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Behavior of cosmological models with varyingG
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We provide a detailed analysis of Friedmann-Robertson-Walker universes in a wide range of scalar-tensor
theories of gravity. We apply solution-generating methods to three parametrized classes of scalar-tensor theory
which lead naturally to general relativity in the weak-field limit. We restrict the parameters which specify these
theories by the requirements imposed by the weak-field tests of gravitation theories in the solar system and by
the requirement that viable cosmological solutions be obtained. We construct a range of exact solutions for
open, closed, and flat isotropic universes containing matter with equation obﬁ%ﬁa and in vacuum. We
study the range of early- and late-time behaviors displayed, examine when there is a “bounce” at early times,
and expansion maxima in closed mod¢B80556-282(97)00704-2

PACS numbd(s): 98.80.Hw, 04.50th, 12.10-—-g

[. INTRODUCTION occasional claim that the flatness of the rotation curves dis-
played by spiral galaxies might be a signal of non-Newtonian
Cosmological models arising from theories of gravity in gravitational attraction[7]. The evidence for the “fifth
which the Newtonian gravitational “constant3 varies with ~ force” variations has not been supported by other experi-
time have a long history. They were first studied in detail inments and flat rotation curves appear as natural outcomes of
response to Dirac’s claims that a coincidence between thprotogalaxy formation in conventional gravitation theories.
values of ‘large numbers’ arising in dimensionless combinadn both cases, the deviations from conventional gravitation
tions of physical and cosmological constants could emergéeory, with constanG, would introduce a new characteris-
naturally if one of the constants involved possessed a tim§c length scale into the law of gravity with no fundamental
variation that was significant over cosmological time scaledasis other than to explain a particular set of observations.
[1]. Dirac ascribed that time variation ® and simply wrote ~Some attempts were made by Gibbons and Whif@to
the time variation into the Newtonian expressions which heldsee how simple scaling arguments might relate preferred
for constantG. Subsequently, mathematically well-posed high-energy physics scales to those observed in fifth force
gravitation theories were developed in which Einstein’sexperiments. More recently, the study of scalar-tensor grav-
theory of general relativityGR) was generalized to include a ity theories has been rejuvenated by theoretical develop-
varying G by deriving it from a scalar field satisfying a con- ments in the study of the evolutionary possibilities open to
servation equation. These scalar-tensor gravity theories, firéhe early universe.
formulated by Jordaf2], were most fully exploited by Brans ~ In a metric scalar-tensor theory of gravity the gravita-
and Dicke in 19613]. Motivated by claims that the obser- tional coupling is derived from some scalar field, so
vations of light-bending by the sun were in significant dis-G=G(¢). Historically, most interest has been focused upon
agreement with the predictions of GR, Brans and Dicke exthe first and simplest theory of this type, presented by Brans
plored the possibility that the simplest scalar-tensor theoryand Dicke[3], in which the coupling functionw(¢) is a
could provide predictions of the weak-field solar-system testgonstant. In general, the consideration of scalar-tensor theo-
in agreement with light-bending and other geological andies with nonconstanb(¢) [5,9], greatly enlarges the range
paleontological observationd]. Cosmological models could of possibleG variations and weakens the impact of observa-
be found in Brans-DickéBD) theory, but astronomical ob- tional limits accordingly. In the weak-field limit Nordtvedt
servations were unable to impose stronger limits upon therfound an expression for the observed value of the gravitation
than had been found from solar system experiments. Subséeonstant” in these theories, to leading order,[49)]
quently, the doubts regarding the compatibility between ob-
servations of solar light-bending and the predictions of GR
were removed by a fuller understanding of the uncertainties G(t)=¢1<
surrounding measurements of the solar diameter at times of
high solar surface activit}5]. This removed the one obser-
vation that called for the replacement of GR by a scalarso that
tensor theory displaying varyinG in the weak-field limit.

4+ 2w((b))
3+2w(¢))

Since that time the_re have b_een two_ observa_tions vyhich have G 3420 20" (¢)
led to renewed interest in gravity theories with non- —=— G+ ———5—=]| .
Newtonian variation inG: one was the claim that a “fifth G 442w (3+20w)

force” of Nature existed on laboratory length scales and in-

fluenced Etvos experiments as if there existed a deviationWe see that in Brans-Dicke theory, with constamtthe
from the inverse-square form of the law of gravitation in thevariation of G(t) is just inversely proportional to
nonrelativistic Newtonian regimis]; the other has been the ¢(t).Moreover, for one particular choice af( ¢),
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)= 4—3¢ G/G=0.4x10"1° yr~%: |unar laser-ranging studies of the
o(¢)= 2(p—1)" Moon’s orbit around the Eartfi37] of G/G=0.3x10 °
yr~1, and Miiler etal. [38] derive G/G<(0.1+10)

o _ . _ _ _ X 10 12 yr~L There are proposals to measure via radar the
it is possible to havé&s=0 to first order in the weak-field position of a transponder in orbit around Merc(i8g]. The
limit [11]. . o . _ranging sensitivity is claimed to be able to reach just a few
I Our ob;ervatflonal “T}'ts arle ‘E‘) m|xturedof Coir?‘)'%g'ca'centimeters which would translate into limits of order
imits, studies of astrophysical objects, and weak-field test _ - - :
of gravitation in the SOEiI’yS stem JIn Brans-Dicke theor the%'/G<.3>< 10" yr %, Most of these.hmlts(espeqallly cos-

9 S ystem. : y mological ones from nucleosynthesare uncertain if vary-
scope for significant deviations from consta@t is very ing G is coupled to the variation of other constafas].

small because of the constancy of However, if o varies The coupling function of scalar tensor theorieég) is

then it can increase with cosmic time in such a way that . .
w00 and e’ - 3—0 ast—oo so that weak-field observa- related to the parametrized post-Newtoni@PN param

tions at the present time accord well with the predictions Oteters by[10]
GR even though the theory may possess significant devia- /

® '
tions from GR predictions at very early cosmological times g=1+ +0|
[|12] predicti very y g I p=1 (3+2w)2(4+2w)—>1 0] 8e3 as w—ox,
The principal observational upper limits d8/G come 1
from many different observations. Passive radar data on the y=1- m—& as w—»,

distances to Mercury and Venyd3,14 give the limit

G/G<4x10 *yr~*. This was improved using the Mariner opservational limits on the weak-field PPN parametere
9 Mars orbiter by Anderson et al. [15] to y=1+0.002 from radio tming delays [40]:
G/G<1.5x10"*° yr~*. Andersonet al. [16] then used y~1.0002-0.002 from light deflection using very long
Mariner 10 data and radar ranging to Mercury and Venus t®aseline interferometrgVLBI ) observations of quasaf41];
obtain G/G<0.0+2.0x10 *? yr 1. Viking landers, Mars y=1%0.02 from lunar laser rangin{B8]. Future experi-
orbiters and transponders gave upper limits ofments, GPB, POINTS, and Mercury Relativity Satellite,
G/IG<3x10 Myr~1[17], G/G<2+4x10 2yr-1[18), hope to _reach sensitivities dfy—1|~3X 10*7_ [_42]._ For
and G/G< —2+10x 10~ 12 yr~1 [19]. These are made un- combinations of two IEI;N parameters determingnglimits
certain by our incomplete knowledge of the asteroid distri-Of |4'8_7_3|<5X1.0 (lU). h_ave been foun@l9]. If we
bution. Studies of the Binary pulsar PSR 19185 by take the observational limits agy—1/<0.002 and
Damour, Gibbons, and Taylof20] give a limit of |48~ 7Y~3|<0.001, then we have>498 and

G/G=—(1.10+1.07)x 10~ yr~! with uncertainties due o'

to the pulsar’s proper motion. Gravitational lensing promises >

to yield new tests, but depends upon other uncertain cosmo- (3+20)%(4+20)
logical parameterg21]. Krauss and White argue that a varia- h - -

9 i ere s evaluated at the asymptotit value here
tion in G of AG/G= 20 would influence lenses at- 1.5 and \(/DV—>w((1()ﬁ )I Hvenge we have ozlypa trﬁtxeruwﬁgkwlimit of
these studies might eventually achieve constraints of orde1rw,|<109<a,'>< 9992~’1

G./Gslo‘11 in Brans-Dicke theories. White dwarf cooling  planetary datd43] also provides a limit on the spatial
will be affected by variations i® [22],.and recently, Garat  gradient of G over solar system scales of
Berro et al. [23] gave limits, depending upon the chemical yG/G<3x 10 2°AU~L. A limit of 6G/G<10"12 on pos-
composition of the white dwarf 06/G<—(1+1)x10 '  sible spatial anisotropy o6 in the solar system has been
yr~t  for  chemically stratified models, and derived by studying the alignment of the Sun’s rotation axis
G/Gg—(?,té)}(lo_ 1 yr~1 for models with constant C/O With the direction of the solar system’s angular momentum
composition. However, these studies have theoretical unce¥ector[44], and of 6G/G<2x 10~ **from satellite and La-
tainties introduced by the quasi-Newtonian modeling of theser Geodynamics Satellitd AGEOS) laser ranging data
variation of G [24]. This is also true of attempts to constrain [45]-

G/G by measurements of the time-variation of neutron star  Prief period of interest in extended Kaluza-Klein cos-

masseg$25]. Cosmological nucleosynthesis gives limits thatmOIOgical theorie_§t46], Wh_iCh culminated in the_ir repla(_:e-
are of order/G=0.01H in Brans-Dicke theory26]. Nu- ment by superstring theori¢d7], revealed how time varia-

| thesis limits h o b btained in Bekenstei tions in any extra¥ 3) dimensions of space would manifest
cleosyninesis imits have aiso been oblained In BeKensteiN g, q ¢ through the time variation of the “constants” defined
variable mass theory{27], the Schmidt-Greiner-Heinz-

- . . : in the th i [ . th [
Muller theory of gravity[28], Kaluza-Klein and superstring in the three dimensions we observe. Over the same period,

theories29 3 | ant 31 d theori cosmologists showed growing interest in the behavior of all
.eorles[ 30, scale-covariant gravi y ]'. and theories  qcaar fields during the early stages of the universe. The time
with 2w+ 3% ¢“, which display a slow logarithmic decrease

. . variation of a field energy source in the early universe at a
in G(t) [32,33. Accetta, Kralﬁi’ anileomanelh have shownyaie sjower than the universe is expanding is a general pos-
that in generalG/G<9x10™ = yr™* [34]. Other limits  sibility only for scalar fields and has become known as

include those from solar evolutiofid5] of G/G=10"1° “slow-rolling” of the field. Typically, it produces an accel-

yr~';  lunar occultations and eclipses[36] of eration of the expansion scale factor of the universe with

<0.001,
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time: a phenomenon known as “inflatiof48]. This has led to the vacuum and radiation-dominated cases. The “indi-
to the investigation of general-relativistic cosmological mod-rect” method works only for flat universes but for any equa-
els containing a wide range of self-interacting scalar-fieldtion of state. We shall be especially interested in the vacuum,
sourceqd49], the classification of different varieties of infla- dust (=0), radiation and inflationary p=—p) cases.

tion that can result from their slow-rolling evolution, and the These techniques allow us to draw important conclusions
extraction of detailed predictions concerning the fluctuationgbout the early and late-time evolution of cosmological mod-
imprinted in the cosmic microwave background radiation byels in scalar-tensor thepries. In Sec. IV we introduce three
the spectra of gravitational waves and density perturbationgroad classes of gravity theory, defined by the form of
that emerge from a period of primordial inflation. However, ©(#), which allow distinct forms of cosmological evolution.

it has also been recognized that natural scalar fields might bEhe free parameters can be restricted to allow the theories to
provided by the scalar component of a scalar-tensor theory ggProduce the successful weak-field predictions of general
gravity [50]. Such theories possess close conformal relationtelativity and to give cosmological solutions. The cosmologi-
ships with GR plus explicit scalar fields, and although theC@l consequences of these three classes of theory are ex-
scalar field determining the strength of the gravitational couPlored systematically in Secs. V, VI, and VII. In each case

pling does not easily drive inflation it does have a significantVe are interested in determining the early and late time be-
effect upon the pace of inflation that arises when selfhaviors, and finding exact solutions which describe the dust,

interacting scalar fields are included in the universal energyt@diation, and inflationary phases of expansion. The results
momentum tensor. Salgado, Sudarsky, and Quevedo ha@e discussed in Sec. VIII.
suggested a scalar-tensor description of gravity to explain the
periodicity of galaxy count$51], finding that the mass of Il. SCALAR-TENSOR COSMOLOGIES
their gravitational scalar field can also contribute signifi-
cantly to cosmological dark matter. Following the long initial
study of BD cosmological models, Barrd&2] showed how We shall consider scalar-tensor theories of gravity defined
to generate cosmological solutions of vacuum or radiationby the action,
dominated isotropic cosmological models in any scalar-
tensor gravity theory. The method used works for any isotro- _ a, Al _ ab
pic cosmological model with an energy momentum tensor Se fd x\/_g PR+ ¢ 97 0alvd | - @)
possessing a vanishing trace. Barrow and Mim(&3j then
devised a more complicated procedure which allows soluwhereR is the curvature scalar arising from the spacetime
tions to be generated for isotropic, zero-curvature universedetric gap, g is the determinant o, ¢ is a scalar field,
with the pressure and densityp related by a perfect-fluid ando(¢) is a function determining the strength of the cou-
equation of stat@=(y—1)p, with the constanty lying in pling between the scalar field and gravity. We are working in
the range & y<4/3. In particular, they found the first dust units such that Newton’s consta@ is equal to unity. The
solutions for scalar-tensor theories more general than Bifield ¢ is the analogue 06" in GR except that here, in
together with a wide range of new inflationary solutions.contrast to Einstein’s theoryg is a dynamical quantity.
Anisotropic cosmological models arising from scalar-tensorScalar-tensor gravitational theories therefore permit histories
theories of gravitation have been studied by Mimoso andn which the value of the gravitational “constant” varies.
Wands[52]. Recently, the techniques introduced by BarrowThe simplest such case is that explored by Brans and Dicke,
and Mimoso have been used to study the asymptotic behawhere w is a constant. The action in E¢l) offers more
ior of both the isotropic and anisotropic ca$b8,54. In this  generalw(¢) theories as natural extensions to BD gravity. It
paper we are going to extend these studies to arrive at a moigthese theories that will be of primary interest in this paper.
general and systematic understanding of the behavior of isd>emanding that the first-order variations of Ef) with re-
tropic cosmological models containing matter with equationspect to¢ andg,, vanish, we derive the field equations
of state p<p/3. We will be interested in studying scalar-
tensor gravity theories which can approach general relativity , _ 1 R—_8 Tar () 1 c
in the weak-field limit at late cosmic epochs. By studying the ~'vab~ 2 Jab/*= =8m =57 = =437 $abp~ 5 Ganbed
classes of gravity theory which allow this approach to occur
we shall use our solution-generating techniques to build up a _i _ 2
detailed picture of the behavior of scalar-tensor cosmological ¢ (¢ap=GadJ &) )
models. We shall be particularly interested in models con-
taining radiation p=p/3), dust =0), and inflationary 1
stressesf{= —p). L= W[SWT—U)'(¢)¢C¢C] , 3

The plan of the paper is as follows. In Sec. Il we intro-
duce the Lagrangians and field equations which defingnd the conservation law,
scalar-tensor gravity theories in terms of their coupling func-
tion w(¢) and dictate their evolution. We shall specialize Tab;bzo, (4)
our study to the cases of Friedmann universes containing
perfect fluid sources. In Sec. Il we describe the two techwhere R, is the Ricci curvature tensof,,, is the energy-
niques for finding complete and asymptotic solutions ofmomentum tensor specifying the properties of the matter oc-
these equations for arbitrary choiceswf¢). The “direct” cupying the universe. Primes indicate derivatives with re-
method works for universes of all curvatures but is restrictedspect to¢. The first of these three equations is the scalar-

A. Field equations

@ ()




55 BEHAVIOR OF COSMOLOGICAL MODELS WITH VARYINGG 1909

tensor analogue of Einstein’s equations, the second is thehich satisfy the first condition but not the second, for ex-
wave equation fokp, and the final expression is the energy- ample, those defined byw(¢)~(1—@/pg)~ ¢, with
momentum conservation law for the matter, which ensure®<a<1/2, as¢— ¢, from below.

that each theory is consistent with the equivalence principle.

. METHODS OF SOLUTION

B. Fried i . .
riedmann universes Solutions to Eqs(7)—(10) for Brans-Dicke-FRW models

We shall examine solutions to these equations that dehave existed for some yea[s5,56. The Brans-Dicke case
scribe homogeneous, isotropic Friedmann-Robertson-Walkéfas also been studied qualitatively by Kolitch and Eardley
(FRW) cosmological models, with time-varying. The [57]. Recently, Barrow{12,59 and later Barrow and Mi-
FRW metric line element in spherical polar coordinatesmoso[33] have extended these treatments to genefat)

(t,r,0,4) is given by theories, providing a method for obtaining zero-curvature
2 cosmological solutions wheny<<4/3, and solutions for
d?=—dt?+a2(t) +r(d@?+sirfady?)| , (5  vacuum and radiation-dominated universes of any curvature.

1-kr? We now recapitulate the two methods of solution intro-

. duced in Refs[12] and[33] to solve the cosmological field
where the curvature parameterks-—1, 0, +1 for open,  gquations for theories specified by anyd).
flat or closed cosmologies respectively, and the scale-factor

a(t) characterizes the expansion history of the universe. We
shall assume the universe contains a simple perfect-fluid
which may be accurately described by a perfect-fluid equa- 1. Exact solutions
tion of state,

A. Vacuum and radiation models

The general solutions to Eg&Z)—(10) contain four arbi-
trary integration constants, one more than their GR counter-
parts, the extra degree of freedom being attached to the value
with these prescriptions, the equations of motion become 0f ¢. When the energy-momentum tensor is trace-free there

exists a conformal equivalence between the theory and GR,
) ¢ w(d)d> k 8mp the right-hand side of Eq3) vanishes and@ =0 is always a
HZ4+H- - —— 5+ 5=——, 7) - : : - :
b 6 ¢2 a2 3 ¢ particular solution, corresponding to a special choice of the
additional constant possessed by the model over GR. Conse-

p=(y—1)p; 0Osy<2, y const; (6)

: quently, the exact general solution of Einstein’s equations
- w(P) : 8mp . . ) .
é+|3H+ b= (4—3y), (8 when T, is trace-free is also a particular solution to Egs.
20(4)+3]7 20($)+3 (7)—(10) with ¢, and hencas(), constant.
- ) It will seldom be the case that the particular solution ob-
2 () i_Hf tained in this way will form the general solution for that
3 ¢ ) particular choice ofw(¢). Usually, however, it will be the
] ] late or early time attractor of the general solution. For ex-
8mp (3y—2)w(hp)+3 1 w(d) ¢ ample, in the case of Brans-Dicke theory the special GR
- 3¢ 20(¢)+3 220(p)+3 ¢ solution is the late-time attractor for flat and open universes

but not the early-time attractor. However, one of these au-
9 thors[12] developed a method for integrating the field equa-
) tions for models containing trace-free matter. The procedure
p+3yHp=0, (100 s as follows.
_ Equation(10) integrates immediately to yield
whereH=al/a is the Hubble expansion parameter and over-
dots denote derivatives with respect to comoving proper 8mp=3ra °7, (13)
time, t. . . . .

The structure of the solutions to these equations is sensf¥nere '=0 is a constant of integratiori’=0 describes
tive to the form of the coupling functiom(d), which de- vacuum models. Making the choige=4/3, corresponding to
fines the scalar-tensor theory of gravity. As Nordvedt firstbla_CkbOdy rad|_at|on, and introducing the conformal time co-
showed 10], it is possible to place bounds on the parameterCrdinate», defined by
space of many models, prior to extracting a full solution
from the field equations, simply by inspecting the explicit
form of w(¢). Nordvedt's constraints demand that the theo-gq. (8) becomes
ries tend to GR in the weak-field limit, so that they concur
with the observational limits on light-bending and perihelion 2 o' () )
precession. This requirement manifests itself explicitly in the byt aa77¢7/: - W(¢n) ' (13
conditionsw— andw’ w~ 3—0 ast—. Typically, scalar-
tensor theories add a term proportional #6w > to the  where subscript; denotes a derivative with respect to con-
weak-field predictions of general relativity. While the first formal time. This integrates exactly to give,
condition (w—) is well known, the seconde{’ w 3—0)
is not. As we shall see in Sec. IV there are many theories $,22=3Y2A[2w($)+3]"Y2; Aconst. (14

adnp=dt, (12
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We now employ the variable used by Lorenz-Petzold to A(np+1o) , k=0,
study Brans-Dicke model&6], 1
s Asin2(n+ , k=-1,
to rewrite the scalar-tensor version of the Friedmann equa- 1. _
SAsin2(np+ =+
tion, Eq.(7), as 2 sin2(n+mn0)], k=+1,

1
2_ 2 2.4
(yy)*=—4ky +4l'y+ = (¢,)"a[20($) +3] . (1) \herey, is an arbitrary constant fixing the origin ef time.

Combining these results with E{L7) yields the set of inte-
Dividing Eq. (14) by Eq.(15), and using Eq(14), we obtain  gral relations,
the coupled pair of differential equations

by 1op -1 ~12 V3l p+ 7|, k=0,
—=3"Ay [20(¢)+3]7 77, (17) 2 12

¢ Qo) +3)" w((ﬁ();s) d¢=4 V3Intanh 7+ 70)|, k=-1,
(y,)2=—4ky?+4Ty+A? . (18) V3ln[tan( p+ 70)|, k=+1.

20
We may now obtain the general solution for a particular (20
choice ofw(¢), givenk. Integrating Eq.(18) yields y(7%)
which, in conjunction withw(¢), implies ¢(7) from Eq.  Specification ofw(¢) allows the full solutions to be com-
(17 and, without further integratiora(#) from Eg. (15). If pleted. Whenk=—1 the negativity of the right-hand side,
Eg. (12) is both integratable and invertible we may computearising because €|tanh(+ 7,)|<1, V#, places strong con-

¢(t) anda(t), so completing the solution. straints on the allowed form of the integral on the left.

The vacuum models are obtained by settihg 0 and in Similarly, one may perform this treatment on the radiation
this case Eq(18) has three possible solutions, according tomodels, i.e., those cases for whiEb>0. Again, the results
the value ofk, are classified by the value &f

T'(n+n9)2—A?%4T , k=0,

— %F+ %(AZ—FZ)l’ZSini[Z(nJr 7], k=-1

y(n)= (21)

11
EF+§(F2+A2)1’Zsir[2(7;+770)], k=+1.

Integrating Eq.(17) with the solutions above leads to
J3In| (2T p+ 2T 9o~ A/ (2T 5+ 2T po+A)| , k=0,
#=14 V3In[Ttank 7+ 5g) + (A2=T?)Y2— A/[Ttank 5+ 7o) + (A2 =THV2+A]|, k=-1, (22

f [2w(¢)+3]"2
— s d
V3In|[Ttan 7+ 7o) + (I2+A2)2— A/[Ttan p+ 5o) + (F2+AZ) 2+ AT, k=+1.

These expressions can be simplified by choosing the arbi- In Secs. V-VII we shall exploit these relations to derive
trary integration constany, such that Z'no=A. generalo(¢) solutions for all values of the curvature param-
The domain on which each right-hand side exists strongheter.
constrains the integral on the left. For instance, if we require
¢ e (0,¢0) then the corresponding range of the function of
¢ resulting from the integral on the left must be compatible
with the allowed range on the right. In generél must tend Many of the models we shall present are insoluble in
to its general relativistic form, i.e., a constant, at lasg&Ve  terms oft. The reason for this is the noninvertibility of
shall find in Secs. V-VII that this behavior is not generic andt( ), arising from integrating( ). In these cases we shall
often requires the integration constant associated with thavert t(#) approximately at early and late times to obtain
left-hand integral to assume a particular value. This integraseries solutions for the behavior ¢{t) anda(t), indicating
tion constant can be interpreted as an initial boundary cortheir limiting forms and their approach to these forms to
dition on ¢ or w at, say,r»=0. Further restrictions can be leading order. We shall use the inversion technique of Olver
found by studying the evolution at early times. [60]. If we have an expression

2. Approximation techniques
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y(x)=f(x)g(x) , (23 TABLE I. vy, for vacuum and radiation models of all curva-
tures.
and we require an approximation xgy), valid in a region Matt
hereg dominates ovef, we neglectf and write atter -
W ! source Vacuum Radiation
X(y):g*l(y) . (29 k -1 0 +1 -1 0 +1

Y,y >0 =0 <0 >2>0 =2I'>0 <2r

The next-order approximation is easily obtained by substitut-
ing this result intof, yielding f=f[g~1(y)]. Using this in

Eg. (23) we have y - V3A 27
" \20+3’
-1y e : A _
X(y)=9 f[gl(y)]> : (25  when ¢ is finite. This relation will prove useful for locating

minima when we lack an exact solution faf#).
. . . - Equation(27) is a simple test for the existence of station-
This procedure can be iterated indefinitely but we shall ”S%ry points in the evolution od. Stationary points of the type

the 2nd iteration form as given in E5). minimum | ; > :
To analyze the asymptotic behavior we need to establisgaximum will occur whena,, -0, respectn;ely b ut, .because
with (a%),,, in this con-

the value ofy ast— and our primary interest is in models >0, itis sufficient to replace,,
which display GR, i.e..— do, in this limit. Radiation- dition. Differentiating Eq.(15) twice and evaluating at a sta-

tionary point, i.e., Wherea(z),7 vanishes, we obtain

dominatedk=0, universes in GR evolve likaxt? at late
times and hencex 5? and —» ast—o. There does not Yo (f,maZ
exist a spatially flat vacuum model in GR, however, the (a2)7,7,=?—7- (28)

negatively curved general relativistic models are asymptoti-

cally vacuum-dominatedas the matter density redshifts to A condition for the stationary point to be m%uun;] is then
zerg tending to the Milne solutiona«t, ast—o, and

«Int which diverges witht. We therefore study the asymp- Yon - ¢,ma2

totic behavior of vacuum and radiation models in the limit 7 <T- (29
n— o whenk=<0. We will not consider the late-time limit of

the k>0 models. Typically, they recollapse to a final singu- Differentiating Eq.(14) and discarding dz),7 we have
larity if p>0 andp+3p>0, although a bounce occurs for

many choices ofw(¢). The behavior in their recollapse 2 3A%w' () 30
phase is similar to the time-reverse of the early expansion of b= a%(2w+3)2"

k=0 models.
We now define the early-time limit. We examine first Substituting this into Eq(29), and remembering>0 yields
models with 6< <, in this range2w+3 does not

2 7
change sign, as guaranteed by the choices of the coupling y,  Z— 3A%w’(¢) (31)
function, w(¢), detailed in Sec. IV and Eq14) ensures that 7 < 322w+ 3)2"

¢ is monotonically increasing. We thus extrapolate the evo- N ) ) -

lution back to=0 and treat this as the early-time limit in as the condition for the stationary point to befdimum-
vacuum and radiation models. In more general perfect-fluidVhen 0< #< ¢, we havew’(¢)>0 for the choices in Sec.
models we find that we are easily able to examine the behaJV and the right-hand side of Eq31) is negative definite.
ior when ¢> ¢, by exploiting the conformal invariance of Thus whenever we can proyg,,=0 we may exclude the
the theory(this procedure is explained in detail in the Ap- Possibility ofa(#) possessing maxima, and then by continu-
pendi)g and we so examine ear|y-time behavior in the ne|thty we can limit the number of minima to one. We test this

borhood of the last zero, or nonzero minimumaof condition for the forms of/(#) given in Eqs.(19) and(21),
the results are summarized in Table I. From the table it can
3. Maxima and minima be seen that all spatially flat and negatively curved models

may only contain a single minimum. Tle= +1 models are

Itis easy to study the structure of nonsingular vacuum andhq:"honded in this way and may contain an undetermined
radiation-dominated cosmological models within the frame-,,mber of minima and maxima.

work presented in this section. Differentiating E#5) and

substituting from Eqs(14) and (15) leads to B. General perfect-fluid cosmologies

y \/§A When T is nonvanishing the situation is substantially
(az),,z—"— —_— (26 more complicated. In this instancé=0 is no longer a par-
¢ $V20+3 ticular solution of the field equations, forcing us to resort to

more elaborate methods to obtain solutions. Barrow and Mi-
The condition for the scale-factor to contain a stationarymoso[33] have done this, for thk=0 models, by general-
point, a,,=0, is equivalent to 42),7:0 whena=#0, which izing the method of Gurevickt al. [55] for BD models to
leads to the simple relation the case of varyingy. We now outline this procedure.
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Introducing the new time coordinatg and the two new
variablesx andv such that

dt=a%r~D \/2“’;3 dé

(32
XE[¢a3(l*7)(aS)§] , (33
v=[a’?"¢,] , (34

and confining attention to tHe=0 models, Eqs(7), (8), and
(9) transform to

2 2 [20+3 -
Xty =l—35— [v2+4 ¢ @32 Y] | (39

ve=T(4-3y) , (36)

and

X+v)w§,
(37

where subscript represents a derivative with respect&o
time. Equationg36) and(37) integrate easily to yield

=I'(4=3y) (§-&1)

C+T(2—7y) f; Vw+3 o@} ,

(39

3 2
X§—3F [(2 y)w+l]+ m

(39

3

> —v+\J2w+3

C is an integration constant aidd fixes the origin of¢ time.
Noting the relations

3
(8L e (007 (@0

a¢ a gy ¢
and differentiatingy with respect tof, yields

P e (425
(¢§+ 2 ea 9 %) Tea e
(41
where a new functiori(¢), is defined by
~[E 3(2—)
f(§)=f§1 m \/2(1)(45)4‘3 C+F(2—’y)
fo Vo(¢)+3 dé| d¢ . (42)
&
Solving Eq.(41), we have the solution
¢ €66
" (¢o 6 9B “3
with g(&) simply related tof (¢) by
3y—4 )
9(&)=f(&+ (§—£6)°+D, (44)
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whereD is a constant of integration. Equati¢f0) immedi-
ately reveals a simple formula for the scale factor:

12—y

a=all = ag const . (45)

¢

Finally, the scalar-tensor coupling functian{ ¢) is given as
a function off by

(f)?
4—-3y }
t+ o f
3(2-y)%°
wheref is another arbitrary constant.

In the calculations to follow, we shall exploit the arbitrari-
ness of&; and set it to zero. In addition, we note some

relations between the other constants in the solution, arising
from the scalar-tensor Friedmann constraint, &%)

~3y)
20[4(8))+3= 350

. (49)
f

4—3y
JECER 0
bo a3 V=T (4—-3y) , (48)

and from the requirement that the BD theory be recovered
whenw=w, is a constant we obtain the further condition

_ 2
2:(2r(4 3y) .

3(2—)

We shall requirepy, i.e.,G~ ! today, to be positive and from
Eqg. (48) we see that this requires<4/3. We shall also con-
fine our attention to theories withe?+3>0. Using Eq.(43)
we can rewrite Eq(46), as a function of¢ and its deriva-
tives, as

4—3y
2w(§)+3zw

« (Pl pe) = ElPppiel(he)°]+(6—3y12)€)
(E(pl o)~ (3y— 414 E%) '

(50

Asymptotically, 2w+3—>(g§)2/g as ¢— and the above
relation becomes

¢

2w+3—>§

1+g%—§%

& be (51

The choice ofg(¢) is thus equally fundamental as that of
g(£), and amounts to specifyin®(¢). We shall use the
former. Once¢ (&) has been specified, we may infe(é)
from Eq. (43), a(¢) from Eq. (45), andw(¢) from Eg. (50).
If Eq. (32) can be integrated and inverted to yielt) these
variables may be expressed in terms of cosmic time,

An important benchmark is provided by the behavior of
the BD theory, wherey(¢) = wo= constant. In this case, the
generating functionf(£), is given by a quadratic ig:
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3(2—v) —
fap(é)= 2T(4-3y) V2wo+3 [

300
T
T

X cg+@52\/2w0+3 . (52 [ s
= a=1
Hence, in generalG#0+#1I") when y#4/3, 2, we see that
fgpxé&? as é—o and fgpxé as é—0, where dt
«a®r"Nd¢. If we chooseC=0 then fgpxI'¢? as é—0.
The choiceC =0 restricts the solution to the special “matter-
dominated” solutions(termed “Machian” by Dicke|[3,4],
see also Weinberd58]) which were first found for all
perfect-fluids by Naria[55]. If C#0 then the early-tme [ .7 i Pt
behavior is dominated by the dynamics of thdfield; such [ ..o
solutions are termed ¢ dominated” (or “non-Machian” by
Dicke). °eT '017 ‘ 'ofa' T oe
Therefore if we choose a generating functig¢) that
grows slower tharg? as é— it will produce a theory that
approaches BD at late timgsp— const, w(¢)— consi,
while if g(&) decreases slower thafi as §—0 then the 1
theory will approach the behavior gi-dominated BD theory
at early times. This means that we will find nénon-BD) I
late-time behaviors by studying generating functions which
increase faster thag(¢)=¢&2 as é—o and new(non-BD)
early-time behavior by picking generating functions which
decrease slower thaj(¢) = ¢ asé—0 or é— &, [if there is
no zero of¢ at the minimum ofa(t)].

----------------------------- o=1.5

200
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1

2u(@)+3

100
T
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=
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o

3000

2000

2w(p)+3

IV. THE COUPLING FUNCTION

1000

We are interested in ascertaining the general behaviors
displayed by cosmological models in the range of scalar-
tensor gravity theories that approach GR in the weak-field,
late-time limit. This requires @+ 33— ast—o and also
o' 30 if the solar system tests are to accord with ob- °
servation. The specific form of the leading-order corrections
to the general relativistic predictions of light-bending, peri-
helion precession, and radar echo delay are all almost equal
to ' w2 in the largew limit. However, the rate at which
w(¢) tends to infinity will determine the form of the cosmo-
logical models. In an earlier papg33] we explored the be- to allow 2w+3<0, leading to¢-dominated initial condi-
havior of simple power-law forms fan( ¢) which, although tions. Their analysis dealt mainly with the early-time behav-
growing with time, only attain the GR limit wheg=«, ior of the models, we shall examine in detail the late-time
although at any finite time» can be made as large as we approach to GR. Theories 1-3 will all permi—o if
wish by the choice of the constants definia@®). Here, we ¢ — ¢, at late times and span a wide range of different rates
turn our attention to a potentially more interesting situationof approach to GR in the weak-field limit. They can all be
in which w—~ as ¢— ¢y where ¢, may be taken as the reduced to Barker's consta@-theory [11] as ¢— ¢, for
present value ot(t), which determines the observed value special parameter choices. Theories 1 and 3 approach Brans-

$/9,

FIG. 1. Theory 1 with(a) B;=5 anda=0.5,1,1.5; andb)
a=2 andB;=5,10,15.

of the Newtonian gravitation constar@,= ¢51. Dicke theory[3] as¢—0 and the power law form studied in
We shall study the three general classes of theory, somd2] as ¢— . General functional forms for @(¢)+3 can

examples of which are displayed in Figs. 1-3. be expanded in a series of functions of this form and their
Theory 1.2w(¢)+3=2B|1— ¢/ % a>0, B;>0  asymptotic behaviors at small and large times will be domi-

const. nated by one term of the above type. In fact, further restric-
Theory 2. 2w(¢)+3=B,|In(¢/d)| 2% >0, B,>0 tions can be placed upon the allowed theories within these

const. three classes by the weak-field limit requirements, as fol-
Theory 3.2w(¢)+3=Bg|1—(¢/po)?| L B>0,B;>0  lows:

const. Theory 1.We see thatv— as ¢— ¢, is guaranteed if

Theory 1 has been studied previously by Serna and Alimiz>0 and that
[53], Comeret al.[54], Barrow[59], and Garcia-Bellido and , a1
Quiros[61]. Serna and Alim[53] paid particular attention to w ( 1— i) . (53)

—x
the radiation eras of these models, extending their treatment w’ $o
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FIG. 2. Theory 2 with(a) B,=5 and5=0.75,1,1.25 andb) FIG. 3. Theory 3 with(a) Bs=5 and 5=0.5,1,1.5; and(b)
8=2 andB,=5,10,15. B=2 andB;=5,10,15.
Hencew' @ 3—0 and the weak field limit will be compat- OUr attention on those particular parameter choices which
ible with observation ag— ¢, so long asa>1/2. reproduce Einstein’s theory at late times and which we have
Theory 2.Here, w— as¢— b, for 5>0, but just delineated in Eq953)—(55). Whenk=—1 the Milne
model,acct, supplies the general relativistic solution at late
times.
w
e L
0 V. THEORY 1: 2 w(¢) +3=2B,|1— ¢/ |~ % a>1/2,B,>0
and this tends to zero as— ¢, So long ass>1/4. const
Theory 3.Here,w— as ¢— ¢, but We study the evolution in the interval e (0,¢,), allow-
) 8 s-1 ing us to drop the modulus signs fromwz- 3. Making the
o _ i i (55) substitutionu; = (1— ¢/ ¢,), this bound becomes; € (0,1)
w® ol |\ o ' and Eq.(20) is
and this tends to zero for g as ¢— ¢. \/2w+ Newts \/ﬁ ~ J3InK
These constraints on the parameter ranges of theories 1-3 ¢= a72 3InKy,

are independent of the form of the cosmological solutions so

long as ¢— ¢, at late cosmological times. The latter will a#1.2, (56)
introduce further restrictions on the allowed valuesagfg

and 8. With the exception of thé&# —1 vacuum solutions, whereK, is an integration constant. In the models which
where there exists no FRW model within GR, we shall focusasymptote to GRw— % as ¢— ¢,.



A. Vacuum solutions (k=0)

1. Late-time behavior

For the theory to reduce to GR at late times we require

u;—0 asn—oe. Choosingny=0 with k=0 in vacuum we
then have

1 ull—a/Z
—)\—lm=|”(K177) : (57)
asu;—0. \=+3/2B; and its sign determines the sign of
(20+3)Y2 The requirement thai;—0 as»—o demands
we must havex>2 and hence\;>0 to ensure the right-
hand side of Eq(57) is positive. Picking the appropriate
right-hand side from Eq.19), we thus obtain

a—2\12(2-a)
¢(77)—>¢0[1_ 7\1( . ” |n2/(2a)(K177)] :
(58)
a—2)\122=a
az(ﬂ)ﬂgﬂ 1+ N ” (ST
(59
at large#. This leads to the asymptotic form fof#):
2\/K o A [a—2)]PF
tn)=3 37 [1+§ M(T)
><In2/<2“)(K17;)] : (60)
The first-order inversion of this at large is
3 2/3 d’O 1/3
== PO 23

This result is obtained by ignoring the factor in curly brack-
ets on the right-hand side of E¢60). To obtain the next-

order expression we substitute this first-order result into the

weakly-varying InK,7) term on the right-hand side of Eq.

(60), take the curly brackets onto the left-hand side, and

solve for 5. This yields

3 2/3

2 |

a—2
2

1/2

1/3
@ t2/3 1—=| =
A 313

26(2— )
” |n2/(2a)t} ,

and n— ast—oo. At late times we then obtain the solution

2\ ]2(2-a)
3 ” In2’<2‘“)t], (63

1 22— a)
W ey

143
(64)

n(t)=

)2/(2a)

x|\

(62

¢(t)—>¢0(1_[)\1(

1/3

{113 a—2

3

3

3A
a“”(z?so)
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2. Early-time behavior

At early times we see from Eq920) and (56) that
u;—1 as »—0 is the only possibility consistent with;
e (0,1) andr;>0. Treatingu; “?=1 in Eq.(56) leads to the
approximate relations

In(1—uy)=A4In(Ky7) (65
and
o
¢( 77)2 Klf}\l 7]>\1 1 (66)
AK; ™M
aX(n)=—p—n'"M. (67)
bo
Taking the square root of the latter, integrating and inverting
leads to
1/(3—N\q) _ 2[(3—Nq)
(t)= _$o Y(3TM @y
AK, M 2 '
AN#3. (68)

When 0<\ ;<3 we see from the above thet-0 as»—0
and when\ ;>3 we havea— —»~ asy—0. In both cases we
obtain the early-time behavior

B PIE ()
¢(t)—>A)\1/()\1 3)(m
2\ 2/(\~3)
X T ) t2)\1/()\173), (69)
A
(AKl—)\l)l/(B—)\l)
a(t)—
(t) o
— %\ (I-A/(B—Ap)
X(%) T N ewiew | (o)
When\ =3, Eq.(68) becomes
K 3
n(t)=eXp< 2k t) , (7D
A
andt— —« as»—0. The early-time evolution is
K
¢(t)_>¢0K13exp<3\/¢°Al t) , (72
| A [doK1®
a(t)—> m ex;{ - A 1], (73)

as t— —«, Differentiating Eq.(70), we deduce that the
early-time models will be expanding as long ag>3 or
A<l

3. Minima

We now probe th&=0 vacuum models generated by this
choice of coupling for the existence of expansion minima.
Equation(27) for these universes becomes
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1\ 2e models, selected from Eq(19), approachesAe?”/4 as
U=\ (749 »—o and the late-time solutions are
. . 4
at a minimum. Fowu,, to be real for alla requiresk;>0 () — do 1_{)\1(2_(1)}2/(2&)(3)(;{ _71 H (82
which is guaranteed whane (0,1). In general, however, we a—2
find
A 47
2 2y _ 2/(2-a)
0<\;<lewup,>1, (75) ai(m) = g €7 1T M2 ) exp(a_zﬂ ,
(83
M=lou, =1, (76)
as n— . Integrating and asymptotically inverting the sec-

N>1leu, <1, (77) ond of these expressions we obtain thg) relation
and whenu, € (0,1), minima are only present when>1. b0 1 o a—2
We have the early-time solution for this mod&gs. (72) 7(t)—Iny 2 At 1—5{7\1(2—60} (27 Py
and(73)] in which a(0)=0 for A;>1 and the universe ex-
periences a phase of contraction before bouncing and ap- b\ M@
proaching late time general relativistic expansion. When X\ 2V % a2 (84)
A=1, then a(0) itself becomes a nonzero minimum
(a?—A/K o). Substituting this back into Eq$82) and (83) yields the as-

. ymptotic forms
4. Exact solution

The models withe=1 are not described by the solutions _ N 2(2—a)
presented above. These models tgad ¢— ¢y) to the ¢(t)_>¢°{l (2= e}
theory of gravity proposed by Barkgt1], for their evolution a—2)
2 \/%) t4’<a—2>} , (85)

we find the exact results
1+ i{x (2—a)}?e=2
a+2"t

Aha—2
21 [@) ( )t4/(a72)
. . A

When n—« however, we observe that there is no combina-
tion of parameters allowing— ¢o. Consequently, we shall ast— . We note the asymptotic approach of this model to
not pursue this model any further. Theories with 2 have  the general-relativistic Milne universe at late times.
been solved exactly and studied earlier by Barfd&,59
and in Ref.[53]. 2. Early-time behavior

X

4K, My M
()= T —x = 7,
(K My~ "141)

(78)
a(t)—t

2 — 1+Xg —N1 7N 2
a (7]) 4¢0K1—)\1 n (Kl n +1) . (79)

X , (86)

_ At early timesu;—1 as»—0 and
B. Vacuum solutions(k=—1)

1. Late-time behavior In(1—uy)=NylIn[tanhy] , (87)

Whenk= —1 the integral equation for the field evolution which leads to
becomegsetting 77,=0)

()= don™t (88)
_ ﬁ—dul = In[Ktanhy] (80)
N oug® 2(1—U1) ! . aZ( 77)—)2771)\1 . (89
0

at late times. Asznp—, tanhy—1—2e 27. Demanding
u;—0 in this extreme, Eq(80) may be approximated by  The functional form of this early-time behavior is identical to
that detailed in Eqs(68)—(73), after enforcing the choice
1 Ull_alz INK.—2 2 81 Ki=1.

3. Minima

As n—o the right-hand side is finite and we require  gearching for stationary points in the scale-factor evolu-
1-al2>0 (i.e., «<2) in order that the left-hand side does tjon for this theory, Eq(27) identifies

not diverge asi;—0. We also requiré&K;=1 to ensure that

n—oo andu;—0 correspond to the same limit. The right- cosr(zn*):)\lulj’z, (90
hand side approaches zero from belowsasncreases and

u;>0; thus to keep the left-hand side negative we needhe cosh function is bounded below by unity, as is the value
\.>0. The form ofy(#) for the negatively curved vacuum of u;~*? whenu, e (0,1), which gives\,=1 as the condi-
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tion for the existence of a stationary point. When (2—a)\y70| 227

0<\;<1 the universe expands monotonically away from an &( 77)—”1’0{ 1- (—) } : (96)
initial singularity at »=0. When =\;<3, a—x as

7n—0, the subsequent evolution will contain a minimum, T 72 (2= @)\, 7| 22~

allowing the initial contraction to “bounce” back into late- a’(n)— [1 ( ) } (97
time expansion. Whei ;>3 the evolution is expanding at bo K

all times. The special case=1 is treated by transforming Tne |atter of these allows us to deduce

7+ po—tanh(m+ 7.) in Egs.(78) and(79). Solutions for the

a=2 case may be obtained from the solutions in R8¢ ) (4¢0)1/4t1/z[1
n(t)—| ——

: - lia—2 2 2(2-a)
after applying the same transformation. T2l {N1(2—a) no}

C. Vacuum solutions(k=+1) X(@) 1/[2(a_2)]t1/(a—2) (98)
1. Late-time behavior
The positive'y curved K: + 1) vacuum solutions are and hence, the evolution as a function of cosmic time:
governed by R
1 duy ¢(t)*¢0[1 ( Mo (a—2)? \/r%) tll(az)} ,
“n) Iy =In[Ktany] , (91 (99)
taking 79=0. In the GR limit u;—0) this is approximated £ vy @
a(t)— tY91+ —m—
by ®o 4(a—1)
_ 1/(2—a)
1 ull al2 ‘ ) T } Yo }
A S a—2 tHea=2)
N (1=al2) In[K tany] . (92 NS 75( ) V4¢o
(100

In conjunction with Eq(19) we obtain
ast—o, so there is a power-law approach to the GR solu-
tion at late times.

a—2 (2— a)

d(m)— o 1-[M( 5 )] In?2=«)(K s tary)

(93) 2. Early-time behavior
_ At early times, we analyze the behavior in the neighbor-
’ A sin2zy hood ofu;—1: i.e.,
a (77)—>2750 227w o .
_ 212-«a
{1 [M( 2 )] " (Klta””)} In(1—up)=Xgin (101

(94) n+2m0

The left-hand side of Eq(101) tends to— as GR is ap-
proached. In order that the right-hand side approach the same
limit we see thaty—0 whenX;>0 and n— — 27, when
N1<0. Analyzing the former case leads to

These expressions approach GR whea<2 as
n—tan Y(K,; 1) and whena>2 asn— n/2 wheren is an
integer. The behavior whema=2 can be extracted from the
k=0 treatment in Ref. [59] by substituting

2(n+ 10)—1@anh(y+ no)- B(1)—(2m0) Mepon™, (102
L . _ 2 l+)\11"
D. Radiation solutions (k=0) a?( 77)_)( 70) gt (103
1. Late-time behavior bo

Whenk=0 Eq.(22) leads to the asymptotic behavior ~ after setting Z'7,=A. The behavior of this system as a
function of cosmic time mirrors that described in Eq&8)

1 ut e 27 —(73) with K1 replaced by (2,) *t and A replaced by
—A—lm:m*(l—T, (95 2I'7o. The bound\;7,>0 implies 7,>0 when \;>0.
When A 1<0, n——27, at early times. The inequality

where we have pickedI2;,=A to fix the arbitrary integra- 170> 0 implies 7,<0 and hence-27,>0. The evolution
tion 7. The requirement that, 0 asz— = then demands IS @PProximately

K_1=1 and a<<2. _Th_is upper bound om, in gonjunction d(n)=o(—270) " (n+275) M, (104)
with the lower limit implied by the requirement that

o' 3-0, yields the powerful constraint #22<2. We r

examine models for whichu; e (0,1), corresponding tab a*( ,7):¢_(_27,O)1—M(7,+27,0)1+M . (109

€ (0,¢0). In this case we have the constraiitry>0. Us- 0

ing y(#) from Eq.(21), the late-time evolution of anda as  The t-parametrized behavior of these equations is given by
functions of 5 is Egs.(68)—(73), after applying the transformations
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K= (=2g)™ (106) r
B(t)— ol 1-N\inh 47)Ot*1 : (114
Ni— =g, (107
4T\ V4 1 1 ' \Y2Int
A— —2T 7n,. 108 il BV Tl NSl ] B Bt
- 70 (108 a(t)—>(¢o) t 1+4(>\1 4)”0(4¢o> o, 119
3. Minima

) ) . valid ast—oo. At early times the solution becomes
As with the vacuum solutions, we can search for turning

points ofa? when\,>0. Equation(27) is B(7)—22" Ml ,78|M\¢0,7|x1\ , (116
T (1= hquy?) (109 2hl=2p i
0 a’(n)— T hy pt Ml (117
0

where subscript * denotes the value of a quantity at the sta-
tionary point. When &X\;<<1, the scale-factor expands asn—0. The behavior of thé-parametrized version of this
away froma=0 at =0 by Eg. (67). Monotonicity of 7 model is given by Eq968)—(73) after applying the transfor-
implies 7, =0 and we knowz,>0 from the sign of\q, mations
which together give rise to the inequality

Nl

-
bo— 22 Ml o (118

1
u 2= i (110 A—T 7o, (119

The range of &u,<1 together with the conditionx>0 and remembering;=1. Minima are a feature of this model
confirm\,=1 as a necessary condition for the existence ofvhen|x/>1.
minima. When\;=1, 7, =0, and the universe expands
from a nonsingular state of size=(27,) " I'/¢,. When E. Radiation solution (k=—1)
A1>1 the solution is initially contracting, bouncest and
L . ' . . Whenk= -1, Eq.(56) becomes
tends to general-relativistic behavior at late times. Equation » Bq.(56)

(110 still applies when\;<0, and asserts that none of them 1 du,
can contain stationary points in the evolution of the scale- W m—anl
1 1 1

factor. This does not effect the models in which
—1<\4<0, which begin froma=0 at »=-27, and
monotonically expand. Whex, < — 1 they are initially con- =In
tracting and, due to the absence of minima, will always con-

tract and never approach late-time general-relativistic expan-

(AZ_F2)1/2€2(77+ 770)_1"_A
(AZ_F2)1/262(7;+ no)_F+A '

(120

1. Late-time behavior

sion.
Expanding the right-hand side at largeand integrating
4. Exact solution on the left asu;—0 leads to the approximate formula
The casea=1 possesses a simple exact form, which is 1 u,teR 2A ,
. . ; 1 _ “2
instructive. Solving Eqs(22) and(21) leads to . (1—al2) (A2—F2)1’2e , (121
4K MM+ 2me)M .
d(n)= (742K (111)  where we have chosd®, =1 to ensurep— ¢, at late times.

The right-hand side of this expression tends to zero at late

times and consistency on the left ag—0 requires

A A N112

a( )= Un(n+ no)l(n+27m9) 1+ Ky 12 ] (112 1-a/2>0, ora<2.1If ¢,>0, as it must be whegp— ¢,
4poK Mgt i(m+ 270t ’ and 0< ¢ < ¢, we recover the inequality;A>0. Selecting

the k=—1 form for y(%) from Eq. (19) we have the ap-
where in these expressions we have again made the specjibximate solutions

choice a"ny=A. Examining the largey limit reveals that

¢— ¢y if and only if K;=1. In this case we integrate the AN, (2—a) | 227 @
asymptotica(#) to obtain B (17)— o 1—[ (Az_—rz)m] 9[4"’(2“”} , (122
4 1/4 r 1/4
7(t)— %) tﬂ%‘%(g) Y2 , (AT ANy(2—a) | 227
0 REEE———]
v T, ¢ [1 {m——rzﬂfz}
N 1/, 1) , T Int 113
4\M17 )P\ gg,) ¢ 13

Xe[‘””(z‘”]} , (123
and hence
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as n—o. Integrating and inverting Eq(123 to next-to-
lowest-order yields

3 1(2+a\[AN(2—a) |73
n(t)—In (AZ=T)TA 1+35l5= (AZ_T2)I2
2(,5(;)/2 —[4/(2—a)] o
X Wﬁ tl-4(2-al , (124
t—o asyp—o and hence
ANy(2- a) ]2’<2—“>
)= ol L—{ ——— el
d(t)— o [ g
(129
2 [(AN(2—a) ]2’(2—60
a(t)—t| 1+ t-e-all
® (2—a>[ 40
(126)

ast—oo. Again, we observe power-law approach to the GR

Milne solution at largd sincea<<2.

2. Early-time behavior

In the early-time limit we findu;—1 and Eq.(120) be-
comes

(A2—T2) Y2207+ m0) T — A

(AZ—T2) 220 _T + A

IN(1—uq)—N4In

(127

and asu;—1, In(1-u;)——. To simplify the analysis we
pick 7y such thatu;—1 as#— 0, which requires

A+T |12

e0= AT (128

Combined with the&k=—1 version ofy(#) from Eq. (21),
this leads to the limiting forms

A+T
¢(77)—>¢o< A ),]M, (129
A [A+T\ ™
az(n)H%(T ntM, (130

a—2
¢(77)—>¢0[1_{7\1(T

1919

and thet-parametrized evolution will be that of the flat
vacuum model described by Eq$8)—(73) after we apply
the relabeling

A+T

177 -

(131

3. Minima

To complete the study of this class of solutions, we search
for points where the gradient @ vanishes. Equatiof27)
gives the condition

FZ) 1/2

L )\1U1a/2
A2

- coshi2(n+ )]’
for a stationary point to exist. Since>0, u;<1, and

cosh2(n+n)]>1 this expression is equivalent to the in-
equalities

(132

F2 1/2
1'*2 12
( _F> >N;, A<O. (134

Since A>>T"?, we know that 6<(1—T'%/A?)Y2< 1. Hence,
models withh ;>1, in whicha begins collapsing from infin-
ity, will bounce to mimic GR expansion at late times.

F. Radiation solutions (k=+1)

If we select the necessary right-hand side from &%)
for the finite, closed-universe models witl+ + 1, then Eq.
(56) is

1 du,
M) u¥(1-uy)

=In|K

1

T'tan( 7+ 7o) + (M2 +A%)V2- A
I'tan( 7+ 7o) +(I'2+A%) 2+ A

(135

As u;— 0, we obtain the following approximate expressions
for the behavior ofp anda:

r«z—a)

X |n2/(2—a)[ Kl

I'tan( 7+ 5) + (I'2+A%)12— A
T'tan 7+ 7o) + (I +A%) Y2+ A

: (136)

a*(n)— i{F +(D2+ A Yasin 2( -+ 7)1}
260

X

a—2
NE

T'tan 7+ 7o) + (I +A%)Y2—A

2/(2— @)

-1

X |n2/(2a)[ Kl

Ttan 7+ 7o) + (I +A9) Y2+ A

, (137
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which are valid asp— ¢.

G. Perfect-fluid solutions (k=0)

We shall analyze the late-time behavior of Theory 1,
specified in Sec. IV, by the device of using the solution

defined by the choice of field evolution

d(€)= po exp(HINBE) | (138

whereH andB are constants. This gives rise to the generat-
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and the scale-factor
g(zf ¥)
a¥? 7= &Int " Bgexp(HIN®¢) . (140

HB ¢,

From Eq. (140 it is clear that to keep the left-hand side
positive we require the combinatiog€ 1)~ *HB>0. This
leads to

& 4-3

ing function _ S ji-Bgy Y2
2 f(&) HBIn &+ 7 &—-D (141
— g 1-B
9(O=ggh™ "¢, (139 and hence
|
4—3y [(2HB)&N' Bé+([1-BI/HB) &N Be+([4—3y]/2)€]°
20(6)+3= 75— 2 B - 2 (142
3(2—) (§/HB)IN"" 28+ ([4—3y)/4)¢
|
We require ¢p— ¢ at late times and this occurs @s-1 where
when B>0 and as {—« when B<0. When B=0,
d= et and whenH=0, ¢= ¢,; in both cases the theory Fo 3y (HBgo) 7 V2=V [ HB |12 148
is GR at all times. T2 ad?~ b 4-3y| (148

1. Late-time behavior
When 0<B<1, we find from Eq.(32)

tocInt=BI@=7g (143
as £é—1. The power of the log is always positive for
0= y<2 andt—0 in this limit. Since we are only concerned
with limits corresponding to largé we exclude the range
0<B<1. WhenB>1 the coupling function tends to

4-3y (1-B)?

20(€)+3— 32-77° HB In~B*bg (144
and Eq.(32) becomes
1-B ag(y—l) 4—3y 172
TP <HB¢0)<“>’<“>( HB )
x L= DIC=N|nBy=4=Byi2(2=7]¢
Xex;{H(g)lnt dé . (145
As £—1 this tends to
1-B ag(rl) 4—3y\12
=32 (HB¢0><7—“’<2—”( HB )
X (£—1)CBr=4-Bni22=lg¢ | (146

and

t(&)=F(g—1)lra-BV2E@-»] (147)

Eventually, this leads to

£(t)— 1+ FRE=VIYA=B[2@=yIy1-B)I = (149
¢(t)_>¢o[1+HF[ZB(Z*7)]/[7(1*3)]'[[23(2*7)]/[7(1*5)]],
(150
2/3y
a(t)_)(l-lngo)mtmy
2E[REC=I[¥1-B)]

3(2—7)

X

14 t[2<2y>1/[y<18)1} ,

(152)

ast—o, and there is power-law approach to the GR solu-
tions in this limit. The coupling, in terms of the field, ap-
proaches

4-3y (1-B)?
(2-y* B

o5 ]

0
(152

The negativity ofdé/dt implied by Eq.(145 for B>1 im-
plies that¢ approaches unity from above. As we noted earlier
[after Eq.(140], when&>1 positivity of B implies positiv-
ity of H and thus Eq(138) confirms thaip— ¢, from above
in these theories, i.e¢ e (¢g,°). WhenB<0 the coupling
function, asé—x, is

-3y 4

20)(§)+3—>W%|n1785 , (153
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and the temporal line element becomes We will not present explicit solutions showing the ap-
proach to BD theory since these models are not early-time

2 ag "V 4-3y\1? limits of the theories, defined in Sec. IV, that we are inter-

dt= 3(2—y) (HBgo)? Y4 7| HB ested in; they are merely early-time limits of other theories

D 112 L B)U2(2 which happen to asymptot@t late time} to the theories
x gt DI iplyA-Bl2@=Ylgds (154 with which we are concerned.
We now highlight some special cases of these models for

Integrating, this gives particular values ofy.

t(g):c—lgw(Z— y)|n[7(l—B)]/[2(2—7>]§ , (155 3. Dust models

where These arise by substituting the choige=1 into the as-
3y (HBg) 7D/ | HB |12 ymptotic relations already derived. Wh&1>1 we find
C= 5 a3 b 4_37) (156 3\ 2B/(1-B)
¢(t)—>¢0 1+ = Hl/(l*B)BB/(l*B)tZB/(l*B) ,
Inverting asymptotically irt, this gives (162
= C2=NI@2=yp(B-D/2t(2=7)ly
&(t)=C t In t . (157 213 (1+B)/(1-B)
. I e 0 .23 =z
and hence there is logarithmic approach to the GR perfect- a(t)ﬂ(z) ?lzt [1*”(2)
fluid solutions 0
d(1)— o[ 1+ HINBt2= /7] | (158 X (HB)Y(1-B)2(1-B) | (163
aOCZI3'y
a(t)HWtZ/sy 1+ 32=7) InBtZ=»/7| | WhenB<0 the solutions tend to the GR solution only loga-
0 rithmically
(159
ast— . The late-time behavior of the coupling as a function B(t)— o[ 1+HInBt] (164
of ¢ is given by
2 &0 o3 H B
4-3y 4H B & a(t)—>(— —at?d 1+ S Int| . (165
+ (1-ByB| 2 3
20(¢)+3— 35-77 B In 4 (160 )
At large t, £&—o and must do so from below to maintain All of these expressions are valid &s .
positivity. ConsequentiallyB<0 implies H<0 and from 4. Inflati del
Eq. (138 ¢— ¢, from below, i.e.,¢ e (0,¢) in these mod- - Inflationary models
els. Inflationary models driven by a false vacuum equation of
_ _ state may be derived from the choige=0. Although there
2. Early-time behavior are varieties of inflationary universe with 1/3>y>0, and

WhenB>1, a(£) has a zero a§—0 if (—1)BH=0. At these can easily be found from the formula for the general
late times ¢— 1 from above; however, this is a manifestation ¥ Solutions given above, we shall confine our attention to the
of the fact that&(t), for the exact theory defined by Eq. vy=0 case which is not desc_rlbec_j by the previous formulae.
(138), is not monotonic. That this is correct may be demon-It offers an excellent approximation to many slowly chang-
strated using Eq(32) and solvingy2w+3=0 for ¢ when ing scalar-field potentials. In this case we can view the

_ ; : scalar-tensor coupling as providing a second scalar field,
= \@ + . . ) .
is 2§Lh§n Izgﬁgr ZESWEE%;Q?EHgzg)goﬂ?;ttg?é)p:g“ thereby offering the chance for double inflation to occur.

WhenB>0, (~1)°"*H=0 and hence{ 1)°H<0, ie., the ;ng\i/gtrihg :asxggszitjofggli?lwtczThpelyqtjoaI?ttz;tt)if/gtusﬁcgulrnetoof the
universe is always singular 0 in B>1 theories. In this solutions is different. Whe= 1, the form of 20+ 3 is as

limit presented in Eq(144) and the temporal line element of Eq.
(4—37)2 (149 can be approximated by
20()+3—575—3 ., (161
3(2—y) (1-B) ¢
. dt=———>—In"t&dIng (166
i.e., a BD theory. 3a;

WhenB<0, a(£) has a zero a§— 1 if H<O0. This arises
since V2o +3>0 as{—1 and £ approaches unity from as¢ 1. Integrating this expression we find
above (I£>0). As in the preceding paragrap£)>0 im-
pliesHB>0, B<0 enforcedH <0 and the evolution begins (1- B)¢1’2
from a singularity att=0. Again, the form of the coupling t(&)= - /7o

=—In(Ing) , (167)
function at early times is given by E¢L61), BD theory. 3ap
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which —o asé&—1. This can be inverted, yielding

3adt
f(t):ex ex m]@ ) (168)
and hence,

t 1+H 3agBt H 169
d(t)— o ex B[] (169

ag agt

207 [HBpo M 2007

1 3adt

x| 1+ §ex m]@ ) (170

ast—o. Here we see explicitly the possibility of double

inflation arising from the sequential effects of #dield and
the p=—p stress. IfB<0, t—w as é—x» and 2w+3 is
given by Eq.(153. The differentialé —t relation, Eq.(154),
is then well approximated by

2 1/2

0 H
dt= exg — =InB
3a; p( 5 In¢

din¢ . a7y

Making the substitutiorr=InB¢ we can integrate the above

equation to obtain

1/2

t(&)= 3—a°g|ng InB¢| | 172

EET-FE

asé, and hence, tend to infinity. Asymptotically, we obtain

3adt
Et)—exp o—1) (173
2¢y
3\B
$(t)— ol L+ H ﬁfz> tB} , (174
2¢5
3\ (1-B)/6 3
a(t)— 2 76 3a10/2) t(1~Bbex a_o;[/i ,
(HB¢o)™"\ 2¢5 2¢;
(175
ast— o,

5. The connection to the parameters of Theory 1

We now use the results derived earlier in this section t
model the late-time behavior of Theory 1. Consider first uni

verses in whichp— ¢ from above, i.e.,

JOHN D. BARROW AND PAUL PARSONS 55

4—-3y (1-B)?
(2-y? B
i)_
7 1

0

H 1B

20(¢)+3—

—[(B+1)/B]

: 77

X

as ¢— ¢q. This expression is essentially the same as defini-
tion of the Theory 1 coupling fot € (¢q,*) introduced in
Sec. IV. Explicitly, we may obtain the asymptotic behavior
of Theory 1 by making the following identifications between
its parameters and the parameters of @&9):

[6B(2—3)(a—1)| U
= (4—3y><a—2)2} . @’
1
B= m . (179)

The constraint on th8>0 models such that they approach
GR at late times, namelyB>1, is equivalent to
—(B+1)/B>—2. This is a very restrictive condition be-
cause the function-(B+1)/B is naturally bounded above
by the value—1. Thus, for perfect-fluid universes with
0<y<4/3 Theory 1 can only be expected to converge to the
general relativistic value ap from abovef 1 <a<2. When

¢ converges tap, from below, i.e.,¢ e (0,¢6g) we can ap-
proximate the late-time behavior of Theory 1 using the solu-
tions forH<<0, B<0. The asymptotic form of the coupling
in this case is given by Eq160)

4_3')/ 4(_H)1/B[ _( d)) (1-B)/B

(2=y)?  (-B) o

20($)+3— 3
(180

as ¢— ¢q. The behavior of Theory 1 at late times may be
found by substituting the expressions

_[3Ba2—pA(— 1)« U=
| 2(4-3y)(1-a) ’ (183
1
B=1——. (182

into the formulas describing the asymptotic evolution of the
theory defined by Eq(138). The choiceB<0 leads to the
constraint (+B)/B<—1, which becomes&>1 for Theory

1 as¢— ¢ from below.

VI. THEORY 2: 2 w(¢)+3=B,|In(¢/po)| %% 5>1/4,B,>0
const

The left-hand side of Eq20) for this choice of the cou-

OpIing function, wheng e (0,¢y), is

J [2w(¢)+3]1’2d
¢

&
be(do,®). (176
—(VB2/1= 8)[In(/ po)|*~*—\3InK,,  5#1,
The approach of Theory 1 to the relativistic limit in this =) B _
direction can be accurately modeled using the theory defined \/B_zlnlln(¢/¢0)| \/§an2' o=1,
by Eq. (138 with H>0, B>1. From Eq.(152), (183
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where K, is an integration constant. We now investigatethe bound * §<0 on the power of the logarithm in the

vacuum and radiation solutions for this case, under the asxponential

sumption thate e (0,¢).

A. Vacuum solutions (k=0)

Selecting the zero-curvature right-hand side from @)
and the necessary form fg( ) from Eq.(19), Eq. (183 for
6#1 reads

¢

g

where A,=+/3/B,. The left-hand side is positive, for the
right-hand side to follow suit as»np—o requires
No(1—6)<0. As 5—oxo, the right-hand sider and we
must haves>1 for this to occur on the left a$— ¢4. This
implies A\,>0 and we obtain for the field and the scale-
factor, whens+ 1, the exact expressions

B(7)= poexi—{No( 5= D)IN[Ko( 7+ o)} 777,

1-6
=—N(1-9)In[Ky(n+1n0)] , (189

(185
2 A _
a‘(n) ¢0(7I+ 70)eXp{[A2(5—1)In
X[Ka( p+ 70) JIME9} (186)

When §=1, the conformal time-evolution of the field and
the scale-factor are given by

(n)= poexrd —Kay(n+n9) ] 2, (187

o (188

a%(n) (n+ no)exp{[Ka( 7+ 170)1 722} .

1. Late-time behavior

As p—oo the late-time behavior can be modeled by Egs.

(62—(64) under the simultaneous transformatiois;\,,
a—26. Settingny=0 for simplicity, we see that the scale-
factor tends to zero ag—0 when §>1. Whené§#1 we
requirex,>0 if ¢ is to tend tog, as n— . We find

9o
4A

—\pf3
2023
1

(189

¢(t)—>¢o[1_K2)\2(

which approacheg, ast— . The asymptotic form of the
scale-factor is

A 1/3 l_)\z
N Dl IV -\
a(t 2¢o) ! 3[1”2 2(3—%)
9 —)\2/3
% %) t2”2’3} , (190

with limiting behaviorast'/® ast—oo.

2. Early-time behavior

Examining the form of(7) whené§+#1 in Eq.(186), we
see that the choicepp=0 ensuresa(0)=0. As n—0,
Inp— — and the exponential factor & either tends to zero
or a constant, depending upon the sign ef & However,

guarantees that we always obtaiz)
o« \JAl pon*? as 7—0 and hencen— (9¢o/4A) V%%, This
final expression implies—0 as »—0 and the early-time
formulae for ¢(t) and a(t) are identical to Eqs(60) and
(63), under the transformations—\,, a—24.

When §=1, the dominant behavior ia(#n) as —0 is
contained in the exponential, from which we may conclude
(after settingny=0) that

1
toc 7;(3’2)”2exp{§(K277)”2} : (19

This may be inverted asymptotically in~ 1. To first order
we obtainy~K, 1(2Int) **2 as  andt tend to zerdnot-

ing the sign ofA, and the necessary monotonicity g{t)].
The next-order corrections at early-times follow by substitut-
ing this lowest-order result into the weakest dependence in
Eqg. (191, i.e., the power-law factor, and solving fer This

yields

3 =1/,
77~K2‘1(2 Int+| 1+ K)In(lnt) ] . (192
2
and hence
(1) — ot ~An~ M2 =2 (193
a(t)oct(Int)tH 2 | (199

ast—0.

3. Minima

Examining thes# 1 vacuum models for the presence of
minima we find

A
(az)n:(?oe)(p{_[)\z(ts—1)|n(K277)]1’(1*b7}
__1y114(1=6)
X1+ —wmm%n} ' (195

1-6

For the exponential to tend to zero we require its argument to
tend to —. The bound ond, namely §>1, implies that
n—K, !t for this to happen. At this point
INY1=9(K,7)—o; nevertheless, this logarithmic divergence
will be insufficient to counter the exponential convergence of
the prefactor. We can also expect to see turning points in the
evolution ofa when the factor in square brackets vanishes.
This happens whem= 7, , where

%= KzleXF{

One can show that the conditions for the factor in square
brackets in Eq(195 to vanish also guarantee that the expo-
nential will be well behaved. Wheé=1 we have

(—hp) "2

1-o (196

A
(a%, %[14' N Ky R M2lexp{ — K, e )

(197)
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K,7»>0 and so the exponential will vanish whep—0.

When this happens the factor in square brackets diverges, 7(t)=ex
however, its divergence is quashed by the rapid convergence
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217%nt2(~t) 27%\
p{—)\zm_l) 1+3( )In 5(—t)“

(205

of the exponential, confirming the presence of a stationary

point at »=0. There will also exist a stationary point in the wheret— —« as »—0. Using this relation the early-time
evolution ofa when the square-bracketed factor itself van-pehavior is

ishes in Eq{(197). This occurs aty, , where
7o =(—Np) Ky (198

At this point — (K,7) 2=
well behaved.

B. Vacuum solutions(k=—1)

Similarly, we analyze the behavior of the negatively

curved models. Selecting tHe=—1 versions of Eqs(20)
and (19), we obtain for the field and the metric, wheh
#1, the expressions

(1) = doexp{—[No(5—1)] Y1~ I1-9

X[Katani 7+ 7o) 1} (199
a%(n)= 22 sint 2( 7+ 7o)t]
X expl[[ A 5( 8- 1)UL~ I ptA1-2)
X[Katanh( 5+ 79)]1} - (200

This solution will approach the Milne model at late times

under the conditions€ 6<1, K,=1. The approach o to
¢, from below requires\,<0. Whend=1, settingn,=0
we have

B (1) = poexp{ — K, 2tanh 27} , (201

A
———sinh(2n)exp[K, *ztanh *27} .

2o (202

a’(n)=

Because there is no choice ki, which allows ¢ to tend to

¢, at late times we do not pursue this model any further.

1. Late-time behavior

The late-time behavior is given by Eq®84)—(86) under
the substitutions.;=\,, a=24.

2. Early-time behavior
Picking 7,=0, K,=1 in Egs.(199 and(200), we have,
as n—0,

B(1)— poexp{ —[No(6— 1)V~ Int1=2 7} (203

A
a*(n) = - mexplho( 5= )TN0 )

We know 0<6<1 and hence 1/(% §)>1 anda?(7) will
be dominated by the exponential factor#s-0, and hence
a—0. Integrating and inverting(#), we obtain

(204

A, >0 and the exponential is

1-6

¢(t)—>¢ot_2exp{ —3(m) |nl_5(—t)] , (206)
. \f 21— 1)
as(t)— texp{ (1 0)

3. Minima
Differentiating Eq.(200) yields

] : (207)

ast— —oo,

A
(aZ) ”:%{Coshzﬂ) + ( _ )\2)1/(1—5)(1_ 5) 5/(1—5)|n5/(1—5)

X (tanhy) }exp{[ A y(1— 6) 1M1~ )ptM1-9
X[Kotank( 7+ 70)1} - (209

The exponential cannot tend to zero, since its argument is
always positive. If we examine the prefactor we find station-
ary points exist aty= 7, , where

cosii2n,)=—(— Np)YA=9)(1— 5)9(1=9)

X[In(tanhy, )17~ 9 (209

This is not soluble analytically, although we may gain a
bound on its value by demanding that the cosh function al-
ways be greater than unity. We obtain

77*<arctam{ exp(— 1_5” .

C. Vacuum solutions(k=+1)

When ¢ lies in the range & ¢< ¢, and 6#1 we have
the exact solution

(1) = oexp{—[Ao(5— 1)UL Ip1-9)
X[Katan( 7+ o)1} ,

(210

(211

A
a¥( =3 20 >SN 2( 7+ 70) Jexp{[ N p(6—1)]H1 = Int=2)
X[Katan( 7+ 70)]} - (212
In the particular casé=1, we have instead
B(m)=oexp{ —Kp M2tan *2(p+ 7o)}, (213

Sin(2( 77+ 770) Jexp{ — Ko *2tan™2( 5+ 70)} .
(214

a%(n)= 5= ¢
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D. Radiation solutions (k=0)

Fixing the origin of conformal time in Eq$22) and(21)
such that 2" n,=A, we obtain the exact results féi# 1:

d(n)= ¢Oexp{ —[Ay(5—1)]H1-9

7
n+2m

_—

r
a’(n)= PG 27}o)exp[ [Ao(6— 1)V IintE=2)
0

K2

n+2m ] ’ 18

In the special case af=1, we have the exact relations

Kop |72
¢(ﬂ):¢oexl{_ 7270 , (217
PR R p{ Kan Az} (2189
a(n)—¢0n(n 79)€X _— :

To ensurea®>0, we requiren(n-+27,)>0 and the modu-
lus signs in the above expressions can be dropped.
1. Late-time behavior

The asymptotic behavior may be obtained from E§S)
—(100), by applying the transformationa—268, A;— \s.

Whené+# 1 Eq.(215 serves to bound the allowed parameter
values in order thath— ¢ as n—o». We can see that we

require 5<1 andK,=1, delimiting the allowed range of

to 1/4<5<1. We taken,7,>0 to ensure both sides of Eq.

(22) exist on the correct domains. Examining Eg17), we
see that whed=1 there is no nontrivial choice &, which

permits ¢— ¢ at late times. Therefore, we exclude it from

further analysis.

2. Early-time behavior

1925

which, for the range of values @to which we are confined,
is dominated by the exponential at small Integrating this
expression and inverting approximately then leads to

2—5
ﬂ(t)ZZUOEXD{ T A(1=3)

1-6
xlnl"s(—t)} ] ,

-6

|n(—t)+3m

(222

and sot— —« as »—0. The field and the metric are then
given by

1-6

d>(t):t2exp|’ 3hlnl‘s(—t)] . (223

1-6

2 _
a(t)ztexp[ (=5 Int ‘9(—t)] .

ast— —oo. Case(ii) can be modeled by applying the trans-
formations: 7o— — 79, 7— n+2n9, \o— — Ao, in this or-
der, to Eqs(222)—(224).

(224)

3. Minima

Since the scale-factor is infinite at early-times, we know
there must exist at least one minimum in its evolution, in
order that we obtain general-relativistic expansion at late
times. Differentiating Eq(216), we find

(az)n:? n+ o+ no(— A Y170 (1—- )Y
0

% [nd(1=d) 7 ”

n+2mn0
n
X expl [Ny 5— 1)UL DptiL-o) —” _
p[[ 2 ] n+2n0
(225

For the parameter choices we are confined to, the exponen-

At early times whens+ 1 the behavior is harder to ascer- tial factor in the above expression is a monotonic function,
tain and we need to make use of logarithmic approximationsexisting in the range (I¢). Thus we search for zeros of the

From Eq.(217), by demanding tha#  (0,¢,), we see that
the lower limit of » occurs as

(i) 7—0, Ny>0, ;>0 (219
or
(i) p——2m9, Ap<0, 79<0. (220
Case(i) gives
a( )= n'%x E[)\ (6= 1)L pUa-o) n
2-72 2m0) )’
(221

prefactor, finding them to exist aj, , where
s+ Mot 70( =AM (1= )7

><|n5’<15>(—77* ):o, (226

N T 210

which is nonanalytic and must be solved numerically for
particular 8,\ 5, and 7.

E. Radiation solutions(k=-1)

For the negatively-curved models with+ 1 we have ex-
actly
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d(n)= qﬁoex;ﬂ’ [Ao(5—1)]¥1-9)

2 2\1/2__

pa-9)| K I'tank 7+ 7o) +(I'“+A%) A (227
2| Ttanh( 7+ 7o) + (T2 +AH) 2+ Al ||
1 .
a*( n)=g[—F+(F2+A2)”Zsmf[2(n+ 70)1]
0
Xexp{ —[Ay(6-1)]M1=9
2 2\1/2__

Cpta-9)| K I'tani 7+ 7o) +(I'“+A9) A . (228

2| TtanH 5+ 7o) + (T2 + A% Y2+ A

When =1 these become
T'tanh( 5+ 7o) + (I +A?%)Y2—A
— _ K.\ -\

a2 ¢°ex"[ 2 | Tant(y+ 7o) + T2+ ADTZFA| (229

1 I'tanH 7+ no)+(r2+A2)l’2—A\**z
2 N 2 12\12:2(7+ 1) -y
a“(n) 2¢0{ +(A°=TI")"%e }exp{ K2 Ttant( 7+ 7o) + (12 + A2+ A (230
|
1. Late-time behavior 3. Minima
The late-time behavior may be derived from the Theory 1 We define

solutions, by the simultaneous transformationg— A\,
a—26. When 6#1, Eqgs.(125 and (126) require A\,>0
and <1 to ensure late-time approach to GR. Wh&n1, _ e?7-1 236
there exists no value ¢f, that will admit a tendency o to T e2n—e %m0 (236

¢, at largen, and for this reason we pursue these models no

further.
such that
2. Early-time behavior
We make the simplifying choice for the origin aftime: 1
AL 12 (az)f%{(AZ—FZ)”ZcosFEZ(n+ 70)]
e?o= A—-T (23D 2 2\1/2; 1U(1-6)
+[=T+(A*=T?)¥sin{ 2( 7+ 70) 11(— \2)
Equation(227) for the 6+ 1 solution then becomes (1= 5)71-9) e’7(1—e 4m) /(- O
(8277_e74710)2
T+A 1/(1-6) / /
¢<n>:¢oexp{ = Na(6=Dinl | —5—| 7 ] , X exp{[Ao(6—1)]H1 IInti-opy (237)

At a stationary point in the evolution of the scale-factor we
require the expression on the right-hand side of 87) to
vanish. Since a zero of the exponential would require
¢—, which is outside our range of consideration, we
search for zeros of the prefactor. Minima existgt, given

by the implicit formula

as n—0. When\,>0, ¢—0 asnp—0. When\,<0, how-
ever, there only exist solutions wher ()Y~ is real. For
the limiting form of the solution, we find

p(t)oct?? (233

U1-5)
] ) (234) (AZ_I‘Z)l/ZCosl‘EZ( 7.t 770)]+[—I‘+(A2_F2)1/2
X sinH 2( 7, + 70)]1(— Ap) Y2~ (1— §)7(1=9)

ezﬂ*(l_ e74770)
(627]* _ e—47]0)2

2N,
¢(t)ocexp[ - [T(é— 1)Int

a(t)oct?, (235
e?7—1

In¥(1=9| ————|=0. (238
as 7, and hence, tend to zero. e?7 —e 470 (239
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F. Radiation models(k=+1) 1
a’(n)= szO(FJ’ (T2 + A% Y3 2( 7+ 10) 1)

For the closed models with#1 we have

X exp{ [Ao(8—1)]HE2Int1=2)

d(n)= ¢0exp{ —[Ay(8—1)]H2 2= x{ Ttan( 7+ 7o)+ (I2+A2)12-A
2Ttan n+ ny) +(F2+ A2 Al ||
T'tan( 7+ 7o) + (M2 +A%)V2- A e )
| K| s 10 (240
Ttan( 7+ 7o) +(I*+ A% Y2+ A| ][
(239 and whens=1 these become
|
B T'tan( 5+ 7o) + (I +A?%)Y2—A
d(n)= ¢oeXp|’ _eXF{ —Aaln| K, Ttan 7+ 7o) + (T2+ AD V24 A , (241
1 I'tan( 7+ 7o) + (I'2+A%)Y2— A
20, N 2.0 A2\1/24i _
a“(n) 2y (T +(T2+A%)Ysin 2(n+ ﬁo)])eXp{ ex;{ AoIn| Ky Ttan 7+ 7o) + (T2 AL 74 A . (242
|
G. Perfect-fluid solutions (k=0) The boundB< 0 leads to the constrair®t>1/2, hence there

When ¢— ¢, from above, i.e.¢  (¢o,%) the approach exists a wide spectrum of models with<Q/<<4/3 in which
of Theory 2 to the general relativistic limit can be accurately‘ﬁ_> ¢o from below.

modeled using the theory defined by E38 with H>0, VIl. THEORY 3: 2 +3=B.l1=(b/d)El~L B>0. B.>0
B>1. Recall Eq.(152): ' 12 (9) Cong{ (#/¢0)™", £>0. Bs>

20 )+ 3 4—37/2 (1-B)? Hl/B|n—(B+1)/B(£) For this choice of the coupling function, we find
3(2—- B '
(2=7) ¢0(243) (20+3)12 VBs |1+ Vus
) d¢p=— B n 1o, —\/§InK3,
—u
as ¢— ¢g. Thus we can deduce the late-time evolution of s (249
Theory 2 by enforcing the relations on the perfect-fluid so-
lutions presented in Sec. V where 0< < ¢, and
B
[3Ba2-p22s-pprn ugzl—(i) . (250
~T4(4-3y)(5-1)? o (249 %o
1 A. Vacuum solutions (k=0)
B=55-1" (249 Starting with the flatkk=0 models with¢ e (0,¢), we
obtain
when ¢— ¢ from above. Theory 2 can only tend to GR at 1-ug
late times with¢ going to ¢, from above if 1/2<§<1, as 2 = (Kym)hef (251
follows from the constrainB>0. When¢— ¢, from below 1+ \/U—s
the behavior of the coupling is given by E4.60): with 3= 3B, and fixing 7,=0. Using Eq.(19) we can
(4—3y) 4H 1B b then deduce the evolution of the field and the metric to be
(1-ByB[ 7
200t 32 2 B " (%) B 49 go(Ka)s
. . L d(n)= [1+(K377)>‘3B]2/B ) (252
The late-time behavior of Theory 2 whef is in the range
¢ € (0,¢y) is then given by Eqs.138—(175 under the sub- ) AKzhs . Ny
stitutions a (71)=W77 L1+ (Kam)sP1?P . (253
Y 1(25—-1)
_ 3(2=7)"B, (247 1. Late-time behavior
4(4—3y)(1-26)

Examining the form of Eq(252 we see that there is no
choice ofK; for which ¢— const at largey, precluding any
B= ' (248 possible approach to GR at late times. In spite of this, we

find for the asymptotic behavior
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d(m)— 4P poK s~ Ml =l (254
AKal
2 1+|\g]
as(n)— 3l (255
(n ATy
At late times we find
18 1/212/(3+ |\ 3))
n(t)— ¥l (4o ’ £ 23+
2 AK3I>\3I '
(256)
41/ﬁ¢0 3/(3+|\3))
0~ i)
3+ [\g|| L@RDYE D
X AT t~[@N3D1(3+]xg))] ,
(257
AKNal| UB+INg])
a(t)—>( 413%)
(1+|N3])/(3+|ng])
3+|>\3|) s & £(1+NgD/(3+Ng])
> .

(258

Since there is no late-time approach to GR, we do not purs
the early-time behavior or probe for the existence of minim
in these models.

B. Vacuum solutions(k=—1)

Similarly, for thek=—1 cases we have

1-ug

=K sPtanhtsf y |
1+Vu;

(259

and convergence to GR ag—o demand¥;=1. By direct

comparison with the solution for flat models we obtain the

exact results for the evolution @f anda

4YB g tanhay

d(n)= (T+t@nR %528 (260
) A _ (1+tanh3f )%
as(n)= 2ﬁ+2/5¢03|”f(277) tanfay . (26))

1. Late-time behavior

Asymptotically, these relationships tend to the pair

d(m)— o[ 1-N5Be "], (262
22
a(n)—é\/%e” 1+ %'Be“”} , (263
as n—o, and we find
%o \3B
77(t)2|n{2 Xt 1+ Wt 4)} , (264

leading to
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L A8
16g{>02

(265

ol

{4

¢(t)ﬂ¢o{

A’\3B

ast—o, and so there is power-law approach to the Milne
universe of GR at late times.

2. Early-time behavior
Setting7,= 0, we can expand Eq&60 and(261) about
7n=0. We find

() =4 poyhsl | (267)

A
a’( n)=4*1’ﬁ¢70 pt Pl (268)

The latter of these leads to the early-timét) relation,

¢o

SVEIW)
7(t) = 212(1- BVIAE-Irg)] )

X (3—|Ng|) 23~ MaDp2(3= 1) (269

ugtudying the form of the exponent in E69 reveals that

2When|A;[<3,t—0 as»—0 and whernA3{=3, t— - as
n— 0. The early-time evolution of the universe as a function

of t is then given by

B(1)— 2123 BVIAG=IAg])] ¢g/(3_|}‘3|)A\?\3|/(\)\3|—3)

X(g_|)\3|)2|)\3\/(3*\)\3|)t2\>\3\/(3*|)\3\) , (270
A\ V3= Ing)
a(t)ﬂz[ﬁ(|)\3—1)—2]/[/3(3—|)\3|)]<_)
®o
X(g_|7\3|)(l*\7\3\)/(3*|>\3|)t(l*|>\3\)/(3*|>\3|) ,
(271

ast—0, —o accordingly. When\;|=3, thet-dependent
evolution is given by

n(t)_>exp[ 21’3\/%} , (272
¢(t)—>41’B¢oexp{3.21’B\/ %t} , (273

_ [A [ o
a(t)—2" 1k %exp{—ZW Kt}, (274

ast— —oo,

3. Minima
Differentiating Eq.(261), we find

a2
2y —
(a W—W COSI’(27])+

s
tanh sfp+1 3|
(279
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At early times, i.e., asp—0, a?—0 if |A5|<1. Since
sinh(2y)=27 as n—0, Eq. (268 implies

(@), ML

as n—0, and thus the power-law prefactor irazz(j,7 can
never vanish at early times. The fietfl evolves monotoni-

(276

cally, by Eq.(17), and tends to a constant at late times,
which guarantees thag, cannot diverge during the subse-

qguent evolution. Equation(17), in conjunction with the

bound 0< ¢< ¢, then ensures that there can be no further

zeros ofa as the universe evolves. Equati®i75 ensures
(az),7 is nonzero asp—. In general, stationary points in
the evolution ofa arise atn, , given by

—N\g=0, (277

29,)+ 2hg
costi27,) 1

tanh 23y,

obtained from the square-bracketed factor in &7.5). Re-
membering the positivity of both coshf2)—1 and#, , we
can derive the interesting result that whan|>1 the loca-
tion of the minimum is constrained by

)\3_1 138
A+l

7, < arctanlﬁ , (278

and when/\;|<1 stationary points do not exist.

C. Vacuum solutions(k=+1)

Finally, we note the existence & +1 closed-universe
solutions, governed by

1-Vuz

1+\ug

K3 sPtantsh (279

This leads to the exact solution, in conformal time,

4YE p K grstanta g
(1+ K sPrantsb )28

d(n)= (280

(1+ Kz ePtantsh ;) 2P
K3)\3taﬁ\3 n

A
a’(n)= 25—+2,%sin(277)
(281

D. Radiation solutions (k=0)

The behavior of thé&c=0 radiation models for this choice
of the coupling function is determined by

1—uz Ks7
In| ——==|=A38In , 28
(l+\/u—3 33 +2770 ( 2)

where we have exploited our freedom ip, to set
A=2I"75, andug is as defined by Eq250). We also require
K;=1, so that¢— ¢y as n—o. Using Eq.(21) we can
calculate the exact evolution of these models

7 )xsﬁ}—z/ﬁ
n+2m0 '

B(n)=4"F ¢,

A3
n+2nJ [
(283

BEHAVIOR OF COSMOLOGICAL MODELS WITH VARYINGG
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r
a’(n)= R 7' N+ 2mp)t e

X 1+( (2849

)\3[3 2B
n+2n }

1. Late-time behavior
At late times these equations may be approximated by
2
1-\367

d(m)— o : (285

oo

It is necessary to extend the computatiora¢f;) to second-
order since the first-order contributions will later vanish.
Equation(286) allows asymptotic calculation of conformal
time as a function of cosmic time,

1/4

) t—1/2

r
n(t)—nE(% %(%

2
o r 2 Int
~ NG0B T

and hence there is power-law approach to the GR solution

2
+—+ (Asﬂ 1) } (286

tl/Z{ 1—

(287)

2
- ol 1- o 75 d (289
2
ot e ]
(289

ast—oo,

2. Early-time behavior

We now probe the early-time behavior of these models,
finding two distinct cases. There exist zeros¢pofas »—0
and n— —27,. Since we requirgb>0 during the portion of
the evolution in which we are interested, and ultimately at
late times, we shall take our early-time limit to be the most
recent of these zeros. We know from E#7) that

{2

0

1/2

$,a%=N3A , (290

and since¢ e (0,¢) and ¢p— ¢y at late times we deduce
that ¢,>0. From Eq.(290, we deriver;A>0. We have
fixed A=2I"75,, with I'>0, so we may also say;7,>0,
i.e., when\;>0, »—0 is the more recent zero @ and
when\;<0, n— — 27, is most recent. Wher;>0 we find

7 |3
¢(77)—>41/B¢0(2770> , (292
2 A N3, 1—\3
a%(m) = gupg-(2m0) ' e, (292
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as 7—0. We can model thé-parametrized early-time be- time regime. The non-zero right-hand side of E290 on
havior by Eqs(269—(272), for thek=—1 vacuum models, the interval 0<¢$< o then guarantees that is non-zero.

via the transformation Consequently, the stationary points in the evolution are ob-

tained by setting the square-bracketed factor in (29 to

bo— (2:;)}‘3 . (293 zero. They lie aty, where
2N\370

When\3<0 (70 (et 2P+ 1 ™ 70(1+X3), (301

n+2m| e which must be solved numerically for the particular values of
1B
¢( 77)4)4 ¢O( _2770 ) 3 (294) B, )\3, and 710.
a%(n)— - 4_1117,0( —270) M3(n+2m0) 3, (299 E. Radiation solutions (k= —1)

When the curvature is negative, the evolution is deter-

as n— — 2. Note that bothA and 7, are negative here. 1aq by the equation

The behavior as a function df can be gleaned from Egs.

(269—(271), by the redefinitions 1—u, s Ttank 7+ 79) + (A2—T2)V2— A [NsB
bo— bo(—27)"37 2, (296) 1+u; © | Ttanip+po)+(A*-T?H¥+A[ 7
n—n+270, (297 A2=T? (302
A —A . (298 with u; and\ 3 as defined earlier. We make the simplifying
choice of 7q:
. r
3. Minima tani(27y) = A (303

Differentiating Eq.(284) yields

) which ensures that the early-time behavioe., »—0) oc-

(a2),= o 2m0(14+Ng)+27 curs atyp=0. To recover GR at late times, we fix
° (AT A son
B 4\370 (299 ST H(AZ_THVZA - (304
1+ 9l (n+2m9) N

Substituting Eq(303) into thek= —1 right-hand side of Eq.
If the early-time limit is given byX—0 whereX is either  (21) we find
7 or n+2mn,, then

r A .
(az),]ocX*“S‘[- -1, (300 y(7])=E[COSV(Z?])—l]-FESInHZn) . (309
and thus never vanishes at early times. From §0 we  Last, we note that withy, given by Eq.(303), the expression
deduce that when Q@ ¢<¢q, ¢ is bound to evolve mono- within the moduli on the right-hand side of EB02) is

tonically. The necessity that it tend to a constant at late timemonotonically increasing from zero and thus positive. Drop-
then occludes the possibility of it diverging after the early-ping the moduli, we find

_ 4YB oK M3{[ Ttanh n+ 7o) + (A2=T'2)Y2— AJ/[Ttank( 7+ 7o) + (A2—T?) Y2+ AT}rs
b(m) = [1+ K sP{[Ttank n+ 7o) + (A2—T?)Y2— A)/[TtanH 5+ 7o) + (A?—T'?) Y2+ AT NsF]2E

(306

4*1/BK —\3

— 3 [T[cosh27)—1]+Asinh(27)]
0

a’(n)= 24

[1+ KM P{[Ttanh( 9+ 7o) + (A2—=T?)Y2— A]/[Ttank 5+ 7o) + (A2—T'?) Y2+ A]}rsFPIE
Tt n+ 7o)+ (AT TH = Al Tant o+ no) + (A2 TA 75 Ape 07
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1. Late-time behavior / r \/AT A AZ A3
4B Nal o | — A — \
As p—o we find d(7)—4"F K3 3[A 2 1(F 2 1” 73,
N3A2B | A—T —(A2—T2)12)2 (313
¢(77)—>¢0[1_ 712 772 1/2) e 7|,
A—T?| ATT—(AZ=T?) T
(309 a’( 7])—>—3 —\/=z—1
T+A 2r %o ANTE
+
a(n)— e’ 1— e 27| (309 A A2 “\sg
n 4¢0 F+A X F_ F_l 771*)\3 , (314)

as n— . These lead to the-dependent behaviors:
[ $o
2 1“+At

N3A%B
¢><t>~¢0[1— 6

with K3 as given by EQ.(304). The reality condition

, (310 A?>T'? and the inequality\sA>0 [from Eq. (290), using
¢,>0] ensure all of the prefactors in the above relations are
real and positive. We obtain theparametrized behavior at
early times by applying the substitutions

r
1——t‘2)
4o

A+T
A-T

7n(t)—In

INg|— N3, (319

A_I‘_(AZ_FZ)HZ 2
‘ ) -

ATT— Az ! 4}’ (310

AZ (A AZ ]

r
r $o— ¢0K3)‘3[— T2 =1
a(t)—t|1— —1t72|, 312 ANT r r
(- [ 24, (312 (316
ast—o. Again, we see the approach of this model to the
Milne universe ag increases. to Egs.(269—(273).
2. Early-time behavior 3. Minima

Analyzing the behavior in the neighborhood of the last If A3>1 then the scale factor diverges at early times. For
zero of ¢ (i.e., aroundy=0) we obtain a description of the such models to look like GR as— requires the presence
early-time behavior. We find of a minimum. Using Eq(27) we find

cosh 2( 7, + 1) ]=N3c0sh270)
1-K3"#{[Ttanh n, + 7o) + (A2 =T'?)Y2— A/[Ttanh 5, + o) + (A2—T?) Y2+ AT} eA
1+ KsP{[Ttanh 7, + 7o) + (A2—T'?)Y2— A]/[Ttank 7, + 79) + (A2—=T2)2+ A]}sF |
(317

definesn, , where the minimum is situated. Although this where the lower limit follows from the positivity of.
expression is not soluble analytically, we may obtain bounds

on the value ofy, . Equation(27), for Theory 3, may be F. Radiation solutions (k= +1)

written
For the positively-curved modelk€ +1) we obtain
I'sinh(27,)+Acosi27,)=N\Aut?. (318
. i 1-\U; [ |Ttan g+ po)+ (T2 AP A |]haF
The bounds om3, namelyu; e (0,1) then imply 1+ \/U_s_ 3 Ttan 7+ 7o) + (I'2+ A% 2+ A
0<costi2(7, + 7o) ]<\3cosh27,) , (319 =a(7) . (320

after using Eq(303). The cosh function is greater than unity

; : . : : ..~ This leads to the conformal time-parametrized set of equa-
and monotonically increasing when its argument is positive

allowing us to strengthen the above inequality to tions
0 ! 2 320 N LS 322
< 77 <5arccosh 3cosH27) ] = 7o, (320 d(n)= o o (322
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a2 [1+o(7)]?|YE 5 o1 as&%—0. This expression may be integrated approximately
a’(n)=5 - 2¢ “do(n) {r+(I*+A% for small &9, giving
Xsin(2(n+ o)1} . B29  {(g~g 1grz-Quizc- m[l p( )gQ} (33D

G. Perfect-fluid solutions (k=0)
We examine the late-time form of the solutions resulting

whereS is defined by

from a scalar-tensor cosmology driven by the third type of 3y (PQdgy Yo blE=n 1 pQ 12
coupling function using the theory first studied by Barrow S= o 3<~/ D 4-3y (332
and Mimos0[33] and defined by
Ignoring the square brackets in E31), we obtain the
= Q
P(£)= hoexp(PE™) , (324 lowest-order inversion of this expression
where P and Q are constants. This choice ¢f(£) arises £(t)=S22-M¥2-QN2@-yV12-Q) (333

from the generating function
Introducing the corrections associated with the terms in the

1
_ 2-Q square bracket leads, at the next-order, to
9(6)=pgé (329
2P [ y—1
~ Q22— y(2-Q)]t[2(2— [ y(2—
and results in the scale-factor £(t) =Sy Q2@ lix Q)][l (2 Q)
3(2 )
a3 V()= 2 500, £2 Qxp—PQ) . (326 % S12Q2= NI 2-Q1t[2Q2- N[ ¥2-Q)] | (334)
Positivity of the left-hand side of Eq(326) requires that From this we can see tha@—0 ast—x= if Q>2. As
quiresQ< 0, we thus deduce that the range of theories de-
4—3y marcated by 82Q<2 will not approach GR as—. Sub-
f(&)= PQ§2 Q+ 7 £-D, (327  stituting the above(t) into Egs.(324) and(326) we obtain
the t-dependent evolution
and B(1)— o[ 1— P22~ NI72-Q{[2Q2= N 72-Q)]7 |
2w(€)+3 (3395
/
_ 43y [-QUPQIE HA-3NRE oy BT,
T3(2—y)? [(PQE H[(4-3y)/41ET - (PQgo) 277!

(328 w|1- %p§2Q(2—7)]/[7(2—Q)]t[2Q(2—7)]/[7(2—Q)]
Again, at late times we demanfl— ¢,. This can be realized
as £—0 whenQ>0 or asé—» whenQ<0. WhenP=0 (336)

and/orQ=0 we have GR. ast—o. The corresponding late-time evolution of the cou-

1. Late-time behavior pling as a function ofp is given by

The limiting forms of the coupling function &—0 when 4-3y (2—Q)? 1

Q>0, and ast—>= whenQ<O0, are identical: 20(¢)+3— 32-72 QO Indldy (337

4-3y (2-Q)? When Q>0 the requirement thaa be positive ensures
— -Q K

20(8)+3 3(2—y)° PQ &€ (329 P£9>0. From Eq.(32) we see that foQ>2, d¢/dt<0, i.e.,

£€—0 from above and hende>0. Equation(324) confirms
In this case, Eq(32) is that ¢p— ¢ from above wherP andQ lie in these domains.

Conversely, whenQ<0 the requirementa>0 implies

2-Q adr~ b P£R<0. At late timesé— in these models and sB8<0

dt= 2— 7] 3(PQey) " V@7 and ¢ approaches the GR valug,, from below.

We remarked earlier that tH@=0 case gives pure GR at
all times. WhenQ=2 Eq. (328 for 2w+3 does not ap-
proach the limit given in Eq329 as&é—0, instead we have

4_3,)/ 1/2

X (4y=4-Qy)/[2(2- )]
o ¢

y—1 2(4—3v)%P
X exp{ — P( ﬁ) gQ}dg : (330 20(£)+3— 12(2—_7)2§2 : (338
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and 2w+ 3 decays to zero a&—0. The range of) incom-  The first-order inversion of this at largegives
patible with current observations, that GR is a good approxi-

mation to the time description of gravitation today, is then £(t)=ex 3agt (345
O<Q$2 (Z_Q)¢(1)72 ’
2. Early-time behavior which arises by neglecting the square brackets on the right of
WhenQ>2, P>0 the scale-factoa approaches zero as Eq. (344). The next-order correction to this result is
o §(t)~( 3agt ) 1—iex;<—,-3Qagt ) (346
(4-3y)? 2-Q#°/|" 2@ (2-Q)¢57) |

ast—oo. Substituting this into Eq¥324) and (326) yields

i.e., BD theory. The square root of this limit is positive and

so it follows from Eq.(32) thatdé/dt must also be positive, B(t)— o

demanding that approach—. The positivity ofa, Q and

P imply (—1)°>0 and hencep—» asé— —», a—0. .
WhenQ<0, a necessary condition for the scale-factor to 8o apt

approach zero i€—0 and in this limit we recover BD a(t)_’(pQ¢0)1fﬁeXFJ<2¢(l)/2

theory again, the coupling given by E(B39. As before

3Qadt
e |

V2w +3>0, d¢/dt>0 andé—0 from above. Positivity of P(2+Q) 3Qajt
a thus require? Q>0, which is guaranteed from the late- X|1= 12Q ex (2—Q)¢é’2 . (349
time behavior. However, foa to converge to zero a&—0
requiresP>0 and henc&®>0. This direct contradiction en- 5. Connection to the parameters of Theory 3
sures that(¢) will be nonsingular wherQ<0. Explicitly, , ) )
a(¢) possesses a minimum at At late times we have for all of the models considered in
this section
2-Q He 2 E 1-1
§*=(—) - (340 4-3y (2-Q)°E ( ¢) -
PQ 2w +3 — -1 ,
(D3=32527 7@ 1%
For reasons given in Sec. V G 2 we refrain from presenting
the explicit form of the solution here. as ¢— o, (349
3. Dust models 4-3y (2-Q)%E| ¢ \F| 7t
| - - T3z Q) el |
The late-time evolution of thege=1 models is, from Egs. (2—y ! o/ |
(335 and(336), that (350
20/(2-Q) whereE is a constant. Wheg> ¢, andQ>0 and we can
¢(t)—>¢o{ 1— p(ﬁi) t2Q/(2-Q) | (341 model the form of the coupling as a functignfor Theory 3
2(PQ) by Eq.(349). When ¢< ¢y andQ<0 we can use Eq350
9 3 for the coupling as a function ab. This leads to the consis-
a(t)—a 12/3 tency relations
(=2 4¢>o(PQ)2) ) )
(2-Q)° 3(2—y)° B3
p 3 2Q/(2—Q) 20/2—0) sgr(Q) = 4_37 E’ (351)
E=8, (352
ast—oo,

connecting Theory 3 as defined in Sec. IV with the solutions
4. Inflationary models presented here.

As was the case in Sec. V G 4, the solutions when0

are qualitatively different to their more general counterparts, 6. Exact solution

Egs. (335 and(336). In this case Eq(330) is We note the existence of an exact solution, defined by the
choice
(2-Q¢5° , [P
dt= —333 § 1eX EgQ d§ y (343) ¢(§):¢0(1_§2*V) , (353)
0

as £9—0, which integrates approximately in this limit to wherew is a constant. This leads, by E@t3), to

give . N
PR 9(§)=-—5&(1-&7), (354)

(2—Q) p3? .\
2QIn¢

t(é)= 3ag

. (344

Ing[l
and by Eq.(45) to
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8(2—7) can be restricted further if we require the theory to approach
a3(2‘7>:T§V : (355  general relativity in the weak-field limit ¢— and
(v=2)¢0 o' w 3—0), and describe expanding universes. For each of
The exact form of coupling driving this behavior is given by ese general classes of theory we have determined the be-
Eq. (50) as havior of flat, open, and closed universes by a combination
of exact solutions and asymptotic studies of the early and
4-3y [vE'2—2J]2 late-time behaviors.
32-72(v—-2) & 2-3 (356 The catalogue of solutions and asymptotes that we have
found will enable scalar-tensor theories to be constrained in
or, using Eq.(353), new ways because they enable complete cosmological histo-
ries to be constructed through initial vacuum, radiation, dust,
4-3y [v(1— ¢l o) 1—2J] and final vacuum-dominated eras. The standard sequence of
— 7 — T ) physical processes responsible for events like monopole pro-
32— (r=2) (1=¢ldo) J (357) duction, inflation, baryosynthesis, primordial black hole for-
mation, electroweak unification, the quark-hadron phase

2w(é€)+3=

20(¢)+3=

where transition, and nucleosynthesis can be explored in the cos-
mological environment provided by scalar-tensor gravity

(3y—4)(v—2) theories. The constraints derived from these considerations

J=1+ -4 (358 can be compared directly with those imposed by weak-field

tests in the solar system and observations of astrophysical
objects like white dwarfs and the binary pulsar. The ubiquity
VL. DISCUSSION of scalar fields in current string theories of high-energy phys-

In this paper we have supplied a comprehensive study des has led to conpinued in_terest in th_e detaile_d behavior of
isotropic cosmological models in scalar-tensor theories, exScalar-tensor gravity theories and their associated cosmolo-
tending the earlier work of Ref§12] and [33]. We have Ji€S: In this paper we have displayed some of the dlvgrsny
explored the behavior of isotropic cosmological models inthat these cosmologies possess together with a collection of
these theories using a combination of two basic mathematmethOdS for solving other SpeCIflc theorles that may be mo-
cal techniques introduced in Sec. Ill. In the case where th&vated by future developments in high-energy physics.
trace of the energy-momentum tensor of matter vanishes
(i.e., vacuum or radiationexact solutions can be found di-
rectly for all curvatures if the requisite integrals can be per-
formed. Asymptotic forms are easily derived in all cases. ACKNOWLEDGMENTS
This technique exploits the conformal relationship between
T o oy v ohss ke 0 thank Josafimoso o dscussions and St for
ever, when the energy-momentum tensor is not trace-free th%omputlng facilities.
conformal equivalence disappears and the indirect method of
Barrow and Mimoso must be used to find exact solutions. APPENDIX: CONFORMAL EQUIVALENCE
This only works for zero curvature cosmological models but

includes the important cases of gl=0 universes and infla- 54 we may exploit this fact to study the behavior of vacuum

tionary universes with—p<p<-—sp. It also permits a 4nq radiation models wite> ¢b. Under a conformal trans-
simple means of comparing the behavior of cosmologicat,mation to a new metrig,,, with components
solutions in any scalar-tensor theory with those of Brans- ab

Dicke theory at early and late times. Since this procedure Ga= %0ap, (A1)
does not commence with the specificationugic), but with

a choice of generating function that produces the entire soand a redefinition of the field

lution by nonlinear transformations, it is necessary to build

up intuition by a thorough exploration of the results of em- gzao(@> , (A2)
ploying particular classes of generating function. In particu- ¢

lar, we were able to find generating functions which gave )

rise to dust universes in scalar-tensor theories for which théhe action becomes

exact radiation and vacuum solutions can be found exactly ~ o~

by the direct method. This provides us with descriptions of Se=f a5 { _GR4 w(%fol(ﬁ)ﬁabﬁa’(;&bg} ,
scalar-tensor cosmologies throughout the entire radiation and ¢

The authors were supported by the PPARC. They would

The action for trace-free matter is conformally invariant

dust and vacuum dominated eras. We were also able to find (A3)
a wide range of new inflationary universe solutions with
p=—p in these theories. neglecting overall constant factors. Wher< @< ¢, the

In Sec. IV we introduced three classes of scalar-tensogoupling function for Theory 2, as defined in Sec. IV, is
theory which permit asymptotic approach to general relativ- o
ity at late times whernp— ¢,. The parameters defining the 2w(¢)+3=B, i” ' (A4)
functional form ofw(¢) which specify these gravity theories $o

—In
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and so 1

~ 125 d— g , (A7)
— In( @ , (A5)

¢ in this order, to the solutions presented in Sec. VI. These are

with Z>Eo when 0< ¢< ¢,. Equation(A5) is exactly the transformations which render the form wfin Eq. (15) in-

form of th ling for Theory 2 with a gravitational scalar variant. . . .
fioeld g;f C_?_ESS v?/eomayibtiin SO|Uti0?lS wh b in Last, we remark that the asymptotic behaviors of Theories
0- @t 0

. . 1 and 3 when¢> ¢, may also be examined in this way,
Theory 2 by applying the transformations since the coupling functions for both these theories may be

20(dodo/$)+3=B,

a—d¢a, (A6)  approximated by logarithms ag— ¢.
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