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The influence of inflation on the initial~i.e., at Planck’s epoch! large anisotropy of the Universe is studied.
To this end we consider a more general metric than the isotropic one: the locally rotationally symmetric
Bianchi type IX metric. We find, then, a large set of initial conditions of intrinsic curvature and shear allowing
an inflationary epoch that make the anisotropy negligible. These are not trivial because of the nonlinearity of
Einstein’s equations.@S0556-2821~97!05204-1#

PACS number~s!: 98.80.Cq, 04.20.Jb

I. INTRODUCTION

The observations of cosmic microwave background radia-
tion can be utilized to give some constraints on the anisot-
ropy of the Universe. These limits have been derived analyti-
cally by Hawkings and Collins@1#, considering little
deviations from isotropy, while Barrow, Juszkiewicz, and
Sonoda@2# have computed the temperature pattern and the
angular correlation function for the temperature perturba-
tions expected in anisotropic models. Bunn, Ferreira, and
Silk have used the theoretical temperature pattern of the Bi-
anchi model of type VIIh @3# to determine the values of shear
and vorticity making a bestfit with cosmic microwave back-
ground radiation~CMBR! experimental data. A model-
independent approach to the problem has been introduced by
Maartens, Ellis, and Stoeger@4#. All these results are sum-
marized in Table I and they show that, actually, the Universe
is isotropic with a good approximation.

The set of initial conditions allowed from general relativ-
ity is much larger than isotropy; so we must look for a physi-
cal process making the Universe isotropic if, at Planck’s ep-
och, it was highly anisotropic. The theory of inflation, as it
leads to a ‘‘natural’’ prediction about the value of the curva-
ture of the Universe, about the spectrum of scalar and tensor
perturbation@12,13#, and it solves the topological defects,
flatness, and horizon problems@14#, could be this physical
process; even if it is not the only candidate@5–11#.

To verify this hypothesis we assume an anisotropic met-
ric, the Bianchi metric@15,16#, and we introduce the stress-
energy tensor of a scalar field minimally coupled to gravity
that can give an inflationary epoch@17,18#. In this way, we
are looking for the initial conditions allowing inflation and
study the evolution of anisotropy, comparing final values
with the observed one.

Between the different Bianchi types, we studied Bianchi
type IX model, because it is the only one allowing positive
intrinsic curvatureR3 @19#.

Using the Raychaudhuri relation1
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V~f!

MPl
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@whereV(f) is the potential energy of the scalar field,u
measures the rate of expansion of the Universe, ands is the
shear of the homogeneous hypersurfaces@20##, it is clear
that, in the Bianchi type IX model, the positive value of
R3, describing a closed Universe, could cancel the expansion
of the volume of the Universe, even with a scalar field acting
as a cosmological constant@21,22#; whereas in the other Bi-
anchi types, open or flat, shear and intrinsic curvature
‘‘help’’ the expansion.

The study of evolution of shear in the Bianchi type V
model @23,24# shows that inflation leads this model to be
completely isotropic. An attempt to study the dynamics of
Bianchi models with a scalar field, using the No¨ther symme-
tries in minisuperspace, has recently been performed@25#,
but there is no complete analysis yet.

II. INFLATION WITH A BIANCHI TYPE IX METRIC

Let us consider the metric of a locally rotationally sym-
metric ~LRS! Bianchi type IX universe2 @26–28#:

ds252MPl
22N2~l!dl2

1e22a$e22b~v1!21eb@~v2!21~v3!2#%, ~2!

whereN is the lapse function and the one-formsv are de-
fined by

dv i5
1

2
e jk
i v j`vk. ~3!

The evolution’s rate ofb is related to the shear:

s253SMPl

N
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1We will use such units thatc5h5k51, 8pG/3c25MPl
22 .

2The Latin indexi , j , etc.,51,2,3.
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The general Bianchi type IX model is more complicated with
respect to the LRS Bianchi type IX model; in fact, in that
case Einstein’s equations have not yet been solved. Our sim-
plification does not affect the fundamental feature of the
model that we want to study, the effect of positive curvature,
and it allows us to compute the anisotropic initial conditions
compatible with inflation.

The Lagrangian for gravitational and scalar field is@29–
31#

L5MPl
2 F12wS 2a821b821

1

MPl
2 f82D 2
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e24aU~b!
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24

w
e26a

V~f!

MPl
4 G , ~5!

U~b!522e22b1
1

2
e28b, ~6!

where the gauge freedom is hidden in the function
w[12e23a/N(l). The common feature to different theories
of inflation is the so-called ‘‘slow-roll’’ approximation@32#
in the description of the motion of the field. This implies that
the Klein-Gordon equation reduces to

3
MPl

2
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]V

]f
. ~7!

With this approximation, models of inflation satisfy two
other conditions on the potentialV(f):
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MPl
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h[MPl
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As we are not interested in the length of inflation but in
initial conditions causing inflation, it is enough to verify that
the characteristic time in the evolution of the scalar field
Tf is much greater than gravitational characteristic time
TG .

In our modelTG}MPl
21 , whereas from assumptions~7!

and ~8! we obtainTf}(MPl
3 /eV(f)). We shall assume a

value of aboutMPl
4 for the energy potential density at

Planck’s epoch in the ‘‘chaotic’’ inflation theory. This as-
sumption is justified by quantum effects giving radiative cor-
rections to the effective potential@33# of this typical order of
magnitude@34#; then

Tf5
1

e
TG . ~10!

We can neglect, then, the ‘‘kinetic’’ term of the scalar field
and assume that the potential term acts as a cosmological
constant.

Hence, the contribution to the Lagrangian due to the sca-
lar field becomes

Lf'MPl
2 24

w
e26a. ~11!

The solutions of Einstein’s equations in this case have been
found by Cahen and Defrise@35#; following the work of
Uggla, Jantzen, and Rosquist, we made a different choice of
slicing gauge and we have found the solutions of Einstein’s
equations for the new functions:

W5e23a23b, Z5e2a22b. ~12!

They can be written as

Z~t!5G~12t2!, ~13!

TABLE I. Limits on shear (s) and vorticity (v) of the Universe
from CMBR observations. In Bianchi type VII0 and VIIh models
there is an adjustable parameterx; the ratio of the comoving length
scale over which the orientation of the principal axes of shear
change, to the present Hubble radius. In Bianchi type VIIh and
Bianchi type V open models, we chose the limits for models with
V050.1. Hakwing and Collins~HC! calculated the upper limits on
anisotropy in 1973, when the upper limits on CMBR temperature
anisotropy were approximately 3 orders of magnitude greater than
values observed by the Cosmic Background Explorer~COBE!; their
results, after correction, become comparable with the other ones.
Barrow, Juszkiewicz, and Sonoda~BJS! studied only the rotation,
while Bunn, Ferreira, and Silk~BFS! limited to Bianchi type
VII h . Both studies do not give analytic expression of the limits
with respect to parameterx, for the comparison we chosex51 ~the
limits are those from the quadrupole anisotropy!. The Maartens-
Ellis-Stoeger ~MES! analysis, instead, does not depend on the
model, and they have the same order of magnitude for shear and
vorticity.

Model HC BJS BFS MES

Bianchi type I SsuD
0

631028

SsuD
0

1.531024

Bianchi type V Svu D
0

431024 1.731027

SsuD
0

1
x
1026

Bianchi type VII0 Svu D
0

2
x
1026 3.231029 1025

SsuD
0

2
x
1023 0.531029

Bianchi type VIIh Svu D
0

1
x
1023 1.2310271028

SsuD
0

1023

Bianchi type IX Svu D
0

10211 3.9310213

55 1897INFLATION FOR BIANCHI TYPE IX MODELS



W~t!5G25/2H S G2
4
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1
4

3
~12t2!23/21StJ 1D, ~14!

whereG, S, andD are constants of integration.
Inserting solutions~13! and ~14! into Eq. ~1!, we obtain

the constraintD50. The new coordinate timet is related to
comoving timet by

dt522MPl
21G1/2W21/2Z27/4dt. ~15!

We see that whent→1 thent→2`, and whent→21 then
t→`.

We choose as an initial comoving timetPL510243 sec;
the correspondence with initial coordinate timet0, for a
given solution of Einstein equations, depends on the choice
of integration constant in Eq.~15!. The physically important
part of the solutions is limited to the interval@t0,21 @, i.e.,
@ tPl , 1` @. The physical quantitiesu ands can be expressed
as functions ofW andZ:

u5MPlG
21/2S 38W1/2Z3/4

dZ

dt
2
1

4
W21/2Z7/4

dW

dt D , ~16!

s5MPlG
21/2U A3

8
W1/2Z3/4

dZ

dt
1

A3
12

W21/2Z7/4
dW

dt
U.
~17!

III. INITIAL CONDITIONS OF THE UNIVERSE

The initial coordinate time chosen ist050; in this way
by Eqs. ~12! and ~16! we can write explicitly the relation
between integration constants and the quantitiesb0 andu0:

G5
4

42e26b0
, ~18!

S52
8u0
MPl

AG21. ~19!

Because of Eqs.~13! and ~12!, G must be positive.
Equation~18! implies

b0.2
1

6
ln~4![b lim ~20!

that, for the equality

R352MPl
2 e2aU~b!, ~21!

is equivalent to

R3
0.0. ~22!

The volume of the Universe is given by

Vol5e23a5
W1/2

Z3/4
5

A~G24/3!@8~12t2!1/224~12t2!21/2#1~4/3! ~12t2!23/21St

G2~12t2!3/4
. ~23!

The behavior of this function depends on the two indepen-
dent initial conditionsb0 andu0. The other two initial con-
ditionsa0 ands0 are related tob0 andu0 by

2a052b01
1

2
lnG, ~24!

s05
A3
3

u0 . ~25!

The former is not physically relevant because it simply
fixes the length scales att50. The latter, instead, is the
consequence of the Hamiltonian constraint~1!, and it means
that ~with the choicet050) our model describes an initial
‘‘equipartition’’ of energy among the different gravitational
degrees of freedoma and b. This is a more general and
‘‘natural’’ initial condition than isotropy, and it has been
recently analyzed by Barrow@36#.

The function~23!, for different choices of free parameters
G and S, gives two possible evolution of the Universe’s
volume. In the first case, the anisotropy cannot stop expan-
sion, and we have

Vol5e23a→1` when t→21. ~26!

In the second case, the volume reaches a maximum and
then it shrinks again, while shear and intrinsic curvature di-
verge; this happens at a coordinate timetCP@0,21@ , corre-
sponding always to a finite comoving timetC . Integrating
numerically Eq.~15!, we can show thattC'a few tPl , and
the exact value depends on initial conditionG andS.

The former possibility occurs ifu0.u!, where

u!'54.60MPl , b0P]b lim,0.996b lim],

u!'0.05MPlS ln b lim

b lim2b0
D 3.80,

b0P@0.996b lim,0.792b lim#, ~27!

u!'0, b0P@0.792b lim ,1`#,

otherwise the Universe does not inflate.
Hence, an initial value ofb050.792b lim[b! exists dis-

tinguishing two different behaviors.
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~a! b0.b!. There is inflation with any initial value of
expansionu0 and shears0, even if their values are much
greater thanMPl . To explain this unexpected result, let us
come back to the Lagrangian~5!, obtaining the differential
equation for the evolution ofb with respect to comoving
time t:

d2b

dt2
23

da

dt

db

dt
1

1

12
MPl

2 e2a
]

]b
U~b!50; ~28!

then, we can show that, with high values ofu0 ands0, the
‘‘friction’’ term

23
da

dt

db

dt
~29!

due to a combined action of expansion and shear is more
relevant than the ‘‘forcing’’ term:

1
1

12
MPl

2 e2a
]

]b
U~b! ~30!

because the potentialU(b) is not enough steep, i.e., the
value of the derivative of a potential with respect tob is not
enough large; moreover the large value ofu implies that
e2a becomes ‘‘small’’ very quickly.

After a few Planck’s times, the intrinsic curvature and the
shear become dynamically negligible and they decay:

s25Vol22, ~31!

R35Vol22/3, ~32!

whereas expansionu reaches its isotropic valueA3MPl @Eq.
~16!#.

~b! b0,b!. This case is more complicated; in fact,u!

Þ0, and it reaches a value of a few tens of Planck’s mass
whenb0→b lim . The Universe inflates ifu0.u!, or, because
of Eq. ~25!, if s0.(A3/3)u!. Hence, with respect to a pre-
vious case, inflation can be avoided; but, surprisingly, only
with the smallest value of shear.

If there is inflation, Eqs.~31! and~32! remain valid; again
the Universe becomes isotropic. If, instead, there is not in-
flation, we have that

b1→`. ~33!

Equations~6!, ~17!, ~21!, and~33!, then, show that

s2→`, ~34!

R3→`. ~35!

This behavior is due to initial large ‘‘steepness’’ of the po-
tentialU(b) whenb0,b!. This gives tob an initial ‘‘ac-
celeration’’ enough to win the ‘‘friction’’ term~29! and
reach the valuesb@1.

In our model, the dependence of evolution of the volume
on the initial value of the intrinsic curvature,R0

3 is nontrivial.
For example, relation~21! shows that whenb0→b lim the
curvatureR0

3→0, whereas ifb0→` thenR0
3→2MPl

2 . In the
first case, where the Universe is nearly flat at the beginning,
there is inflation only ifu0@MPl , that is, because of Eq.
~25!, if its shear is very large. In the second case, where the
energy tied to the curvature is comparable with the scalar
field potential energy, the Universe inflates for any value of
u0 ands0.

We must note thatu! falls suddenly atb0'b!. In fact,
for b0<b!, the value ofu! is small ('1023) but finite,
whereas forb0.b!, u! is null. This is a consequence of the
strong nonlinearity of Einstein’s equations. Slightly different
initial conditions can evolve in a completely different way.

IV. CONCLUSIONS

A strongly anisotropic Universe (u;s) at early times can
go through an inflationary period, because of a scalar field
minimally coupled to gravity. In this case, Eqs.~31! and~32!
show that shear and curvature became negligible with respect
to the expansion. In fact, the inflation causes the growth of
1040 times, at least, of linear dimension of the Universe; this
assures thats2 and R3 decrease, respectively, 10240 and
1080 times. The expansionu, instead, remains nearly con-
stant. In this case, at the end of inflation, the Universe can be
described with the flat Friedmann-Robertson-Walker~FRW!
metric.

For b0>b! this situation happens forany initial value of
s, u, andR3; hence, even if the anisotropy and curvature
‘‘energy’’ are much larger than the scalar field ‘‘energy.’’
For b0<b!, instead, the Universe does not inflate only if
u0<(A3/3)u!.

The fundamental feature to underline is that the set of
initial conditions that do not allow inflation issmall but
finite. In the spirit of chaotic inflation, we could assume that
any form of energy at Planck’s epoch is of Planck’s energy
order,;MPl ~i.e., the energy ‘‘equipartition’’ that Barrow
has proposed!. This would imply that inflation would be
avoided for b0<0.883b lim , because u!;MPl at b0
;0.883b lim and whenb0→b lim , it reaches 54.60MPl .

In this simple model, then, neither the initial values of
dynamical quantitiesu,s nor the geometrical quantityR3,
would determine the evolution; the only important quantity
would beb.
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