z!#dh2

1@122F~h,z!#g i j dx
idxj%, ~39!

where

g i j5d i j F11
K
4

~x21y21z2!G22

, ~40!

F is the gauge invariant gravitational potential, andK 5 0,
21, 11 for flat, open, and closed universes, respectively.
Mukhanovet al. @17# give the following general equation for
adiabatic density perturbations:

ü2cs
2u92

ü

u
u50, ~41!

where

u5
aF

A4p
S 2ȧ2
a2

2
ä

a
D 21/2

, ~42!

u5A3

2

ȧ

a2
S 2ȧ2
a2

2
ä

a
D 21/2

, ~43!

and (•)[d/dh, (8)[d/dz, andcs
2 is 1/3 for radiation and

zero for dust. The corresponding action from which the
~ADM ! Hamiltonian and equations of motion are derived is
given by writing the Einstein action

I52
1

16pGE RA2gd4x2E eA2gd4x, ~44!

wheree is the energy density of matter, in terms of the ADM
metric and expanding to second perturbative order.

A. K50, flat universe

1. cs
251/3, radiation

For radiation,a;h and ü/u52/h2. Assuming the spatial
form u(z);eikz, the field equation~41! becomes

ü2
2

h2u1
k2

3
u50. ~45!
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The general solution to Eq.~45! involves Bessel functions
similar to Eq ~33!. The asymptotic superhorizon (kh!1)
solutions are

u5~u1h
21u2h

21!eikz, ~46!

representing both growing and decaying modes. As in the
case for gravitational waves, these solutions are taken to be a
family of functions with random phase anglesa. From now
on the presence of these phase angles is understood but we
do not write them out explicitly. In addition, we note that the
results presented here are independent of the exact form of
perturbations, and we could replaceei (kz)( je

ia j with an ar-
bitrary function of the three spatial coordinates.

For kh@1

u}S coskh

A3
1sin

kh

A3D eikz, ~47!

and, as for gravitational waves, perturbations on these sub-
horizon scales are oscillatory.

The Hamiltonian for the casekh!1 is H}p22 üu2/u,
which results in the following evolution

H}H h2,

h24,
and V}H h3N for growing modes,

h23N for decaying modes.
~48!

For kh@1, we haveH}p21cs
2u82 which oscillates at con-

stant amplitude, and thereforeV is constant over sufficiently
long intervals of time. Notice that these results for radiation
perturbations are identical to those of gravitational waves
and the remarks concerning the superhorizon application of
our definition of entropy apply here as well.

2. cs
250, dust

In this casea5a0h
2 and ü/u56/h2. Then Eq.~41! be-

comes

ü2
6

h2u50, ~49!

with solution

u5~u1h
31u2h

22!ei ~kz!, ~50!

or equivalently

F5~ ū11ū2h
25!ei ~kz!, ~51!

whereu1, u2, ū1 and ū2 are constants.
Notice the important point that Eq.~49! does not suggest

a natural scale~the horizon in particular! for modes to grow
or decay as found in the gravitational wave and radiation
cases. However, the horizon scale does appear in the expres-
sion for the density fluctuationsdr/r @17#

dr

r
5
1

6
@2~k2h2112!ū12~k2h2218!h25ū2#e

i ~kz!.

~52!

Thus, in distinction to the previous cases, one should not
examineF to determine whether the modes are frozen-in or
not. One should rather examine Eq.~52!. We see that on
subhorizon scales (kh@1) dr/r exhibits growing modes,
i.e., actually collapse takes place even whileF remains con-
stant. On scales larger than the horizon,dr/r remains con-
stant for the dominant growing modes. Given thatdr/r is
constant on superhorizon scales for growing modes, this
once again suggests that our definition of entropy should be
restricted to subhorizon regimes, consistent with our earlier
results.

ForK50 dust we have simplyH}p22 üu2/u. From Eq.
~50! and the results from Sec. VIII B for the inverted oscil-
lator potential, we find

H}H h4,

h26,
and V}H h5N for growing modes,

h25N for decaying modes.
~53!

We again point out that the fact thatH and V are time
dependent while the conformal metric components~or
equivalentlyF) are constant is not a contradiction. The
growth of H andV is an indication that collapse is taking
place on some~subhorizon! scale. Note once more the mono-
tonic behavior of these quantities.

B. K561, dust-filled open and closed universes

The gauge invariant potential in the case of a dust-filled
open universe can be written as@17#

F5c1~z!
2sinh2h26h sinhh18 coshh28

~coshh21!3

1c2~z!
sinhh

~coshh21!3
~54!

where a;(coshh21) is the expansion factor,c1[ū1e
ikz,

andc2[ū2e
ikz. Also

dr

r
5
1

3
@~coshh21!¹2F19F26c1#. ~55!

Expanding Eq.~54! in the small time limith!1, we obtain
the flat space solution~51!. Eqs.~43! and~42!, taken together
with the approximate asymptotic solution for the scale factor
a;h2, yield the same result forH andV as the flat space
case~53!. In the opposite late time limit,h@1, the hyper-
bolic functions become exponentials andF
}c1e

2h1c2e
22h. As expected,F decays in this limit, and

Eq. ~55!, along with the asymptotic form of the scale factor
a;eh, shows that the matter density fluctuations do not
grow on either super- or subhorizon scales. Equations~43!
and ~42! yield ü/u5constant andu}c11c2e

2h. H andV
then evolve as

H}H constant,e22h,
and V}H constant for growing modes,

e22Nh for decaying modes.
~56!
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This is consistent with the fact thatdr/r5constant for the
dominant modes and no collapse takes place on either sub-
or superhorizon scales.

The growing modes for the closed model (K511) can
be obtained by lettingh→ ih in Eq. ~54!. In this case
0,h,2p. For h!1, the closed model gives the same re-
sult as the open and flat cases. Equation~55! also holds for
the closed model, and so the same consistency among the
behaviors ofH, V, anddr/r is found here as well. There is
no asymptotic limith@1 in theK511 case. However, by
expanding Eq.~54! aroundh5p, we find to lowest order
that F}u;const, ü/u;const, and that thereforeH andV
are constant as well, again consistent with the density pertur-
bationsdr/r;const. In the neighborhood of maximum ex-
pansion, then, the model acts like the open case. As recol-
lapse takes place, one finds that toward the singularity
h;2p, F}e25, u}e22, and ü/u}e22, wheree52p2h.
These dependences yieldH}e26 andV}e25N. Sincee is
decreasing, all these quantities are increasing, as expected;
dr/r grows again as well. Taken with the behavior at
h;0 andh;p we see thatH andV behave monotonically
as required.

VIII. ANTIHARMONIC OSCILLATOR POTENTIAL

A. Time dependence ofV

We now consider in detail a Hamiltonian of the form
found in Eq.~30! without the gradient term, that is,

H5l(
i51

N

xi
22j(

i51

N

yi
2 . ~57!

We first justify the expressions found forV in Sec. VI, then
interpret the meanings ofH,0 andH.0 for the inverted
oscillator potential in Sec. VIIIB. The inverted nature of the
potential in Eq.~57! results in a reflection barrier and a phase
space that is unbounded. To computeV, then, we will need
to put in arbitrary cutoffs to the allowable phase space. How
this is done will become clearer below.

First consider the case whenH.0. From Eq.~57! the
yi then correspond to the canonical coordinatesf i and the
xi correspond to the previousp i . One can easily evaluate
V using N-dimensional spherical coordinates. Integration
over theyi coordinates yields

Vy5
pN/2

GSN12

2 D S l

j D N/2F(
i51

N

xi
22

H

l GN/2, ~58!

and then over thexi

V5
pNN

GSN12

2 DGSN12

2 D SHj D N/2E
R2>H/l

F l

H
R221GN/2

3RN21dR, ~59!

whereR2[( i51
N xi

2 .
This integral will be unbounded asR2→`. We therefore

let Rmax
2 [maximum(( i51

N xi
2) be the assumed cutoff in

x-space~which here corresponds to momentum space!. Fur-
ther definingumax[Rmax

2 l/H andw5(u21)/(umax21) the
above expression becomes

V5
pNHN

GSN2 DGSN12

2 D S 1

jl D N/2~umax21!~N12!/2

3FS 22N

2
,
21N

2
,
41N

2
,12umaxD , ~60!

whereF is a hypergeometric function

FS 22N

2
,
21N

2
,
41N

2
,12umaxD

5E
0

1

@11~umax21!w#~N22!/2wN/2dw. ~61!

The function F is absolutely convergent for
uumax21u<1. In that limit, the power series@13# for F gives

V'
2pN

~N12!

H ~N22!/2

GSN2 DGSN12

2 D
l

jN/2
Rmax
N12, ~62!

which can also be obtained by direct integration of Eq.~60!
if one keeps only thewN/2 term in the integrand. Thus to
evaluate the time dependence ofV we will consider

V}
Rmax
N12

kN/2
H ~N22!/2 for Rmax

2 5const;
H

l
, ~63!

wherek[2j is the ‘‘spring constant.’’ With the definition of
umax this can be rewritten as

V}
HN

kN/2
for uumax21u;1, ~64!

assumingumax is constant. That is, which form used depends
on which variable is assumed constant. Conceptually, it is
easier to visualize the meaning ofRmax, which puts an ab-
solute limit on the allowable momentum of oscillations. We
stress that these limits are meant to be constant in time. If,
however, we allowRmax to evolve withH, then we get the
conditionumax5constant in time. The parameterumax effec-
tively scales the ratio of the allowable kinetic energy to the
total energyH.

We can also derive an analogous scaling in the opposite
limit, Rmax,umax→`. In this case, Eq.~60! is approximately

V→
pN

2GSN12

2 DGSN12

2 D S l

j D N/2Rmax
2N }

Rmax
2N

kN/2
}
HNumax

N

kN/2
.

~65!

Now we turn toH,0. In this case the meanings of the
xi andyi in Eq. ~57! are reversed. If we letH[uHu, then a
repetition of the previous analysis gives
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V;H HNumax
N /kN/2, umax5const,

kH~N22!/2Rmax
N12, Rmax

2 5const;H/k,

kN/2Rmax
2N , Rmax

2 5const→`,

~66!

where the ‘‘spring constant’’ is nowk[2l andRmax corre-
sponds to a cutoff inf-space~or places a limit on the am-
plitude of oscillations!.

At this point we reiterate that our approach is to compute
phase space with the assumed cutoffs at each time slice and
then allow the system to evolve in time. Since the Hamil-
tonian is, in general, a function of time, it is reasonable to
impose cutoffs that scale withH. This implies that we should
hold umax constant, thereby preserving the self-similarity in
the energy distribution. This choice of cutoff is also compu-
tationally convenient in that it results in a scaling forV that
is similar to the harmonic oscillator case, namelyV
}HN/kN/2. However, we have verified that the other cutoff
criteria ~constantRmax

2 ) gives qualitatively the same behavior

as the constantumax case for both growing and decaying
modes.

B. Meaning of H>0 and H<0

In the previous section we consideredV for both H,0
andH.0. We now wish to explore the meaning of positive
and negative Hamiltonians in the present context. Classi-
cally, one associates negative energy states with bound sys-
tems and positive energy states with unbound systems. Here,
however, the situation is slightly different.

The equations describing the evolution of dust and super-
horizon radiation and gravitational wave~with the identifica-
tion u[f5ah) perturbations can be unified into a single
differential equationü2cuh2250, wherec56 for dust and
2 for radiation and gravitational waves. For both cases we
can write the solution asu5Ahn11Bhn2, whereA andB
are constants and (n1 ,n2)5~3, 22! for dust and~2, 21! for
radiation and waves. In short,A andB define the growing
and decaying modes, respectively. From our previous solu-
tions to the equations of motion on superhorizon scales, the
HamiltonianH;u̇22cu2h22 can be written as

H;H 3A2h422B2h26224ABh21 for dust,

2A2h22B2h2428ABh21 for radiation and waves.
~67!

Now, note thatA50 results in

H;H 22B2h26,0 for dust,

2B2h24,0 for radiation and waves.
~68!

That is, in both cases,H,0 corresponds to a decaying
mode.Similarly, settingB50 leads to

H;H 3A2h4.0 for dust,

2A2h2.0 for radiation and waves.
~69!

In other words,H.0 corresponds to a growing mode.
It is important now to attach a physical picture to these

results because they are, in a sense, opposite from what one
intuitively expects from a particle model. In a particle model,
one associatesH,0 with bound systems undergoing gravi-
tational collapse. Growing modes, then, correspond to
H,0 and particles moving together.

However, it is crucial to bear in mind that we are consid-
ering not a particle model but an oscillator model, where
growing modes correspond to increasing amplitudes of oscil-
lation. One therefore can imagine a lattice of points under-
going perturbations that eventually lead to gravitational col-
lapse. As the perturbations grow, the grid points move
farther from their initial unperturbed, or ‘‘uniformly’’ ar-
ranged positions. For decaying modes, the grid points relax
to their homogeneously spaced positions. This is why in Sec.
VI, V grew for growing modes and decreased for decaying
modes. In the oscillator picture, then, increasing inhomoge-
neity automatically gives an increase in phase space and
hence gravitational entropy.

We can also make contact with the ‘‘qualitative cosmol-
ogy’’ approach of Hamiltonian cosmology. The turning
points of trajectories with the inverted potential Hamiltonian
take place when the momenta are zero andH5V. Since for
the inverted potentialV,0, H.0 necessarily implies
H.V. The motion here is ‘‘unbounded,’’ in the sense that
there are no turning points and perturbations continue to
grow. For H,0, we haveuHu5j( i51

N f i
2 at the turning

points. The potential barrier is thus anN-sphere of radius
r5AuHu/j. However, in general, ( i51

N f i
25uHu/j

1l( i51
N p i

2/j.uHu/j, so the world point is actuallyoutside
this sphere.

For decaying modes, the sphere shrinks in time and the
world point attempts to catch up with it. However by com-
paringu̇ for decaying dust and radiation modes with the time
dependence ofr for the potential barrier, one easily shows
that the system point can never catch up with the barrier in
finite time. The barrier, then, serves as an attractor for the
decaying modes but it is never actually reached except in an
asymptotic sense. This picture is similar to that of the Bian-
chi cosmologies, in which the universe is often represented
as a point moving in a potential well. We turn to Bianchi
type IX cosmologies now.

IX. BIANCHI TYPE IX COSMOLOGY

For the Bianchi type IX cosmological models, we adopt a
metric of the form

ds252dt21e2a~e2b! i js
is j , ~70!
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wherea5ea is the mean expansion scale factor,s i are the
dual one-forms for the rotation group SO(3,R), and (e2b) i j
is an exponential of a 333 symmetric traceless matrix de-
fining the anisotropy of the spatial hypersurfaces and param-
etrized as

uubuu5diaguub11A3b2 ,b12A3b2 ,22b1uu. ~71!

The Bianchi models are anisotropic but homogeneous cos-
mologies, so by definition they cannot show the effects of
gravitational clumping. Nevertheless, there are three reasons
for investigating Type IX. First, it can be conveniently cast
into a Hamiltonian form and a phase space can be formally
calculated. Second, if one regards anisotropy as the long-
wavelength limit of inhomogeneity, we might hope to make
contact with our previous results. Finally, it provides a tran-
sition to the full ADM formalism, which one will necessarily
employ in nonperturbative models.

The ADM Hamiltonian for Bianchi type IX is@18,19#

H25p1
2 1p2

2 136p2e4a~V~b1 ,b2!21!. ~72!

Hence, Bianchi type IX can be cast into a system of two
degrees of freedom~meaning two canonical pairs.! In Eq.
~72! V is Misner’s anisotropy potential, which is a function
of the canonical coordinatesb1 and b2 , the independent
components of the metric anisotropy. The precise form of
V is:

V511 1
3 e

28b12 4
3 e

22b1cosh2A3b2

1 2
3 e

4b1~cosh4A3b221!. ~73!

This potential~shown in Fig. 2! is symmetric about theb2

axis and has exponentially steep walls. For large isocontours
of V (.1), the potential exhibits a strong triangular symme-
try with three narrow channels that extend to infinity. For
V,1, the potential is closed and asymptotic (b6!1) iso-

contours describe a circle. The motion of the universe point
in this potential well is chaotic@20#, so we can regard any
region of phase space to be filled with equal probability and
the concept of an associated entropy is reasonable.

The phase space is formally calculated as we have done
with the other cases:

V IX5E db1E db2E dp1E dp2 . ~74!

To facilitate integration, however, we eliminatep2 in favor
of H. The integral then becomes from Eq.~72!

V IX5E
Hmin

Hmax
HdHE

b1min

b1max
db1E

b2min

b2max
db2E

2l

1l dp1

Al 22p1
2
,

~75!

wherel 25H2236p2e4a(V21). We note that this problem
is very similar to the two-particle model of Sec. II, except for
the more complicated potential. The integral overp1 is sim-
ply an arcsin and the result after applying the boundary con-
ditions is p. The lower limit onH is 0, and due to the
symmetry of the potential, we can take theb2 limits to be
0 andb2max, the maximum value ofb2 , and double the
result. Therefore we are left with

V IX52pE
0

Hmax
HdHE

0

b2max
db2E

b1min

b1max
db1 . ~76!

The remaining integrals are evaluated numerically. To do
this requires first determining the limits of integration. As
with the two-particle model, we set limits by equating the
momenta in Eq.~72! to zero and finding the reflection points.
In other words, we demand thatH2 always remain positive:

H2>36p2e4a~V21!⇒V<
H2

36p2e4a 11. ~77!

FIG. 2. Contour plot of the Bianchi type IX potentialV. Seven
level surfaces are shown at equally spaced decades ranging from
1021 to 105. For V.1, the potential is open and exhibits a strong
triangular symmetry with three narrow channels extending to spatial
infinity. For V,1, the potential closes and is approximately circu-
lar.

FIG. 3. The Hamiltonian and entropy for Bianchi type IX as a
function ofa. The evolution is initialized ata50 with the follow-

ing data:b15b250, ḃ152, andḃ251, and run both forward in
time and backward towards the singularitya→2`.
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For a fixed value ofH andb2 , we march across the poten-
tial well varyingb1 until this inequality is violated. We then
perform interpolations at the two endpoints to find the mini-
mum and maximum values ofb1 . Thenb2 is incremented
and the process is repeated. The limits onb2 are found in a
similar manner. For large values ofb6 , we treat the equi-
potentials as equilateral triangles. For intermediate values of
b6 we take into account the deformation of the contours and
follow them part way into the channels~the area here be-
comes vanishingly small!. For a closed potential in which
b6!1, the area is approximated as a circle of radius
Ab1

2 1b2
2 . At each time step the integrals in Eq.~76! are

evaluated with a 40-point Gaussian quadrature scheme.
To evolve the system in time, we integrate the evolution

equations forb6 anda,

b̈1523ȧḃ12
1

8
e22a

]V

]b1
, ~78!

b̈2523ȧḃ22
1

8
e22a

]V

]b2
, ~79!

ȧ5F ḃ1
2 1ḃ2

2 2
1

4
e22a~12V!G1/2, ~80!

using a fourth-order Runge-Kutta scheme. The Hamiltonian
is then updated at each time step by

H512pȧe3a. ~81!

This value ofH is then used for the upper limit of the outer
integral in Eq.~76!.

We note that theb-integrals basically give the area of the
triangular potential. Thus we can estimate the size of the
phase space as

V IX52pEH

H8dH8E D'2p
H2

2

A

3
, ~82!

whereA is the area of largest triangle and the factor of 1/3 is
introduced to approximate the size of an average triangle in
the inverted pyramid of the potential well. Estimates per-
formed this way typically agree with the computed results to
within a factor of two or better.

Results of the numerical integrations are shown in Fig. 3
where we plot the Hamiltonian and the volume of phase
space as a function ofa. We note that the limita→2`
corresponds to the ‘‘Big Bang’’ singularity. One of the most
striking features is that both the HamiltonianH and the
phase spaceV are seen to oscillate. We now demonstrate
that these oscillations are real. From Eq.~82! we have
V;AH2. Then

dV

da
;2AH

dH

da
1H2

dA

da
, ~83!

where from Eq.~72! we have the fundamental equation

dH

da
5
72p2

H
e4a~V21!. ~84!

Assuming the boundary triangles for the unbounded~open
potential! phase space are equilateral, the enclosed area is
approximatelyA;A3b2

2 . Also, for large values ofb2 , the
asymptotic form ofV is from Eq.~73! V;(1/3)e4A3b2. Thus
A;(ln3V)2. Now, at the potential wall, Eq.~72! shows that
V'H2e24a/36p2 and we can write

A;F lnSH2e24a

12p2 D G2,
dA

da
;8S 1

2H

dH

da
21D lnSH2e24a

12p2 D . ~85!

Analytic approximations for the behavior ofV can be
found for two limiting cases:~i! ‘‘Free-particle trajectories.’’
Such trajectories correspond to the plateaus in Fig. 3. In
these regions, the universe point is sufficiently far from the
potential walls that the potential terms in Eq.~72! can be
neglected. The universe point propagates like a free particle
with constant ‘‘energy’’H, so thatdH/da;0.

~ii ! ‘‘Wall collisions.’’ At or near the potential barriers the
momenta in H are negligible so thatdH/da;2H or
H;e2a. In Fig. 3, wall collisions correspond to the places
whereH suddenly increases. Here the system is gaining en-
ergy from the gravitational field. During wall collisions the
area remains approximately constant sodA/da;0.

From Eq.~83! we then have for the free and bounce cases,
respectively,

dV

da
;28H2~2 lnH24a2 ln12p2!,

dH

da
;0, ~86!

and

dV

da
;H2,

dH

da
;H. ~87!

Equation ~86! shows that for large negativea,
dV/da,0, as observed in Fig. 3. Furthermore, this scales
roughly as;H2, so asH increases,dV/da becomes more
negative and the phase space evolves more rapidly, which is
also observed.

Note thatdV/da in Eq. ~87! is positive definite, so at
wall collisionsV always increases and, for a large enough
energy,V increases more rapidly thanH. Furthermore, the
greater the value ofH, the greater the slope, as observed.
Together, the competing behaviors in the two limiting cases
account for the oscillations observed in the figure.

In terms of finding a monotonic function to call entropy,
we reiterate thatH is time dependent but also that this sytem
is inhomogeneous. However, two aspects of Fig. 3 are highly
encouraging. For late times (a.0), the phase space—and
hence entropy—is seen to increase monotonically in the di-
rection of increasing anisotropy. Furthermore, in the oscilla-
tory regime, along the plateaus, where the model most
closely resembles a typical ‘‘closed’’ system (E5const), the
entropy is again seen to increase in the direction of increased
anisotropy. Both behaviors correspond with the notion that
anisotropy represents the long-wavelength limit of inhomo-
geneity.

55 1959PHASE SPACE APPROACH TO THE GRAVITATIONAL . . .



In the limit of small anisotropyV'8(b1
2 1b2

2 )!1, Eqs.
~78!–~80! become

b̈613
ȧ

a
ḃ61

2

a2
b650, ~88!

ȧ25ḃ1
2 1ḃ2

2 2
e22a

4
, ~89!

where we have defineda5ea and ȧ5ȧ/a. Equation~88! is
similar to Eq. ~31! for gravitational wave perturbations.
However, the type IX solution is further complicated by Eq.
~89! which couples the anisotropy to the expansion factor.
Nevertheless, at late times, we expectV to behave similarly
in both the Bianchi type IX and gravitational wave cases:
increase monotonically with increasing anisotropy or inho-
mogeneity.

X. COMPARISON WITH C2

Penrose@1# had suggested that the square of the Weyl
tensorC2[Cab

gdCgd
ab might act as an arrow of time, in-

creasing monotonically in time as the universe becomes
more inhomogeneous. Of course, this presupposes an initial
low entropy state at the singularity, in which the matter dis-
tribution is homogeneous and the Weyl tensor tends to zero.
However, Wainwright and Anderson@2# ~see also Goode and
Wainwright @3#! have shown that cosmological models
which admit an isotropic singularity contradict Penrose’s hy-
pothesis. They also noted that the Ricci tensor diverges, but
in such a way as to dominate the Weyl tensor. This led them
to propose a weakened form of Penrose’s hypothesis in
which the quantity

C2

R2 [
Cab

gdCgd
ab

RabR
ab ~90!

might be the appropriate indicator. However, subsequent
work by Bonnor @5# has thrown even this weakened form
into question.

Here we calculate the two variants of Penrose’s proposal
for cosmological density perturbations in an expanding flat
universe. Assuming, for simplicity, the perturbations to be
functions only of conformal timeh and a single spatial co-
ordinatez, the spacetime metric is given by Eq.~39! with
K50. We find ~usingMATHTENSOR andMATHEMATICA ! to
lowest order in the smallness parameterF!1,

Cab
gdCgd

ab5
16~F ,zz!

2

3a4
, ~91!

and the solution forF is given by Eq.~51!. During the
matter dominated regime, the scale factor evolves as
a;h2, and we immediately see that Eq.~91! does not pro-
duce the right behavior for the growing modes. The Weyl
tensordecreaseswith increasing time and inhomogeneity.
Because the overall time dependence is monotonic, one
might think to correct this by introducing a negative sign:
However, then for the decaying modesC2 is increasing for
decreasing inhomogeneity.

Following the suggestion of Wainwright and Anderson
@2# we also calculate

Cab
gdCgd

ab

RabR
ab 5

4a4~F ,zz!
2

9~ ȧ42aȧ2ä1a2ä2!
5

h4~F ,zz!
2

27
.

~92!

Equation~92! does have the correct behavior. In fact, it is
interesting to note that to this order the time dependence is
identical to that found for the corresponding Hamiltonian
~53!, i.e.,h4 andh26 for the growing and decaying modes,
respectively.

The generalization to nonflat spacetimes is rather compli-
cated and not qualitatively different from the flat case, so we
do not include it here. However, we do compute the Weyl
tensor for spacetimes of the form~26!, containing singly po-
larized~1! small amplitude gravitational waves propagating
in an expanding universe. In this case

Cabgd Cgd
ab

RabR
ab 5

a4~h,zz
2 24h,hz

2 12h,zzh,hh1h,hh
2 !

12~ ȧ42aȧ2ä1a2ä2!
. ~93!

Noting thatRabR
ab, to zero perturbative order, is the same

as for the metric~39!, we again find thatC2 alone does not
produce the right monotonic behavior, butC2/R2 does. To
evaluate the latter, we assume the expansion of the universe
is governed by density perturbations and that the scale factor
evolves asa;h2. For superhorizon scales,kh!1, we may
ignore spatial gradients so that only the last term in Eq.~93!
survives. ThenuC2/R2u;h26. In the limit kh@1, only the
first term survives anduC2/R2u oscillates at nearly constant
amplitude. It is also interesting to note that the subhorizon
perturbations evolve similarly to the Hamiltonian~53!, i.e.,
with constant amplitude. The superhorizon evolutions, on the
other hand, differ from the Hamiltonian time dependence.
Superhorizon perturbations are coupled to the backgound ex-
pansion and, in this case, the expansion is driven by density
perturbations. So it is not surprising to find a scaling
;h26 similar to that of decaying density perturbations.

Finally we present results for the Bianchi type IX metric
~70!, although due to the complexity of the Weyl tensor, we
do not write outC2 here. Because Bianchi type IX is a
vacuum solution withRmn50, we compute onlyuC2u, shown
in Fig. 4 using the same initial data as in Fig. 3. For com-
parison, we also showV4 ~introduced to bring out the struc-
ture at the scale of variations inuC2u). Notice that although
C2 oscillates~the kinks evident inuC2u, and which correlate
with the peaks inV, are points whereC2 becomes negative!,
the absolute magnitude diverges exponentially as the singu-
larity is approached. The rate of divergence can be estimated
from the ‘‘free fall’’ part of the trajectories during which
ȧ;ḃ;e23a, and the dominant terms in the square of the
Weyl tensor scale asuC2u;e212a for a!0.

The above results continue to throw doubt on the utility of
theC2 definition of entropy. Indeed, the simpleC2 measure
seems to be again ruled out because of its inability to handle
both the decaying and growing modes in a sensible fashion.
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Our results also point to important differences between
the phase space andC2 measures of entropy, as well as sev-
eral other functions one might consider. As can be seen from
above,C2 is a local quantity, which will vary from point to
point. As such it is not a useful measure of the global prop-
erties of spacetime, unless some sort of spatial average is
introduced. By the same token, even though they are gauge
invariant to first order, one can rule out the metric perturba-
tionsF andh for the density and gravitational wave pertur-
bations. These are also local quantities.

The Hamiltonian in our examples could be considered on
its own to be a measure of inhomogeneity since it is summed
over the spatial coordinates and has a sensible time depen-
dence. In regard to monotonicity in the time dependence,
V appears to offer no advantages overH ~except perhaps in
the case of Bianchi type IX, where we found that along the
plateaus of constantH, V increased in the direction of in-
creasing anisotropy!. However,H alone does not provide a
statistical description of a system in that it can be changed by
the addition of an arbitrary phase.V, on the other hand is a
truly global quantity that expresses the entire allowable dy-
namical range equally for each of the oscillators in the space-
like hypersurfaces. It is not restricted to a particular phase
realization, unlike any combination of variables constructed
from metric components, which is.V thus presents the ad-
vantage overC2, H or any single solution to the differential
equations in that it is global, shows a sensible time depen-
dence and reduces to familiar entropy under appropriate cir-
cumstances. This is apparently true even in one area we have
not yet addressed.

XI. CONNECTION WITH BLACK HOLES

One of the questions one naturally wishes to answer is
whether the entropy we have defined results in the well-

known entropy of black holes. To establish the connection
would strengthen any claim that the entropy function of this
paper is in fact entropy. We now give a Bekenstein-style
argument@21# that the logarithm of the phase space does
reduce to the entropy of black holes in the appropriate cir-
cumstance. The argument resembles the one we gave in Sec.
V for the EM field and is also somewhat similar to one found
in Zurek and Thorne@22#; we have, however, not seen this
demonstration elsewhere.

In Sec. III we showed that the phase space of harmonic
oscillators, Eq.~13!, gives the classical limit for Einstein’s
formula and results in a reasonable expression for the en-
tropy of the electromagnetic field. This phase space was,
with a slight change in notation,

V5
~2p!NHN

vNN!
, ~94!

wherev is the angular frequency.
Suppose we wish to construct a black hole out of photons,

i.e., quantum oscillators. To do this, we must squeeze the
oscillator system to within a Schwarzschild volume and the
total energy of the oscillator system should equalM , the
mass of the black hole. The latter condition implies that
H5M5Ne, wheree is the average energy of an oscillator.
We also havee5n51/l, wherel is the wavelength of the
photon. The minimum energy per oscillator needed to con-
struct the hole corresponds to the longest allowed wave-
length, which should be of order the Schwarzschild diameter,
or l54M . Let us, however, parametrize the wavelength as
l5 fM . Hencee51/( fM ) and

N5 fM2. ~95!

With the above expression forN,v52pe52p/ fM and
Stirling’s formula, we quickly find by taking the logarithm of
Eq. ~94! that

S5 lnV5 fM2. ~96!

The exact value ofS therefore depends onf . A priori, we
expectl;4M or f54. However, ifDp;1/l, the uncer-
tainty relationship implies thatl may be as large as
16pM . In the former case we are a factor of 2p2 lower than
the Bekenstein-Hawking@23# value of 8p2M2, in the latter
case a factor ofp/2 lower. Alternatively, if one chooses
l5(2T)21 where the black-hole temperatureT21

516p2M5]S/]M @23#, one recovers the exact result
f58p2.
One might object that we have basically given a dimen-

sional argument. Nevertheless, that the phase space of har-
monic oscillators comes so close to the accepted result is
striking. With hindsight, the phase-space approach makes
clear that lnV'N, so black-hole entropy must be of order
M2. A Hamiltonian modified for quantum mechanical sys-
tems would, we expect, reproduce the usual result. Note,
however, that unlike the cosmological models we have con-
sidered, the Hamiltonian here is not the ADM Hamiltonian
for the black hole itself. The Hamiltonian for the Schwarzs-

FIG. 4. A comparison plot of the phase space volume~repre-
sented byV4) and the magnitude of the Weyl tensor squared
uCab

gdCgd
abu. The kinks evident in theuC2u curve represent re-

gions whereC2,0, which are correlated with the regions in which
V drops after reaching a peak value, i.e., the wall collisions.
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child metric would presumably result in zero entropy since
the canonical momenta are zero in the static case. Thus the
harmonic oscillator Hamiltonian must be regarded either as
perturbations on the background or as the Hamiltonian for
the infalling oscillators; this latter corresponds to the usual
approach for calculating black-hole entropy. We will explore
these matters further and attempt a quantum mechanical cal-
culation in a future paper. As it stands our current result
shows that black-hole entropy can be treated profitably as a
classical quantity. We also emphasize that, in contrast to the
cosmological case, the black-hole Hamiltonian is easily in-
terpreted as the energy and it is constant; the resulting phase
space should then be the usual one. The main leap, evidently,
in accepting the function we have termed gravitational en-
tropy as genuine entropy lies not in the classical treatment,
but in the use of time-dependent Hamiltonians.

XII. FUTURE WORK

We have evaluated the phase space for a number of mod-
els in the perturbative limit under the assumptions that:~1!
the phases of the various components can be ignored;~2! that
the system can be defined on spacelike hypersurfaces with
some prescription for choosing boundaries;~3! the system is
constrained by a Hamiltonian on each hypersurface. Under
these assumptions lnV appears to be a reasonable entropy
function in that it increases with increasing inhomogeneity
and not otherwise. Because the phase space for the perturba-
tive spacetimes we have considered is computed using gauge
invariant functions, entropy as we have defined it is thus also
gauge invariant to first order. Moreover, it can be identified
with the entropy of more familiar situations. We also point
out that the generalized second law of thermodynamics ap-
pears to be automatically satisfied. The generalized second
law states that the sum of the thermodynamic and gravita-
tional entropies in a closed, isolated system should always
increase. Unless for some reason an increase in gravitational
entropy actually causes a decrease in thermodynamic en-
tropy, the generalized second law should not be violated.
@For some time this was not obvious in the black hole case,

in which the holecan decrease the surrounding entropy~at
the expense of increasing its surface area!. However, since
our entropy becomes black hole entropy, this situation is
evidently taken care of.# A more detailed investigation of
this question may be warranted.

We reiterate that all our calculations have been performed
in the classical limit. We will present a quantum calculation
for the black hole case in a future paper.

Full, nonperturbative ADM calculations for inhomoge-
neous model systems would also be desirable. One system to
examine is spherically symmetric collapse. However, in this
case~as in classical orbital problems! the canonical coordi-
nates and momenta appear to be coupled, making it difficult
to perform the integrations. If the system is tractable, it may
be possible to get black hole entropy by calculating the phase
space available to a collapsing star or dust shells.

These are a few problems we hope to examine in future
work. The phase space approach is a generic one, applicable
to a wide range of systems, including dust, radiation,
N-body simulations, Newtonian and relativistic problems.
Hence, the cases we have mentioned are probably only a
small subset of those that can be examined. The more impor-
tant message is that a consideration of the phase space avail-
able to general-relativistic systems appears to open a direct
connection to statistical mechanics. This connection is well
worth investigating.
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