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We provide a detailed analysis of Friedmann-Robertson-Walker universes in a wide range of scalar-tensor
theories of gravity. We apply solution-generating methods to three parametrized classes of scalar-tensor theory
which lead naturally to general relativity in the weak-field limit. We restrict the parameters which specify these
theories by the requirements imposed by the weak-field tests of gravitation theories in the solar system and by
the requirement that viable cosmological solutions be obtained. We construct a range of exact solutions for
open, closed, and flat isotropic universes containing matter with equation of statep< 1

3r and in vacuum. We
study the range of early- and late-time behaviors displayed, examine when there is a ‘‘bounce’’ at early times,
and expansion maxima in closed models.@S0556-2821~97!00704-2#

PACS number~s!: 98.80.Hw, 04.50.1h, 12.10.2g

I. INTRODUCTION

Cosmological models arising from theories of gravity in
which the Newtonian gravitational ‘‘constant’’G varies with
time have a long history. They were first studied in detail in
response to Dirac’s claims that a coincidence between the
values of ‘large numbers’ arising in dimensionless combina-
tions of physical and cosmological constants could emerge
naturally if one of the constants involved possessed a time
variation that was significant over cosmological time scales
@1#. Dirac ascribed that time variation toG and simply wrote
the time variation into the Newtonian expressions which held
for constantG. Subsequently, mathematically well-posed
gravitation theories were developed in which Einstein’s
theory of general relativity~GR! was generalized to include a
varyingG by deriving it from a scalar field satisfying a con-
servation equation. These scalar-tensor gravity theories, first
formulated by Jordan@2#, were most fully exploited by Brans
and Dicke in 1961@3#. Motivated by claims that the obser-
vations of light-bending by the sun were in significant dis-
agreement with the predictions of GR, Brans and Dicke ex-
plored the possibility that the simplest scalar-tensor theory
could provide predictions of the weak-field solar-system tests
in agreement with light-bending and other geological and
paleontological observations@4#. Cosmological models could
be found in Brans-Dicke~BD! theory, but astronomical ob-
servations were unable to impose stronger limits upon them
than had been found from solar system experiments. Subse-
quently, the doubts regarding the compatibility between ob-
servations of solar light-bending and the predictions of GR
were removed by a fuller understanding of the uncertainties
surrounding measurements of the solar diameter at times of
high solar surface activity@5#. This removed the one obser-
vation that called for the replacement of GR by a scalar-
tensor theory displaying varyingG in the weak-field limit.
Since that time there have been two observations which have
led to renewed interest in gravity theories with non-
Newtonian variation inG: one was the claim that a ‘‘fifth
force’’ of Nature existed on laboratory length scales and in-
fluenced Eo¨tvös experiments as if there existed a deviation
from the inverse-square form of the law of gravitation in the
nonrelativistic Newtonian regime@6#; the other has been the

occasional claim that the flatness of the rotation curves dis-
played by spiral galaxies might be a signal of non-Newtonian
gravitational attraction@7#. The evidence for the ‘‘fifth
force’’ variations has not been supported by other experi-
ments and flat rotation curves appear as natural outcomes of
protogalaxy formation in conventional gravitation theories.
In both cases, the deviations from conventional gravitation
theory, with constantG, would introduce a new characteris-
tic length scale into the law of gravity with no fundamental
basis other than to explain a particular set of observations.
Some attempts were made by Gibbons and Whiting@8# to
see how simple scaling arguments might relate preferred
high-energy physics scales to those observed in fifth force
experiments. More recently, the study of scalar-tensor grav-
ity theories has been rejuvenated by theoretical develop-
ments in the study of the evolutionary possibilities open to
the early universe.

In a metric scalar-tensor theory of gravity the gravita-
tional coupling is derived from some scalar field,f, so
G5G(f). Historically, most interest has been focused upon
the first and simplest theory of this type, presented by Brans
and Dicke @3#, in which the coupling functionv(f) is a
constant. In general, the consideration of scalar-tensor theo-
ries with nonconstantv(f) @5,9#, greatly enlarges the range
of possibleG variations and weakens the impact of observa-
tional limits accordingly. In the weak-field limit Nordtvedt
found an expression for the observed value of the gravitation
‘‘constant’’ in these theories, to leading order, as@10#

G~ t !5f21S 412v~f!

312v~f! D ,

so that

Ġ

G
52ḟS 312v

412v D SG1
2v8~f!

~312v!2D .

We see that in Brans-Dicke theory, with constantv the
variation of G(t) is just inversely proportional to
f(t).Moreover, for one particular choice ofv(f),
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v~f!5
423f

2~f21!
,

it is possible to haveĠ50 to first order in the weak-field
limit @11#.

Our observational limits are a mixture of cosmological
limits, studies of astrophysical objects, and weak-field tests
of gravitation in the solar system. In Brans-Dicke theory the
scope for significant deviations from constantG is very
small because of the constancy ofv. However, ifv varies
then it can increase with cosmic time in such a way that
v→` andv8v23→0 ast→` so that weak-field observa-
tions at the present time accord well with the predictions of
GR even though the theory may possess significant devia-
tions from GR predictions at very early cosmological times
@12#.

The principal observational upper limits onĠ/G come
from many different observations. Passive radar data on the
distances to Mercury and Venus@13,14# give the limit
Ġ/G,4310210 yr21. This was improved using the Mariner
9 Mars orbiter by Anderson et al. @15# to
Ġ/G,1.5310210 yr21. Andersonet al. @16# then used
Mariner 10 data and radar ranging to Mercury and Venus to
obtain Ġ/G,0.062.0310212 yr21. Viking landers, Mars
orbiters and transponders gave upper limits of
Ġ/G,3310211 yr21 @17#, Ġ/G,264310212 yr21 @18#,
and Ġ/G,22610310212 yr21 @19#. These are made un-
certain by our incomplete knowledge of the asteroid distri-
bution. Studies of the Binary pulsar PSR 1913116 by
Damour, Gibbons, and Taylor@20# give a limit of
Ġ/G52(1.1061.07)310211 yr21 with uncertainties due
to the pulsar’s proper motion. Gravitational lensing promises
to yield new tests, but depends upon other uncertain cosmo-
logical parameters@21#. Krauss and White argue that a varia-
tion inG of DG/G<20 would influence lenses atz;1.5 and
these studies might eventually achieve constraints of order
Ġ/G<10211 in Brans-Dicke theories. White dwarf cooling
will be affected by variations inG @22#, and recently, Garcı´a-
Berro et al. @23# gave limits, depending upon the chemical
composition of the white dwarf ofĠ/G<2(161)310211

yr21 for chemically stratified models, and
Ġ/G<2(323

11)310211 yr21 for models with constant C/O
composition. However, these studies have theoretical uncer-
tainties introduced by the quasi-Newtonian modeling of the
variation ofG @24#. This is also true of attempts to constrain
Ġ/G by measurements of the time-variation of neutron star
masses@25#. Cosmological nucleosynthesis gives limits that
are of orderĠ/G<0.01H in Brans-Dicke theory@26#. Nu-
cleosynthesis limits have also been obtained in Bekenstein’s
variable mass theory@27#, the Schmidt-Greiner-Heinz-
Müller theory of gravity@28#, Kaluza-Klein and superstring
theories@29,30#, scale-covariant gravity@31#, and theories
with 2v13}fa, which display a slow logarithmic decrease
in G(t) @32,33#. Accetta, Krauss, and Romanelli have shown
that in generalĠ/G,9310213 yr21 @34#. Other limits
include those from solar evolution@35# of Ġ/G<10210

yr21; lunar occultations and eclipses@36# of

Ġ/G<0.4310210 yr21; lunar laser-ranging studies of the
Moon’s orbit around the Earth@37# of Ġ/G<0.3310210

yr21, and Müller et al. @38# derive Ġ/G,(0.1610)
310212 yr21. There are proposals to measure via radar the
position of a transponder in orbit around Mercury@39#. The
ranging sensitivity is claimed to be able to reach just a few
centimeters which would translate into limits of order
Ġ/G,3310213 yr21. Most of these limits~especially cos-
mological ones from nucleosynthesis! are uncertain if vary-
ing G is coupled to the variation of other constants@30#.

The coupling function of scalar tensor theoriesv(f) is
related to the parametrized post-Newtonian~PPN! param-
eters by@10#

b511
v8

~312v!2~412v!
→11OS v8

8v3D as v→`,

g512
1

v12
→1 as v→`.

Observational limits on the weak-field PPN parameterg are
g.160.002 from radio timing delays @40#;
g.1.000260.002 from light deflection using very long
baseline interferometry~VLBI ! observations of quasars@41#;
g.160.02 from lunar laser ranging@38#. Future experi-
ments, GPB, POINTS, and Mercury Relativity Satellite,
hope to reach sensitivities ofug21u;331027 @42#. For
combinations of two PPN parameters determiningv, limits
of u4b2g23u,531023(1s) have been found@19#. If we
take the observational limits asug21u,0.002 and
u4b2g23u,0.001, then we havev.498 and

U v8

~312v!2~412v!
U,0.001,

wherev8 is evaluated at the asymptoticf valuef0 where
v→v(f0). Hence, we have only a rather weak limit of
uv8u,102639992;1.

Planetary data@43# also provides a limit on the spatial
gradient of G over solar system scales of
¹G/G,3310210AU21. A limit of dG/G,10213 on pos-
sible spatial anisotropy ofG in the solar system has been
derived by studying the alignment of the Sun’s rotation axis
with the direction of the solar system’s angular momentum
vector@44#, and of dG/G,2310212 from satellite and La-
ser Geodynamics Satellite~LAGEOS! laser ranging data
@45#.

A brief period of interest in extended Kaluza-Klein cos-
mological theories@46#, which culminated in their replace-
ment by superstring theories@47#, revealed how time varia-
tions in any extra (. 3! dimensions of space would manifest
itself through the time variation of the ‘‘constants’’ defined
in the three dimensions we observe. Over the same period,
cosmologists showed growing interest in the behavior of all
scalar fields during the early stages of the universe. The time
variation of a field energy source in the early universe at a
rate slower than the universe is expanding is a general pos-
sibility only for scalar fields and has become known as
‘‘slow-rolling’’ of the field. Typically, it produces an accel-
eration of the expansion scale factor of the universe with
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time: a phenomenon known as ‘‘inflation’’@48#. This has led
to the investigation of general-relativistic cosmological mod-
els containing a wide range of self-interacting scalar-field
sources@49#, the classification of different varieties of infla-
tion that can result from their slow-rolling evolution, and the
extraction of detailed predictions concerning the fluctuations
imprinted in the cosmic microwave background radiation by
the spectra of gravitational waves and density perturbations
that emerge from a period of primordial inflation. However,
it has also been recognized that natural scalar fields might be
provided by the scalar component of a scalar-tensor theory of
gravity @50#. Such theories possess close conformal relation-
ships with GR plus explicit scalar fields, and although the
scalar field determining the strength of the gravitational cou-
pling does not easily drive inflation it does have a significant
effect upon the pace of inflation that arises when self-
interacting scalar fields are included in the universal energy-
momentum tensor. Salgado, Sudarsky, and Quevedo have
suggested a scalar-tensor description of gravity to explain the
periodicity of galaxy counts@51#, finding that the mass of
their gravitational scalar field can also contribute signifi-
cantly to cosmological dark matter. Following the long initial
study of BD cosmological models, Barrow@12# showed how
to generate cosmological solutions of vacuum or radiation-
dominated isotropic cosmological models in any scalar-
tensor gravity theory. The method used works for any isotro-
pic cosmological model with an energy momentum tensor
possessing a vanishing trace. Barrow and Mimoso@33# then
devised a more complicated procedure which allows solu-
tions to be generated for isotropic, zero-curvature universes
with the pressurep and densityr related by a perfect-fluid
equation of statep5(g21)r, with the constantg lying in
the range 0<g<4/3. In particular, they found the first dust
solutions for scalar-tensor theories more general than BD
together with a wide range of new inflationary solutions.
Anisotropic cosmological models arising from scalar-tensor
theories of gravitation have been studied by Mimoso and
Wands@52#. Recently, the techniques introduced by Barrow
and Mimoso have been used to study the asymptotic behav-
ior of both the isotropic and anisotropic cases@53,54#. In this
paper we are going to extend these studies to arrive at a more
general and systematic understanding of the behavior of iso-
tropic cosmological models containing matter with equation
of statep<r/3. We will be interested in studying scalar-
tensor gravity theories which can approach general relativity
in the weak-field limit at late cosmic epochs. By studying the
classes of gravity theory which allow this approach to occur
we shall use our solution-generating techniques to build up a
detailed picture of the behavior of scalar-tensor cosmological
models. We shall be particularly interested in models con-
taining radiation (p5r/3), dust (p50), and inflationary
stresses (p52r).

The plan of the paper is as follows. In Sec. II we intro-
duce the Lagrangians and field equations which define
scalar-tensor gravity theories in terms of their coupling func-
tion v(f) and dictate their evolution. We shall specialize
our study to the cases of Friedmann universes containing
perfect fluid sources. In Sec. III we describe the two tech-
niques for finding complete and asymptotic solutions of
these equations for arbitrary choices ofv(f). The ‘‘direct’’
method works for universes of all curvatures but is restricted

to the vacuum and radiation-dominated cases. The ‘‘indi-
rect’’ method works only for flat universes but for any equa-
tion of state. We shall be especially interested in the vacuum,
dust (p50), radiation and inflationary (p52r) cases.
These techniques allow us to draw important conclusions
about the early and late-time evolution of cosmological mod-
els in scalar-tensor theories. In Sec. IV we introduce three
broad classes of gravity theory, defined by the form of
v(f), which allow distinct forms of cosmological evolution.
The free parameters can be restricted to allow the theories to
reproduce the successful weak-field predictions of general
relativity and to give cosmological solutions. The cosmologi-
cal consequences of these three classes of theory are ex-
plored systematically in Secs. V, VI, and VII. In each case
we are interested in determining the early and late time be-
haviors, and finding exact solutions which describe the dust,
radiation, and inflationary phases of expansion. The results
are discussed in Sec. VIII.

II. SCALAR-TENSOR COSMOLOGIES

A. Field equations

We shall consider scalar-tensor theories of gravity defined
by the action,

SG5E d4xA2gF2fR1
v~f!

f
gab]af]bfG . ~1!

whereR is the curvature scalar arising from the spacetime
metric gab, g is the determinant ofgab, f is a scalar field,
andv(f) is a function determining the strength of the cou-
pling between the scalar field and gravity. We are working in
units such that Newton’s constantGN is equal to unity. The
field f is the analogue ofGN

21 in GR except that here, in
contrast to Einstein’s theory,f is a dynamical quantity.
Scalar-tensor gravitational theories therefore permit histories
in which the value of the gravitational ‘‘constant’’ varies.
The simplest such case is that explored by Brans and Dicke,
wherev is a constant. The action in Eq.~1! offers more
generalv(f) theories as natural extensions to BD gravity. It
is these theories that will be of primary interest in this paper.
Demanding that the first-order variations of Eq.~1! with re-
spect tof andgab vanish, we derive the field equations

Rab2
1

2
gabR528p

Tab
f

2
v~f!

f2 S fafb2
1

2
gabfcf

cD
2
1

f
~fa;b2gabhf! , ~2!

hf5
1

2v~f!13
@8pT2v8~f!fcf

c# , ~3!

and the conservation law,

Tab;b50 , ~4!

whereRab is the Ricci curvature tensor,Tab is the energy-
momentum tensor specifying the properties of the matter oc-
cupying the universe. Primes indicate derivatives with re-
spect tof. The first of these three equations is the scalar-
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tensor analogue of Einstein’s equations, the second is the
wave equation forf, and the final expression is the energy-
momentum conservation law for the matter, which ensures
that each theory is consistent with the equivalence principle.

B. Friedmann universes

We shall examine solutions to these equations that de-
scribe homogeneous, isotropic Friedmann-Robertson-Walker
~FRW! cosmological models, with time-varyingG. The
FRW metric line element in spherical polar coordinates
(t,r ,u,c) is given by

ds252dt21a2~ t !F dr2

12kr2
1r 2~du21sin2udc2!G , ~5!

where the curvature parameter isk521, 0, 11 for open,
flat or closed cosmologies respectively, and the scale-factor
a(t) characterizes the expansion history of the universe. We
shall assume the universe contains a simple perfect-fluid
which may be accurately described by a perfect-fluid equa-
tion of state,

p5~g21!r ; 0<g<2, g const ; ~6!

with these prescriptions, the equations of motion become

H21H
ḟ

f
2

v~f!

6

ḟ2

f2 1
k

a2
5
8p

3

r

f
, ~7!

f̈1F3H1
v~ḟ!

2v~f!13
G ḟ5

8pr

2v~f!13
~423g! , ~8!

Ḣ1H21
v~f!

3

ḟ2

f2 2H
ḟ

f

52
8pr

3f

~3g22!v~f!13

2v~f!13
1
1

2

v~ḟ!

2v~f!13

ḟ

f
,

~9!

ṙ13gHr50 , ~10!

whereH[ȧ/a is the Hubble expansion parameter and over-
dots denote derivatives with respect to comoving proper
time, t.

The structure of the solutions to these equations is sensi-
tive to the form of the coupling functionv(f), which de-
fines the scalar-tensor theory of gravity. As Nordvedt first
showed@10#, it is possible to place bounds on the parameter-
space of many models, prior to extracting a full solution
from the field equations, simply by inspecting the explicit
form of v(f). Nordvedt’s constraints demand that the theo-
ries tend to GR in the weak-field limit, so that they concur
with the observational limits on light-bending and perihelion
precession. This requirement manifests itself explicitly in the
conditionsv→` andv8v23→0 ast→`. Typically, scalar-
tensor theories add a term proportional tov8v23 to the
weak-field predictions of general relativity. While the first
condition (v→`) is well known, the second (v8v23→0)
is not. As we shall see in Sec. IV there are many theories

which satisfy the first condition but not the second, for ex-
ample, those defined byv(f);(12f/f0)

2a, with
0,a,1/2, asf→f0 from below.

III. METHODS OF SOLUTION

Solutions to Eqs.~7!–~10! for Brans-Dicke-FRW models
have existed for some years@55,56#. The Brans-Dicke case
has also been studied qualitatively by Kolitch and Eardley
@57#. Recently, Barrow@12,59# and later Barrow and Mi-
moso@33# have extended these treatments to generalv(f)
theories, providing a method for obtaining zero-curvature
cosmological solutions wheng,4/3, and solutions for
vacuum and radiation-dominated universes of any curvature.

We now recapitulate the two methods of solution intro-
duced in Refs.@12# and @33# to solve the cosmological field
equations for theories specified by anyv(f).

A. Vacuum and radiation models

1. Exact solutions

The general solutions to Eqs.~7!–~10! contain four arbi-
trary integration constants, one more than their GR counter-
parts, the extra degree of freedom being attached to the value
of ḟ. When the energy-momentum tensor is trace-free there
exists a conformal equivalence between the theory and GR,
the right-hand side of Eq.~3! vanishes andḟ50 is always a
particular solution, corresponding to a special choice of the
additional constant possessed by the model over GR. Conse-
quently, the exact general solution of Einstein’s equations
when Tab is trace-free is also a particular solution to Eqs.
~7!–~10! with f, and hencev(f), constant.

It will seldom be the case that the particular solution ob-
tained in this way will form the general solution for that
particular choice ofv(f). Usually, however, it will be the
late or early time attractor of the general solution. For ex-
ample, in the case of Brans-Dicke theory the special GR
solution is the late-time attractor for flat and open universes
but not the early-time attractor. However, one of these au-
thors@12# developed a method for integrating the field equa-
tions for models containing trace-free matter. The procedure
is as follows.

Equation~10! integrates immediately to yield

8pr53Ga23g , ~11!

where G>0 is a constant of integration;G50 describes
vacuum models. Making the choiceg54/3, corresponding to
blackbody radiation, and introducing the conformal time co-
ordinateh, defined by

adh5dt , ~12!

Eq. ~8! becomes

fhh1
2

a
ahfh52

v8~f!

2v~f!13
~fh!2 , ~13!

where subscripth denotes a derivative with respect to con-
formal time. This integrates exactly to give,

fha
2531/2A@2v~f!13#21/2 ; A const. ~14!
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We now employ the variable used by Lorenz-Petzold to
study Brans-Dicke models@56#,

y5fa2 , ~15!

to rewrite the scalar-tensor version of the Friedmann equa-
tion, Eq. ~7!, as

~yh!2524ky214Gy1
1

3
~fh!2a4@2v~f!13# . ~16!

Dividing Eq. ~14! by Eq.~15!, and using Eq.~14!, we obtain
the coupled pair of differential equations

fh

f
531/2Ay21@2v~f!13#21/2 , ~17!

~yh!2524ky214Gy1A2 . ~18!

We may now obtain the general solution for a particular
choice ofv(f), given k. Integrating Eq.~18! yields y(h)
which, in conjunction withv(f), implies f(h) from Eq.
~17! and, without further integration,a(h) from Eq. ~15!. If
Eq. ~12! is both integratable and invertible we may compute
f(t) anda(t), so completing the solution.

The vacuum models are obtained by settingG50 and in
this case Eq.~18! has three possible solutions, according to
the value ofk,

y~h!55
A~h1h0! , k50 ,

1

2
Asinh@2~h1h0!# , k521 ,

1

2
Asin@2~h1h0!# , k511 ,

~19!

whereh0 is an arbitrary constant fixing the origin ofh time.
Combining these results with Eq.~17! yields the set of inte-
gral relations,

E ~2v~f!13!1/2

f
df5H A3lnuh1h0u, k50 ,

A3lnutanh~h1h0!u, k521 ,

A3lnutan~h1h0!u, k511 .
~20!

Specification ofv(f) allows the full solutions to be com-
pleted. Whenk521 the negativity of the right-hand side,
arising because 0,utanh(h1h0)u,1, ;h, places strong con-
straints on the allowed form of the integral on the left.

Similarly, one may perform this treatment on the radiation
models, i.e., those cases for whichG.0. Again, the results
are classified by the value ofk,

y~h!55
G~h1h0!

22A2/4G , k50 ,

2
1

2
G1

1

2
~A22G2!1/2sinh@2~h1h0!# , k521

1

2
G1

1

2
~G21A2!1/2sin@2~h1h0!# , k511 .

~21!

Integrating Eq.~17! with the solutions above leads to

E @2v~f!13#1/2

f
df5H A3lnu~2Gh12Gh02A!/~2Gh12Gh01A!u , k50 ,

A3lnu@Gtanh~h1h0!1~A22G2!1/22A#/@Gtanh~h1h0!1~A22G2!1/21A#u , k521 ,

A3lnu@Gtan~h1h0!1~G21A2!1/22A#/@Gtan~h1h0!1~G21A2!1/21A#u , k511 .

~22!

These expressions can be simplified by choosing the arbi-
trary integration constanth0 such that 2Gh05A.

The domain on which each right-hand side exists strongly
constrains the integral on the left. For instance, if we require
fP(0,f0) then the corresponding range of the function of
f resulting from the integral on the left must be compatible
with the allowed range on the right. In general,f must tend
to its general relativistic form, i.e., a constant, at largeh. We
shall find in Secs. V–VII that this behavior is not generic and
often requires the integration constant associated with the
left-hand integral to assume a particular value. This integra-
tion constant can be interpreted as an initial boundary con-
dition on f or v at, say,h50. Further restrictions can be
found by studying the evolution at early times.

In Secs. V–VII we shall exploit these relations to derive
generalv(f) solutions for all values of the curvature param-
eter.

2. Approximation techniques

Many of the models we shall present are insoluble in
terms of t. The reason for this is the noninvertibility of
t(h), arising from integratinga(h). In these cases we shall
invert t(h) approximately at early and late times to obtain
series solutions for the behavior off(t) anda(t), indicating
their limiting forms and their approach to these forms to
leading order. We shall use the inversion technique of Olver
@60#. If we have an expression
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y~x!5 f ~x!g~x! , ~23!

and we require an approximation tox(y), valid in a region
whereg dominates overf , we neglectf and write

x~y!.g21~y! . ~24!

The next-order approximation is easily obtained by substitut-
ing this result intof , yielding f. f @g21(y)#. Using this in
Eq. ~23! we have

x~y!.g21S y

f @g21~y!# D . ~25!

This procedure can be iterated indefinitely but we shall use
the 2nd iteration form as given in Eq.~25!.

To analyze the asymptotic behavior we need to establish
the value ofh ast→` and our primary interest is in models
which display GR, i.e.,f→f0, in this limit. Radiation-
dominated,k50, universes in GR evolve likea}t1/2 at late
times and hencet}h2 andh→` as t→`. There does not
exist a spatially flat vacuum model in GR, however, the
negatively curved general relativistic models are asymptoti-
cally vacuum-dominated~as the matter density redshifts to
zero! tending to the Milne solution,a}t, as t→`, and h
} lnt which diverges witht. We therefore study the asymp-
totic behavior of vacuum and radiation models in the limit
h→` whenk<0. We will not consider the late-time limit of
thek.0 models. Typically, they recollapse to a final singu-
larity if r.0 andr13p.0, although a bounce occurs for
many choices ofv(f). The behavior in their recollapse
phase is similar to the time-reverse of the early expansion of
k50 models.

We now define the early-time limit. We examine first
models with 0,f,f0, in this rangeA2v13 does not
change sign, as guaranteed by the choices of the coupling
function,v(f), detailed in Sec. IV and Eq.~14! ensures that
f is monotonically increasing. We thus extrapolate the evo-
lution back tof50 and treat this as the early-time limit in
vacuum and radiation models. In more general perfect-fluid
models we find that we are easily able to examine the behav-
ior whenf.f0 by exploiting the conformal invariance of
the theory~this procedure is explained in detail in the Ap-
pendix! and we so examine early-time behavior in the neigh-
borhood of the last zero, or nonzero minimum, ofa.

3. Maxima and minima

It is easy to study the structure of nonsingular vacuum and
radiation-dominated cosmological models within the frame-
work presented in this section. Differentiating Eq.~15! and
substituting from Eqs.~14! and ~15! leads to

~a2!h5
yh

f
2

A3A
fA2v13

. ~26!

The condition for the scale-factor to contain a stationary
point, ah50, is equivalent to (a2)h50 whenaÞ0, which
leads to the simple relation

yh5
A3A

A2v13
, ~27!

whenf is finite. This relation will prove useful for locating
minima when we lack an exact solution fora(h).

Equation~27! is a simple test for the existence of station-
ary points in the evolution ofa. Stationary points of the type

maximum
minimum will occur when ahh,

.0, respectively but, because
a.0, it is sufficient to replaceahh with (a2)hh in this con-
dition. Differentiating Eq.~15! twice and evaluating at a sta-
tionary point, i.e., where (a2)h vanishes, we obtain

~a2!hh5
yhh

f
2

fhha
2

f
. ~28!

A condition for the stationary point to be amaximum
minimum is then

yhh

f ,
.

fhha
2

f
. ~29!

Differentiating Eq.~14! and discarding (a2)h we have

fhha
252

3A2v8~f!

a2~2v13!2
. ~30!

Substituting this into Eq.~29!, and rememberingf.0 yields

yhh ,
.2

3A2v8~f!

a2~2v13!2
, ~31!

as the condition for the stationary point to be amaximum
minimum .

When 0,f,f0 we havev8(f).0 for the choices in Sec.
IV and the right-hand side of Eq.~31! is negative definite.
Thus whenever we can proveyhh>0 we may exclude the
possibility ofa(h) possessing maxima, and then by continu-
ity we can limit the number of minima to one. We test this
condition for the forms ofy(h) given in Eqs.~19! and~21!,
the results are summarized in Table I. From the table it can
be seen that all spatially flat and negatively curved models
may only contain a single minimum. Thek511 models are
not bounded in this way and may contain an undetermined
number of minima and maxima.

B. General perfect-fluid cosmologies

When T is nonvanishing the situation is substantially
more complicated. In this instance,ḟ50 is no longer a par-
ticular solution of the field equations, forcing us to resort to
more elaborate methods to obtain solutions. Barrow and Mi-
moso@33# have done this, for thek50 models, by general-
izing the method of Gurevichet al. @55# for BD models to
the case of varyingv. We now outline this procedure.

TABLE I. yhh for vacuum and radiation models of all curva-
tures.

Matter
source Vacuum Radiation

k 21 0 11 21 0 11
yhh .0 50 ,0 .2G.0 52G.0 ,2G
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Introducing the new time coordinatej, and the two new
variablesx andv such that

dt5a3~g21! A2v13

3
dj , ~32!

x[@fa3~12g!~a3!j# , ~33!

v[@a3~22g!fj# , ~34!

and confining attention to thek50 models, Eqs.~7!, ~8!, and
~9! transform to

S 23 x1v D 25S 2v13

3 D @v214G f a3~22g!# , ~35!

vj5G~423g! , ~36!

and

xj53G @~22g!v11#1
3

2 S 2

3~2v13!
x1v D vj ,

~37!

where subscriptj represents a derivative with respect toj
time. Equations~36! and ~37! integrate easily to yield

v5G~423g! ~j2j1! , ~38!

x5
3

2F2v1A2v13SC1G~22g! E
j1

j
A2v13 dj̄ D G ,

~39!

C is an integration constant andj1 fixes the origin ofj time.
Noting the relations

3

af
ajfj5

1

f2 ~fj!
23

f

a

aj

fj
5

1

f2 ~fj!
2
x

v
, ~40!

and differentiatingy with respect toj, yields

S fj

f D
j

1F3g24

2
1

1

j2j1
f j~j!G S fj

f D 25 1

j2j1

fj

f
,

~41!

where a new functionf (j), is defined by

f ~j![E
j1

j 3~22g!

2G~423g!
A2v~f!13 FC1G~22g!

3E
j1

j
A2v~f!13 dj̃G dj̄ . ~42!

Solving Eq.~41!, we have the solution

lnS f

f0
D5E

j1

j j2j1
g~j!

dj , ~43!

with g(j) simply related tof (j) by

g~j![ f ~j!1
3g24

4
~j2j1!

21D , ~44!

whereD is a constant of integration. Equation~40! immedi-
ately reveals a simple formula for the scale factor:

a35a0
3S gf D 1/22g

a0 const . ~45!

Finally, the scalar-tensor coupling functionv(f) is given as
a function of f by

2v@f~j!#135
~423g!

3~22g!2
~ f 8!2

F f1 423g

3~22g!2
f 0G , ~46!

where f 0 is another arbitrary constant.
In the calculations to follow, we shall exploit the arbitrari-

ness ofj1 and set it to zero. In addition, we note some
relations between the other constants in the solution, arising
from the scalar-tensor Friedmann constraint, Eq.~35!

D5
423g

3~22g!2
f 0 , ~47!

f0 a0
3~22g!5G ~423g! , ~48!

and from the requirement that the BD theory be recovered
whenv5v0 is a constant we obtain the further condition

C25S 2G~423g!

3~22g! D 2f 0 . ~49!

We shall requiref0, i.e.,G
21 today, to be positive and from

Eq. ~48! we see that this requiresg,4/3. We shall also con-
fine our attention to theories with 2v13.0. Using Eq.~43!
we can rewrite Eq.~46!, as a function off and its deriva-
tives, as

2v~j!135
423g

3~22g!2

3
„~f/fj!2j@ffjj /~fj!

2#1~623g/2!j…2

„j~f/fj!2~3g24/4!j2…
.

~50!

Asymptotically, 2v13→(gj)
2/g as j→` and the above

relation becomes

2v13→
f

jfj
S 11j

fj

f
2j

fjj

fj
D 2 . ~51!

The choice off(j) is thus equally fundamental as that of
g(j), and amounts to specifyingG(j). We shall use the
former. Oncef(j) has been specified, we may inferg(j)
from Eq. ~43!, a(j) from Eq. ~45!, andv(j) from Eq. ~50!.
If Eq. ~32! can be integrated and inverted to yieldj(t) these
variables may be expressed in terms of cosmic time,t.

An important benchmark is provided by the behavior of
the BD theory, wherev(f)5v05 constant. In this case, the
generating function,f (j), is given by a quadratic inj:

1912 55JOHN D. BARROW AND PAUL PARSONS



f BD~j!5
3~22g!

2G~423g!
A2v013

3FCj1
G~22g!

2
j2A2v013G . ~52!

Hence, in general (CÞ0ÞG) whengÞ4/3, 2, we see that
f BD}j2 as j→` and f BD}j as j→0, where dt
}a3(g21)dj. If we chooseC50 then f BD}Gj2 as j→0.
The choiceC50 restricts the solution to the special ‘‘matter-
dominated’’ solutions~termed ‘‘Machian’’ by Dicke@3,4#,
see also Weinberg@58#! which were first found for all
perfect-fluids by Nariai@55#. If CÞ0 then the early-time
behavior is dominated by the dynamics of thef field; such
solutions are termed ‘‘f dominated’’~or ‘‘non-Machian’’ by
Dicke!.

Therefore if we choose a generating functiong(j) that
grows slower thanj2 asj→` it will produce a theory that
approaches BD at late times@f→const, v(f)→ const#,
while if g(j) decreases slower thanj as j→0 then the
theory will approach the behavior off-dominated BD theory
at early times. This means that we will find new~non-BD!
late-time behaviors by studying generating functions which
increase faster thang(j)5j2 as j→` and new~non-BD!
early-time behavior by picking generating functions which
decrease slower thang(j)5j asj→0 or j→jmin @if there is
no zero ofj at the minimum ofa(t)#.

IV. THE COUPLING FUNCTION

We are interested in ascertaining the general behaviors
displayed by cosmological models in the range of scalar-
tensor gravity theories that approach GR in the weak-field,
late-time limit. This requires 2v13→` as t→` and also
v8v23→0 if the solar system tests are to accord with ob-
servation. The specific form of the leading-order corrections
to the general relativistic predictions of light-bending, peri-
helion precession, and radar echo delay are all almost equal
to v8v23 in the largev limit. However, the rate at which
v(f) tends to infinity will determine the form of the cosmo-
logical models. In an earlier paper@33# we explored the be-
havior of simple power-law forms forv(f) which, although
growing with time, only attain the GR limit whenf5`,
although at any finite timev can be made as large as we
wish by the choice of the constants definingv(f). Here, we
turn our attention to a potentially more interesting situation
in which v→` asf→f0 wheref0 may be taken as the
present value off(t), which determines the observed value
of the Newtonian gravitation constant,G5f0

21.
We shall study the three general classes of theory, some

examples of which are displayed in Figs. 1–3.
Theory 1.2v(f)1352B1u12f/f0u2a; a.0, B1.0

const.
Theory 2. 2v(f)135B2u ln(f/f0)u22d; d.0, B2.0

const.
Theory 3.2v(f)135B3u12(f/f0)

bu21; b.0, B3.0
const.

Theory 1 has been studied previously by Serna and Alimi
@53#, Comeret al. @54#, Barrow@59#, and Garcia-Bellido and
Quiros@61#. Serna and Alimi@53# paid particular attention to
the radiation eras of these models, extending their treatment

to allow 2v13,0, leading tof-dominated initial condi-
tions. Their analysis dealt mainly with the early-time behav-
ior of the models, we shall examine in detail the late-time
approach to GR. Theories 1–3 will all permitv→` if
f→f0 at late times and span a wide range of different rates
of approach to GR in the weak-field limit. They can all be
reduced to Barker’s constant-G theory @11# as f→f0 for
special parameter choices. Theories 1 and 3 approach Brans-
Dicke theory@3# asf→0 and the power law form studied in
@12# asf→`. General functional forms for 2v(f)13 can
be expanded in a series of functions of this form and their
asymptotic behaviors at small and large times will be domi-
nated by one term of the above type. In fact, further restric-
tions can be placed upon the allowed theories within these
three classes by the weak-field limit requirements, as fol-
lows:

Theory 1.We see thatv→` asf→f0 is guaranteed if
a.0 and that

v8

v3 }S 12
f

f0
D 2a21

. ~53!

FIG. 1. Theory 1 with~a! B155 anda50.5,1,1.5; and~b!
a52 andB155,10,15.
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Hencev8v23→0 and the weak field limit will be compat-
ible with observation asf→f0 so long asa.1/2.

Theory 2.Here,v→` asf→f0 for d.0, but

v8

v3 }S f0

f D ln4d21S f

f0
D , ~54!

and this tends to zero asf→f0 so long asd.1/4.
Theory 3.Here,v→` asf→f0, but

v8

v3 }F12S f

f0
D bG S f

f0
D b21

, ~55!

and this tends to zero for allb asf→f0.
These constraints on the parameter ranges of theories 1–3

are independent of the form of the cosmological solutions so
long asf→f0 at late cosmological times. The latter will
introduce further restrictions on the allowed values ofa, b
andd. With the exception of thekÞ21 vacuum solutions,
where there exists no FRW model within GR, we shall focus

our attention on those particular parameter choices which
reproduce Einstein’s theory at late times and which we have
just delineated in Eqs.~53!–~55!. When k521 the Milne
model,a}t, supplies the general relativistic solution at late
times.

V. THEORY 1: 2 v„f…1352B1z12f/f0z2a; a>1/2,B1>0
const

We study the evolution in the intervalfP(0,f0), allow-
ing us to drop the modulus signs from 2v13. Making the
substitutionu15(12f/f0), this bound becomesu1P(0,1)
and Eq.~20! is

E A2v13

f
df5A2B1E du1

u1
a/2~12u1!

2A3lnK1 ,

aÞ1,2 , ~56!

whereK1 is an integration constant. In the models which
asymptote to GR,v→` asf→f0.

FIG. 2. Theory 2 with~a! B255 andd50.75,1,1.25 and~b!
d52 andB255,10,15.

FIG. 3. Theory 3 with~a! B355 and b50.5,1,1.5; and~b!
b52 andB355,10,15.
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A. Vacuum solutions „k50…

1. Late-time behavior

For the theory to reduce to GR at late times we require
u1→0 ash→`. Choosingh050 with k50 in vacuum we
then have

2
1

l1

u1
12a/2

~12a/2!
5 ln~K1h! , ~57!

as u1→0. l15A3/2B1 and its sign determines the sign of
(2v13)1/2. The requirement thatu1→0 ash→` demands
we must havea.2 and hencel1.0 to ensure the right-
hand side of Eq.~57! is positive. Picking the appropriate
right-hand side from Eq.~19!, we thus obtain

f~h!→f0H 12Fl1S a22

a D G2/~22a!

ln2/~22a!~K1h!J ,

~58!

a2~h!→
A

f0
hH 11Fl1S a22

a D G2/~22a!

ln2/~22a!~K1h!J ,

~59!

at largeh. This leads to the asymptotic form fort(h):

t~h!.
2

3
A A

f0
h3/2H 11

1

2 Fl1S a22

2 D G2/~22a!

3 ln2/~22a!~K1h!J . ~60!

The first-order inversion of this at largeh is

h~ t !.S 32D
2/3S f0

A D 1/3t2/3 . ~61!

This result is obtained by ignoring the factor in curly brack-
ets on the right-hand side of Eq.~60!. To obtain the next-
order expression we substitute this first-order result into the
weakly-varying ln(K1h) term on the right-hand side of Eq.
~60!, take the curly brackets onto the left-hand side, and
solve forh. This yields

h~ t !.S 32D
2/3S f0

A D 1/3t2/3H 12
1

3 S 23D
2/~22a!

3Fl1S a22

2 D G2/~22a!

ln2/~22a!tJ , ~62!

andh→` ast→`. At late times we then obtain the solution

f~ t !→f0H 12Fl1S a22

3 D G2/~22a!

ln2/~22a!tJ , ~63!

a~ t !→S 3A2f0
D 1/3t1/3H 11

1

3 Fl1S a22

3 D G2/~22a!

ln2/~22a!tJ .

~64!

2. Early-time behavior

At early times we see from Eqs.~20! and ~56! that
u1→1 as h→0 is the only possibility consistent withu1
P(0,1) andl1.0. Treatingu1

a/2.1 in Eq.~56! leads to the
approximate relations

ln~12u1!5l1ln~K1h! ~65!

and

f~h!.
f0

K1
2l1

hl1 , ~66!

a2~h!.
AK1

2l1

f0
h12l1 . ~67!

Taking the square root of the latter, integrating and inverting
leads to

h~ t !.S f0

AK1
2l1D 1/~32l1!S 32l1

2 D 2/~32l1!

t ~2/32l1! ,

l1Þ3 . ~68!

When 0,l1,3 we see from the above thatt→0 ash→0
and whenl1.3 we havet→2` ash→0. In both cases we
obtain the early-time behavior

f~ t !→Al1 /~l123!S f0

K1
2l1D 3/~32l1!

3S 2

32l1
D 2l1 /~l123!

t2l1 /~l123! , ~69!

a~ t !→SAK1
2l1

f0
D 1/~32l1!

3S 32l1

2 D ~12l1!/~32l1!

t ~12l1!/~32l1! . ~70!

Whenl153, Eq. ~68! becomes

h~ t !5expSAf0K1
3

A
t D , ~71!

and t→2` ash→0. The early-time evolution is

f~ t !→f0K1
3expS 3Af0K1

3

A
t D , ~72!

a~ t !→A A

f0K1
3 expS 2Af0K1

3

A
t D , ~73!

as t→2`. Differentiating Eq. ~70!, we deduce that the
early-time models will be expanding as long asl1.3 or
l1,1.

3. Minima

We now probe thek50 vacuum models generated by this
choice of coupling for the existence of expansion minima.
Equation~27! for these universes becomes
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u1*5S 1l1
D 2/a , ~74!

at a minimum. Foru1* to be real for alla requiresl1.0
which is guaranteed whenuP(0,1). In general, however, we
find

0,l1,1↔u1*.1 , ~75!

l151↔u1*51 , ~76!

l1.1↔u1*,1 , ~77!

and whenu1P(0,1), minima are only present whenl1.1.
We have the early-time solution for this model@Eqs. ~72!
and ~73!# in which a(0)50 for l1.1 and the universe ex-
periences a phase of contraction before bouncing and ap-
proaching late time general relativistic expansion. When
l151, then a~0! itself becomes a nonzero minimum
(a2→A/K1f0).

4. Exact solution

The models witha51 are not described by the solutions
presented above. These models tend~as f→f0) to the
theory of gravity proposed by Barker@11#, for their evolution
we find the exact results

f~h!5
4f0K1

2l1h2l1

~K1
2l1h2l111!2

, ~78!

a2~h!5
A

4f0K1
2l1

h11l1~K1
2l1h2l111!2 . ~79!

Whenh→` however, we observe that there is no combina-
tion of parameters allowingf→f0. Consequently, we shall
not pursue this model any further. Theories witha52 have
been solved exactly and studied earlier by Barrow@12,59#
and in Ref.@53#.

B. Vacuum solutions„k521…

1. Late-time behavior

Whenk521 the integral equation for the field evolution
becomes~settingh050)

2
1

l1
E du1
u1

a/2~12u1!
5 ln@K1tanhh# . ~80!

at late times. Ash→`, tanhh→122e22h. Demanding
u1→0 in this extreme, Eq.~80! may be approximated by

2
1

l1

u1
12a/2

12a/2
. lnK122exp~22h! . ~81!

As h→` the right-hand side is finite and we require
12a/2.0 ~i.e., a,2) in order that the left-hand side does
not diverge asu1→0. We also requireK151 to ensure that
h→` and u1→0 correspond to the same limit. The right-
hand side approaches zero from below ash increases and
u1.0; thus to keep the left-hand side negative we need
l1.0. The form ofy(h) for the negatively curved vacuum

models, selected from Eq.~19!, approachesAe2h/4 as
h→` and the late-time solutions are

f~h!→f0F12$l1~22a!%2/~22a!expS 4h

a22D G , ~82!

a2~h!→
A

4f0
e2hF11$l1~22a!%2/~22a!expS 4h

a22D G ,
~83!

ash→`. Integrating and asymptotically inverting the sec-
ond of these expressions we obtain theh(t) relation

h~ t !→ lnH 2Af0

A
tF12

1

2
$l1~22a!%2/~22a!S a22

a12D
3S 2Af0

A D 4/~a22!

t4/~a22!G J . ~84!

Substituting this back into Eqs.~82! and ~83! yields the as-
ymptotic forms

f~ t !→f0F12$l1~22a!%2/~22a!

3S 2Af0

A D 4/~a22!

t4/~a22!G , ~85!

a~ t !→tF11
2

a12
$l1~22a!%2/~a22!

3S 2Af0

A D 4/~a22!

t4/~a22!G , ~86!

as t→`. We note the asymptotic approach of this model to
the general-relativistic Milne universe at late times.

2. Early-time behavior

At early timesu1→1 ash→0 and

ln~12u1!.l1ln@ tanhh# , ~87!

which leads to

f~h!→f0h
l1 , ~88!

a2~h!→
A

f0
h12l1 . ~89!

The functional form of this early-time behavior is identical to
that detailed in Eqs.~68!–~73!, after enforcing the choice
K151.

3. Minima

Searching for stationary points in the scale-factor evolu-
tion for this theory, Eq.~27! identifies

cosh~2h* !5l1u1*
a/2 . ~90!

The cosh function is bounded below by unity, as is the value
of u1

2a/2 whenu1P(0,1), which givesl1>1 as the condi-
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tion for the existence of a stationary point. When
0,l1,1 the universe expands monotonically away from an
initial singularity at h50. When 1<l1<3, a→` as
h→0, the subsequent evolution will contain a minimum,
allowing the initial contraction to ‘‘bounce’’ back into late-
time expansion. Whenl1.3 the evolution is expanding at
all times. The special casea51 is treated by transforming
h1h0→tanh(h1h0) in Eqs.~78! and~79!. Solutions for the
a52 case may be obtained from the solutions in Ref.@59#
after applying the same transformation.

C. Vacuum solutions„k511…

1. Late-time behavior

The positively curved (k511) vacuum solutions are
governed by

2
1

l1
E du1
u1

a/2~12u1!
5 ln@K1tanh# , ~91!

takingh050. In the GR limit (u1→0) this is approximated
by

2
1

l1

u1
12a/2

~12a/2!
. ln@K1tanh# . ~92!

In conjunction with Eq.~19! we obtain

f~h!→f0F12H l1S a22

2 D J 2/~22a!

ln2/~22a!~K1tanh!G ,
~93!

a2~h!→
A

2f0

sin2h

F12H l1S a22

2 D J 2/~22a!

ln2/~22a!~K1tanh!G .
~94!

These expressions approach GR whena,2 as
h→tan21(K1

21) and whena.2 ash→np/2 wheren is an
integer. The behavior whena52 can be extracted from the
k50 treatment in Ref. @59# by substituting
2(h1h0)→tanh(h1h0).

D. Radiation solutions „k50…

1. Late-time behavior

Whenk50 Eq. ~22! leads to the asymptotic behavior

2
1

l1

u1
12a/2

~12a/2!
5 lnK12

2h0

h
, ~95!

where we have picked 2Gh05A to fix the arbitrary integra-
tion h0. The requirement thatu1→0 ash→` then demands
K151 anda,2. This upper bound ona, in conjunction
with the lower limit implied by the requirement that
v8v23→0, yields the powerful constraint 1/2,a,2. We
examine models for whichu1P(0,1), corresponding tof
P(0,f0). In this case we have the constraintl1h0.0. Us-
ing y(h) from Eq.~21!, the late-time evolution off anda as
functions ofh is

f~h!→f0F12S ~22a!l1h0

h D 2/~22a!G , ~96!

a2~h!→
Gh2

f0
F11S ~22a!l1h0

h D 2/~22a!G . ~97!

The latter of these allows us to deduce

h~ t !→S 4f0

G D 1/4t1/2F12
1

4 S a22

a21D $l1~22a!h0%
2/~22a!

3S 4f0

G D 1/[2~a22!]

t1/~a22!G , ~98!

and hence, the evolution as a function of cosmic time:

f~ t !→f0F12S l1
2h0

2~a22!2A G

4f0
D 1/~22a!

t1/~a22!G ,
~99!

a~ t !→S 4G

f0
D t1/2F11

a

4~a21!

3H l1
2h0

2~a22!2A G

4f0
J 1/~22a!

t1/~a22!G ,
~100!

as t→`, so there is a power-law approach to the GR solu-
tion at late times.

2. Early-time behavior

At early times, we analyze the behavior in the neighbor-
hood ofu1→1: i.e.,

ln~12u1!.l1lnF h

h12h0
G . ~101!

The left-hand side of Eq.~101! tends to2` as GR is ap-
proached. In order that the right-hand side approach the same
limit we see thath→0 whenl1.0 andh→22h0 when
l1,0. Analyzing the former case leads to

f~h!→~2h0!
2l1f0h

l1 , ~102!

a2~h!→
~2h0!

11l1G

f0
h12l1 , ~103!

after setting 2Gh05A. The behavior of this system as a
function of cosmic timet mirrors that described in Eqs.~68!
–~73! with K1

l1 replaced by (2h0)
2l1 andA replaced by

2Gh0. The boundl1h0.0 implies h0.0 when l1.0.
When l1,0, h→22h0 at early times. The inequality
l1h0.0 impliesh0,0 and hence22h0.0. The evolution
is approximately

f~h!.f0~22h0!
l1~h12h0!

2l1 , ~104!

a2~h!.
G

f0
~22h0!

12l1~h12h0!
11l1 . ~105!

The t-parametrized behavior of these equations is given by
Eqs.~68!–~73!, after applying the transformations

55 1917BEHAVIOR OF COSMOLOGICAL MODELS WITH VARYINGG



K1
l1→~22h0!

l1 , ~106!

l1→2l1 , ~107!

A→22Gh0 . ~108!

3. Minima

As with the vacuum solutions, we can search for turning
points ofa2 whenl1.0. Equation~27! is

h*
h0

52~12l1u1*
a/2! , ~109!

where subscript * denotes the value of a quantity at the sta-
tionary point. When 0,l1,1, the scale-factor expands
away froma50 at h50 by Eq. ~67!. Monotonicity of h
implies h*>0 and we knowh0.0 from the sign ofl1,
which together give rise to the inequality

u1*
a/2>

1

l1 . ~110!

The range of 0<u1<1 together with the conditiona.0
confirm l1>1 as a necessary condition for the existence of
minima. Whenl151, h*50, and the universe expands
from a nonsingular state of sizea.(2h0)

11l1G/f0. When
l1.1 the solution is initially contracting, bounces ath* and
tends to general-relativistic behavior at late times. Equation
~110! still applies whenl1,0, and asserts that none of them
can contain stationary points in the evolution of the scale-
factor. This does not effect the models in which
21,l1,0, which begin froma50 at h522h0 and
monotonically expand. Whenl1<21 they are initially con-
tracting and, due to the absence of minima, will always con-
tract and never approach late-time general-relativistic expan-
sion.

4. Exact solution

The casea51 possesses a simple exact form, which is
instructive. Solving Eqs.~22! and ~21! leads to

f~h!5
4f0K1

l1hl1~h12h0!
l1

@~h12h0!
l11K1

l1hl1#2
, ~111!

a2~h!5
Gh~h1h0!@~h12h0!

l11K1
l1hl1#2

4f0K1
l1hl1~h12h0!

l1
, ~112!

where in these expressions we have again made the special
choice 2Gh05A. Examining the largeh limit reveals that
f→f0 if and only if K151. In this case we integrate the
asymptotica(h) to obtain

h~ t !→S 4f0

G D 1/4t1/2F12
h0

2 S G

4f0
D 1/4t21/2

1
1

4 S l1
22

1

4Dh0
2S G

4f0
D 1/2lntt G , ~113!

and hence

f~ t !→f0S 12l1
2h0

2A G

4f0
t21D , ~114!

a~ t !→S 4G

f0
D 1/4t1/2F11

1

4 S l1
22

1

4Dh0
2S G

4f0
D 1/2lntt G , ~115!

valid ast→`. At early times the solution becomes

f~h!→222ul1uh0
2ul1uf0h

ul1u , ~116!

a2~h!→
2ul1u22Gh0

11ul1u

f0
h12ul1u , ~117!

ash→0. The behavior of thet-parametrized version of this
model is given by Eqs.~68!–~73! after applying the transfor-
mations

f0→222ul1uh
0

2ul1u
f0 , ~118!

A→Gh0 , ~119!

and rememberingK151. Minima are a feature of this model
when ul1u.1.

E. Radiation solution „k521…

Whenk521, Eq. ~56! becomes

2
1

l1
E du1
u1

a/2~12u1!
2 lnK1

5 lnU ~A22G2!1/2e2~h1h0!2G2A

~A22G2!1/2e2~h1h0!2G1A U . ~120!

1. Late-time behavior

Expanding the right-hand side at largeh and integrating
on the left asu1→0 leads to the approximate formula

1

l1

u1
12a/2

~12a/2!
.

2A

~A22G2!1/2
e22h , ~121!

where we have chosenK151 to ensuref→f0 at late times.
The right-hand side of this expression tends to zero at late
times and consistency on the left asu1→0 requires
12a/2.0, or a,2. If fh.0, as it must be whenf→f0
and 0<f<f0, we recover the inequalityl1A.0. Selecting
the k521 form for y(h) from Eq. ~19! we have the ap-
proximate solutions

f~h!→f0F12H Al1~22a!

~A22G2!1/2J
2/~22a!

e2[4h/~22a!] G , ~122!

a2~h!→
~A22G2!1/2

4f0
e2hF11H Al1~22a!

~A22G2!1/2J
2/~22a!

3e2[4h/~22a!] G , ~123!
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as h→`. Integrating and inverting Eq.~123! to next-to-
lowest-order yields

h~ t !→ lnF 2f0
1/2t

~A22G2!1/4H 11
1

2 S 21a

22a D FAl1~22a!

~A22G2!1/2
G2/~22a!

3F 2f0
1/2

~A22G2!1/4
G2[4/~22a!]

t [24/~22a!]J G , ~124!

t→` ash→` and hence

f~ t !→f0F12H Al1~22a!

4f0
J 2/~22a!

t2[4/~22a!] G ,
~125!

a~ t !→tF11
2

~22a! HAl1~22a!

4f0
J 2/~22a!

t2[4/~22a!] G ,
~126!

as t→`. Again, we observe power-law approach to the GR
Milne solution at larget sincea,2.

2. Early-time behavior

In the early-time limit we findu1→1 and Eq.~120! be-
comes

ln~12u1!→l1lnU ~A22G2!1/2e2~h1h0!2G2A

~A22G2!1/2e2~h1h0!2G1A U ,
~127!

and asu1→1, ln(12u1)→2`. To simplify the analysis we
pick h0 such thatu1→1 ash→0, which requires

e2h05SA1G

A2G D 1/2 . ~128!

Combined with thek521 version ofy(h) from Eq. ~21!,
this leads to the limiting forms

f~h!→f0SA1G

A Dhl1 , ~129!

a2~h!→
A

f0
SA1G

A D 2l1

h12l1 , ~130!

and the t-parametrized evolution will be that of the flat
vacuum model described by Eqs.~68!–~73! after we apply
the relabeling

K1→
A1G

A
. ~131!

3. Minima

To complete the study of this class of solutions, we search
for points where the gradient ofa2 vanishes. Equation~27!
gives the condition

S 12
G2

A2D 1/25 l1u1
a/2

cosh@2~h1h0!#
, ~132!

for a stationary point to exist. Sincea.0, u1,1, and
cosh@2(h1h0)#.1 this expression is equivalent to the in-
equalities

S 12
G2

A2D 1/2,l1 , l1.0 , ~133!

S 12
G2

A2D 1/2.l1 , l1,0 . ~134!

SinceA2.G2, we know that 0,(12G2/A2)1/2,1. Hence,
models withl1.1, in whicha begins collapsing from infin-
ity, will bounce to mimic GR expansion at late times.

F. Radiation solutions „k511…

If we select the necessary right-hand side from Eq.~22!
for the finite, closed-universe models withk511, then Eq.
~56! is

2
1

l1
E du1
u1

a/2~12u1!

5 lnFK1S Gtan~h1h0!1~G21A2!1/22A

Gtan~h1h0!1~G21A2!1/21AD G .
~135!

As u1→0, we obtain the following approximate expressions
for the behavior off anda:

f~h!→f0H 12Fl1S a22

2 D G2/~22a!

3 ln2/~22a!FK1S Gtan~h1h0!1~G21A2!1/22A

Gtan~h1h0!1~G21A2!1/21AD G J , ~136!

a2~h!→
1

2f0
$G1~G21A2!1/2sin@2~h1h0!#%

3H 12Fl1S a22

2 D G2/~22a!

3 ln2/~22a!FK1S Gtan~h1h0!1~G21A2!1/22A

Gtan~h1h0!1~G21A2!1/21AD G J 21

, ~137!
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which are valid asf→f0.

G. Perfect-fluid solutions „k50…

We shall analyze the late-time behavior of Theory 1,
specified in Sec. IV, by the device of using the solution
defined by the choice of field evolution

f~j!5f0 exp~H ln
Bj! , ~138!

whereH andB are constants. This gives rise to the generat-
ing function

g~j!5
j2

HB
ln12Bj , ~139!

and the scale-factor

a3~22g!5
a0
3~22g!

HBf0
j2ln12Bjexp~H lnBj! . ~140!

From Eq. ~140! it is clear that to keep the left-hand side
positive we require the combination (j21)B21HB.0. This
leads to

f ~j!5
j2

HB
ln12Bj1

423g

4
j22D , ~141!

and hence

2v~j!135
423g

3~22g!2
@~2/HB!j ln12Bj1~@12B#/HB!j ln2Bj1~@423g#/2!j#2

~j2/HB!ln12Bj1~@423g#/4!j2
. ~142!

We requiref→f0 at late times and this occurs asj→1
when B.0 and as j→` when B,0. When B50,
f5f0e

H and whenH50, f5f0; in both cases the theory
is GR at all times.

1. Late-time behavior

When 0,B,1, we find from Eq.~32!

t} ln~12B!/~22g!j , ~143!

as j→1. The power of the log is always positive for
0<g,2 andt→0 in this limit. Since we are only concerned
with limits corresponding to larget we exclude the range
0,B,1. WhenB.1 the coupling function tends to

2v~j!13→
423g

3~22g!2
~12B!2

HB
ln2~B11!j , ~144!

and Eq.~32! becomes

dt5
12B

3~22g!

a0
3~g21!

~HBf0!
~g21!/~22g! S 423g

HB D 1/2
3j2[~g21!/~22g!] ln~3g242Bg!/[2~22g!]j

3expFHS g21

22g D lnBjGdj . ~145!

As j→1 this tends to

dt.
12B

3~22g!

a0
3~g21!

~HBf0!
~g21!/~22g! S 423g

HB D 1/2
3~j21!~3g242Bg!/[2~22g!]dj , ~146!

and

t~j!.F21~j21! [g~12B!]/[2 ~22g!] , ~147!

where

F5
3g

2

~HBf0!
~g21!/~22g!

a0
3~g21! S HB

423g D 1/2 . ~148!

Eventually, this leads to

j~ t !→11F [2~22g!]/[ g~12B!] t [2~22g!]/[ g~12B!] , ~149!

f~ t !→f0@11HF [2B~22g!]/[ g~12B!] t [2B~22g!]/[ g~12B!] # ,
~150!

a~ t !→
a0F

2/3g

~HBf0!
1/[3~22g!] t

2/3g

3F11
2F [2~22g!]/[ g~12B!]

3~22g!
t [2~22g!]/[ g~12B!] G ,

~151!

as t→`, and there is power-law approach to the GR solu-
tions in this limit. The coupling, in terms of the field, ap-
proaches

2v~f!13→
423g

3~22g!2
~12B!2

B
H1/Bln2[ ~B11!/B] S f

f0
D .

~152!

The negativity ofdj/dt implied by Eq.~145! for B.1 im-
plies thatj approaches unity from above. As we noted earlier
@after Eq.~140!#, whenj.1 positivity of B implies positiv-
ity of H and thus Eq.~138! confirms thatf→f0 from above
in these theories, i.e.,fP(f0,`). WhenB,0 the coupling
function, asj→`, is

2v~j!13→
423g

3~22g!2
4

HB
ln12Bj , ~153!
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and the temporal line element becomes

dt5
2

3~22g!

a0
3~g21!

~HBf0!
g21/22g S 423g

HB D 1/2
3j [2~g21!]/ ~22g!ln[g~12B!]/[2 ~22g!]jdj . ~154!

Integrating, this gives

t~j!.C21jg/~22g!ln[g~12B!]/[2 ~22g!]j , ~155!

where

C5
3g

2

~HBf0!
~g21!/~22g!

a0
3~g21! S HB

423g D 1/2 . ~156!

Inverting asymptotically int, this gives

j~ t !.C~22g!/gt ~22g!/gln~B21!/2t ~22g!/g , ~157!

and hence there is logarithmic approach to the GR perfect-
fluid solutions

f~ t !→f0@11H lnBt ~22g!/g# , ~158!

a~ t !→
a0C

2/3g

~HBf0!
1/[3~22g!] t

2/3gF11
H

3~22g!
lnBt ~22g!/gG ,

~159!

ast→`. The late-time behavior of the coupling as a function
of f is given by

2v~f!13→
423g

3~22g!2
4H21/B

B
ln~12B!/BS f

f0
D . ~160!

At large t, j→` and must do so from below to maintain
positivity. Consequentially,B,0 implies H,0 and from
Eq. ~138! f→f0 from below, i.e.,fP(0,f0) in these mod-
els.

2. Early-time behavior

WhenB.1, a(j) has a zero asj→0 if (21)BH<0. At
late times,j→1 from above; however, this is a manifestation
of the fact thatj(t), for the exact theory defined by Eq.
~138!, is not monotonic. That this is correct may be demon-
strated using Eq.~32! and solvingA2v1350 for j when
B52 then further showing that (A2v13)jÞ0 at that point.
As j→0, lnj,0 and (21)B21HB>0 so that a(j)>0.
WhenB.0, (21)B21H>0 and hence (21)BH<0, i.e., the
universe is always singular atj50 in B.1 theories. In this
limit

2v~j!13→
~423g!2

3~22g!2
, ~161!

i.e., a BD theory.
WhenB,0, a(j) has a zero asj→1 if H,0. This arises

since A2v13.0 as j→1 and j approaches unity from
above (lnj.0). As in the preceding paragraph,a(j).0 im-
pliesHB.0, B,0 enforcesH,0 and the evolution begins
from a singularity atj50. Again, the form of the coupling
function at early times is given by Eq.~161!, BD theory.

We will not present explicit solutions showing the ap-
proach to BD theory since these models are not early-time
limits of the theories, defined in Sec. IV, that we are inter-
ested in; they are merely early-time limits of other theories
which happen to asymptote~at late times! to the theories
with which we are concerned.

We now highlight some special cases of these models for
particular values ofg.

3. Dust models

These arise by substituting the choiceg51 into the as-
ymptotic relations already derived. WhenB.1 we find

f~ t !→f0F11S 32D
2B/~12B!

H1/~12B!BB/~12B!t2B/~12B!G ,
~162!

a~ t !→S 32D
2/3 a0

f0
1/3t

2/3F11S 32D ~11B!/~12B!

3~HB!1/~12B!t2/~12B!G . ~163!

WhenB,0 the solutions tend to the GR solution only loga-
rithmically

f~ t !→f0@11H lnBt# , ~164!

a~ t !→S 32D
2/3 a0

f0
1/3t

2/3F11
H

3
lnBt G . ~165!

All of these expressions are valid ast→`.

4. Inflationary models

Inflationary models driven by a false vacuum equation of
state may be derived from the choiceg50. Although there
are varieties of inflationary universe with21/3.g.0, and
these can easily be found from the formula for the general
g solutions given above, we shall confine our attention to the
g50 case which is not described by the previous formulae.
It offers an excellent approximation to many slowly chang-
ing scalar-field potentials. In this case we can view the
scalar-tensor coupling as providing a second scalar field,
thereby offering the chance for double inflation to occur.
However, it is not sufficient simply to substituteg50 into
the existing expressions since the qualitative structure of the
solutions is different. WhenB.1, the form of 2v13 is as
presented in Eq.~144! and the temporal line element of Eq.
~145! can be approximated by

dt.
~12B!f0

1/2

3a0
3 ln21jdlnj , ~166!

asj→1. Integrating this expression we find

t~j!.
~12B!f0

1/2

3a0
3 ln~ lnj! , ~167!
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which→` asj→1. This can be inverted, yielding

j~ t !.expH expF 3a0
3t

~12B!f0
1/2G J , ~168!

and hence,

f~ t !→f0F11HexpH 3a0
3Bt

~12B!f0
1/2J G , ~169!

a~ t !→
a0

~HBf0!
1/6expS a0

3t

2~f0!
1/2D

3F11
1

3
expH 3a0

3t

~12B!f0
1/2J G , ~170!

as t→`. Here we see explicitly the possibility of double
inflation arising from the sequential effects of thef field and
the p52r stress. IfB,0, t→` as j→` and 2v13 is
given by Eq.~153!. The differentialj2t relation, Eq.~154!,
is then well approximated by

dt.
2f0

1/2

3a0
3 expS 2

H

2
lnBj Ddlnj . ~171!

Making the substitutionz5 lnBj we can integrate the above
equation to obtain

t~j!.
2f0

1/2

3a0
3 lnjF12

H

2~B11!
lnBjG , ~172!

asj, and hencet, tend to infinity. Asymptotically, we obtain

j~ t !→expS 3a03t2f0
1/2D , ~173!

f~ t !→f0F11HS 3a0
3

2f0
1/2D BtBG , ~174!

a~ t !→
a0

~HBf0!
1/6S 3a0

3

2f0
1/2D ~12B!/6

t ~12B!/6expS a0
3t

2f0
1/2D ,

~175!

as t→`.

5. The connection to the parameters of Theory 1

We now use the results derived earlier in this section to
model the late-time behavior of Theory 1. Consider first uni-
verses in whichf→f0 from above, i.e.,

fP~f0 ,`!. ~176!

The approach of Theory 1 to the relativistic limit in this
direction can be accurately modeled using the theory defined
by Eq. ~138! with H.0, B.1. From Eq.~152!,

2v~f!13→
423g

3~22g!2
~12B!2

B
H1/B

3F S f

f0
D21G2[ ~B11!/B]

, ~177!

asf→f0. This expression is essentially the same as defini-
tion of the Theory 1 coupling forfP(f0 ,`) introduced in
Sec. IV. Explicitly, we may obtain the asymptotic behavior
of Theory 1 by making the following identifications between
its parameters and the parameters of Eq.~138!:

H5F6B1~22g!2~a21!

~423g!~a22!2 G1/~a21!

, ~178!

B5
1

a21
. ~179!

The constraint on theB.0 models such that they approach
GR at late times, namelyB.1, is equivalent to
2(B11)/B.22. This is a very restrictive condition be-
cause the function2(B11)/B is naturally bounded above
by the value21. Thus, for perfect-fluid universes with
0,g,4/3 Theory 1 can only be expected to converge to the
general relativistic value off from aboveif 1,a,2. When
f converges tof0 from below, i.e.,fP(0,f0) we can ap-
proximate the late-time behavior of Theory 1 using the solu-
tions forH,0, B,0. The asymptotic form of the coupling
in this case is given by Eq.~160!

2v~f!13→
423g

3~22g!2
4~2H !21/B

~2B! F12S f

f0
D G ~12B!/B

,

~180!

asf→f0. The behavior of Theory 1 at late times may be
found by substituting the expressions

H5F3B1~22g!2~21!a

2~423g!~12a! G1/~a21!

, ~181!

B5
1

12a
, ~182!

into the formulas describing the asymptotic evolution of the
theory defined by Eq.~138!. The choiceB,0 leads to the
constraint (12B)/B,21, which becomesa.1 for Theory
1 asf→f0 from below.

VI. THEORY 2: 2 v„f…135B2z ln„f/f0…z22d; d>1/4,B2>0
const

The left-hand side of Eq.~20! for this choice of the cou-
pling function, whenfP(0,f0), is

E @2v~f!13#1/2

f
df

5H 2~AB2/12d!u ln~f/f0!u12d2A3lnK2 , dÞ1 ,

2AB2lnu ln~f/f0!u2A3lnK2 , d51 ,

~183!
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where K2 is an integration constant. We now investigate
vacuum and radiation solutions for this case, under the as-
sumption thatfP(0,f0).

A. Vacuum solutions „k50…

Selecting the zero-curvature right-hand side from Eq.~20!
and the necessary form fory(h) from Eq.~19!, Eq. ~183! for
dÞ1 reads

F2 lnS f

f0
D G12d

52l2~12d!ln@K2~h1h0!# , ~184!

where l25A3/B2. The left-hand side is positive, for the
right-hand side to follow suit ash→` requires
l2(12d),0. As h→`, the right-hand side→` and we
must haved.1 for this to occur on the left asf→f0. This
implies l2.0 and we obtain for the field and the scale-
factor, whendÞ1, the exact expressions

f~h!5f0exp†2$l2~d21!ln@K2~h1h0!#%
1/~12d!

‡ ,
~185!

a2~h!5
A

f0
~h1h0!exp$†l2~d21!ln

3@K2~h1h0!#‡
1/~12d!% . ~186!

When d51, the conformal time-evolution of the field and
the scale-factor are given by

f~h!5f0exp@2K2~h1h0!#
2l2 , ~187!

a2~h!5
A

f0
~h1h0!exp$@K2~h1h0!#

2l2% . ~188!

1. Late-time behavior

As h→` the late-time behavior can be modeled by Eqs.
~62!–~64! under the simultaneous transformations,l→l2,
a→2d. Settingh050 for simplicity, we see that the scale-
factor tends to zero ash→0 when d.1. WhendÞ1 we
requirel2.0 if f is to tend tof0 ash→`. We find

f~ t !→f0F12K2
2l2S 9f0

4A D 2l2/3

t22l2/3G , ~189!

which approachesf0 as t→`. The asymptotic form of the
scale-factor is

a~ t !→S 3A2f0
D 1/3t1/3F11K2

2l2S 12l2

322l2
D

3S 9f0

4A D 2l2/3

t22l2/3G , ~190!

with limiting behaviora}t1/3 as t→`.

2. Early-time behavior

Examining the form ofa(h) whendÞ1 in Eq.~186!, we
see that the choiceh050 ensuresa(0)50. As h→0,
lnh→2` and the exponential factor ina either tends to zero
or a constant, depending upon the sign of 12d. However,

the bound 12d,0 on the power of the logarithm in the
exponential guarantees that we always obtaina(h)
}AA/f0h

1/2 as h→0 and henceh→(9f0/4A)
1/3t2/3. This

final expression impliest→0 ash→0 and the early-time
formulae forf(t) and a(t) are identical to Eqs.~60! and
~63!, under the transformationsl→l2, a→2d.

When d51, the dominant behavior ina(h) ash→0 is
contained in the exponential, from which we may conclude
~after settingh050) that

t}h~3/2!1l2expF12 ~K2h!2l2G . ~191!

This may be inverted asymptotically inh21. To first order
we obtainh;K2

21(2lnt)21/l2 ash and t tend to zero@not-
ing the sign ofl2 and the necessary monotonicity ofh(t)#.
The next-order corrections at early-times follow by substitut-
ing this lowest-order result into the weakest dependence in
Eq. ~191!, i.e., the power-law factor, and solving forh. This
yields

h;K2
21H 2F lnt1S 11

3

2l2
D ln~ lnt !G J 21/l2

, ~192!

and hence

f~ t !→f0t
22ln2~3/l2!22t , ~193!

a~ t !}t~ lnt !111/l2 , ~194!

as t→0.

3. Minima

Examining thedÞ1 vacuum models for the presence of
minima we find

~a2!h5
A

f0
exp$2@l2~d21!ln~K2h!#1/~12d!%

3F11H2 @l2~d21!#1/~12d!

12d
lnd/~12d!K2hJ G . ~195!

For the exponential to tend to zero we require its argument to
tend to2`. The bound ond, namely d.1, implies that
h→K2

21 for this to happen. At this point
lnd/(12d)(K2h)→`; nevertheless, this logarithmic divergence
will be insufficient to counter the exponential convergence of
the prefactor. We can also expect to see turning points in the
evolution ofa when the factor in square brackets vanishes.
This happens whenh5h* , where

h*5K2
21expF ~2l2!

21/d

12d G . ~196!

One can show that the conditions for the factor in square
brackets in Eq.~195! to vanish also guarantee that the expo-
nential will be well behaved. Whend51 we have

~a2!h5
A

f0
@11l2K2

2l2h2l2#exp$2K2
2l2h2l2% .

~197!
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K2h.0 and so the exponential will vanish whenh→0.
When this happens the factor in square brackets diverges,
however, its divergence is quashed by the rapid convergence
of the exponential, confirming the presence of a stationary
point ath50. There will also exist a stationary point in the
evolution ofa when the square-bracketed factor itself van-
ishes in Eq.~197!. This occurs ath* , where

h*5~2l2!
1/l2K2

21 . ~198!

At this point 2(K2h)
2l25l2

21.0 and the exponential is
well behaved.

B. Vacuum solutions„k521…

Similarly, we analyze the behavior of the negatively
curved models. Selecting thek521 versions of Eqs.~20!
and ~19!, we obtain for the field and the metric, whend
Þ1, the expressions

f~h!5f0exp$2@l2~d21!#1/~12d!ln1/~12d!

3@K2tanh~h1h0!#% , ~199!

a2~h!5
A

2f0
sinh@2~h1h0!t#

3exp$†@l2~d21!#1/~12d!ln1/~12d!

3@K2tanh~h1h0!#‡% . ~200!

This solution will approach the Milne model at late times
under the conditions 0,d,1, K251. The approach off to
f0 from below requiresl2,0. Whend51, settingh050,
we have

f~h!5f0exp$2K2
2l2tanh2l2h% , ~201!

a2~h!5
A

2f0
sinh~2h!exp$K2

2l2tanh2l2h% . ~202!

Because there is no choice ofK2 which allowsf to tend to
f0 at late times we do not pursue this model any further.

1. Late-time behavior

The late-time behavior is given by Eqs.~84!–~86! under
the substitutionsl15l2, a52d.

2. Early-time behavior

Pickingh050, K251 in Eqs.~199! and ~200!, we have,
ash→0,

f~h!→f0exp$2@l2~d21!#1/~12d!ln1/~12d!h% , ~203!

a2~h!→
A

f0
hexp$@l2~d21!#1/~12d!ln1/~12d!h% . ~204!

We know 0,d,1 and hence 1/(12d).1 anda2(h) will
be dominated by the exponential factor ash→0, and hence
a→0. Integrating and invertinga(h), we obtain

h~ t !.expH 212dln12d~2t !

l2~d21! F113S 22d

l2
D ln2d~2t !G J ,

~205!

where t→2` as h→0. Using this relation the early-time
behavior is

f~ t !→f0t
22expH 23S 212d

l2~12d! D ln12d~2t !J , ~206!

a2~ t !→A A

f0
texpH 212dln12d~2t !

l2~12d! J , ~207!

as t→2`.

3. Minima

Differentiating Eq.~200! yields

~a2!h5
A

f0
$cosh~2h!1~2l2!

1/~12d!~12d!d/~12d!lnd/~12d!

3~ tanhh!%exp$@l2~12d!#1/~12d!ln1/~12d!

3@K2tanh~h1h0!#% . ~208!

The exponential cannot tend to zero, since its argument is
always positive. If we examine the prefactor we find station-
ary points exist ath5 h* , where

cosh~2h* !52~2l2!
1/~12d!~12d!d/~12d!

3@ ln~ tanhh* !#d/~12d! . ~209!

This is not soluble analytically, although we may gain a
bound on its value by demanding that the cosh function al-
ways be greater than unity. We obtain

h*,arctanhH expS 2
l2

21/d

12d D J . ~210!

C. Vacuum solutions„k511…

Whenf lies in the range 0,f,f0, anddÞ1 we have
the exact solution

f~h!5f0exp$2@l2~d21!#1/~12d!ln1/~12d!

3@K2tan~h1h0!#% , ~211!

a2~h!5
A

2f0
sin@2~h1h0!#exp$@l2~d21!#1/~12d!ln1/~12d!

3@K2tan~h1h0!#% . ~212!

In the particular cased51, we have instead

f~h!5f0exp$2K2
2l2tan2l2~h1h0!% , ~213!

a2~h!5
A

2f0
sin@2~h1h0!#exp$2K2

2l2tan2l2~h1h0!% .

~214!
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D. Radiation solutions „k50…

Fixing the origin of conformal time in Eqs.~22! and~21!
such that 2Gh05A, we obtain the exact results fordÞ1:

f~h!5f0expH 2@l2~d21!#1/~12d!

3 ln1/~12d!FK2U h

h12h0
UGJ , ~215!

a2~h!5
G

f0
h~h12h0!expH @l2~d21!#1/~12d!ln1/~12d!

3FK2U h

h12h0
UG J , ~216!

In the special case ofd51, we have the exact relations

f~h!5f0expF2U K2h

h12h0
U2l2G , ~217!

a2~h!5
G

f0
h~h12h0!expFU K2h

h12h0
U2l2G . ~218!

To ensurea2.0, we requireh(h12h0).0 and the modu-
lus signs in the above expressions can be dropped.

1. Late-time behavior

The asymptotic behavior may be obtained from Eqs.~98!
–~100!, by applying the transformationsa→2d, l1→l2.
WhendÞ1 Eq.~215! serves to bound the allowed parameter
values in order thatf→f0 ash→`. We can see that we
required<1 andK251, delimiting the allowed range ofd
to 1/4,d,1. We takel2h0.0 to ensure both sides of Eq.
~22! exist on the correct domains. Examining Eq.~217!, we
see that whend51 there is no nontrivial choice ofK2 which
permitsf→f0 at late times. Therefore, we exclude it from
further analysis.

2. Early-time behavior

At early times whendÞ1 the behavior is harder to ascer-
tain and we need to make use of logarithmic approximations.
From Eq.~217!, by demanding thatfP(0,f0), we see that
the lower limit ofh occurs as

~ i! h→0 , l2.0, h0.0 ~219!

or

~ ii ! h→22h0 , l2,0, h0,0 . ~220!

Case~i! gives

a~h!.h1/2expH 12 @l2~d21!#1/~12d!ln1/~12d!S h

2h0
D J ,

~221!

which, for the range of values ofd to which we are confined,
is dominated by the exponential at smallh. Integrating this
expression and inverting approximately then leads to

h~ t !52h0expH 2
22d

l2~12d! F ln~2t !13
22d

l2~12d!

3 ln12d~2t !G12dJ , ~222!

and sot→2` ash→0. The field and the metric are then
given by

f~ t !.t22expH 3 212d

l2~d21!
ln12d~2t !J , ~223!

a~ t !.texpH 212d

l2~12d!
ln12d~2t !J , ~224!

as t→2`. Case~ii ! can be modeled by applying the trans-
formations:h0→2h0, h→h12h0, l2→2l2, in this or-
der, to Eqs.~222!–~224!.

3. Minima

Since the scale-factor is infinite at early-times, we know
there must exist at least one minimum in its evolution, in
order that we obtain general-relativistic expansion at late
times. Differentiating Eq.~216!, we find

~a2!h5
2G

f0
Fh1h01h0~2l2!

1/~12d!~12d!d/~12d!

3 lnd/~12d!S h

h12h0
D G

3expH @l2~d21!#1/~12d!ln1/~12d!S h

h12h0
D J .

~225!

For the parameter choices we are confined to, the exponen-
tial factor in the above expression is a monotonic function,
existing in the range (1,̀ ). Thus we search for zeros of the
prefactor, finding them to exist ath* , where

h*1h01h0~2l2!
1/~12d!~12d!d/~12d!

3 lnd/~12d!S h*
h*12h0

D50 , ~226!

which is nonanalytic and must be solved numerically for
particulard,l2, andh0.

E. Radiation solutions „k521…

For the negatively-curved models withdÞ1 we have ex-
actly
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f~h!5f0expH @l2~d21!#1/~12d!

3 ln1/~12d!FK2U Gtanh~h1h0!1~G21A2!1/22A

Gtanh~h1h0!1~G21A2!1/21A UG J , ~227!

a2~h!5
1

2f0
†2G1~G21A2!1/2sinh@2~h1h0!#‡

3expH 2@l2~d21!#1/~12d!

3 ln1/~12d!FK2U Gtanh~h1h0!1~G21A2!1/22A

Gtanh~h1h0!1~G21A2!1/21A UG J . ~228!

Whend51 these become

f~h!5f0expH 2K2
2l2U Gtanh~h1h0!1~G21A2!1/22A

Gtanh~h1h0!1~G21A2!1/21A U2l2J , ~229!

a2~h!5
1

2f0
$2G1~A22G2!1/2e2~h1h0!%expHK2

2l2U Gtanh~h1h0!1~G21A2!1/22A

Gtanh~h1h0!1~G21A2!1/21AU
2l2J . ~230!

1. Late-time behavior

The late-time behavior may be derived from the Theory 1
solutions, by the simultaneous transformationsl1→l2,
a→2d. WhendÞ1, Eqs.~125! and ~126! requireAl2.0
andd,1 to ensure late-time approach to GR. Whend51,
there exists no value ofK2 that will admit a tendency off to
f0 at largeh, and for this reason we pursue these models no
further.

2. Early-time behavior

We make the simplifying choice for the origin ofh time:

e2h05SA1G

A2G D 1/2 . ~231!

Equation~227! for the dÞ1 solution then becomes

f~h!.f0expH 2Fl2~d21!lnF S G1A

A DhG G1/~12d!J ,

~232!

ash→0. Whenl2.0, f→0 ash→0. Whenl2,0, how-
ever, there only exist solutions when (21)1/(12d) is real. For
the limiting form of the solution, we find

h~ t !}t2/3 , ~233!

f~ t !}expH 2F2l2

3
~d21!lntG1/~12d!J , ~234!

a~ t !}t1/3 , ~235!

ash, and hencet, tend to zero.

3. Minima

We define

C[
e2h21

e2h2e24h0
, ~236!

such that

~a2!h5
1

f0
H ~A22G2!1/2cosh@2~h1h0!#

1†2G1~A22G2!1/2sinh@2~h1h0!#‡~2l2!
1/~12d!

3~12d!d/~12d!Fe2h~12e24h0!

~e2h2e24h0!2 G lnd/~12d!CJ
3exp$@l2~d21!#1/~12d!ln1/~12d!C% . ~237!

At a stationary point in the evolution of the scale-factor we
require the expression on the right-hand side of Eq.~237! to
vanish. Since a zero of the exponential would require
f→`, which is outside our range of consideration, we
search for zeros of the prefactor. Minima exist ath* , given
by the implicit formula

~A22G2!1/2cosh@2~h*1h0!#1†2G1~A22G2!1/2

3sinh@2~h*1h0!#‡~2l2!
1/~12d!~12d!d/~12d!

3Fe2h
* ~12e24h0!

~e2h
*2e24h0!2 G lnd/~12d!S e2h

*21

e2h
*2e24h0D50 . ~238!
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F. Radiation models„k511…

For the closed models withdÞ1 we have

f~h!5f0expH 2@l2~d21!#1/~12d!ln1/~12d!

3FK2UGtan~h1h0!1~G21A2!1/22A

Gtan~h1h0!1~G21A2!1/21A UG J ,
~239!

a2~h!5
1

2f0
„G1~G21A2!1/2sin@2~h1h0!#…

3expH @l2~d21!#1/~12d!ln1/~12d!

3FK2UGtan~h1h0!1~G21A2!1/22A

Gtan~h1h0!1~G21A2!1/21A UG J ,

~240!

and whend51 these become

f~h!5f0expH 2expS 2l2lnFK2U Gtan~h1h0!1~G21A2!1/22A

Gtan~h1h0!1~G21A2!1/21A UG D J , ~241!

a2~h!5
1

2f0
„G1~G21A2!1/2sin@2~h1h0!#…expH expS 2l2lnFK2U Gtan~h1h0!1~G21A2!1/22A

Gtan~h1h0!1~G21A2!1/21A UG D J . ~242!

G. Perfect-fluid solutions „k50…

Whenf→f0 from above, i.e.,fP(f0 ,`) the approach
of Theory 2 to the general relativistic limit can be accurately
modeled using the theory defined by Eq.~138! with H.0,
B.1. Recall Eq.~152!:

2v~f!13→
423g

3~22g!2
~12B!2

B
H1/Bln2~B11!/BS f

f0
D ,

~243!

asf→f0. Thus we can deduce the late-time evolution of
Theory 2 by enforcing the relations on the perfect-fluid so-
lutions presented in Sec. V

H5F3B2~22g!2~2d21!

4~423g!~d21!2 G1/~2d21!

, ~244!

B5
1

2d21
. ~245!

whenf→f0 from above. Theory 2 can only tend to GR at
late times withf going tof0 from above if 1/2,d,1, as
follows from the constraintB.0. Whenf→f0 from below
the behavior of the coupling is given by Eq.~160!:

2v~f!13→
~423g!

3~22g!2
4H21/B

B
ln~12B!/BS f

f0
D , ~246!

The late-time behavior of Theory 2 whenf is in the range
fP(0,f0) is then given by Eqs.~138!–~175! under the sub-
stitutions

H5F 3~22g!2B2

4~423g!~122d!G
1/~2d21!

, ~247!

B5
1

122d
. ~248!

The boundB,0 leads to the constraintd.1/2, hence there
exists a wide spectrum of models with 0,g,4/3 in which
f→f0 from below.

VII. THEORY 3: 2 v„f…135B3z12„f/f0…
bz21, b>0, B3>0

const

For this choice of the coupling function, we find

E ~2v13!1/2

f
df52

AB3

b
lnU 11Au3

12Au3
U2A3lnK3 ,

~249!

where 0,f,f0 and

u3512S f

f0
D b

. ~250!

A. Vacuum solutions „k50…

Starting with the flatk50 models withfP(0,f0), we
obtain

12Au3
11Au3

5~K3h!l3b , ~251!

with l35A3/B3 and fixing h050. Using Eq.~19! we can
then deduce the evolution of the field and the metric to be

f~h!5
41/bf0~K3h!l3

@11~K3h!l3b#2/b
, ~252!

a2~h!5
AK3

2l3

41/bf0
h12l3@11~K3h!l3b#2/b . ~253!

1. Late-time behavior

Examining the form of Eq.~252! we see that there is no
choice ofK3 for whichf→const at largeh, precluding any
possible approach to GR at late times. In spite of this, we
find for the asymptotic behavior
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f~h!→41/bf0K3
2ul3uh2ul3u , ~254!

a2~h!→
AK3

ul3u

41/bf0
h11ul3u . ~255!

At late times we find

h~ t !→F S 31ul3u
2 D S 41/bf0

AK3
ul3u D 1/2G2/~31ul3u!

t2/~31ul3u! ,

~256!

f~ t !→S 41/bf0

K3
ul3u D 3/~31ul3u!

3S 31ul3u
2A1/2 D 2[ ~2ul3u)#/~31ul3u!]

t2[ ~2ul3u)#/~31ul3u!] ,

~257!

a~ t !→SAK3
ul3u

41/bf0
D 1/~31ul3u!

3S 31ul3u
2 D ~11ul3u!/~31ul3u!

t ~11ul3u!/~31ul3u! .

~258!

Since there is no late-time approach to GR, we do not pursue
the early-time behavior or probe for the existence of minima
in these models.

B. Vacuum solutions„k521…

Similarly, for thek521 cases we have

12Au3
11Au3

5K3
l3btanhl3bh , ~259!

and convergence to GR ash→` demandsK351. By direct
comparison with the solution for flat models we obtain the
exact results for the evolution off anda

f~h!5
41/bf0tanh

l3h

~11tanhl3bh!2/b
, ~260!

a2~h!5
A

2b12/bf0
sinh~2h!

~11tanhl3bh!2/b

tanhl3h
. ~261!

1. Late-time behavior

Asymptotically, these relationships tend to the pair

f~h!→f0@12l3
2be24h# , ~262!

a~h!→
1

2
A A

f0
ehF11

l3
2b

2
e24hG , ~263!

ash→`, and we find

h~ t !. lnF2Af0

A
tS 11

A2l3
2b

96f0
2 t24D G , ~264!

leading to

f~ t !→f0F12
A2l3

2b

16f0
2 t24G , ~265!

a~ t !→tF11
A2l3

2b

24f0
2 t24G , ~266!

as t→`, and so there is power-law approach to the Milne
universe of GR at late times.

2. Early-time behavior

Settingh050, we can expand Eqs.~260! and~261! about
h50. We find

f~h!.41/bf0h
ul3u , ~267!

a2~h!.421/b
A

f0
h12ul3u . ~268!

The latter of these leads to the early-timeh(t) relation,

h~ t !52[2~12b!]/[ b~32ul3u!] S f0

A D 1/~32ul3u!

3~32ul3u!2/~32ul3u!t2/~32ul3u! . ~269!

Studying the form of the exponent in Eq.~269! reveals that
when ul3u,3, t→0 ash→0 and whenul3u>3, t→2` as
h→0. The early-time evolution of the universe as a function
of t is then given by

f~ t !→2[2~32ul3ub!]/[ b~32ul3u!]f0
3/~32ul3u!Aul3u/~ ul3u23!

3~32ul3u!2ul3u/~32ul3u!t2ul3u/~32ul3u! , ~270!

a~ t !→2[b~ ul3u21!22]/[b~32ul3u!] S Af0
D 1/~32ul3u!

3~32ul3u!~12ul3u!/~32ul3u!t ~12ul3u!/~32ul3u! ,

~271!

as t→0, 2` accordingly. Whenul3u53, the t-dependent
evolution is given by

h~ t !→expF21/bAf0

A
tG , ~272!

f~ t !→41/bf0expF3.21/bAf0

A
tG , ~273!

a~ t !→221/bA A

f0
expF221/bAf0

A
tG , ~274!

as t→2`.

3. Minima

Differentiating Eq.~261!, we find

~a2!h5
a2

sinh~2h! Fcosh~2h!1
2l3

tanh2l3bh11
2l3G .

~275!
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At early times, i.e., ash→0, a2→0 if ul3u,1. Since
sinh(2h).2h ash→0, Eq. ~268! implies

~a2!h}h2ul3u@•••# , ~276!

as h→0, and thus the power-law prefactor in (a2)h can
never vanish at early times. The fieldf evolves monotoni-
cally, by Eq. ~17!, and tends to a constant at late times,
which guarantees thatfh cannot diverge during the subse-
quent evolution. Equation~17!, in conjunction with the
bound 0,f,f0, then ensures that there can be no further
zeros ofa as the universe evolves. Equation~275! ensures
(a2)h is nonzero ash→`. In general, stationary points in
the evolution ofa arise ath* , given by

cosh~2h* !1
2l3

tanh2l3bh*11
2l350 , ~277!

obtained from the square-bracketed factor in Eq.~275!. Re-
membering the positivity of both cosh(2h* )21 andh* , we
can derive the interesting result that whenul3u.1 the loca-
tion of the minimum is constrained by

h*,arctanhS l321

l311D
1/l3b

, ~278!

and whenul3u<1 stationary points do not exist.

C. Vacuum solutions„k511…

Finally, we note the existence ofk511 closed-universe
solutions, governed by

12Au3
11Au3

5K3
l3btanl3bh . ~279!

This leads to the exact solution, in conformal time,

f~h!5
41/bf0K3

l3tanl3h

~11K3
l3btanl3bh!2/b

, ~280!

a2~h!5
A

2b12/bf0
sin~2h!

~11K3
l3btanl3bh!2/b

K3
l3tanl3h

.

~281!

D. Radiation solutions „k50…

The behavior of thek50 radiation models for this choice
of the coupling function is determined by

lnS 12Au3
11Au3

D 5l3b lnF K3h

h12h0
G , ~282!

where we have exploited our freedom inh0 to set
A52Gh0 andu3 is as defined by Eq.~250!. We also require
K351, so thatf→f0 as h→`. Using Eq. ~21! we can
calculate the exact evolution of these models

f~h!541/bf0S h

h12h0
D l3F11S h

h12h0
D l3bG22/b

,

~283!

a2~h!5
G

41/bf0
h12l3~h12h0!

11l3

3F11S h

h12h0
D l3bG2/b . ~284!

1. Late-time behavior

At late times these equations may be approximated by

f~h!→f0F12l3
2b

h0
2

h2G , ~285!

a~h!→A G

f0
hF11

h0

h
1
1

2
~l3

2b21!
h0
2

h2G . ~286!

It is necessary to extend the computation ofa(h) to second-
order since the first-order contributions will later vanish.
Equation~286! allows asymptotic calculation of conformal
time as a function of cosmic time,

h~ t !→A2S f0

G D 1/4t1/2F12
h0

A2 S G

f0
D 1/4t21/2

2
h0
2

8
A G

f0
~l3

2b21!
lnt

t G , ~287!

and hence there is power-law approach to the GR solution

f~ t !→f0F12
l3
2b

2
h0
2A G

f0
t21G , ~288!

a~ t !→A2S G

f0
D 1/4t1/2F12

h0
2

8
A G

f0
~l3

2b21!
lnt

t G ,
~289!

as t→`.

2. Early-time behavior

We now probe the early-time behavior of these models,
finding two distinct cases. There exist zeros off ash→0
andh→22h0. Since we requiref.0 during the portion of
the evolution in which we are interested, and ultimately at
late times, we shall take our early-time limit to be the most
recent of these zeros. We know from Eq.~17! that

fha
25l3AU12S f

f0
D bU1/2 , ~290!

and sincefP(0,f0) and f→f0 at late times we deduce
that fh.0. From Eq.~290!, we derivel3A.0. We have
fixed A52Gh0, with G.0, so we may also sayl3h0.0,
i.e., whenl3.0, h→0 is the more recent zero off and
whenl3,0,h→22h0 is most recent. Whenl3.0 we find

f~h!→41/bf0S h

2h0
D l3

, ~291!

a2~h!→
A

41/bf0
~2h0!

l3h12l3 , ~292!
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as h→0. We can model thet-parametrized early-time be-
havior by Eqs.~269!–~271!, for thek521 vacuum models,
via the transformation

f0→
f0

~2h0!
l3
. ~293!

Whenl3,0

f~h!→41/bf0S h12h0

22h0
D 2l3

, ~294!

a2~h!→2
A

41/bf0
~22h0!

2l3~h12h0!
11l3 , ~295!

as h→22h0. Note that bothA and h0 are negative here.
The behavior as a function oft can be gleaned from Eqs.
~269!–~271!, by the redefinitions

f0→f0~22h0!
l322 , ~296!

h→h12h0 , ~297!

A→2A . ~298!

3. Minima

Differentiating Eq.~284! yields

~a2!h5
a2

h~h12h0!
F2h0~11l3!12h

2
4l3h0

11@h/~h12h0!#
l3bG . ~299!

If the early-time limit is given byX→0 whereX is either
h or h12h0, then

~a2!h}X2ul3u@•••# , ~300!

and thus never vanishes at early times. From Eq.~290! we
deduce that when 0,f,f0, f is bound to evolve mono-
tonically. The necessity that it tend to a constant at late times
then occludes the possibility of it diverging after the early-

time regime. The non-zero right-hand side of Eq.~290! on
the interval 0,f,f0 then guarantees thata is non-zero.
Consequently, the stationary points in the evolution are ob-
tained by setting the square-bracketed factor in Eq.~299! to
zero. They lie ath* where

2l3h0

@h* /h*12h0!]
l3b11

2h*5h0~11l3! , ~301!

which must be solved numerically for the particular values of
b, l3, andh0.

E. Radiation solutions „k521…

When the curvature is negative, the evolution is deter-
mined by the equation

12Au3
11Au3

5K3
l3bU Gtanh~h1h0!1~A22G2!1/22A

Gtanh~h1h0!1~A22G2!1/21A Ul3b

,

A2>G2 , ~302!

with u3 andl3 as defined earlier. We make the simplifying
choice ofh0:

tanh~2h0!5
G

A
, ~303!

which ensures that the early-time behavior~i.e., f→0) oc-
curs ath50. To recover GR at late times, we fix

K35
G1~A22G2!1/21A

G1~A22G2!1/22A
. ~304!

Substituting Eq.~303! into thek521 right-hand side of Eq.
~21! we find

y~h!5
G

2
@cosh~2h!21#1

A

2
sinh~2h! . ~305!

Last, we note that withh0 given by Eq.~303!, the expression
within the moduli on the right-hand side of Eq.~302! is
monotonically increasing from zero and thus positive. Drop-
ping the moduli, we find

f~h!5
41/bf0K3

l3$@Gtanh~h1h0!1~A22G2!1/22A#/@Gtanh~h1h0!1~A22G2!1/21A#%l3

@11K3
l3b$@Gtanh~h1h0!1~A22G2!1/22A#/@Gtanh~h1h0!1~A22G2!1/21A#%l3b#2/b

, ~306!

a2~h!5
421/bK3

2l3

2f0
@G@cosh~2h!21#1Asinh~2h!#

3
†11K3

l3b$@Gtanh~h1h0!1~A22G2!1/22A#/@Gtanh~h1h0!1~A22G2!1/21A#%l3b
‡

2/b

$@Gtanh~h1h0!1~A22G2!1/22A#/@Gtanh~h1h0!1~A22G2!1/21A#%l3
. ~307!
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1. Late-time behavior

As h→` we find

f~h!→f0F12
l3
2A2b

A22G2 SA2G2~A22G2!1/2

A1G2~A22G2!1/2
D 2e24hG ,

~308!

a2~h!→
G1A

4f0
e2hF12

2G

G1A
e22hG , ~309!

ash→`. These lead to thet-dependent behaviors:

h~ t !→ lnF2A f0

G1A
tS 12

G

4f0
t22D G , ~310!

f~ t !→f0F12
l3
2A2b

16f0
2 S A1G

A2G D
3S A2G2~A22G2!1/2

A1G2~A22G2!1/2D 2t24G , ~311!

a~ t !→tF12
G

4f0
t22G , ~312!

as t→`. Again, we see the approach of this model to the
Milne universe ast increases.

2. Early-time behavior

Analyzing the behavior in the neighborhood of the last
zero off ~i.e., aroundh50) we obtain a description of the
early-time behavior. We find

f~h!→41/bf0K3
l3FG

A
AA2

G2 21SAG 2AA2

G2 21D Gl3

hl3 ,

~313!

a2~h!→
421/bAK3

2l3

f0
FG

A
AA2

G2 21

3SAG 2AA2

G2 21D G2l3

h12l3 , ~314!

with K3 as given by Eq.~304!. The reality condition
A2.G2 and the inequalityl3A.0 @from Eq. ~290!, using
fh.0] ensure all of the prefactors in the above relations are
real and positive. We obtain thet-parametrized behavior at
early times by applying the substitutions

ul3u→l3 , ~315!

f0→f0K3
l3FG

A
AA2

G2 21SAG 2AA2

G2 21D Gl3

,

~316!

to Eqs.~269!–~273!.

3. Minima

If l3.1 then the scale factor diverges at early times. For
such models to look like GR ast→` requires the presence
of a minimum. Using Eq.~27! we find

cosh@2~h*1h0!#5l3cosh~2h0!

3H 12K3
l3b$@Gtanh~h*1h0!1~A22G2!1/22A#/@Gtanh~h*1h0!1~A22G2!1/21A#%l3b

11K3
l3b$@Gtanh~h*1h0!1~A22G2!1/22A#/@Gtanh~h*1h0!1~A22G2!1/21A#%l3b J ,

~317!

definesh* , where the minimum is situated. Although this
expression is not soluble analytically, we may obtain bounds
on the value ofh* . Equation~27!, for Theory 3, may be
written

Gsinh~2h* !1Acosh~2h* !5l3Au3
1/2 . ~318!

The bounds onu3, namelyu3P(0,1) then imply

0,cosh@2~h*1h0!#,l3cosh~2h0! , ~319!

after using Eq.~303!. The cosh function is greater than unity
and monotonically increasing when its argument is positive,
allowing us to strengthen the above inequality to

0,h*,
1

2
arccosh@l3cosh~2h0!#2h0 , ~320!

where the lower limit follows from the positivity ofh.

F. Radiation solutions „k511…

For the positively-curved models (k511) we obtain

12Au3
11Au3

5FK3U Gtan~h1h0!1~G21A2!1/22A

Gtan~h1h0!1~G21A2!1/21A UGl3b

[s~h! . ~321!

This leads to the conformal time-parametrized set of equa-
tions

f~h!5f0F 4s~h!

@11s~h!#2G
1/b

, ~322!
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a2~h!5
1

2f0
F @11s~h!#2

4s~h! G1/b$G1~G21A2!1/2

3sin@2~h1h0!#% . ~323!

G. Perfect-fluid solutions „k50…

We examine the late-time form of the solutions resulting
from a scalar-tensor cosmology driven by the third type of
coupling function using the theory first studied by Barrow
and Mimoso@33# and defined by

f~j!5f0exp~PjQ! , ~324!

whereP andQ are constants. This choice off(j) arises
from the generating function

g~j!5
1

PQ
j22Q , ~325!

and results in the scale-factor

a3~22g!~j!5
a0
3~22g!

PQf0
j22Qexp~2PjQ! . ~326!

Positivity of the left-hand side of Eq.~326! requires that
j22QPQ.0. Hence, we may derive

f ~j!5
1

PQ
j22Q1

423g

4
j22D , ~327!

and

2v~j!13

5
423g

3~22g!2
†~22Q!/PQ] j12Q1@~423g!/2#j‡2

†~1/PQ!j22Q1@~423g!/4#j2‡
.

~328!

Again, at late times we demandf→f0. This can be realized
as j→0 whenQ.0 or asj→` whenQ,0. WhenP50
and/orQ50 we have GR.

1. Late-time behavior

The limiting forms of the coupling function asj→0 when
Q.0, and asj→` whenQ,0, are identical:

2v~j!13→
423g

3~22g!2
~22Q!2

PQ
j2Q . ~329!

In this case, Eq.~32! is

dt.S 22Q

22g D a0
3~g21!

3~PQf0!
~g21!/~22g!

3S 423g

PQ D 1/2j~4g242Qg!/[2~22g!]

3expF2PS g21

22g D jQGdj , ~330!

asjQ→0. This expression may be integrated approximately
for small jQ, giving

t~j!.S21j [g~22Q!]/[2 ~22g!]F12PS g21

22g D jQG , ~331!

whereS is defined by

S[
3g

2

~PQf0!
~g21!/~22g!

a0
3~g21! S PQ

423g D 1/2 . ~332!

Ignoring the square brackets in Eq.~331!, we obtain the
lowest-order inversion of this expression

j~ t !.S[2~22g!]/[ g~22Q!] t [2~22g!]/[ g~22Q!] . ~333!

Introducing the corrections associated with the terms in the
square bracket leads, at the next-order, to

j~ t !.S[2~22g!]/[ g~22Q!] t [2~22g!]/[ g~22Q!]F11
2P

g S g21

22QD
3S[2Q~22g!]/[ g~22Q!] t [2Q~22g!]/[ g~22Q!] G . ~334!

From this we can see thatj→0 as t→` if Q.2. As
j→`, t→` iff Q,2; the conditionf→f0 as j→` re-
quiresQ,0, we thus deduce that the range of theories de-
marcated by 0,Q,2 will not approach GR ast→`. Sub-
stituting the abovej(t) into Eqs.~324! and ~326! we obtain
the t-dependent evolution

f~ t !→f0@12PS[2Q~22g!]/[ g~22Q!] t [2Q~22g!]/[ g~22Q!] # ,
~335!

a~ t !→
a0S

2/3g

~PQf0!
1/[3~22g!] t

2/3g

3F12
1

3
PS[2Q~22g!]/[ g~22Q!] t [2Q~22g!]/[ g~22Q!] G ,

~336!

as t→`. The corresponding late-time evolution of the cou-
pling as a function off is given by

2v~f!13→
423g

3~22g!2
~22Q!2

Q

1

ln~f/f0!
. ~337!

When Q.0 the requirement thata be positive ensures
PjQ.0. From Eq.~32! we see that forQ.2, dj/dt,0, i.e.,
j→0 from above and henceP.0. Equation~324! confirms
thatf→f0 from above whenP andQ lie in these domains.
Conversely, whenQ,0 the requirementa.0 implies
PjQ,0. At late timesj→` in these models and soP,0
andf approaches the GR value,f0 , from below.

We remarked earlier that theQ50 case gives pure GR at
all times. WhenQ52 Eq. ~328! for 2v13 does not ap-
proach the limit given in Eq.~329! asj→0, instead we have

2v~j!13→
2~423g!3P

12~22g!2
j2 , ~338!
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and 2v13 decays to zero asj→0. The range ofQ incom-
patible with current observations, that GR is a good approxi-
mation to the time description of gravitation today, is then
0,Q<2.

2. Early-time behavior

WhenQ.2, P.0 the scale-factora approaches zero as
j→6` and

2v13→
~423g!2

3~22g!2
, ~339!

i.e., BD theory. The square root of this limit is positive and
so it follows from Eq.~32! thatdj/dt must also be positive,
demanding thatj approach2`. The positivity ofa, Q and
P imply (21)Q.0 and hencef→` asj→2`, a→0.

WhenQ,0, a necessary condition for the scale-factor to
approach zero isj→0 and in this limit we recover BD
theory again, the coupling given by Eq.~339!. As before
A2v13.0, dj/dt.0 andj→0 from above. Positivity of
a thus requiresPQ.0, which is guaranteed from the late-
time behavior. However, fora to converge to zero asj→0
requiresP.0 and henceQ.0. This direct contradiction en-
sures thata(j) will be nonsingular whenQ,0. Explicitly,
a(j) possesses a minimum at

j*5S 22Q

PQ D 1/Q . ~340!

For reasons given in Sec. V G 2 we refrain from presenting
the explicit form of the solution here.

3. Dust models

The late-time evolution of theg51 models is, from Eqs.
~335! and ~336!, that

f~ t !→f0F12PS 3

2~PQ!1/2D
2Q/~22Q!

t2Q/~22Q!G , ~341!

a~ t !→a0S 9

4f0~PQ!2D
1/3

t2/3

3F12
P

3 S 3

2~PQ!1/2D
2Q/~22Q!

t2Q/~22Q!G , ~342!

as t→`.

4. Inflationary models

As was the case in Sec. V G 4, the solutions wheng50
are qualitatively different to their more general counterparts,
Eqs.~335! and ~336!. In this case Eq.~330! is

dt.
~22Q!f0

1/2

3a0
3 j21expFP2 jQGdj , ~343!

as jQ→0, which integrates approximately in this limit to
give

t~j!.
~22Q!f0

1/2

3a0
3 lnjF11

PjQ

2Qlnj G . ~344!

The first-order inversion of this at larget gives

j~ t !.expS 3a0
3t

~22Q!f0
1/2D , ~345!

which arises by neglecting the square brackets on the right of
Eq. ~344!. The next-order correction to this result is

j~ t !.S 3a0
3t

~22Q!f0
1/2D F12

P

2Q
expS 3Qa0

3t

~22Q!f0
1/2D G , ~346!

as t→`. Substituting this into Eqs.~324! and ~326! yields

f~ t !→f0F11PexpS 3Qa0
3t

~22Q!f0
1/2D G , ~347!

a~ t !→
a0

~PQf0!
1/6expS a0

3t

2f0
1/2D

3F12
P~21Q!

12Q
expS 3Qa0

3t

~22Q!f0
1/2D G . ~348!

5. Connection to the parameters of Theory 3

At late times we have for all of the models considered in
this section

2v~f!13→
423g

3~22g!2
~22Q!2E

Q F S f

f0
D E21G21

,

as f→f0 , ~349!

→
423g

3~22g!2
~22Q!2E

~2Q! F12S f

f0
D EG21

,

~350!

whereE is a constant. Whenf.f0 andQ.0 and we can
model the form of the coupling as a functionf for Theory 3
by Eq. ~349!. Whenf,f0 andQ,0 we can use Eq.~350!
for the coupling as a function off. This leads to the consis-
tency relations

~22Q!2

sgn~Q!
5
3~22g!2

423g

B3

b
, ~351!

E5b , ~352!

connecting Theory 3 as defined in Sec. IV with the solutions
presented here.

6. Exact solution

We note the existence of an exact solution, defined by the
choice

f~j!5f0~12j22n! , ~353!

wheren is a constant. This leads, by Eq.~43!, to

g~j!5
1

n22
jn~12j22n! , ~354!

and by Eq.~45! to
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a3~22g!5
a0
3~22g!

~n22!f0
jn . ~355!

The exact form of coupling driving this behavior is given by
Eq. ~50! as

2v~j!135
423g

3~22g!2~n22!

@njn2222J#2

jn222J
, ~356!

or, using Eq.~353!,

2v~f!135
423g

3~22g!2~n22!

@n~12f/f0!
2122J#

~12f/f0!
212J

,

~357!

where

J511
~3g24!~n22!

4
. ~358!

VIII. DISCUSSION

In this paper we have supplied a comprehensive study of
isotropic cosmological models in scalar-tensor theories, ex-
tending the earlier work of Refs.@12# and @33#. We have
explored the behavior of isotropic cosmological models in
these theories using a combination of two basic mathemati-
cal techniques introduced in Sec. III. In the case where the
trace of the energy-momentum tensor of matter vanishes
~i.e., vacuum or radiation! exact solutions can be found di-
rectly for all curvatures if the requisite integrals can be per-
formed. Asymptotic forms are easily derived in all cases.
This technique exploits the conformal relationship between
scalar-tensor theories and general relativity that exists when
the trace of the energy-momentum tensor vanishes. How-
ever, when the energy-momentum tensor is not trace-free the
conformal equivalence disappears and the indirect method of
Barrow and Mimoso must be used to find exact solutions.
This only works for zero curvature cosmological models but
includes the important cases of allp50 universes and infla-
tionary universes with2r<p<2 1

3r. It also permits a
simple means of comparing the behavior of cosmological
solutions in any scalar-tensor theory with those of Brans-
Dicke theory at early and late times. Since this procedure
does not commence with the specification ofv(f), but with
a choice of generating function that produces the entire so-
lution by nonlinear transformations, it is necessary to build
up intuition by a thorough exploration of the results of em-
ploying particular classes of generating function. In particu-
lar, we were able to find generating functions which gave
rise to dust universes in scalar-tensor theories for which the
exact radiation and vacuum solutions can be found exactly
by the direct method. This provides us with descriptions of
scalar-tensor cosmologies throughout the entire radiation and
dust and vacuum dominated eras. We were also able to find
a wide range of new inflationary universe solutions with
p52r in these theories.

In Sec. IV we introduced three classes of scalar-tensor
theory which permit asymptotic approach to general relativ-
ity at late times whenf→f0. The parameters defining the
functional form ofv(f) which specify these gravity theories

can be restricted further if we require the theory to approach
general relativity in the weak-field limit (v→` and
v8v23→0), and describe expanding universes. For each of
these general classes of theory we have determined the be-
havior of flat, open, and closed universes by a combination
of exact solutions and asymptotic studies of the early and
late-time behaviors.

The catalogue of solutions and asymptotes that we have
found will enable scalar-tensor theories to be constrained in
new ways because they enable complete cosmological histo-
ries to be constructed through initial vacuum, radiation, dust,
and final vacuum-dominated eras. The standard sequence of
physical processes responsible for events like monopole pro-
duction, inflation, baryosynthesis, primordial black hole for-
mation, electroweak unification, the quark-hadron phase
transition, and nucleosynthesis can be explored in the cos-
mological environment provided by scalar-tensor gravity
theories. The constraints derived from these considerations
can be compared directly with those imposed by weak-field
tests in the solar system and observations of astrophysical
objects like white dwarfs and the binary pulsar. The ubiquity
of scalar fields in current string theories of high-energy phys-
ics has led to continued interest in the detailed behavior of
scalar-tensor gravity theories and their associated cosmolo-
gies. In this paper we have displayed some of the diversity
that these cosmologies possess together with a collection of
methods for solving other specific theories that may be mo-
tivated by future developments in high-energy physics.
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APPENDIX: CONFORMAL EQUIVALENCE

The action for trace-free matter is conformally invariant
and we may exploit this fact to study the behavior of vacuum
and radiation models withf.f0. Under a conformal trans-
formation to a new metricg̃ab, with components

gab5f22g̃ab, ~A1!

and a redefinition of the field

f̃5f̃0S f0

f D , ~A2!

the action becomes

SG5E d4xA2g̃ F2f̃R̃1
v~f0f̃0 /f̃ !

f̃
g̃ab]af̃]bf̃G ,

~A3!

neglecting overall constant factors. When 0,f,f0 the
coupling function for Theory 2, as defined in Sec. IV, is

2v~f!135B2F2 lnS f

f0
D G22d

, ~A4!
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and so

2v~f0f̃0 /f̃ !135B2F2 lnS f̃0

f̃
D G22d

, ~A5!

with f̃.f̃0 when 0,f,f0. Equation~A5! is exactly the
form of the coupling for Theory 2 with a gravitational scalar
field f̃.f̃0. Thus we may obtain solutions whenf.f0 in
Theory 2 by applying the transformations

a→fa , ~A6!

f→
1

f
, ~A7!

in this order, to the solutions presented in Sec. VI. These are
transformations which render the form ofy in Eq. ~15! in-
variant.

Last, we remark that the asymptotic behaviors of Theories
1 and 3 whenf.f0 may also be examined in this way,
since the coupling functions for both these theories may be
approximated by logarithms asf→f0.
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