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A new theory of stochastic inflation
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The stochastic inflation program is a framework for understanding the dynamics of a quantum scalar field
driving an inflationary phase. Though widely used and accepted, there have over recent years been serious
criticisms of this theory. In this paper | will present a new theory of stochastic inflation which avoids the
problems of the conventional approach. Specifically, the theory can address the quantum-to-classical transition
problem, and it will be shown to lead to a dramatic easing of the fine-tuning constraints that have plagued
inflation theories[S0556-282197)08004-1

PACS numbd(s): 98.80.Cq, 05.40kj

I. INTRODUCTION this ¢ as the global order parameter since it is constructed
from a coarse-graining volume that is always larger than the
The inflationary universe scenario asserts that, at somebservable universe. The dynamics of the global order pa-
very early time, the universe went through a de Sitter phaseameter is then postulated to obey the classical “slow roll”
expansion with scale facta@(t) growing ase™. Inflation is  equation of motion
needed because it solves the horizon, flathess, and monopole
problems of the very early universe and also provides a bt V() o 13
mechanism for the creation of primordial density fluctua- 3H ' '
tions. For these reasons it is an integral part of the standard
cosmological mode]1]. This equation governs the dynamics ¢fwhich drives the
The inflationary phase is driven by a quantum scalar fieldnflationary phase. It is also possible to discuss the genera-
with a potentialV(®) that can take on many different forms tion of primordial density fluctuations using. Assuming
that satisfy the “slow roll” conditions. Inflationary scenarios that ¢> ¢, it can be shown that is described by a free
fall into two types. In the first, which includes the so-called massless minimally coupled quantum scalar field. During ex-
old and new inflation, the scalar field driving inflatigthe  ponential inflation the quantum fluctuations @f grow as
inflaton) is assumed to be in thermal equilibrium with the (#?)~H?3t. These quantum fluctuations are then identified
rest of the universe. The universe is assumed to obey thaith the classical fluctuations which generate primordial
standard hot big bang cosmology in the periods precedingensity fluctuation$1,2].
and after inflation. In the chaotic inflation scenario these as- Although the conventional theory sketched above is
sumptions are relaxed. Instead the inflaton is assumed to heidely accepted, it must be considered problematic for three
only very weakly coupled to other fields. This makes it pos-important reasons.
sible to choose initial states for the inflaton which are far It is assumed, without justification, that the global order
from equilibrium. The standard big bang cosmology nowparametek can be treated as a classical order parameter and
only applies after the reheating stage of inflation. that the quantum fluctuations ¢f are equivalent to classical
In the conventional approach to inflaton dynaniitk the  fluctuations.
inflaton field® is first split into a homogeneous piece and an  The fluctuations of lead to an overproduction of primor-

inhomogeneous piece, dial density fluctuations. This can only be avoided by un-
naturally fine-tuning the coupling constants in the inflaton
D(x,8)= ¢(s)+ ¢(X,), (1.1)  potential.

The back reaction of on the dynamics o is ignored.
where ¢ is interpreted as the fiel® coarse grained over a  Based on the conventional theory there should be no rea-
volume (): son to expectp and ¢ to behave classically. The action for

¢ is nonlinear and strongly time dependent. Both of these
b(s)= EJ ®(x,5)d3x. (1.2) properties will aIway; generate quantum—mechanical coher-
QJa ence over time. Similarly, becausg is treated as a free
quantum field, its quantum vacuum state will always remain
In this description all information on scales smaller than thespatially homogeneous. It is only when these fluctuations
coarse-graining volume, such as density fluctuations, will bdbecome classical that spatial inhomogeneity is generated.
contained ing. This means the fielgy has a low frequency Since the conventional theory treatsand s as independent
cutoff in its spectrum. The coarse-graining volume is set byclosed systems, it is impossible in principle for it to explain
the causal horizon which leads §~H 3. We will refer to  the quantum-to-classical transition ¢fand . The purpose
of this paper is to develop a more considered approach to
inflaton dynamics which can address these three critical is-
*Electronic address: andrewm@maths.su.oz.au sues.
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The problems outlined above can all be addressed by A Fokker-Planck equation can also be derived which depicts
careful application of the principles and techniques of nonthe evolution of the probability distribution of the scalar
equilibrium quantum statistical physics. When we coarsefield. Since it was first derived, the Starobinsky equation has
grain the scalar field as in EQL.2), what we are effectively  stimulated numerous studies. Much effort has been devoted
doing is splitting our closed quantum systdminto a system  to the solution of this stochastic equation for a description of
sector¢ and an environment sectaf. The system sector the inflationary transition and the generation of primordial
includes only wavelengths long compared to the coarsedensity fluctuation$7]. The same equation forms the theo-
graining scale while the environment sector comprises waveretical foundation for studies on the very large scale structure
lengths short compared to the coarse-graining scale. By digf the universg8]. It has been claimed that the stochastic
carding information about the environment sectbrand nflation program can explain the quantum-to-classical tran-
assuming that the system and environment interact, we turgtion of the coarse-grained fie[@]. A quantum-mechanical
the unitary, reversible dynamics of the closed sysenmto  description, for which the Starobinsky equation is the semi-
the nonunitary and irreversible dynamics of an open systerg|assical limit, has been developed using methods to quantize
¢. Thus we have gone from a fundamental theory to argjassically dissipative systeni&0] (this list of references is
effective theory. The back reaction of any environment sechy no means complete
tor on a system sector will generally manifest itself by intro- ~ |n the derivation of the Starobinsky equation, interactions
ducing noise, dissipation, and renormalization effects intthetween the local order parameteand its short wavelength
the dynamics of the systeii8]. The noise and dissipation enyironmenty are derived from the quadratic terms in the
will be related by some fluctuation-dissipation relation.scalar field action. Interactions that derive from a self-
Noise will induce diffusion and decoherenéthe loss of interacting potential are assumed to be small and are ne-
quantum-mechanical coherencBecoherence is the critical glected. This procedure cannot be justified because, for free
ingredient if we are to dynamically demonstrate thefie|ds, there is no mode-mode coupling and therefore no way
quantum-to-classical transition of an open system. for short wavelengths to back react on long wavelengths.

In this approach our Only interest in the enVironm¢ﬂ.B Mode-mode Coup"ng can 0n|y be generated by a self-
its back reaction on the system dynamics. In this case thgteracting potential. Advocates of stochastic inflation would
global order parameter is no longer a suitable system varisay that the coupling is generated by the time-dependent na-
able because it contains no information about spatial StruGyre of the system-environment split. However, it is simply
ture within our universe. A SyStem variable that does Contaiﬂmpossitﬂe for a physica| Coup"ng to be generated by a time-
this information can be obtained simply by choosing the apgependent choice of what constitutes the system and envi-
parent rather than the causal horizon as the coarse—grainirpgnment[ll_13_ We would therefore expect there to be, as
scale. This corresponds to a coarse-graining volume Ofpng as self-interaction is ignored, no coupling and hence no
Q~(He") 3. with this averaging volume we will refer to pack reaction of the environmeton the local order param-
¢ as the local order parameter. The use of a local rather thagter ¢. This implies that classical fluctuations in the local
global order parameter for inflaton dynamics has beemyrder parametess must vanish for a free theory. We there-
strongly advocated by Morikaw@]. In this scheme it is the fore conclude that the Starobinsky equation fails to describe
classical ﬂUCtuation§¢ of the local order parameter which the back reaction Oﬂ/ on the local order parameteﬁ‘_
lead to density fluctuations rather than the quantum fluctua- A petter interpretation for the Starobinsky equation is that
tions derived from(y?). The new role of the fields is to it models the conventional approach to inflaton dynamics
provide a noise sourc@ia a back reactionin the quantum with a classical stochastic dynamical system. The left-hand
dynamics of the local order parameter. This noise will gensjde is the usual postulated slow roll equation of motion for
erate quantum decoherence which is the process that creai@g@ global order parameter. The stochastic term is meant to
the classical ﬂUCtuation§¢ of the local order parameter. C|assica||ym0de| the quantum fluctuations ¢f This inter-
This fundamental conceptual shift regarding the role/aé  pretation is plausible because solving the free Starobinsky
the key to developing a theory that can address the quanturgguation gives ¢2)~ H3t. This is the same as the growth of
to-classical transition problem. As a bonus it will be ShOquuantum f|uctuations |n}b in the Conventiona| approach_
that the new theory leads to a dramatic easing of the finerjowever, since it is essentially equivalent to the conven-
tuning constraints that plague the conventional approach tgonal approach, the stochastic inflation program suffers from
inflaton dynamics. the same serious problems that were previously outlined.

A first attempt to study the back reactiongfon the local Several authors have previously made similar criticisms
order parametes can be found in the “stochastic inflation”  of stochastic inflation and the conventional inflaton dynam-
program initiated by Starobinskyp] and further developed jcs. Hu and Zhangj11] first questioned the ability of a time-
by others[6]. This program claims that the semiclassical dependent split in generating noise for a free field and intro-
equation of motion for the local order parameter is given byduced the coarse-grained effective action for a proper

the Starobinsky equation treatment of the back reaction. Haljib4] demonstrated that
, 3 the theory of stochastic inflation does not address the
Viig) _HT 0 (1.4 Quantum-to-classical transition despite claims that it does

3H 20 W ' [9]. Hu, Paz, and Zhanl2] (see alsd15,16]) provided an

extensive critique of the conventional theory and developed
whereF,,(t) is a zero mean Gaussian white noise source ofheir own theory of stochastic inflation for the case of a quar-
unit amplitude. The system field equation is thus transformedic potential. Morikawd 17] pointed out that self-interaction
into a classical Langevin equation with a white noise sourceis necessary for the generation of fluctuations and that a lack
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of understanding of this point is the cause of the fine-tuningigorous quantum field theory of open systems; however,
problem of inflation. This point has also been emphasized byhey do have some practical shortcomings. The dynamical
Calzetta and H{i13] in a recent discussion of the problems systems obtained are of a functional nature and are further
with conventional inflaton dynamics. See also Morikgwh complicated by nonlocal dissipation and colored noise. It is
for a general discussion of inflaton dynamics. very difficult to analyze the quantum and semiclassical dy-
Clearly a new theory of stochastic inflation is requirednamics of these systems. The models are restricted to flat
which can address the three problems of the convention@iPace or conformally coupled fields in a de Sitter phase. For
approach to inflaton dynamics. This new theory will require@Pplications to inflation we are mainly interested in mini-
a fully nonequilibrium quantum-mechanical formalism mally coupled scalar fields in a de Sitter phase. The models

.pe . . 4 . . . .
which deals with the statistical nature of mixed states and th@"€ ey Specific, involving ad™ self-interaction. Deriving

dynamics of reduced density matrices. An ideal formalismN€ renormalized effective action for the long wavelength

for this is the Feynman-Vernon influence functioaB. Sector is a com_plex calcqlation t.hat can only pe done _in the
The influence functional describes the averaged effect of thE2Ntext of specific potentials. In inflation there is great inter-
environmental degrees of freedom on the system degrees ?Pt in a wide variety of potentials. In this case the quantum
freedom to which they are coupled. With the influence func-_"ald theory calculations znay be much more difficult to
tional we can unambiguously identify a noise and dissipatiof™Plement than for the.®® case. Because of these prob-
kernel related by some generalized fluctuation-dissipation re€™MS: there has not yet been any detailed investigation of
lation. The formalism leads directly to a propagator for thelnflaton dynamics based on these quantum field theoretic
reduced density matrix which can then be used to derive PN Systems.

master equation. The propagator can be used to study the In _9fdef to proceed further we need to dgvelop a new
decoherence process which is the critical part of theimplified theory that overcomes these practical problems.

quantum-to-classical transition. The master equation can bENiS Mmust be done without compromising a rigorous treat-

transformed into a Fokker-Planck-type equation for theMent based firmly on the principles of nonequilibrium

Wigner function. In the semiclassical limit we have a gener-duantum-statistical physics. Only a theory of this nature can
alized Langevin equation. address the failures of conventional inflaton dynamics. In

The stochastic inflation program and, indeed, many otheihis paper such a theory is developed. The main result is that,
or a minimally coupled scalar field in a de Sitter phase, the

problems in the early univerdd5] fall under the paradigm _
quantum dynamics of the local order paramefercan be

of quantum Brownian motiotQBM). QBM is one of the ) . : -
two major paradigms of nonequilibrium quantum-statisticaldescribed by the relatively simple stochastic quantum-
mechanical Hamiltonian

mechanics which is amenable to detailed analgthis other
being Boltzmann's kinetic theoyy The complexity of the
problems in cosmology led Hu, Paz, and Zhmg] to first p2 H2

con3|der. a systematic study of_ QBM in a _general environ- H(t)= 5 +e3Hty () — —3e3H‘V”(¢)FC(t),
ment using the influence functional formalism. The special e 8w

features associated with a non-Ohmic bath or Ohmic bath at (1.5
low temperatures are the appearance of colored noise and
nonlocal dissipation. The methodology and viewpoint of C amt i
QBM have been applied to the analysis of some basic issudkN€rep=€>"¢ is the canonical momentum argland ¢

in quantum cosmology16,20—23, effective field theory ~©P€Y the usual quantum-mechanical commutde(t) is a
[25,26], and the foundation of quantum mechanics, such a&€r0 mean Gaussian colored oise of unit amplitude with a
the uncertainty principl§27,28 and, most significantly, de- correlatlgn time of the_ordeIH . .T!‘HS result is va!ld for a
coherence[29-33 in the quantum-to-classical transition gene_ral inflaton potential. Thg orlgln_of the noise is the back
problem.(See the reviews dB4—3§ and references therein '€action of quantum fluctuations with wavelengths shorter
for the standard literature on this topi@he QBM models in ~ than the coarse-graining scale. The noise is of a multiplica-
[19] were further generalized by Hu and Matak37] by tive nature becausg its origin is th(_a mode-mode coupllng
making the system and bath oscillators the most generé‘ﬂquced by the §elf-mterac_non of the m_flaton. For a free field
time-dependent quadratic oscillators, and by considerind?iS theory predicts no noise term. This should be expected
more general system-bath couplings. The time dependendf®™M arguments made here and previoysly—13,17. The

generates parametric amplificatisgueezingin the oscilla- ~Major simplification is made by ignoring information about
tors which is precisely how quantum fluctuations of a freeSPatial correlations between the order parameters of different

field are amplified in the inflationary univer§gs]. This for- regions. This allows a description based on a single degree of
malism allows for a general study of nonequilibrium freedom. A further significant simplification is obtained by

quantum-statistical processes in time-dependent backVoking the standard slow roll assumptions. This makes it
grounds, as is the case in the early universe. p055|bl_e to show that the poten_tlz_il renormalization and non-
Using the same methodology as in the previous QBmMOcal dissipation terms are negligible.

studies, Hu, Paz, and Zhaft2] were the first, based on the  1he approximate semiclassical limit of the quantum open
system-environment split orginally proposed by StarobinskySyStem(1.5) is
to correctly formulate the problem of the back reaction of

short wavelength quantum fluctuatiogison the local order

parameter$. For more recent work of a similar nature see b+
Lombardo and Mazzitellf39]. These works are based on a 3H 86

V/(¢) H1/2 .
== SVIOR. (19
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In deriving this equation we used the slow roll assumptions t

to neglect the inertial term and approximate the colored nois&= | ds)(s)a(s)
by a white noise~,,. This equation is no more complicated f

than the widely used Starobinsky equati@™). However, it
fundamentally differs from it because the noise term van- X f d3xy?(x,s)
ishes for a free theory. Equatidh.6) is a superior alternative )

to the Starobinsky equation because it is the semiclassical [V (x,5)]2
limit of the quantum open systefi.5). This allows the va- T 2a%s)
lidity of the semiclassical limit to be dynamically derived by
investigating the quantum decoherence generated by t
noise in Eq.(1.5 (on the other hand, the “classicality” o

the Starobinsky equation is simply postulated and is not
natural outcome of any quantum open systeithe other
crucial advantage is that, as we will see, Eg6) leads to a
dramatic easing of the fine-tuning constraints.

2¢2(S) V(¢) )——f dsa(s)V'(¢)

t 1
+f dsf d3xa3(s)| =
t Jaes 2

#3(X,)

(2.9

hIehe coarse graining breaks the scalar field up into cells of
volume (2, each labeled by a coarse-grained position vari-
Able. We have dropped all reference to the position label on
¢ since the problem is spatially invariant. By dealing with
only one degree of freedom we are ignoring information
about spatial correlations between different cells. This is the
reason why the middle term in the expansi@ri7) plays no
role. Later in this section we justify why we can drop the
spatial gradient term of the system sector.

In this section we will see how the dynamics of a coarse- The environment fields can be written as
grained scalar field in an expanding universe can be de- 5
scribed in terms of time-dependent quantum Brownian mo- N + — i
tion with nonlinear system-bath coupling. We consider a 0= 2 [acosextqgsink-x], (29
minimally coupled scalar field evolving in a spatially flat

Il. STOCHASTIC INFLATION AND QUANTUM
BROWNIAN MOTION

background with the metric in which case the actio(2.8) becomes
ds?=dt?>—a?(t)d?x. (2.1 t 1.
=f dsQ(s)a’(s) §¢>2(S)—V(¢)}
The action has the form ti
t 14 t
= 3 - = dsa(s)V"(¢(s))q>
ftidsfms)d XL(X,S), 2.2 P Jti (S)V"(#(3))ag
15 t . k2
where +5> > | dsa(s)| (q7)*- —z—q‘k’z},
) 25 %y a“(s)
3 1-, [VD(x,s)]
L(x,s)=a°(s) E(D (x,s)—T(S)—V(fb(x,s)) . (2.10

23 \where k=|k|. The action(2.10 is now in the form of a
We assumé; is our initial time anda(t;)=1. time-dependent 'one—dimensiqnal system, nonliqearly
As is usual in inflation, we splib into a homogeneous C€OUPled to an environment of time-dependent harmonic os-
piece and an inhomogeneous piece, cillators. This action is a generalization of the well-known
guantum Brownian motion probleril8,19,37,4Q In the
D(x,5)= P(S)+ h(X,S), (2.4 next section we will show how the influence functional
method can be used to describe the averaged effect of the
and interpretp as the fieldP coarse grained over a volume environment on the quantum dynamics of the system.
Q(s). We, therefore, write

A. Low frequency cutoff

1
@(s)= mj (x,5)d%x, (2.9 We will impose a long wavelength cutoff in the fielt
&) such that the longest wavelength equals the diameter of the
which will be true as long as coarse-graining volume. This is necessary since we are inter-

preting ¢ as the field® coarse grained over the volume
e B e B Q(s). This means that all frequencies less than the cutoff are
J;m X(X,8) = f()(s) Xih(x,8)=0. (2.6 considered part of the system sector. Since there is no mode-
mode coupling for free fields, we cannot expécto couple
Assuming¢> ¢, the potential term in Eq2.3) becomes to ¢ in this case. This is clearly true for the acti¢n10.
2 Writing the volume element as

V(®)=V(¢) + V' () + 5 V(). 2.7 A7t
O(s)= 3EA3(s)” (2.1
Substituting Eq(2.7) into Eq. (2.3) and using Eq(2.6) we

find we can express the low frequency cutoff as
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Kmin= €A (1), (2.12  which is propagated in time by the evolution operafbr

where e is an arbitrary dimensionless parameter that scales . e
the coarse-graining volume. An obvious question is, how do / :J' f ’ , YA
we choosek,,? pi(b,9",1) . de; . dei 7 (¢, ¢ ,t|¢| Vb t)

At a purely technical level we want to choo$k large ,
enough so that the spatial gradient term in Ej3) can be Xpi(i b ti). 3.3
neglected for the system sector. The appropriate volume can
be deduced from the classical equation of motion for th
environment modes. Writin@,= q,/a(s) we find that this
equation is

eBy using the functional representation of the full density
matrix evolution operator given in Eq3.2), we can also
represent/, in path integral form. In general, the expression
P20+ O k2 (52a)/a]=0, 21 is very _cc_)r_npllcated since the evolution opergtbrd_ep_end§
Pt Q (7,R)a] 213 on the initial state. If we assume that at a given initial time

where 7= [dt/a(t) is conformal time. We can see that the ti» the system and the environment are uncorrelated,
environment spectrum is split, with an unstable low fre-

uency sector and a stable effectively flat space sector. - - -
ghoos)i/ng g P p(ti) = ps(t) X pe(ti), (3.9

— 2
A =v(aa)la, <l (2.14 then the evolution operator for the reduced density matrix

does not depend on the initial state of the system and can be

amounts to including all those modes where the spatial 98 ritten as

dient is significant in the environment sector.

Detailed results in this paper will be limited to de Sitter
inflation wherea(s)=e"°, n=—e "H, andt;=0. Inthis  7.(¢, ¢! t|¢, ¢! 1)
case Egs(2.14) and(2.12 lead to

Knin=€Ha(t), e<1l. (2.15 & 8!

_ g . - ["oo [ "oy extitsis1-S 6 M0 33
This cutoff satisfies our technical requirement. We also have ®i 6!
the physical requirement that information about large scale
structure is contained in the system sector. This requites
be small butfinite. Taking e—0 would correspond to an The factor /[ ¢,¢'], called the “influence functional,” is
over-coarse-grained system that would contain no informadefined as
tion of observable scales. The scale of the observable uni-
verse today is expected to cross the Hubble radius at least . R .
sevene-foldings after inflation begin§l]. This means that f[¢,¢']:eXp[ile[¢>,¢']}:Tf(U[¢t,ti]Pe(ti)UT[¢{,ti]),
today’s horizon scale maps to~10°H. We can see from (3.6
Eq.(2.15 that after a fewe-foldings, scales corresponding to
our observable universe are shifted into the system sector. Of R
course, Eq(2.15 is the same as Starobinsky’s chojée6]  where U is the quantum propagator for the action

for the low frequency cutoff. Se[a]+ S #(s),q] with ¢(s) treated as a time-dependent
classical forcing term. We have found this form to be very
IIl. INFLUENCE FUNCTIONAL convenient for deriving the influence functionf37,40.

S #,¢'] is the influence action, and the effective action for
Consider the quantum system described by the action the open quantum system is defined &l ¢, ¢’]
=Y ¢]-H¢']+Sel¢,¢'].
S ¢.a]=S ¢]+Slal+ Sl ¢.0]. 3.9 If the interaction term is zero, then it is obvious from its
. . . definition that the influence functional is equal to unity and
we will take ¢'as our sys?em variable qmﬂto be our €MVI" " the influence action is zero. In general, the influence func-
ronmental variables. Typically the environment has 'nf'n'te@ional is a highly nonlocal object. Not only does it depend on

degrees of freedom, denoted here by boldface type. We wi he time history, but—and this is the more important
property—it also irreducibly mixes the two sets of histories

briefly review here the Feynman-Vernon influence functional
method for deriving the evolutiqn operal[d::S]. The method __in the path integral of Eq(3.5. In those cases where the
provides an easy way to obtain a functional representqtlomitial decoupling condition(3.4) is satisfied, the influence

for the evolution operator/; of the reduced density matrix g,ctional depends only on the initial state of the environ-

pr- . . . . . ment. The influence functional method can be extended to
We are interested in the reduced density matrix defined agore general conditions, such as thermal equilibrium be-
. tween the system and the environmédl], or correlated
d da'p(b.a: " .q')S(a—q'), initial states[18].
qf—oo a'p(d.a:4".a")o(a-q") The influence action for the open systét10, in a de
(3.2 Sitter phase, is derived in the Appendix. It has the form

+

— oo

Pr(¢,¢')=f
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A. Local approximation to the influence functional

t
SIF[¢1¢,]:_deSA(S)f(S)

We can neglect the potential renormalization term in the
influence action(3.7) when

+ ftdsJSds’A(s)E(s’),u(s,s’) H2
° e V($)> 5

V"(p)In(1le). (3.13
+i JotdsJ:ds’A(s)A(s’)v(s,s’), (3.7

This holds when the potential satisfies the standard “slow
roll” condition [1]

where the sum and difference coordinates are 5 )
[V"( )| <9H =247V (p)/mg,. (3.19

1
2(s)= S [V (@(s)+ V(9" (s))], It also holds more generally as long lEHs<mp,.

The slow roll conditions of inflation are necessary to en-
sure that an approximate de Sitter inflation phase can pro-
ceed. In the slow roll limit the dynamical time scale &fis
much longer than the Hubble time scale, and so we expect to

The functionsy and . are known, respectively, as the NOISE he able to make a local approximation to the dynamics. We

and dissipation kernels. This is because, as will be shown in . ) : /

; ._start by observing that the integrals ov@rin the influence

Sec. 1V, they correspond to colored noise and nonlocal dis= .

S ; o action(3.7) are strongly suppressed fér> 7. Therefore the
sipation. The functiorf(s) represents a renormalization of

the potential. These functions are derived exactly in the Apjower I|m|t. of the integral fors' can b.e_ cut off as— 7e. We
can now invoke the slow roll condition. On the time scale

A(s)=V"(¢(s)) = V"(¢'(3)). (3.8

pendix. _1 ,, .
The approximate form of the noise kernel derived in Eq.H we, expecty (,d’) to change little, and ’sp we can pul
(Add) i out A(s') and3(s’) from the integral oves’ in the influ-
is . . : :
ence action. In this case the influence action becomes
4gbHo
1\~ R 2 t S
1(5,8')= —gz5Cod desinh(H 5/2)] +O(€?), Sel0.6/1= | dsa©39) [ dsuiss)
S—T¢
e<1l and <, (3.9 [t s
+|f dsAZ(s)f ds'v(s,s'). (3.15
where 0 ST
S=s—s', o=(s+s)2. (3.10 For the noise integral we now find
s 4e3Hs s HSeGHs
As discussed in the Appendix, is the correlation time of f ds' v(s,s')= 5 f ds'e3"s = =
the noise kernel which is defined as the time when the argu- Js— 7 647 Js—r 192m
ment of the cosine equals/4. The correlation time scale (3.1
then becomes
where we used
— -1
7.=2H7"In(7/8¢). (3.11 cosc=1. (3.17

The exact expression for the dissipation kernel is derived i o . .
Eq. (A46). We do not quote it here since it is a complicatedr,:":h?er T;Dglns;fa&%?cﬁeirsnel we use the regiib2) derived in

expression that will play little further role. Inspection of Eq.
(A41) and (A46), the exact noise and dissipation kernels, s 3Hs
shows that they quickly become highly oscillatory wheis j ds’ u(s,s')~ —In(/8e). (3.18
greater than the correlation time,. This means that the 4m

noise and dissipation kernels are effectively cut off beyond

the correlation time. This oscillatory behavior is an artifact The influence actiort3.15 now becomes

of the discrete low frequency cutoff used for the bath. From

Eqg. (A36) the potential renormalization term is S b1~ In(7/8¢) tdséHs[V”z(qS(s))—V”2(¢’(s))]
’ 8 0

S—1T¢

HZ
f(s)=-—e"[1/2+In(1le)], e<1l. (3.12 iH3 rt
8 +WJ dseHsA(s). (3.19
0

One of the most attractive features of this theory is that the

approximate noise and dissipation kerneé3s9) and (A48), We see that the local approximation to the dissipation
along with Eq.(3.12), have no algebraic dependence @n kernel has reduced to an effective potential term in the influ-
This means that physical results will only very weakly de-ence action. This term will be much smaller than the system
pend one. potential when



1866 ANDREW MATACZ 55

V"2( ) wherev(s,s’) is the second cumulant of the foréeClearly,
V(¢)>In(m/8e) —o—7—. (3.20  then, before averaging over the noise, we can write our ef-

fective action derived from Eq3.7) as

This will hold whenever the slow roll conditiof3.14) is

satisfied. As an example we can substitte A ¢* into Eq. e _ / Jt
(3.20), which leads to the condition Serl 4", 1= 1S S 1+ tidSA(S)

772

NS T8In(m/8e)

(320 x ft fds’z(s'ws,s')—f(s>+§<s>

4.4
This is clearly satisfied ihk<1 which is the standard weak “4

coupling condition. Neglecting the potential term in Eq.

(3.19, the effective action becomes This result can be used to show that the dynamics of the

effective action(3.22 is equivalent to that generated by the
guantum-mechanical stochastic Hamiltonian

P
Sul 6,0 1= S[91-S[9' 1+ 165 | dséren®(s),

2 32
(3.22 H(t) = % V() — e VISR,

with § ¢] our scaled system action given by E&33) for (4.5
the case of a de Sitter expansion phase.
In general one must be careful in neglecting nonlocal dis-

_ @3Ht :
sipation in quantum open systems. Dissipation and noisé’vherelo e™"¢ is the canonical momentum arriand ¢

connected via a fluctuation-dissipation relation, are twindbey the usual quantum-mechanical commutdgkt) is a

physical processes that reflect the relation between enerngro mean Gaussian white noise with the correlation function

flowing into and out of the system. This relation is especially

important when one is interested in possible stationary states (Fu(h)Fu(t"))=6(t—t"). (4.6)
where a balance is eventually reached. In inflation we have a

very flat potential well away from its minimum, and we are The white noise Hamiltoniaf4.5) is an approximation to
only interested in the dynamics over some relatively small

finite time. As we showed above it is these very special slow 2 2

roll conditions of inflation that allowed us to neglect dissipa- H(t)= _pm + ety (¢)— ige3HtV”(¢)Fc(t),
tion. This will certainly not be possible during the reheating 2e 8
phase but it should be a good first order approximation to the 4.7

dynamics in the slow roll phase.
whereF .(t) is a zero mean Gaussian colored noise of unit

IV. STOCHASTIC INTERPRETATION amplitude with the correlation function

OF THE INFLUENCE FUNCTIONAL
, i ) . ) F.(t)F.(t"))=cod4desinh(H 56/2)]. (4.8
In this section we will show that a stochastic forcing term (Fe(DF() 1 " ]

will generate the imaginary part of the influence acti8ry).

Consider the action This follows because the imaginary part of £E§.22 is an

approximation of the imaginary part of E(B.7). Equations
¢ (4.5 and (4.7) are the main results of this paper. In the
S[qS(s),g(s)]:f ds[L(¢,¢,5)+V"(p)&(s)], (4.1  semiclassical limit the system time scale is clearly much
ti greater than the Hubble time due to the slow rolling nature of
inflation. In this case a white noise approximation should be
where £(s) is a zero-mean Gaussian stochastic force. Thiseasonable. In the quantum regime it is not so clear that we
system generates the influence functional can approximate Ed4.7) with Eq. (4.5). Numerical simula-
tions will be required to answer this.

t
f[¢,¢>’]=<ex+ ft_dSA(S)ﬁS)

>, 4.2

A. Semiclassical limit

The semiclassical equation of motion for the general ef-

where the average is understood as a functional integral ov?erzctive action(4.4) can be derived using

&(s), weighted by a normalized Gaussian probability density
functional P[ £(s)]. The averaging can be performed to give S5(S e
s (Sel0.0"6D| 9
OA 4(1) a0
t 5
' — _ !A A ! ’
o] exp{ Jtidsjtids (S)A(s)¥(s:s )]’ whereA ,= ¢— ¢’. With the system actioA33) it can be
(4.3  shown that this equation becomes
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. a. We have motivated the relatively simple description
¢+3—¢+V’(¢>))a3(t)+v”'(s)f(s) (4.14 by invoking the slow roll conditions and assuming
a that a semiclassical description is valid. Ultimately the justi-
t fication of Eq. (4.14 will require a detailed study of the
—V"'((p)f w(t,s)V"(p(s))ds=V"(p)&(t), quantum dynamics described by the Hamilton{érv). The
4 complicated correlation functio@.8) would make this a dif-
(4.10 ficult task. However, it must be emphasized that the complex
oscillatory nature of this correlation function is purely an
where(£(t)£(t"))=»(t,t"). Under special circumstancgs  artifact of the discrete low frequency cutoff used for the bath.
tends to the derivative of & function which generates local The only essential “invariant” information in Eq4.8) is the
dissipation; hencey is referred to as the dissipation kernel. correlation time(3.11). Therefore it would be reasonable to
More generally we see that in the semiclassical limigen- investigate th_e effects of col_ored noise by replacmg _the cor-
erates nonlocal dissipation. For the influence act®), the relator(4.8) v_wth an expor_1ent|al correlation function W_|th the
functions f and  are unimportant, and the semiclassical correlation t|me(3.1]_). This cor(elator generates the simplest
equation(4.10 becomes type of colored noise dynamid€t2] and would make the
quantum dynamics described by Hdg.7) a tractable prob-
2 lem.

- . H
$+3HG+V ()= g3V (F(D), (41D

V. AMPLITUDE OF DENSITY FLUCTUATIONS

) ) ) ) AND THE FINE-TUNING PROBLEM
whereF. is the zero mean Gaussian colored noise with cor-

relator (4.8). This equation is the semiclassical limit of the  In this section we will use E¢4.14) to estimate the am-
guantum open system whose dynamics is described by E@_Iitude of primordial density fluctuations generated by scalar
(4.7). Invoking the slow roll approximatiorineglecting the field fluctuations in inflation. We will consider the potential

#) this equation becomes V=\¢*, for which the solution to the slow roll equation
(1.3 is
. V'(¢) H
— " 2\
* 3n "2V (PR, 4.12 ¢(t)=¢oexp<— N (5.1)

The neglect of the inertial term in E¢4.11) is standard  Wwith this solution it can be shown that the two slow roll
practice in inflation when describing the dynamics of theconditions of inflatior{1] break down foré~mp,. We there-

mean fieldg,,. However, it should also be a good approxi- fore require ¢,>mp,. The number ofe-folds in the infla-
mation for describing the fluctuation8¢$ about the mean tionary era is given by1]

field [ ¢, is the solution of Eq(1.3)]. Because these fluctua-

tions are small, we can linearize E(t.11) about ¢, to 8w (¢o V(@) b5
obtain N(¢)= oy Vid) " (5.2
PIY Mp PI
. . , H?2 " A solution to the horizon problem requird§=60. This
6¢ +3HOP + V" (dm) 6= g5 V" (dm)Fc(L). means that we requirey, to be at least several times the

(4.13 Planck mass.
At this point it is useful to compare the dynamical time
The left-hand side of this equation describes a dampegcale and the Hubble time scale. The dynamical time scale
simple harmonic oscillator. The standard overdamping con7d is found from the solutior(5.1) to be
dition is the same as the slow roll conditit®14). Therefore

we can neglect the inertial term in E@.13 and conclude T4= S_Wmlgll' (5.3
that Eq. (4.12 should also be a good description for the 2\
fluctuations as well as the mean field. Using
The slow roll conditions allowed us to derive the local
approximation(3.22 to the influence functiondB.?). In this ) 8w
approximation Eq(4.12 becomes H(¢)= _3m§|v( é), (5.4
. V' (¢) H2 we find that
F=27T¢ /mp|. (55)

whereF,, is a zero mean Gaussian white noise with correla-

tor (4.6). This equation is the semiclassical limit of the result When ¢>mp, the system time scale is much greater than the
(4.5). It is a superior alternative to the Starobinsky Eh4) Hubble time scale. This provides an explicit example of the
for reasons that are addressed in the discussion and conclcendition we assumed to make the local approximation to the
sion section. Since this white noise equation is an approxiinfluence functional.

mation to the colored noise equatida.12), it should be So far we have only constrained, to have a lower
interpreted in the Stratonovich sense. bound. In chaotic inflation we expect that initialy~mp,.
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This means that we can only makig>mg, if we also cor-  [12,39 using the system-environment split originally pro-
respondingly make.<1. In inflation it is the value of the posed by Starobinski5]. However, as pointed out in the
density perturbations which serves to fix a valueNpwhich  Introduction, these models are very complex and this has so

by the potential constraint also fixefs,. far prevented them from being used in a detailed study of
The density contrasbp/p, which is generated by scalar inflaton dynamics.
field fluctuationss¢, is approximately given by1,2] In this paper a new simplified theory of inflaton dynamics
was developed. This approach is free of the problems asso-
ép H ciated with the conventional theory. It is based on the Hamil-
?Zg&ﬁ- (5.6)  tonian (4.7) which describes the quantum dynamics of the
inflaton which has been coarse grained over the apparent

horizon of a de Sitter inflationary phase. The origin of the
noise source is the back reaction of quantum fluctuations
V() H /2 with wavelengths shorter than the coarse-graining scale. The
8= V" (P)Fy(t). (5.7  noise is of a multiplicative nature because its origin is the
3H \8647° mode-mode coupling induced by the self-interaction of the
inflaton. For a free field this theory predicts no noise term as
we should expecf11-13,17. Apart from addressing the
problems of the conventional theory, the other essential fea-
ture is the relative simplicity of the resul(4.7) and (4.14).
8 The major simplification was made by ignoring information
H2=—\m3, (5.8  about spatial correlations between the order parameters of
3 different regions. This allows a description based on a single
degree of freedom. Further significant simplification was ob-
tained by invoking the standard slow roll assumptions. With
this we were able to argue that the potential renormalization
27\2m§,| and nonlocal dissipation terms were negligible and that the
(6¢?) = —. (5.9 colored noise could be approximated by a white noise in the
O semiclassical limit. In this case the theory is independent of
the arbitrary parametear. The correlation time does depend
on e but only logarithmically. The robustness of this theory
Sp to the coarse-graining volume, which is parametrizedeby
—~N\. (5.10 must be considered a major success. Another very important
P feature for applications to inflation is that the theory de-
scribes a minimally coupled scalar field with an arbitrary
tential.
The slow roll semiclassical equation of motiéh14) is a
superior alternative to the Starobinsky equation for a number
Sp of reasons. It is the approximate semiclassical limit of the
—~A, (5.1)  quantum open systeit#.7). This allows the validity of the
semiclassical limit to be dynamically derived. The “classi-
cality” of the Starobinsky equation is simply postulated and
Clearly the theory developed here leads to a dramatic eals ot a natural qutcome O,f any quantl,!m open syste_m. A
ing of the fine-tuning required in this model. The resultduantum-mechanical description, for which the Starobinsky
equation is the semiclassical limit, has been attempted using

(5.10 was obtained previously by Calzetta and HiB] us- i ;
ing an entirely different approach based on coarse-grainin etho‘?'s develope.d some time ago to describe the quantum
ynamics of classically dissipative systefidi€]. However,

graviton degrees of freedom. They pointed out that this ne i N o Ustified icl
value of\ is consistent with the inflaton taking part in non- t'|s amount.s to simply quantizing™ an unjlu.stl Ied semicias-
Abelian gauge interactions with a coupling constant ofswal equation of motion rathgr than deriving the quantum
10-2 theory from fundamental physics. In any case, such a proce-

dure is highly suspect because it misconstrues the redshift

term 3H¢ in the Starobinsky equation as damping. This re-
peats an old error in quantum mechanics of confusing a time-
In this paper we have argued that the conventional theorgependent mass with a real dissipatid8]. The other major
of inflaton dynamicg1], along with Starobinsky’s theory of advantage is that Eg¢4.14) leads to a dramatic easing of the
stochastic inflatior{5,6], was problematic because it could fine-tuning required in the theory. We showed this for the
not explain the quantum-to-classical transition and it pre-\ ¢* potential. The fine-tuning problem is systematic to all
dicted an overproduction of primordial density fluctuations.potentials of interest in inflation. Similarly, we should expect
It was concluded that a theory which could address thesthat Eq.(4.14) will lead to a large easing of the fine-tuning
issues would involve a conceptual shift that comes with berequired for these potentials. Finally, the dramatic easing of
ing based on the principles of nonequilibrium quantum-the fine tuning constraints will make E@t.14) much simpler
statistical physics. There have been initial attempts to do thiso numerically simulate than the Starobinsky equation. Yi

Assuming¢> 8¢, we can linearize Eq4.14) to obtain

S5+

We can further simplify this equation by putting~mp,,
which corresponds to the end of inflation. From Eg4) the
Hubble constant now becomes

Equation (5.7) is now an Ornstein-Uhlenbeck process for
which the stationary distribution gives

In this case Eq(5.6) becomes

Observational constraints then requive- 10~ 6. Performing
an exactly analogous calculation for the Starobinsky equaP®
tion (1.4) gives

p

which leads to the conventional resilt- 1012

VI. DISCUSSION AND CONCLUSION
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and Vishniac[7] numerically simulated the Starobinsky The influence functionafAl) differs from that in[40] be-
equation for thex ¢* potential. They used =10 © in their ~ cause we have here taken into account the double set of
simulations because the supposedly correct value 620 modes in the actiori2.10. The Bogolubov coefficients are
was numerically intractable. The former value)ofs a natu-  solutions of the equations

ral outcome of the theory presented here.

As for future work, the quantum decoherence generated a= —igB—iha, (A3)
by the noise term in Eq4.7) will allow a dynamical inves-
tigation of entropy generation and the quantum-to-classical B=ihB+iga, (A4)

transition. Decoherence studies have been previously at-
tempted[12,39. However, because these models were verywhere
complicated, the authors were restricted to numerically cal-

culating the diffusion coefficient in the quantum master 1(a%(s)w*(s) k

equation. Unfortunately this tells us nothing about whether 9(s)= 2 k N as(s))’ (AS)
or not enough decoherence will occur in the model to justify

a semiclassical description. The critical dynamical aspect to 1/ k as(s)w(s)

this problem is the competition between the coherence gen- h(s)= 2\ a%s) + K ) (AB)

erating nonlinear potential and inflation expansion effects,
and the decohering stochastic term. This can only be invesynq
tigated with a full solution of the nonunitary quantum dy-
namics. If the noise term is strong enough, we would hope w?(s)=k?/a2+V"(4(9)). (A7)
that decoherence will justify a semiclassical description.
However, we must also remember that the noise cannot be 8b/e must havexr=1 andB=0 att; as our initial conditions.
large as to destroy the essentially deterministic slow roll dy- Defining
namics of the local order parametgér The inflaton dynam-
ics described by Eq4.7) is the first viable theory to permit
a detailed study of the quantum-to-classical of the local order u(tt)= (
parameter¢. This is the critical process that leads to the
generation of classical density fluctuations.

Assuming that the semiclassical descriptithld) is
valid, we can use this equation to deduce the amplitude and ¢
spectrum of the generated primordial density fluctuations, U(t,ti)zTexp(—if dsu(s)), (A9)
along with the implications this has for coupling constants of ti
various inflaton potentials. Also of great interest is the gen-

al ¢t,ti] B*[ ¢t,ti] )
: (A8)

Bl (bt,ti] a*[ ¢t,ti]

the solution of Eqs(A3) and (A4) can be written as

eration of any relevant non-Gaussian features in the resultinghere
probability distribution of¢ [7] and the implications of Eq. h(s) g(s)
(4.14 for the very large scale structure of the univef8¢ u(s :( ) (A10)
So far, these issues have only been addressed with the Star- —g(s) —h(s)
obinsky equation as their theoretical foundation. An interest- ) )
ing technical issue is what effect relaxing the white noise"Ve will write
approximation would have on these results. Investigations B
into the implications of the theory presented here are in u(s)=Uue(s)+ us(9), (A1)
progress. where
ACKNOWLEDGMENTS . aB(s)V'((s)[ 1 1 a12)
| would like to thank the Australia Research Council for ! 2k -1 -1/
their generous support of this research.
In this case we have
APPENDIX: CALCULATING THE INFLUENCE
FUNCTIONAL U(t,ti)=Uo(t,ti)Ul(t,ti), (A13)
The exact influence functional for the action of the typewhereUy(t,t;) is U(t,t;) evaluated aV"(¢)=0. The equa-
(2.10 has been previously found to (p&0] tion of motion forU, is
, ) , _ Us(s,t)=—i[Ug X(s,t)us(s)Ug(s, 1) JUL(S 1),
Ao 1=I] {ad @' 1at 61~ BL & 1AL ST s ehmE st Ihew.
(A1)

whereU~! denotes the inverse matrix. This inverse is
where« and 8 are Bogolubov coefficients which must sat- . .
isfy the constraint . a*[ by ] =B [yl A5)
U t,t)= A15
|a|2— |,8|2:1- (A2) I _,8[¢t,ti] a[¢t,ti]
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because of the constraith2). From Egs(A13) and(A8) we
have

al i1 1= ao(t,t)) asl by 1+ B (1,4) Bal dr.i 1,
(A16)

Bl d’t,ti] = Bo(t,t) aq[ ¢t,ti] +ag (L) Bal ¢t,ti]-
(A17)

Substituting this into the influence function@1) and using

the constraintA2), we find

f[¢>,¢']=1'k[ {aa[ @' 1ot [ @] Bl &' 185 H1} L,
(A18)

1 [t
Sel b, ¢ 1= ; { - ﬂft_dsé(s)A(s)Xk(S)XI(s)+
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where we have dropped the subscript on the Bogolubov
coefficients.
To second order itvV” the solution to Eq(A14) is

Ui(tt)=1—i Jtdsual(sati)ul(s)Uo(S,ti)
4

- JtdsJsds’Ugl(s,ti)ul(s)uo(s,ti)
o Jy

X Ug Y(s',t))uy(s")Ug(S',1)). (A19)

Using this solution and EqA18), the influence action be-
comes

i t s
Wﬁdsﬁ ds'a®(s)a®(s’)A(s)A(s')[XE2(s)XE(s")

i t s
+X{(S)XEA(sN)] - # Jt ds Jt ds'a(s)a%(s")A(S) X () Xk A(XK(S) — XXX ()], (A20)

where
A(s)=V"(¢(s))—V"(¢'(9)),
1
2(s)= E[V”(¢(S))+V”(¢’(S))] (A21)
and
Xi(8)=ag(s,tj) + Bo(S,ti). (A22)

Using Egs(A3) and(A4) we can show that EqA22) obeys
the classical equation of motion

. a. k?
X+3=X+ —5X=0, (A23)

a  a

subject to the initial conditions
X(t)=1, X(t;)=—ik. (A24)

These initial conditions ensure(t;)=1 andB(t;)=0.
Taking the continuum limit we have

k2dk,

Kmin

Q
; ~712 (A25)

where we adopt the notation th@t is a symmetric function
of sands’, i.e., 2?=0Q(s)Q(s’). In this case the influence
action (A20) becomes

t
S|F[¢,¢']=—LdSA(S)f(S)
+ f:dsf:ds’A(s)E(s’)M(s,s’)

+i ﬁ:dsftisds’A(s)A(s’)v(s,s’),

(A26)

where
Q 0
f(s)=a%(s) ka . dkkX(S)XF (), (A27)

Q o)
u(s,s'):<sl3(s)a3(s')327rzfk | dk[ XE2(s)X2(s")

+XE(9)XEA(s)], (A28)

and
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. -1 ’ -1 !
plss)=—iad(s)als ez | AMXEE(SXES') O
Kin (.5 )— Q" 2u(s,s"). (A34)
—Xp(8)Xx%(sN)]. (A29)
Equation(A23) is identical to Eq.(2.13 when we scale
X by the scale factor and transform to conformal time. For a

. . - 2
From the action2.8) we see that it i/ that couples to de Sitter phase, the solution of E@.13 leads to

the system. The truncation of the solutiGhl9) amounts to
assuming that)? generates a Gaussian noise source on the
system. This is proved in Sec. IV. The Gaussian property
ensures that only the first two cumulants of the stochastic
process generated hy? appear in the influence functional.
The influence functional can be expressed in the alternativ
form [40]

e—ik77

X(s)= s

[
1- E) . (A35)

%trictly speaking an appropriate linear combination of these
complex mode functions is required to satisfy the initial con-
ditions (A24). However, the time-dependent low frequency
f(s)~(4?(s)), cutoff ensures that any dependence on the initial condition is
a transient effect. So the description based on the mode func-
tion (A35) is accurate on the Hubble time scale. With Eq.
p(s,8")~(*(s) (s ) —(¥(s")y?(s)), (A30)  (A35) we are now in a position to calculate Eq#27)—
(A29) using Eq.(2.15 as the low frequency cutoff.
, , , We will first consider the functiori(s). This function is
v($,8") ~(WA(S)¥(s) + (¥*(s) ¥*(9)) ultraviolet divergent which is not surprising sinfe-(4?).
—2<<//2(s)>(¢2(s’)) We will adopt the usual nonrigorous renormalization proce-
' dure here simply by imposing the inflationary ultraviolet cut-
off k=Ha [see Brandenbergdi984 [2] and Habib[14]].
which makes this clearer. For a Gaussian process all highdrhis cutoff is determined by demanding that the energy den-
order cumulants vanish because all higher order momentsity of inflaton fluctuations be less than the potengvahich
can be expressed in terms of first and second moments supposed to domingteand that the inflaton fluctuations
Clearly, then, the truncation of the solutidhl19) is an  can be taken to be in the vacuum state. This is discussed by
equivalent approximation to writing all higher order mo- Liddle and Lyth[1]. We must also perform the scalig34)

ments ofy? in terms of first and second moments. on Eq.(A27) which eliminates the volume factél from Eq.
Our quantum field theory has the commutator (A27). We, therefore, find
, a(s) (Ha 1 2
®(X),Po(y)]=if8(x—y), (A31) :_f ) LT
[P(X),Pa(y)] (x—y f(s)=g—2 EHadk k+ 7~ 8a2° [1/2+In(1/e)],

whereP4(Y) is the canonical field momentum derived from e<1. (A36)
the action(2.3). Using this commutator we can show that our

C?;:]S:égggsgicg?Icgéi)qe?]rt]gmaVjillrg?)gy ?ﬁ;lnESU;IOzirﬁel-e The smalle limit is necessary in order to ignore the spatial
garticle quantum-mechanical commutatgr only after we %ergradier)t term in the' system sector. This was shown in Sec. Il
form the scaling vyhere it was also discussed that we rgqunte be small but
finite. We are therefore never faced with any problems asso-
ciated with infrared divergences.
h—Q(s)h (A32) After performing the scalingA34) on Eq.(A28) and sub-
stituting Eq. (A35) into Eq. (A28) we find that the noise

o kernel becomes
on the Planck constant. This is a natural consequence of

reducing a quantum-field theoretic problem to a quantum

mechanical problem and has been discussed previpi8ly ,a(s)as’) =
We have seti=1 in this paper, but the scalingA32) is v(s, ):W
equivalent to scaling the effective acti¢h4) by A(s). This

cos?k&,, 1+

dk :
cHa k?nn

gives the new system action 537 . ( 1
| . — k277277'2+ k47727]’2 +25n5|n2k5,, W
S91= [(asde) jue-vie),  aa .
| ‘i a3

and it requires that we must scale the functiohg7)—(A29)
as where
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dk=

— ’ ik
S,=n—7n'. (A38) f 2 1
k™ m—1

eikx ikx
The noise kernel is clearly ultravioldinite and therefore
requires no renormalization. This should not be surprising. glkx
From Eq.(A30) we know that the kernels are built from the f Tdkz Ci(kx)+iSi(kx), (A40)
quadratic field operatorg? rather than the linear operators
¢ of conventional two-point functiongwhich are well
known to be ultraviolet divergent The integrals in Eq. where Si and Ci are the sine and cosine integral functions.
(A37) can be done by using the integral identities We then find that Eq(A37) becomes

4

1284°

6H |

v(s,s')= e®H7 37re3H ~15,( ) + cog 4esinh(H 5/2) ][ 2+ 12+ 8€?sint?(H 6/2) ]+ sin 4esinh(H 6/2) ]

3

3
X 865inI"(H5/2)—TGSinh‘l(H5/2) +16€3Si[4esinh(H 6/2) ][ 3sint(H 6/2) + 2sintP(H 6/2) ]|, (A41)

where 64 denotes the Dirac delta function which is not to bewhat is most pleasing is that the noise kernel has lost its
confused withs defined in Eq(3.10. This noise kernel does algebraic dependence an Because the noise kernel is ul-
not diverge fore<1 because the scalingh34) makes the traviolet finite, we did not impose the inflationary cutoff.
kernel proportional ta) ~*. Using Eq.(2.11) with A=Ha  Had we done so, the cutoff would have contributed terms of
we find that order € into the noise kernel. Thus in the smallimit the
noise kernel is also independent of any ultraviolet cutoff.
We will now consider the dissipation kerné\29). The
scaling(A34) eliminates the volume factd? from the ker-
nel in Eq.(A29) which upon substituting EqA35) becomes

363H 3e3HS
T 44t

-1 (A42)

which shows that) ~! scales the kernel by®. The noise

kernel (A41) has a correlation time which we will define as a(s)a(s’) [Ha

the time when the argument of the cosine in E441) ’“(S’S,)_TJH dk
ena

2
= 1+ —
equalsm/4. We then find that the correlation time scaleis

sin2k S -
N Koy

7o=2H " LIn(7/8e). (A43) 8 1

1
) — 25,]c052k5,7(—

—z 2z 2t Az ;
The noise kernel is highly oscillatory fa¥> 7. It is there- K Ko k7
fore effectively cut off beyond the correlation time. We can 1
therefore consider the approximate noise kernel + W” (A45)
4
v(s,s’):me%”coiksindH 812)]+0(€?), All of the terms in the above integral are ultraviolet finite
except for the first flat space contribution which leads to a
e<l andd<r,. (A44) logarithmic divergence. For this reason we have used the

inflationary ultraviolet cutoff. Using the integra{#39) and
Clearly the noise kernel has simplified greatly. However,(A40) we find that Eq.(A45) becomes

H . . . . .
u(s,s')= We3H"{3|r{4esml”(H 512)][2€ 3+12¢ 1+ 8€ 'sintP(H 8/2)]+ cog 4esinh(H 8/2) ][ 2 sinh™1(H 6/2)
—8e ?sinh(H 8/2)]— 16C 4esinh(H 6/2) ][ 3sinHH 6/2) + 2sint(H 6/2) ]

N

—sin 4sini(H 6/2) ][ 14+ 8sint?(H 6/2)]— cog 4sini(H 6/2) ][ 2sinh *(H 6/2) — 8sinh(H 6/2) ]
+16C{ 4sini(H 6/2) ][ 3sinf(H 6/2) + 2sink*(H 6/2) ]} (A46)

We are only interested in the dissipation kernel &« .. For times greater than this the dissipation kernel is highly
oscillatory and therefore effectively cut off. In this regime we can use the approximations

cox=1—x%/2, sim=x—x%3, (A47)
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to get the leading order approximation to the dissipation ke#wé6) which is
wu(s,s')= ?ew”{;—zsmh‘l(H5/2)+5|n}"(H 812) + ¥ sintt(H 8/2) — Ci[ 4esinh(H 6/2) ][ sinh(H 6/2) + Zsin?(H 6/2)]

—sin4sinH8/2) ][ % + Esint?(H 6/2)]— cog 4sint(H 8/2) ][ 3 sinh™ Y(H 6/2) — isinh(H 6/2)]
+ Ci[(4sini(H 8/2)][sin(H 8/2) + 3sinP(H8/2) ]+ O(€?)}, e<1 and 6<r. (A48)

Remarkably we find that in this approximation the dissipation kernel has lost its algebraic dependence on
Unfortunately the dissipation kernel cannot be approximated to a simple expression like the noise kernel. However, the slow
roll conditions of inflation ensure that we need only consider an order of magnitude estimate of the integral,

F ds’ u(s,s’)~ rcu(S,5—7¢), (A49)

S—T¢

which we obtain by multiplying the correlation time defined in Eq.(A43) by the dissipation kernel evaluated &t 7.
From Eq.(A48) we can write

10H , H
w(s,5—7¢)= We3HSe‘3HTC’ZS|nh°’( Hr/2)= gzews, (A50)
where we used
sinh(H 7,/2) =e"7c/2/2, (A51)

Using Eq.(A43) and (A50) we find that Eq.(A49) becomes

S 3Hs
f ds' u(s,s’)~ —=In(m/8e). (A52)
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