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The Landau-Pomeranchuk-Migdal effect is the suppression of Bethe-Heitler radiation caused by multiple
scattering in the target medium. In this paper, the quantum treatment given earlier for finite but homogeneous
targets is extended to structured targets. It is shown that radiators composed of separated plates or of a medium
with a varying radiation length can exhibit coherence maxima and minima in their photon spectra.
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I. INTRODUCTION AND MOTIVATION

In a previous paper@1# by Drell and the author, a quantum
treatment of the bremsstrahlung of photons by a charged
particle undergoing random multiple scattering was given.
This treatment included as limiting cases the familiar Bethe-
Heitler ~BH! radiation@2# from a charged particle scattering
from an isolated atom relevant for a thin target and, in the
opposite limit, the Landau-Pomeranchuk-@3# Migdal @4#
~LPM! effect, which has been experimentally verified@5# to
suppress the radiation for a thick target. This formulation
included the effects of a finite target thickness in such a way
as to smoothly connect these two limits.

In Ref. @1# eikonal techniques developed earlier to treat
the beamstrahlung process@6# in colliding beams were ap-
plied to the problem of radiation in a scattering medium.
This approach led to a physically clear quantum-mechanical
treatment of multiple scattering and then to a derivation of
the LPM suppression of soft photon radiation from high en-
ergy electrons in matter.

This suppression effect was first described by Landau and
Pomeranchuk@3# who treated the classical radiation of a high
energy particle in the fluctuating and ‘‘random’’ field inside
an infinitely thick medium. Subsequently, Migdal@4# pre-
sented a quantum-mechanical derivation of this effect, treat-
ing multiple scattering via the Vlasov equation and including
the effects of electron spin and energy loss.

The physics of the LPM effect is that of the formation
length of the photon given byl f52pp8/(m2k). This is the
path length required by the uncertainty relation for a high
energy electron of initial momentump, final momentump8,
and massm, to radiate a photon of momentumk near the
forward direction. At high energies (p,p8@m) and for soft
photon emissionk!p, the formation lengthl f can grow
quite large relative to the scattering mean free path of the
electron, eventually becoming macroscopic. When this oc-
curs, there is a loss of coherence during the emission of the
photon that leads to suppression in spite of the net increase in
the amount of acceleration of the charge.

There have been many papers which extended the classi-
cal treatment of the LPM effect including@7#, @8#, and@9# in
which certain errors in the original derivation are corrected.

A general and clear treatment of semiclassical photon radia-
tion can be found in the review paper by Akhiezer and
Shul’ga @10#. A more accurate treatment of the Coulomb
nature of the basic scattering process has recently been given
@11# for an infinite target.

II. EIKONAL TREATMENT

We review here the eikonal formulation for high energy
scattering by the static fields of a medium at rest; for more
details, see Ref.@1#. For simplicity we first consider the
Klein-Gordon equation for a scalar particle of massm in a
static external field, which can be written

@~E2V!21¹W 22m2#f~rW !50. ~1!

We look for solutions satisfying the requisite initial and final
~outgoing and incoming! boundary conditions and write

f~rWr !5exp@ iF~rW !#, ~2!

where the phase functionF satisfies the equation

~E2V!22m25@¹W F~rW !#22 i¹W 2F~rW !. ~3!

For the incident wave with its outing wave boundary con-
ditions, the leading term inFi will be piz, corresponding to
the incident particle momentum along thez axis. For the
final state with incoming wave boundary conditions, the
leading term inFf must contain the final electron momentum
written aspW f5(zWpf1bWp'

f ). In order to properly include the
‘‘bending’’ of the wave, the phase functions must be deter-
mined to order~1/p!. Thus one writes, schematically,

F i , f5pW i , f•rW2x0
i , f~z,bW'!2

1

pi , f
x1
i , f~z,bW'!. ~4!

Substitution into Eq.~3! then yields the solutions exhibited
in Ref. @1#.

The total phase appearing in the bremsstrahlung matrix
element also includes the phase of the photon wave function
A(rW). Defining the momentum transfer to the medium asqW
5pW f1kW2pW i , the total phase can be written in the form

F tot5F i2F f2kW•rW52qW •rW2x0
tot~bW'!2

1

p
x1
tot~z,bW'!,
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where from now onp[pi and total phase functions have
been introduced as the appropriate sum of ax and at. There-
fore the zeroth order term is independent ofz,

x0
tot~bW'!5E

2`

`

dz8 V~z8,bW'!, ~6!

while the first order terms, given explicitly in Ref.@1#, still
retain somez dependence. These first order terms, which
reflect the bending of the particle trajectory, involve quanti-
ties of the form

AW'~z2 ,z1!5E
z1

z2
dz8 EW'~z8!,

E
z1

z2
dz AW'~z,z1!5E

z1

z2
dz8 EW'~z8!~z22z8!. ~7!

The integralAW'(z2 ,z1) evidently represents the total trans-
verse momentum accumulated in going from the pointz1 to
the pointz2 in the target.

The matrix element for single-photon emission was dis-
cussed using the above approximations and the final prob-
ability for emission was evaluated. The final result for a
given field distribution in the target was given in Ref.@1# in
the form

p~12x!

ax

dP~x!

dx
5I5E

2`

`

db2E
2`

b2
db1I ~b2 ,b1 ,bl !, ~8!

where

I ~b2 ,b1 ,bl !52
C~b2!C~b1!

b

3$@11
2 r ~x!l~b2 ,b1 ,bl !#sin~c!2sin~b!%,

c5b@11h~b2 ,b1 ,bl !#, ~9!

and the dimensionless variables are defined bybi5zi / l f and
b5b22b1 .

The field-dependent quantitiesl(z2 ,z1 ,l ) andh(z2 ,z1 ,l )
are given by

z2m2h~z2 ,z1 ,l !5zE
z1

z2
dz@AW'~z,z1!#

2

2F E
z1

z2
dz AW'~z,z1!G2, ~10!

m2l~z2 ,z1 ,l !5@AW'~z2 ,z1!#
2, ~11!

wherez5z22z1 .

III. STATISTICAL AVERAGES
FOR A STRUCTURED TARGET

The model introduced in Ref.@1# reflects the fact that
each incident electron experiences a very different arrange-
ment of the atomic electric fields. The statistical average in-
volved is therefore the average over the wave packets of the

individual electrons. As noted before, the 1/p terms in the
eikonal phase record the transverse momenta transferred to
the incoming and outgoing particles and depend only on the
penetration depthz. Therefore for this noncrystalline me-
dium we set

V~z,bW'!52bW'•EW'~z!. ~12!

The transverse field varies with depthz from atomic layer to
atomic layer. The quantityEW'(z)dz is simply the differential
transverse momentum acquired in traversing the medium
from z to z1dz. Its statistical average is given by

^EW'~z2!•EW'~z1!&5
^pW'

2 &
L~z2!

d~z22z1!, ~13!

where explicit note has been taken that the medium may vary
from layer to layer so that the radiation length depends upon
position. This relation allows one to compute all statistical
averages that will be needed. Note that the average trans-
verse momentum accumulated via multiple scattering in tra-
versing one radiation length of target is given by^pW'

2 &
52pm2/a.

The main formulas that we will need all arise from noting
that the transverse electric field is zero outside the region
0,z, l , where l is the total thickness of the target. The
statistical averages for the needed quantities can be com-
puted directly from the above and from formulas given in
Ref. @1#. Using Eq. ~7!, one finds in terms of the scaled
variables that

^l~b2 ,b1 ,bl !&5 l f
2p

a E
b1

b2 db8

L~b8!
, ~14!

^h~b2 ,b1 ,bl !&5 l f
2p

a E
b1

b2 db8

L~b8!

~b22b8!~b82b1!

b2
,

~15!

whereb5b22b1 . HereL(z) is the radiation length that is
taken to be infinite outside the target, i.e., forz,0.0 and for
z. l . RecognizingaL as the mean free path, it is convenient
to introduce the thickness of the target in units of the average
inverse mean free path as

T5 l f
p

3a E
0

bl db8

L~b8!
5

p

3a E
0

l dz8

L~z8!
. ~16!

This allows the overall scales to be extracted froml andh.
To this end define

^l~b2 ,b1 ,bl !&56Tl̄~b2 ,b1 ,bl !, ~17!

^h~b2 ,b1 ,bl !&56Th̄~b2 ,b1 ,bl !, ~18!

where

l̄~b2 ,b1 ,bl !5E
b1

b2 db8

L~b8!Y E
0

bl db8

L~b8!
, ~19!
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h̄~b2 ,b1 ,bl !

5E
b1

b2 db8

L~b8!

~b22b8!~b82b1!

b2 Y E
0

bl db8

L~b8!
. ~20!

The explicit statistical averages for a homogeneous target
plate of thicknessl are readily evaluated. The results forb2
and b1 in the regions before, inside, and after the target,
denoted by~2,0,1!, respectively, are

Region (b2b1) 6blb
2h̄(b2 ,b1 ,bl) l~b2,b1,bl)

~2 2! 0 0
~0 2! b 2

2[3b22b2] b2/bl
~1 2! bl [3(b21b1)bl22b l

226b1b2] 1
~0 0! b3 b/bl
~1 0! (bl2b1)

2[3b22(bl2b1)] (bl2b1)/bl
~1 1! 0 0

These formulas join smoothly at all common boundaries
of the regions. In addition, the symmetry between~1! and
~2!, that is, (b2↔bl2b1), is also evident.

IV. EMISSION PROBABILITY

In Ref. @1#, the statistical average of the probability of
emission was evaluated in the LPM approximation, which
simply replaces the field quantitiesl(b2 ,b1 ,bl) and
h(b2 ,b1 ,bl) by their averages. This approximation is not
necessary, as will be shown in a subsequent paper@12#, but is
convenient and straightforward. Eliminating the integration
variableb1 in favor of b yields

p~12x!

ax

dP~x!

dx
5^I &5E

2`

`

dbE
2`

`

db2I ~b2 ,b22b,bl !,

~21!

where

I ~b2 ,b1 ,bl !52
C~b2!C~b1!

b
$@113 Tr~x!l̄~b2 ,b1 ,bl !#

3sin~c!2sin~b!%,

c5b@116Th̄~b2 ,b1 ,bl !#. ~22!

V. BETHE-HEITLER LIMIT AND LPM FORM FACTOR

To first order inl̄ andh̄, each of which is proportional to
the square of the net impulse given to the radiating particle,
the integrand is

IBH~b2 ,b1 ,bl !156T
C~b2!C~b1!

b
$r ~x!l̄~b2 ,b1 ,bl !sin~b!

12h̄~b2 ,b1 ,bl !b cos~b!%. ~23!

Inserting Eq.~20! for l̄ andh̄, interchanging the order of the
b2 andb8 integrations, and evaluating them with a suitable
cutoff, yields, for~x→1!,

I ~BH!52TE
2`

`

db C~b!$3r ~x!sin~b!1b cos~b!%

52T@3r ~x!21#→4T. ~24!

This is the correct BH result in the soft photon limit. This
result, as expected, does not depend upon the detailed struc-
ture or geometric arrangement of the target, only the total
number of radiation lengths through the target as expressed
by the integralT. In Ref. @1# a form factorF, which is unity
when BH is valid, was introduced to track the LPM suppres-
sion. Here it is convenient to define

^I &5I ~BH!F~k,T,x!, ~25!

where thex dependence arises only from the spin factorr (x)
andT is essentially the number of mean free paths through
the target. The photon momentumk together with the par-
ticle energy determine the formation lengthl f . The form
factor is given by

F~k,T,x!5E
2`

`

dbE
2`

`

db2F~b2 ,b,bl !, ~26!

where

F~b2 ,b,bl !5
C~b!

2Tb
$@113 Tr~x!l̄~b2 ,b22b,bl !#

3sin~c!2sin~b!%,

c5b@116Th̄~b2 ,b22b,bl !#. ~27!

VI. SMALL- k LIMIT

The BH limit is valid for smallT and largek. The small-k
limit, in which the formation length becomes larger than the
target thickness, is of interest because the suppression due to
multiple scattering is manifest, yet it is not the standard LPM
effect. In the limit of very smallk, the effects of the index of
refraction of the target medium become important; these ef-
fects are not treated here.

For small k or large formation lengthl f , the internal
structure of the target becomes unimportant. The problem
becomes one of radiation from a effectively thin target. In
this limit one finds

l̄~b2 ,b1 ,bl !;u~b22B!u~B1b2b2!, ~28!

h̄~b2 ,b1 ,bl !;l̄~b2 ,b1 ,bl !~b22B!~B1b2b2!/b
2,

~29!

whereB is the position of the center of the target. Writing
b25B1bw with db25b dw allows theb integral to be per-
formed and the form factor becomes

F~ l f@ l ,T,1!;
1

2T E
0

1

dwH 113T

116Tw~12w!
21J . ~30!
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For T→0, the form factor approaches one, the BH result.
Again, this result does not depend upon the detailed structure
or geometric arrangement of the target, only the integral
variableT.

VII. STRUCTURED TARGET

The cases of a thin, finite, and thick homogeneous targets
were discussed in Ref.@1#. From the explicit formula for the
form factorF, it is straightforward to carry out the integra-
tions, at least numerically, for essentially any configuration
and arrangement of the target. However, the remainder of
this paper will be restricted to discussing the radiation from
segmented or laminated targets that are composed of identi-
cal plates separated by a vacuum gap of constant width. The
radiation length of the target plate medium will be denoted
by L.

Consider a target composed ofp plates each of thickness
l p and corresponding scaling variableTp . The total target
hasT5pTp . The gap between a pair of plates is of widthl g
and there are~p21! gaps. Thus the total geometric thickness
of the target is

l5plp1~p21!l g . ~31!

It is convenient to express the gap width in scaled units as
well. Thus we define

Tg5
p

3

l g
aL

. ~32!

The form factor will then be taken to be a function of the
target variablesp, T, andG, where

T5pTp and G5~p21!Tg . ~33!

ThusT measures the total radiation thickness of the material
in the target, whileG measures the total thickness of the
gaps. For example, a series of plots will be presented that
compares thek spectrum forp andT fixed andG increasing.
Of course, in the BH limit of largek, F will not depend upon
G. Sample numerical results will be presented in the next
section.

VIII. NUMERICAL RESULTS

A macroscopic interference effect involving photons with
energies in the tens of MeV will be demonstrated in the
following discussion. The incident electron beam will be
fixed at 25 GeV in all calculations for simplicity except for
the last figure. In order to get an order of magnitude feel for
the effect, consider the following. The radiation length for a
gold target isL53.4 mm. At a photon energy of 27 MeV, the
formation length

l f5
2xp

m2~12x!
5
2pipf
m2k

~34!

is equal to 0.034 mm, the thickness of a 1% radiator. In lead,
which hasL55.6 mm, the formation length corresponding to
a 1% radiator occurs at a lower photon energy, 16 MeV. The
formation length scales as the square of the incident electron
energy.

In Fig. 1 the small-k limit of the form factor is plotted as
a function ofT for a target. SmallT is the BH limit, whereas
extremely largeT is the LPM region.

The first example of a structured target to be discussed is
a T51 ~;0.7% radiation thickness! target that is composed
of two Tp50.5 laminations or plates. For this parameter set
and for a gold target, the formation length is equal to the
original target thickness atk542.4 MeV. The photon spectra
are shown in Fig. 2 for three values of the gap; note that
G51 corresponds to a gap that is equal to the original total

FIG. 1. Plot of the form factorF(k,T,x) vsT for l f@ l andx;1.
The form factor is the ratio of the expected probability of emission
to that predicted by Bethe and Heitler.

FIG. 2. Form factorF(k,T51,x) for a two-segment Au target
for three gap values. The incident energy is 25 GeV.
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thickness. The photon spectrum is clearly developing a peak
where the formation length is approximately equal to the
distance between the centers of the plates. For smaller values
of k, the form factor eventually stops decreasing and
achieves the value given by Eq.~30! ~see Fig. 1!. In Fig. 3
the spectrum is plotted for five values of the gap extending
out to G55. The subsidiary peak moves down ink as the
gap increases. The computed points are shown and are con-
nected by straight lines as is the case in all the graphs.

In Fig. 4 the spectra expected from a four-segment Au
target are given for several values of the gap. In this ex-
ample, each plate hasTp50.25 for a totalT51. The final
total thickness of the target from the front surface to the rear
surface atG59 is 10 times the original thickness, while the
amount of radiator material remains constant.

In Fig. 5 the photon spectrum is given for an increasing
number of plates with the total radiator thickness held again

at T51.0. The gap widthG is increased as the number of
plates increase~and become thinner! in such a way as to hold
constant the distance between the center of adjacent plates at
;1.5. The peak in the spectrum becomes higher and more

FIG. 6. F(k,T51,x) for a ten-segmentG512.6 Au target
compared to a five-segment target withG511.6. Thefive-segment
target is the ten-segment target with every other plate removed.

FIG. 3. Summary graph ofF(k,T51,x) for a two-segment Au
target for various gap values.

FIG. 4. Summary graph ofF(k,T51,x) for a four-segment
Au target for selected gap values.

FIG. 5. Summary graph ofF(k,T51,x) for a varying number
of plates with differing gap values.

194 55RICHARD BLANKENBECLER



pronounced as the numberp increases and occurs at an ap-
proximately constantk value.

In Fig. 6 the spectra expected from a ten-segment and a
five-segment target are plotted. The ten-plate target has a gap
between each plate ofTp51.4. The five-segment target with
Tp52.9 is the same layout with every other plate removed.
The shift in the peak is apparent as is some additional fine
structure at higherk.

In order to get a feel for the effect of changing selected
parameters, consider an iron target which hasL517.6 mm.
In Fig. 7 the spectra from a two-segment Fe target is plotted
for several values of the gap at an incident energy of 50
GeV.

To demonstrate that the interference effect persists for
thicker targets, the spectrum for a Au target is plotted in Fig.
8 for T52 and the same energy and gap values as Fig. 2. For
example, atG55 the total dimensionless distance between
the centers of the plates is 6. The formation length is equal to
this separation atk;42.4/6;7 MeV, which is roughly the
position of the subsidiary peak.

The interference effect computed here should be straight-
forward to measure experimentally using the techniques pio-
neered in Ref.@5#. It may be possible to design structured
targets to yield bremsstrahlung spectra with desirable and
interesting characteristics such as suppressing the soft photon
part of the spectrum or enhancing the photon yield in a cho-
sen energy regime. Finally, it is surprising that there is so
much more to learn about such a well-understood process.
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