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Inflation for Bianchi type IX models
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The influence of inflation on the initidl.e., at Planck’s epogHarge anisotropy of the Universe is studied.
To this end we consider a more general metric than the isotropic one: the locally rotationally symmetric
Bianchi type IX metric. We find, then, a large set of initial conditions of intrinsic curvature and shear allowing
an inflationary epoch that make the anisotropy negligible. These are not trivial because of the nonlinearity of
Einstein’s equationd.S0556-282(97)05204-1

PACS numbe(s): 98.80.Cq, 04.20.Jb

. INTRODUCTION Using the Raychaudhuri relatibn
_ o | 2 . NP,
The observations of cosmic microwave background radia- 3 0°=2 VE +20°—R, (1)
Pl

tion can be utilized to give some constraints on the anisot-

ropy of the Universe. These limits have been derived analytifyhere \/(¢) is the potential energy of the scalar field,
cally by Hawkings and Collins[1], considering little measures the rate of expansion of the Universe,aigithe
deviations from isotropy, while Barrow, Juszkiewicz, andshear of the homogeneous hypersurfaf2@d], it is clear
Sonoda[2] have computed the temperature pattern and thehat, in the Bianchi type IX model, the positive value of
angular correlation function for the temperature perturbaR3, describing a closed Universe, could cancel the expansion
tions expected in anisotropic models. Bunn, Ferreira, anaf the volume of the Universe, even with a scalar field acting
Silk have used the theoretical temperature pattern of the Bias a cosmological constal1,22; whereas in the other Bi-
anchi model of type VI|, [3] to determine the values of shear anchi types, open or flat, shear and intrinsic curvature
and vorticity making a bestfit with cosmic microwave back- “help” the expansion.
ground radiation(CMBR) experimental data. A model-  The study of evolution of shear in the Bianchi type V
independent approach to the problem has been introduced iyodel [23,24 shows that inflation leads this model to be
Maartens, Ellis, and Stoegg4]. All these results are sum- completely isotropic. An attempt to study the dynamics of
marized in Table | and they show that, actually, the Universd3ianchi models with a scalar field, using thetNer symme-
is isotropic with a good approximation. tries in minisuperspace, has re_cently been perforfid&d,

The set of initial conditions allowed from general relativ- Ut there is no complete analysis yet.
ity is much larger than isotropy; so we must look for a physi-
cal process making the Universe isotropic if, at Planck’s ep-
och, it was highly anisotropic. The theory of inflation, as it | ¢t ys consider the metric of a locally rotationally sym-
leads to a “natural” prediction about the value of the curva- metric (LRS) Bianchi type IX universé[26—28:
ture of the Universe, about the spectrum of scalar and tensor
perturbation[12,13, and it solves the topological defects, ds?=—Mp*N?(\)d\?
flatness, and horizon problem%4], could be this physical g
process; even if it is not the only candidfe-11]. te e # o+ (02 + (07} (2)

To verify this hypothesis we assume an anisotropic met
ric, the Bianchi metrid15,16, and we introduce the stress-
energy tensor of a scalar field minimally coupled to gravity

II. INFLATION WITH A BIANCHI TYPE IX METRIC

whereN is the lapse function and the one-formsare de-
fined by

that can give an inflationary epo¢h7,1§. In this way, we N
are looking for the initial conditions allowing inflation and de :zejk‘”]/\“’ : ©)
study the evolution of anisotropy, comparing final values
with the observed one. The evolution’s rate of3 is related to the shear:
Between the different Bianchi types, we studied Bianchi 5
type IX model, because it is the only one allowing positive 2:3(%[;,) 4)
intrinsic curvatureR® [19]. 7 N '
*Electronic address: bergamini@astbol.bo.cnr.it Iwe will use such units that=h=k=1, 87G/3c%= M;|2.
"Electronic address: verrocchio@astbol.bo.cnr.it 2The Latin indexi i, etc.,=1,2,3.
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TABLE I. Limits on shear ¢r) and vorticity (w) of the Universe 1

from CMBR observations. In Bianchi type \gland VII,, models U(B)=—2e 2+ Ee_sﬁ, (6)

there is an adjustable paramexeithe ratio of the comoving length

scale over which the orientation of the principal axes of shear

change, to the present Hubble radius. In Bianchi type,\dhd ~ Where the gauge freedom is hidden in the function

Bianchi type V open models, we chose the limits for models withw=12e~3*/N(\). The common feature to different theories

Q,=0.1. Hakwing and Collin§HC) calculated the upper limits on Of inflation is the so-called “slow-roll” approximatiofi32]

anisotropy in 1973, when the upper limits on CMBR temperaturein the description of the motion of the field. This implies that

anisotropy were approximately 3 orders of magnitude greater thathe Klein-Gordon equation reduces to

values observed by the Cosmic Background Expl¢@&BE); their

results, after correction, become comparable with the other ones. MZI oV
Barrow, Juszkiewicz, and SonodBJS studied only the rotation, —ga’da’ =— )
while Bunn, Ferreira, and SilKBFS) limited to Bianchi type N d¢

VIl ,. Both studies do not give analytic expression of the limits

with respect to parametet, for the comparison we chose=1 (the ~ With this approximation, models of inflation satisfy two
limits are those from the quadrupole anisotrbpyhe Maartens- other conditions on the potentis( ¢):

Ellis-Stoeger (MES) analysis, instead, does not depend on the

model, and they have the same order of magnitude for shear and M%I 1 9V\2
vorticity. =" || <«
y = (V p ¢) 1, 8
Model HC BJS BFS MES
7 —MZ i <1 9
Bianchi type | (5)0 6x10°8 1=MPIy 542 = ©)
p 1.5x1074 , , o _
(_) As we are not interested in the length of inflation but in
_ _ 0l initial conditions causing inflation, it is enough to verify that
Bianchi type V o 4x10°4 1.7x10°7 the characteristic time in the evolution of the scalar field
(5) T4 is much greater than gravitational characteristic time
0
Ts.
o }10_6 In our modeITGocM,;|1, whereas from assumptior{%)
_ _ (5)0 and (8) we 0btainT¢m(M§,/eV(¢)). We shall assume a
Bianchi type VI © 2. . 3.2%10°° 1075 value of aboutMp, for the energy potential density at
(5) 310 Planck’s epoch in the “chaotic” inflation theory. This as-
0 sumption is justified by quantum effects giving radiative cor-
o 2. . 0.5X10°° rections to the effective potentig83] of this typical order of
(1_9) 310 magnitude[34]; then
0
. . —710"8
Bianchi type VI|, (2 11073 1.2x10 ‘10 1
0, X T¢=;TG. (10
o 1073
(5 o We can neglect, then, the “kinetic” term of the scalar field
Bianchi type IX 3 10~ 1 3.9x 1013 and assume that the potential term acts as a cosmological
(5 constant.
0 Hence, the contribution to the Lagrangian due to the sca-
lar field becomes
The general Bianchi type IX model is more complicated with 24
respect to the LRS Bianchi type IX model; in fact, in that L¢~M§|—e‘6“. (11)
w

case Einstein’s equations have not yet been solved. Our sim-

plification does not affect the fundamental feature of the

model that we want to study, the effect of positive curvature,The solutions of Einstein’s equations in this case have been
and it allows us to compute the anisotropic initial conditionsfound by Cahen and Defrisg85]; following the work of

compatible with inflation. Uggla, Jantzen, and Rosquist, we made a different choice of
The Lagrangian for gravitational and scalar field29—  slicing gauge and we have found the solutions of Einstein's
31] equations for the new functions:
1 1 12 W= e*3a*3ﬁ 7= eZafZﬁ (12)
L:MZ[_W(_a/2+312+_¢12)__e4aU(B) y .
Pl 2 M %l W
They can be written as
_ 2—467 6o M} (5)
w Mg ) Z(n)=T(1-7), (13)
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lIl. INITIAL CONDITIONS OF THE UNIVERSE

W(7) :F‘5/2[ ( r—g [8(1- A= 4(1- 7)1

The initial coordinate time chosen ig=0; in this way
by Egs.(12) and (16) we can write explicitly the relation

+g(1_ 2) 73243+ A (14)  between integration constants and the quantjiggnd 6,:

wherel’, 3, andA are constants of integration. = L (18)
Inserting solutiong13) and (14) into Eq. (1), we obtain 4—e %o’
the constrainh =0. The new coordinate timeis related to
comoving timet by 86,
S=——I—-1. (19
dt=—2Mp T VAN~ Y2z~ T4y 7. (15) Me

We see that when— 1 thent— — o, and whenr— — 1 then  Because of Eq913) and(12), I' must be positive.
t—oo. Equation(18) implies

We choose as an initial comoving tinig, =10 “3 sec;
the correspondence with initial coordinate timg, for a 1
given solution of Einstein equations, depends on the choice Bo=— 5IN(4)=Bim (20
of integration constant in Eq15). The physically important
part of the solutions is limited to the interviadg,—1 [, i.e.,
[tp, +o [. The physical quantitie8 ando can be expressed
as functions oW andZ:

that, for the equality

R’=—Mze**U(B), (22)
3 dz 1 dw
— —1/2] 1/2-3/4 —1/25714
0=Mpl’ §W Z E_ZW Z E) (16 s equivalent to
3
o=Mol 12 \/§W1/223/4d2 ‘/— 1/227/4 R%>0. (22)
Pl 8 dr dr |’
(170  The volume of the Universe is given by
|
L, WY2 (T -43)[8(1— )Y~ 41— 7)Y+ (4/3) (1-7) ¥+ 37
Vol=e **=—zz= 2 37 - (23
Z r<(1—°
|
The behavior of this function depends on the two indepen- Vol=e 3¢, +x when — —1. (26)
dent initial conditionsBy and 6. The other two initial con-
ditions oy and o are related tg3, and 6, by In the second case, the volume reaches a maximum and

then it shrinks again, while shear and intrinsic curvature di-

1 verge; this happens at a coordinate time=[0,— 1[, corre-
—ag=—pfot 5Inl’, (24) sponding always to a finite comoving timg. Integrating
numerically Eqg.(15), we can show that-~a fewtp,, and
/3 the exact value depends on initial conditibrand>.
To=3 6. (25) The former possibility occurs i#,> 6,, where

. . L 0,~54.6Mp|,  Boe]PBim,0.996Bm],
The former is not physically relevant because it simply

fixes the length scales at=0. The latter, instead, is the B 3.80
consequence of the Hamiltonian constrdih)t and it means 6,~0.05M p|< In—"— ) ,

that (with the choicery=0) our model describes an initial Bim— Bo

“equipartition” of energy among the different gravitational

degrees of freedona and B. This is a more general and Bo<[0.9968)im,0.79B,im ], (27)
“natural” initial condition than isotropy, and it has been

recently analyzed by Barroy86]. 0,~0, Boe[0.798)in,+°],

The function(23), for different choices of free parameters

I' and X, gives two possible evolution of the Universe's otherwise the Universe does not inflate.
volume. In the first case, the anisotropy cannot stop expan- Hence, an initial value oBy=0.7923;,= . exists dis-
sion, and we have tinguishing two different behaviors.
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(@ Bo>B.. There is inflation with any initial value of This behavior is due to initial large “steepness” of the po-
expansiond, and shearo, even if their values are much tential U(8) when 8y,<B,. This gives tog an initial “ac-
greater tharMp,. To explain this unexpected result, let us celeration” enough to win the “friction” term(29) and
come back to the Lagrangia), obtaining the differential reach the valueg>1.

equation for the evolution off with respect to comoving In our model, the dependence of evolution of the volume
time t: on the initial value of the intrinsic curvaturl3 is nontrivial.
For example, relation21) shows that whenBy,— B, the
curvatureR3— 0, whereas if3,— thenRi—2M3,. In the

2
d_'?_?)d_a d_'8+ iM,z,leZ“iU(,BFO' (28) first case, where the Universe is nearly flat at the beginning,
dt dt dt = 12 B there is inflation only if6,>Mp, that is, because of Eq.

_ _ (25), if its shear is very large. In the second case, where the
then, we can show that, with high values &f and o, the  energy tied to the curvature is comparable with the scalar

“friction” term field potential energy, the Universe inflates for any value of
6y and o.
We must note that, falls suddenly aiBy~g,. In fact,
_ dadB (29 for Bo=<p,, the value ofd, is small (=10 %) but finite,
dt dt whereas foiBy> 8., 6, is null. This is a consequence of the

strong nonlinearity of Einstein’s equations. Slightly different
due to a combined action of expansion and shear is morgitial conditions can evolve in a completely different way.
relevant than the “forcing” term:

1 d
+ TZM%Ieza%U(ﬂ) (30) IV. CONCLUSIONS
A strongly anisotropic Universedt- o) at early times can
because the potentidd(5) is not enough steep, i.e., the go through an inflationary period, because of a scalar field
value of the derivative of a potential with respect@as not  minimally coupled to gravity. In this case, Eq81) and(32)

enough large; moreover the large value fimplies that  show that shear and curvature became negligible with respect

e”* becomes “small” very quickly. to the expansion. In fact, the inflation causes the growth of
After a few Planck’s times, the intrinsic curvature and the 1?0 times, at least, of linear dimension of the Universe: this
shear become dynamically negligible and they decay: assures tha? and R® decrease, respectively, 28 and
10%° times. The expansio®, instead, remains nearly con-
a2=Vol 2, (31)  stant. In this case, at the end of inflation, the Universe can be
described with the flat Friedmann-Robertson-WalleRW)
metric.
R3=Vol %8, (32 For B,=, this situation happens famy initial value of

o, 6, andR3; hence, even if the anisotropy and curvature

. L : “energy” are much larger than the scalar field “energy.”
whereas expansiofi reaches its isotropic valug3Mp [Eq.  For g =g, instead, the Universe does not inflate only if

(16)]. _ _ _ _ 6o=<(/3/3)4,.

(b) Bo<B.. This case is more complicated; in fad, The fundamental feature to underline is that the set of
#0, and it reaches a value of a few tens of Planck’s masg,itia| conditions that do not allow inflation ismall but
whenpSo— Biim . The Universe inflates if,> 0., or, because finjte In the spirit of chaotic inflation, we could assume that
of Eq. (25), if o> (V/3/3)6.. Hence, with respect to a pre- any form of energy at Planck’s epoch is of Planck’s energy
vious case, inflation can be avoided; but, surprisingly, onlygrder, ~Mp, (i.€., the energy “equipartition” that Barrow
with the smallest value of shear. _ _ _ has proposed This would imply that inflation would be

If there is inflation, Eqs(31) and(32) remain valid; again  gypided for B0=<0.883),, because §,~Mp, at By
the_ Universe becomes isotropic. If, instead, there is not in-_ 0.8833;,, and whenBy— B , it reaches 54.6d p,.
flation, we have that In this simple model, then, neither the initial values of

dynamical quantitie®),c nor the geometrical quantitiR®,
B, . (33) would determine the evolution; the only important quantity
would beg.

Equations(6), (17), (21), and(33), then, show that
2 (34) ACKNOWLEDGMENTS
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