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The stochastic inflation program is a framework for understanding the dynamics of a quantum scalar field
driving an inflationary phase. Though widely used and accepted, there have over recent years been serious
criticisms of this theory. In this paper I will present a new theory of stochastic inflation which avoids the
problems of the conventional approach. Specifically, the theory can address the quantum-to-classical transition
problem, and it will be shown to lead to a dramatic easing of the fine-tuning constraints that have plagued
inflation theories.@S0556-2821~97!08004-1#

PACS number~s!: 98.80.Cq, 05.40.1j

I. INTRODUCTION

The inflationary universe scenario asserts that, at some
very early time, the universe went through a de Sitter phase
expansion with scale factora(t) growing aseHt. Inflation is
needed because it solves the horizon, flatness, and monopole
problems of the very early universe and also provides a
mechanism for the creation of primordial density fluctua-
tions. For these reasons it is an integral part of the standard
cosmological model@1#.

The inflationary phase is driven by a quantum scalar field
with a potentialV(F) that can take on many different forms
that satisfy the ‘‘slow roll’’ conditions. Inflationary scenarios
fall into two types. In the first, which includes the so-called
old and new inflation, the scalar field driving inflation~the
inflaton! is assumed to be in thermal equilibrium with the
rest of the universe. The universe is assumed to obey the
standard hot big bang cosmology in the periods preceding
and after inflation. In the chaotic inflation scenario these as-
sumptions are relaxed. Instead the inflaton is assumed to be
only very weakly coupled to other fields. This makes it pos-
sible to choose initial states for the inflaton which are far
from equilibrium. The standard big bang cosmology now
only applies after the reheating stage of inflation.

In the conventional approach to inflaton dynamics@1#, the
inflaton fieldF is first split into a homogeneous piece and an
inhomogeneous piece,

F~x,s!5f~s!1c~x,s!, ~1.1!

wheref is interpreted as the fieldF coarse grained over a
volumeV:

f~s!5
1

VE
V

F~x,s!d3x. ~1.2!

In this description all information on scales smaller than the
coarse-graining volume, such as density fluctuations, will be
contained inc. This means the fieldc has a low frequency
cutoff in its spectrum. The coarse-graining volume is set by
the causal horizon which leads toV;H23. We will refer to

this f as the global order parameter since it is constructed
from a coarse-graining volume that is always larger than the
observable universe. The dynamics of the global order pa-
rameter is then postulated to obey the classical ‘‘slow roll’’
equation of motion

ḟ1
V8~f!

3H
50. ~1.3!

This equation governs the dynamics off which drives the
inflationary phase. It is also possible to discuss the genera-
tion of primordial density fluctuations usingc. Assuming
that f@c, it can be shown thatc is described by a free
massless minimally coupled quantum scalar field. During ex-
ponential inflation the quantum fluctuations ofc grow as
^c2&;H3t. These quantum fluctuations are then identified
with the classical fluctuations which generate primordial
density fluctuations@1,2#.

Although the conventional theory sketched above is
widely accepted, it must be considered problematic for three
important reasons.

It is assumed, without justification, that the global order
parameterf can be treated as a classical order parameter and
that the quantum fluctuations ofc are equivalent to classical
fluctuations.

The fluctuations ofc lead to an overproduction of primor-
dial density fluctuations. This can only be avoided by un-
naturally fine-tuning the coupling constants in the inflaton
potential.

The back reaction ofc on the dynamics off is ignored.
Based on the conventional theory there should be no rea-

son to expectf andc to behave classically. The action for
f is nonlinear and strongly time dependent. Both of these
properties will always generate quantum-mechanical coher-
ence over time. Similarly, becausec is treated as a free
quantum field, its quantum vacuum state will always remain
spatially homogeneous. It is only when these fluctuations
become classical that spatial inhomogeneity is generated.
Since the conventional theory treatsf andc as independent
closed systems, it is impossible in principle for it to explain
the quantum-to-classical transition off andc. The purpose
of this paper is to develop a more considered approach to
inflaton dynamics which can address these three critical is-
sues.*Electronic address: andrewm@maths.su.oz.au
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The problems outlined above can all be addressed by a
careful application of the principles and techniques of non-
equilibrium quantum statistical physics. When we coarse-
grain the scalar field as in Eq.~1.2!, what we are effectively
doing is splitting our closed quantum systemF into a system
sectorf and an environment sectorc. The system sector
includes only wavelengths long compared to the coarse-
graining scale while the environment sector comprises wave-
lengths short compared to the coarse-graining scale. By dis-
carding information about the environment sectorc and
assuming that the system and environment interact, we turn
the unitary, reversible dynamics of the closed systemF into
the nonunitary and irreversible dynamics of an open system
f. Thus we have gone from a fundamental theory to an
effective theory. The back reaction of any environment sec-
tor on a system sector will generally manifest itself by intro-
ducing noise, dissipation, and renormalization effects into
the dynamics of the system@3#. The noise and dissipation
will be related by some fluctuation-dissipation relation.
Noise will induce diffusion and decoherence~the loss of
quantum-mechanical coherence!. Decoherence is the critical
ingredient if we are to dynamically demonstrate the
quantum-to-classical transition of an open system.

In this approach our only interest in the environmentc is
its back reaction on the system dynamics. In this case the
global order parameter is no longer a suitable system vari-
able because it contains no information about spatial struc-
ture within our universe. A system variable that does contain
this information can be obtained simply by choosing the ap-
parent rather than the causal horizon as the coarse-graining
scale. This corresponds to a coarse-graining volume of
V;(HeHt)23. With this averaging volume we will refer to
f as the local order parameter. The use of a local rather than
global order parameter for inflaton dynamics has been
strongly advocated by Morikawa@4#. In this scheme it is the
classical fluctuationsdf of the local order parameter which
lead to density fluctuations rather than the quantum fluctua-
tions derived from^c2&. The new role of the fieldc is to
provide a noise source~via a back reaction! in the quantum
dynamics of the local order parameter. This noise will gen-
erate quantum decoherence which is the process that creates
the classical fluctuationsdf of the local order parameter.
This fundamental conceptual shift regarding the role ofc is
the key to developing a theory that can address the quantum-
to-classical transition problem. As a bonus it will be shown
that the new theory leads to a dramatic easing of the fine-
tuning constraints that plague the conventional approach to
inflaton dynamics.

A first attempt to study the back reaction ofc on the local
order parameterf can be found in the ‘‘stochastic inflation’’
program initiated by Starobinsky@5# and further developed
by others @6#. This program claims that the semiclassical
equation of motion for the local order parameter is given by
the Starobinsky equation

ḟ1
V8~f!

3H
5
H3/2

2p
Fw~ t !, ~1.4!

whereFw(t) is a zero mean Gaussian white noise source of
unit amplitude. The system field equation is thus transformed
into a classical Langevin equation with a white noise source.

A Fokker-Planck equation can also be derived which depicts
the evolution of the probability distribution of the scalar
field. Since it was first derived, the Starobinsky equation has
stimulated numerous studies. Much effort has been devoted
to the solution of this stochastic equation for a description of
the inflationary transition and the generation of primordial
density fluctuations@7#. The same equation forms the theo-
retical foundation for studies on the very large scale structure
of the universe@8#. It has been claimed that the stochastic
inflation program can explain the quantum-to-classical tran-
sition of the coarse-grained field@9#. A quantum-mechanical
description, for which the Starobinsky equation is the semi-
classical limit, has been developed using methods to quantize
classically dissipative systems@10# ~this list of references is
by no means complete!.

In the derivation of the Starobinsky equation, interactions
between the local order parameterf and its short wavelength
environmentc are derived from the quadratic terms in the
scalar field action. Interactions that derive from a self-
interacting potential are assumed to be small and are ne-
glected. This procedure cannot be justified because, for free
fields, there is no mode-mode coupling and therefore no way
for short wavelengths to back react on long wavelengths.
Mode-mode coupling can only be generated by a self-
interacting potential. Advocates of stochastic inflation would
say that the coupling is generated by the time-dependent na-
ture of the system-environment split. However, it is simply
impossible for a physical coupling to be generated by a time-
dependent choice of what constitutes the system and envi-
ronment@11–13#. We would therefore expect there to be, as
long as self-interaction is ignored, no coupling and hence no
back reaction of the environmentc on the local order param-
eter f. This implies that classical fluctuations in the local
order parameterf must vanish for a free theory. We there-
fore conclude that the Starobinsky equation fails to describe
the back reaction ofc on the local order parameterf.

A better interpretation for the Starobinsky equation is that
it models the conventional approach to inflaton dynamics
with a classical stochastic dynamical system. The left-hand
side is the usual postulated slow roll equation of motion for
the global order parameter. The stochastic term is meant to
classicallymodel the quantum fluctuations ofc. This inter-
pretation is plausible because solving the free Starobinsky
equation giveŝf2&;H3t. This is the same as the growth of
quantum fluctuations inc in the conventional approach.
However, since it is essentially equivalent to the conven-
tional approach, the stochastic inflation program suffers from
the same serious problems that were previously outlined.

Several authors have previously made similar criticisms
of stochastic inflation and the conventional inflaton dynam-
ics. Hu and Zhang@11# first questioned the ability of a time-
dependent split in generating noise for a free field and intro-
duced the coarse-grained effective action for a proper
treatment of the back reaction. Habib@14# demonstrated that
the theory of stochastic inflation does not address the
quantum-to-classical transition despite claims that it does
@9#. Hu, Paz, and Zhang@12# ~see also@15,16#! provided an
extensive critique of the conventional theory and developed
their own theory of stochastic inflation for the case of a quar-
tic potential. Morikawa@17# pointed out that self-interaction
is necessary for the generation of fluctuations and that a lack
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of understanding of this point is the cause of the fine-tuning
problem of inflation. This point has also been emphasized by
Calzetta and Hu@13# in a recent discussion of the problems
with conventional inflaton dynamics. See also Morikawa@4#
for a general discussion of inflaton dynamics.

Clearly a new theory of stochastic inflation is required
which can address the three problems of the conventional
approach to inflaton dynamics. This new theory will require
a fully nonequilibrium quantum-mechanical formalism
which deals with the statistical nature of mixed states and the
dynamics of reduced density matrices. An ideal formalism
for this is the Feynman-Vernon influence functional@18#.
The influence functional describes the averaged effect of the
environmental degrees of freedom on the system degrees of
freedom to which they are coupled. With the influence func-
tional we can unambiguously identify a noise and dissipation
kernel related by some generalized fluctuation-dissipation re-
lation. The formalism leads directly to a propagator for the
reduced density matrix which can then be used to derive a
master equation. The propagator can be used to study the
decoherence process which is the critical part of the
quantum-to-classical transition. The master equation can be
transformed into a Fokker-Planck-type equation for the
Wigner function. In the semiclassical limit we have a gener-
alized Langevin equation.

The stochastic inflation program and, indeed, many other
problems in the early universe@15# fall under the paradigm
of quantum Brownian motion~QBM!. QBM is one of the
two major paradigms of nonequilibrium quantum-statistical
mechanics which is amenable to detailed analysis~the other
being Boltzmann’s kinetic theory!. The complexity of the
problems in cosmology led Hu, Paz, and Zhang@19# to first
consider a systematic study of QBM in a general environ-
ment using the influence functional formalism. The special
features associated with a non-Ohmic bath or Ohmic bath at
low temperatures are the appearance of colored noise and
nonlocal dissipation. The methodology and viewpoint of
QBM have been applied to the analysis of some basic issues
in quantum cosmology@16,20–24#, effective field theory
@25,26#, and the foundation of quantum mechanics, such as
the uncertainty principle@27,28# and, most significantly, de-
coherence@29–33# in the quantum-to-classical transition
problem.~See the reviews of@34–36# and references therein
for the standard literature on this topic.! The QBM models in
@19# were further generalized by Hu and Matacz@37# by
making the system and bath oscillators the most general
time-dependent quadratic oscillators, and by considering
more general system-bath couplings. The time dependence
generates parametric amplification~squeezing! in the oscilla-
tors which is precisely how quantum fluctuations of a free
field are amplified in the inflationary universe@38#. This for-
malism allows for a general study of nonequilibrium
quantum-statistical processes in time-dependent back-
grounds, as is the case in the early universe.

Using the same methodology as in the previous QBM
studies, Hu, Paz, and Zhang@12# were the first, based on the
system-environment split orginally proposed by Starobinsky,
to correctly formulate the problem of the back reaction of
short wavelength quantum fluctuationsc on the local order
parameterf. For more recent work of a similar nature see
Lombardo and Mazzitelli@39#. These works are based on a

rigorous quantum field theory of open systems; however,
they do have some practical shortcomings. The dynamical
systems obtained are of a functional nature and are further
complicated by nonlocal dissipation and colored noise. It is
very difficult to analyze the quantum and semiclassical dy-
namics of these systems. The models are restricted to flat
space or conformally coupled fields in a de Sitter phase. For
applications to inflation we are mainly interested in mini-
mally coupled scalar fields in a de Sitter phase. The models
are very specific, involving alF4 self-interaction. Deriving
the renormalized effective action for the long wavelength
sector is a complex calculation that can only be done in the
context of specific potentials. In inflation there is great inter-
est in a wide variety of potentials. In this case the quantum
field theory calculations may be much more difficult to
implement than for thelF4 case. Because of these prob-
lems, there has not yet been any detailed investigation of
inflaton dynamics based on these quantum field theoretic
open systems.

In order to proceed further we need to develop a new
simplified theory that overcomes these practical problems.
This must be done without compromising a rigorous treat-
ment based firmly on the principles of nonequilibrium
quantum-statistical physics. Only a theory of this nature can
address the failures of conventional inflaton dynamics. In
this paper such a theory is developed. The main result is that,
for a minimally coupled scalar field in a de Sitter phase, the
quantum dynamics of the local order parameterf can be
described by the relatively simple stochastic quantum-
mechanical Hamiltonian

H~ t !5
p2

2e3Ht
1e3HtV~f!2

H2

8p3
e3HtV9~f!Fc~ t !,

~1.5!

wherep5e3Htḟ is the canonical momentum andp andf
obey the usual quantum-mechanical commutator.Fc(t) is a
zero mean Gaussian colored noise of unit amplitude with a
correlation time of the orderH21. This result is valid for a
general inflaton potential. The origin of the noise is the back
reaction of quantum fluctuations with wavelengths shorter
than the coarse-graining scale. The noise is of a multiplica-
tive nature because its origin is the mode-mode coupling
induced by the self-interaction of the inflaton. For a free field
this theory predicts no noise term. This should be expected
from arguments made here and previously@11–13,17#. The
major simplification is made by ignoring information about
spatial correlations between the order parameters of different
regions. This allows a description based on a single degree of
freedom. A further significant simplification is obtained by
invoking the standard slow roll assumptions. This makes it
possible to show that the potential renormalization and non-
local dissipation terms are negligible.

The approximate semiclassical limit of the quantum open
system~1.5! is

ḟ1
V8~f!

3H
5

H1/2

A864p3
V-~f!Fw~ t !. ~1.6!
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In deriving this equation we used the slow roll assumptions
to neglect the inertial term and approximate the colored noise
by a white noiseFw . This equation is no more complicated
than the widely used Starobinsky equation~1.4!. However, it
fundamentally differs from it because the noise term van-
ishes for a free theory. Equation~1.6! is a superior alternative
to the Starobinsky equation because it is the semiclassical
limit of the quantum open system~1.5!. This allows the va-
lidity of the semiclassical limit to be dynamically derived by
investigating the quantum decoherence generated by the
noise in Eq.~1.5! ~on the other hand, the ‘‘classicality’’ of
the Starobinsky equation is simply postulated and is not a
natural outcome of any quantum open system!. The other
crucial advantage is that, as we will see, Eq.~1.6! leads to a
dramatic easing of the fine-tuning constraints.

II. STOCHASTIC INFLATION AND QUANTUM
BROWNIAN MOTION

In this section we will see how the dynamics of a coarse-
grained scalar field in an expanding universe can be de-
scribed in terms of time-dependent quantum Brownian mo-
tion with nonlinear system-bath coupling. We consider a
minimally coupled scalar field evolving in a spatially flat
background with the metric

ds25dt22a2~ t !d2x. ~2.1!

The action has the form

S5E
t i

t

dsE
V~s!

d3xL~x,s!, ~2.2!

where

L~x,s!5a3~s!F12Ḟ2~x,s!2
@,F~x,s!#2

2a2~s!
2V„F~x,s!…G .

~2.3!

We assumet i is our initial time anda(t i)51.
As is usual in inflation, we splitF into a homogeneous

piece and an inhomogeneous piece,

F~x,s!5f~s!1c~x,s!, ~2.4!

and interpretf as the fieldF coarse grained over a volume
V(s). We, therefore, write

f~s!5
1

V~s!
E

V~s!
F~x,s!d3x, ~2.5!

which will be true as long as

E
V~s!

d3xc~x,s!5E
V~s!

d3xċ~x,s!50. ~2.6!

Assumingf@c, the potential term in Eq.~2.3! becomes

V~F!.V~f!1cV8~f!1
c2

2
V9~f!. ~2.7!

Substituting Eq.~2.7! into Eq. ~2.3! and using Eq.~2.6! we
find

S5E
t i

t

dsV~s!a3~s!S 12ḟ2~s!2V~f! D 2
1

2Et i
t

dsa3~s!V9~f!

3S E
V~s!

d3xc2~x,s! D 1E
t i

t

dsE
V~s!

d3xa3~s!F12ċ2~x,s!

2
@,c~x,s!#2

2a2~s! G . ~2.8!

The coarse graining breaks the scalar field up into cells of
volumeV, each labeled by a coarse-grained position vari-
able. We have dropped all reference to the position label on
f since the problem is spatially invariant. By dealing with
only one degree of freedom we are ignoring information
about spatial correlations between different cells. This is the
reason why the middle term in the expansion~2.7! plays no
role. Later in this section we justify why we can drop the
spatial gradient term of the system sector.

The environment fieldc can be written as

c~x!5A 2

V~s!(k @qk
1cosk•x1qk

2sink•x#, ~2.9!

in which case the action~2.8! becomes

S5E
t i

t

dsV~s!a3~s!F12ḟ2~s!2V~f!G
2
1

2(s
12

(
k
E
t i

t

dsa3~s!V9„f~s!…qk
s2

1
1

2(s
12

(
k
E
t i

t

dsa3~s!F ~ q̇ks!22
k2

a2~s!
qk

s2G ,
~2.10!

where k5uku. The action~2.10! is now in the form of a
time-dependent one-dimensional system, nonlinearly
coupled to an environment of time-dependent harmonic os-
cillators. This action is a generalization of the well-known
quantum Brownian motion problem@18,19,37,40#. In the
next section we will show how the influence functional
method can be used to describe the averaged effect of the
environment on the quantum dynamics of the system.

A. Low frequency cutoff

We will impose a long wavelength cutoff in the fieldc,
such that the longest wavelength equals the diameter of the
coarse-graining volume. This is necessary since we are inter-
preting f as the fieldF coarse grained over the volume
V(s). This means that all frequencies less than the cutoff are
considered part of the system sector. Since there is no mode-
mode coupling for free fields, we cannot expectc to couple
to f in this case. This is clearly true for the action~2.10!.
Writing the volume element as

V~s!5
4p4

3e3L3~s!
, ~2.11!

we can express the low frequency cutoff as
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kmin5eL~ t !, ~2.12!

wheree is an arbitrary dimensionless parameter that scales
the coarse-graining volume. An obvious question is, how do
we choosekmin?

At a purely technical level we want to chooseV large
enough so that the spatial gradient term in Eq.~2.3! can be
neglected for the system sector. The appropriate volume can
be deduced from the classical equation of motion for the
environment modes. WritingQk5qk /a(s) we find that this
equation is

]h
2Qk1Qk@k

22~]h
2a!/a#50, ~2.13!

whereh5*dt/a(t) is conformal time. We can see that the
environment spectrum is split, with an unstable low fre-
quency sector and a stable effectively flat space sector.
Choosing

L~ t !5A~]h
2a!/a, e!1, ~2.14!

amounts to including all those modes where the spatial gra-
dient is significant in the environment sector.

Detailed results in this paper will be limited to de Sitter
inflation wherea(s)5eHs, h52e2Hs/H, andt i50. In this
case Eqs.~2.14! and ~2.12! lead to

kmin5eHa~ t !, e!1. ~2.15!

This cutoff satisfies our technical requirement. We also have
the physical requirement that information about large scale
structure is contained in the system sector. This requirese to
be small butfinite. Taking e→0 would correspond to an
over-coarse-grained system that would contain no informa-
tion of observable scales. The scale of the observable uni-
verse today is expected to cross the Hubble radius at least
sevene-foldings after inflation begins@1#. This means that
today’s horizon scale maps tok;103H. We can see from
Eq. ~2.15! that after a fewe-foldings, scales corresponding to
our observable universe are shifted into the system sector. Of
course, Eq.~2.15! is the same as Starobinsky’s choice@5,6#
for the low frequency cutoff.

III. INFLUENCE FUNCTIONAL

Consider the quantum system described by the action

S@f,q#5S@f#1Se@q#1Sint@f,q#. ~3.1!

We will takef as our system variable andq to be our envi-
ronmental variables. Typically the environment has infinite
degrees of freedom, denoted here by boldface type. We will
briefly review here the Feynman-Vernon influence functional
method for deriving the evolution operator@18#. The method
provides an easy way to obtain a functional representation
for the evolution operatorJr of the reduced density matrix
r̂ r .

We are interested in the reduced density matrix defined as

r r~f,f8!5E
2`

1`

dqE
2`

1`

dq8r~f,q;f8,q8!d~q2q8!,

~3.2!

which is propagated in time by the evolution operatorJr :

r r~f,f8,t !5E
2`

1`

df iE
2`

1`

df i8Jr~f,f8,tuf i ,f i8 ,t i !

3r r~f i ,f i8 ,t i !. ~3.3!

By using the functional representation of the full density
matrix evolution operator given in Eq.~3.2!, we can also
representJr in path integral form. In general, the expression
is very complicated since the evolution operatorJr depends
on the initial state. If we assume that at a given initial time
t i , the system and the environment are uncorrelated,

r̂~ t i !5 r̂s~ t i !3 r̂e~ t i !, ~3.4!

then the evolution operator for the reduced density matrix
does not depend on the initial state of the system and can be
written as

Jr~f f ,f f8 ,tuf i ,f i8 ,t i !

5E
f i

f f

DfE
f i8

f f8
Df8exp$ i $S@f#2S@f8#%%F@f,f8#. ~3.5!

The factorF@f,f8#, called the ‘‘influence functional,’’ is
defined as

F@f,f8#5exp$ iSIF@f,f8#%5Tr~Û@f t,t i
#r̂e~ t i !Û

†@f t,t i
8 # !,

~3.6!

where Û is the quantum propagator for the action
Se@q#1Sint@f(s),q# with f(s) treated as a time-dependent
classical forcing term. We have found this form to be very
convenient for deriving the influence functional@37,40#.
SIF@f,f8# is the influence action, and the effective action for
the open quantum system is defined asSeff@f,f8#
5S@f#2S@f8#1SIF@f,f8#.

If the interaction term is zero, then it is obvious from its
definition that the influence functional is equal to unity and
the influence action is zero. In general, the influence func-
tional is a highly nonlocal object. Not only does it depend on
the time history, but—and this is the more important
property—it also irreducibly mixes the two sets of histories
in the path integral of Eq.~3.5!. In those cases where the
initial decoupling condition~3.4! is satisfied, the influence
functional depends only on the initial state of the environ-
ment. The influence functional method can be extended to
more general conditions, such as thermal equilibrium be-
tween the system and the environment@41#, or correlated
initial states@18#.

The influence action for the open system~2.10!, in a de
Sitter phase, is derived in the Appendix. It has the form
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SIF@f,f8#52E
0

t

dsD~s! f ~s!

1E
0

t

dsE
0

s

ds8D~s!S~s8!m~s,s8!

1 i E
0

t

dsE
0

s

ds8D~s!D~s8!n~s,s8!, ~3.7!

where the sum and difference coordinates are

S~s!5
1

2
@V9„f~s!…1V9„f8~s!…#,

D~s!5V9„f~s!…2V9„f8~s!…. ~3.8!

The functionsn andm are known, respectively, as the noise
and dissipation kernels. This is because, as will be shown in
Sec. IV, they correspond to colored noise and nonlocal dis-
sipation. The functionf (s) represents a renormalization of
the potential. These functions are derived exactly in the Ap-
pendix.

The approximate form of the noise kernel derived in Eq.
~A44! is

n~s,s8!.
H4e6Hs

64p6 cos@4esinh~Hd/2!#1O~e2!,

e!1 and d,tc , ~3.9!

where

d5s2s8, s5~s1s8!/2. ~3.10!

As discussed in the Appendix,tc is the correlation time of
the noise kernel which is defined as the time when the argu-
ment of the cosine equalsp/4. The correlation time scale
then becomes

tc52H21ln~p/8e!. ~3.11!

The exact expression for the dissipation kernel is derived in
Eq. ~A46!. We do not quote it here since it is a complicated
expression that will play little further role. Inspection of Eq.
~A41! and ~A46!, the exact noise and dissipation kernels,
shows that they quickly become highly oscillatory whend is
greater than the correlation timetc . This means that the
noise and dissipation kernels are effectively cut off beyond
the correlation time. This oscillatory behavior is an artifact
of the discrete low frequency cutoff used for the bath. From
Eq. ~A36! the potential renormalization term is

f ~s!.
H2

8p2e
3Hs@1/21 ln~1/e!#, e!1. ~3.12!

One of the most attractive features of this theory is that the
approximate noise and dissipation kernels~3.9! and ~A48!,
along with Eq.~3.12!, have no algebraic dependence one.
This means that physical results will only very weakly de-
pend one.

A. Local approximation to the influence functional

We can neglect the potential renormalization term in the
influence action~3.7! when

V~f!@
H2

8p2V9~f!ln~1/e!. ~3.13!

This holds when the potential satisfies the standard ‘‘slow
roll’’ condition @1#

uV9~f!u!9H2.24pV~f!/mPl
2 . ~3.14!

It also holds more generally as long asH!mPl .
The slow roll conditions of inflation are necessary to en-

sure that an approximate de Sitter inflation phase can pro-
ceed. In the slow roll limit the dynamical time scale off is
much longer than the Hubble time scale, and so we expect to
be able to make a local approximation to the dynamics. We
start by observing that the integrals overs8 in the influence
action~3.7! are strongly suppressed ford.tc . Therefore the
lower limit of the integral fors8 can be cut off ats2tc . We
can now invoke the slow roll condition. On the time scale
H21 we expectV9(f) to change little, and so we can pull
out D(s8) andS(s8) from the integral overs8 in the influ-
ence action. In this case the influence action becomes

SIF@f,f8#.E
0

t

dsD~s!S~s!E
s2tc

s

ds8m~s,s8!

1 i E
0

t

dsD2~s!E
s2tc

s

ds8n~s,s8!. ~3.15!

For the noise integral we now find

E
s2tc

s

ds8n~s,s8!.
H4e3Hs

64p6 E
s2tc

s

ds8e3Hs8.
H3e6Hs

192p6 ,

~3.16!

where we used

cosx.1. ~3.17!

For the dissipation kernel we use the result~A52! derived in
the Appendix, which is

E
s2tc

s

ds8m~s,s8!;
e3Hs

4p2 ln~p/8e!. ~3.18!

The influence action~3.15! now becomes

SIF@f,f8#.
ln~p/8e!

8p2 E
0

t

dse3Hs@V92„f~s!…2V92„f8~s!…#

1
iH 3

192p6E
0

t

dse6HsD2~s!. ~3.19!

We see that the local approximation to the dissipation
kernel has reduced to an effective potential term in the influ-
ence action. This term will be much smaller than the system
potential when
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V~f!@ ln~p/8e!
V92~f!

8p2 . ~3.20!

This will hold whenever the slow roll condition~3.14! is
satisfied. As an example we can substituteV5lf4 into Eq.
~3.20!, which leads to the condition

l!
p2

18ln~p/8e!
. ~3.21!

This is clearly satisfied ifl!1 which is the standard weak
coupling condition. Neglecting the potential term in Eq.
~3.19!, the effective action becomes

Seff@f,f8#5S@f#2S@f8#1
iH 3

192p6E
0

t

dse6HsD2~s!,

~3.22!

with S@f# our scaled system action given by Eq.~A33! for
the case of a de Sitter expansion phase.

In general one must be careful in neglecting nonlocal dis-
sipation in quantum open systems. Dissipation and noise,
connected via a fluctuation-dissipation relation, are twin
physical processes that reflect the relation between energy
flowing into and out of the system. This relation is especially
important when one is interested in possible stationary states
where a balance is eventually reached. In inflation we have a
very flat potential well away from its minimum, and we are
only interested in the dynamics over some relatively small
finite time. As we showed above it is these very special slow
roll conditions of inflation that allowed us to neglect dissipa-
tion. This will certainly not be possible during the reheating
phase but it should be a good first order approximation to the
dynamics in the slow roll phase.

IV. STOCHASTIC INTERPRETATION
OF THE INFLUENCE FUNCTIONAL

In this section we will show that a stochastic forcing term
will generate the imaginary part of the influence action~3.7!.
Consider the action

S@f~s!,j~s!#5E
t i

t

ds@L~f,ḟ,s!1V9~f!j~s!#, ~4.1!

where j(s) is a zero-mean Gaussian stochastic force. This
system generates the influence functional

F@f,f8#5K expF i E
t i

t

dsD~s!j~s!G L , ~4.2!

where the average is understood as a functional integral over
j(s), weighted by a normalized Gaussian probability density
functionalP@j(s)#. The averaging can be performed to give
@40#

F@f,f8#5expH 2E
t i

t

dsE
t i

s

ds8D~s!D~s8!n~s,s8!J ,
~4.3!

wheren(s,s8) is the second cumulant of the forcej. Clearly,
then, before averaging over the noise, we can write our ef-
fective action derived from Eq.~3.7! as

Seff@f,f8,j#5S@f#2S@f8#1E
t i

t

dsD~s!

3F E
t i

s

ds8S~s8!m~s,s8!2 f ~s!1j~s!G .
~4.4!

This result can be used to show that the dynamics of the
effective action~3.22! is equivalent to that generated by the
quantum-mechanical stochastic Hamiltonian

H~ t !5
p2

2e3Ht
1e3HtV~f!2

H3/2

A96p3
e3HtV9~f!Fw~ t !,

~4.5!

wherep5e3Htḟ is the canonical momentum andp andf
obey the usual quantum-mechanical commutator.Fw(t) is a
zero mean Gaussian white noise with the correlation function

^Fw~ t !Fw~ t8!&5d~ t2t8!. ~4.6!

The white noise Hamiltonian~4.5! is an approximation to

H~ t !5
p2

2e3Ht
1e3HtV~f!2

H2

8p3e
3HtV9~f!Fc~ t !,

~4.7!

whereFc(t) is a zero mean Gaussian colored noise of unit
amplitude with the correlation function

^Fc~ t !Fc~ t8!&5cos@4esinh~Hd/2!#. ~4.8!

This follows because the imaginary part of Eq.~3.22! is an
approximation of the imaginary part of Eq.~3.7!. Equations
~4.5! and ~4.7! are the main results of this paper. In the
semiclassical limit the system time scale is clearly much
greater than the Hubble time due to the slow rolling nature of
inflation. In this case a white noise approximation should be
reasonable. In the quantum regime it is not so clear that we
can approximate Eq.~4.7! with Eq. ~4.5!. Numerical simula-
tions will be required to answer this.

A. Semiclassical limit

The semiclassical equation of motion for the general ef-
fective action~4.4! can be derived using

d~Seff@f,f8,j#!

dDf~ t ! U
Df50

50, ~4.9!

whereDf5f2f8. With the system action~A33! it can be
shown that this equation becomes
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S f̈13
ȧ

a
ḟ1V8~f! D a3~ t !1V-~s! f ~s!

2V-~f!E
t i

t

m~ t,s!V9„f~s!…ds5V-~f!j~ t !,

~4.10!

where^j(t)j(t8)&5n(t,t8). Under special circumstancesm
tends to the derivative of ad function which generates local
dissipation; hence,m is referred to as the dissipation kernel.
More generally we see that in the semiclassical limitm gen-
erates nonlocal dissipation. For the influence action~3.7!, the
functions f and m are unimportant, and the semiclassical
equation~4.10! becomes

f̈13Hḟ1V8~f!5
H2

8p3V-~f!Fc~ t !, ~4.11!

whereFc is the zero mean Gaussian colored noise with cor-
relator ~4.8!. This equation is the semiclassical limit of the
quantum open system whose dynamics is described by Eq.
~4.7!. Invoking the slow roll approximation~neglecting the
f̈) this equation becomes

ḟ1
V8~f!

3H
5

H

24p3V-~f!Fc~ t !. ~4.12!

The neglect of the inertial term in Eq.~4.11! is standard
practice in inflation when describing the dynamics of the
mean fieldfm . However, it should also be a good approxi-
mation for describing the fluctuationsdf about the mean
field @fm is the solution of Eq.~1.3!#. Because these fluctua-
tions are small, we can linearize Eq.~4.11! about fm to
obtain

df̈ 13Hdḟ 1V9~fm!df5
H2

8p3V-~fm!Fc~ t !.

~4.13!

The left-hand side of this equation describes a damped
simple harmonic oscillator. The standard overdamping con-
dition is the same as the slow roll condition~3.14!. Therefore
we can neglect the inertial term in Eq.~4.13! and conclude
that Eq. ~4.12! should also be a good description for the
fluctuations as well as the mean field.

The slow roll conditions allowed us to derive the local
approximation~3.22! to the influence functional~3.7!. In this
approximation Eq.~4.12! becomes

ḟ1
V8~f!

3H
5

H1/2

A864p3
V-~f!Fw~ t !, ~4.14!

whereFw is a zero mean Gaussian white noise with correla-
tor ~4.6!. This equation is the semiclassical limit of the result
~4.5!. It is a superior alternative to the Starobinsky Eq.~1.4!
for reasons that are addressed in the discussion and conclu-
sion section. Since this white noise equation is an approxi-
mation to the colored noise equation~4.12!, it should be
interpreted in the Stratonovich sense.

We have motivated the relatively simple description
~4.14! by invoking the slow roll conditions and assuming
that a semiclassical description is valid. Ultimately the justi-
fication of Eq. ~4.14! will require a detailed study of the
quantum dynamics described by the Hamiltonian~4.7!. The
complicated correlation function~4.8! would make this a dif-
ficult task. However, it must be emphasized that the complex
oscillatory nature of this correlation function is purely an
artifact of the discrete low frequency cutoff used for the bath.
The only essential ‘‘invariant’’ information in Eq.~4.8! is the
correlation time~3.11!. Therefore it would be reasonable to
investigate the effects of colored noise by replacing the cor-
relator~4.8! with an exponential correlation function with the
correlation time~3.11!. This correlator generates the simplest
type of colored noise dynamics@42# and would make the
quantum dynamics described by Eq.~4.7! a tractable prob-
lem.

V. AMPLITUDE OF DENSITY FLUCTUATIONS
AND THE FINE-TUNING PROBLEM

In this section we will use Eq.~4.14! to estimate the am-
plitude of primordial density fluctuations generated by scalar
field fluctuations in inflation. We will consider the potential
V5lf4, for which the solution to the slow roll equation
~1.3! is

f~ t !5f0expS 2A2l

3p
mPlt D . ~5.1!

With this solution it can be shown that the two slow roll
conditions of inflation@1# break down forf;mPl . We there-
fore requiref0@mPl . The number ofe-folds in the infla-
tionary era is given by@1#

N~f!5
8p

mPl
2 E

mPl

f0
df

V~f!

V8~f!
.p

f0
2

mPl
2 . ~5.2!

A solution to the horizon problem requiresN>60. This
means that we requiref0 to be at least several times the
Planck mass.

At this point it is useful to compare the dynamical time
scale and the Hubble time scale. The dynamical time scale
td is found from the solution~5.1! to be

td5A3p

2l
mPl

21. ~5.3!

Using

H2~f!5
8p

3mPl
2 V~f!, ~5.4!

we find that

td
H21 52pf2/mPl

2 . ~5.5!

Whenf@mPl the system time scale is much greater than the
Hubble time scale. This provides an explicit example of the
condition we assumed to make the local approximation to the
influence functional.

So far we have only constrainedf0 to have a lower
bound. In chaotic inflation we expect that initiallyV;mPl

4 .
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This means that we can only makef0@mPl if we also cor-
respondingly makel!1. In inflation it is the value of the
density perturbations which serves to fix a value forl, which
by the potential constraint also fixesf0.

The density contrastdr/r, which is generated by scalar
field fluctuationsdf, is approximately given by@1,2#

dr

r
.
H

ḟ
df. ~5.6!

Assumingf@df, we can linearize Eq.~4.14! to obtain

dḟ 1
V9~f!

3H
df5

H1/2

A864p3
V-~f!Fw~ t !. ~5.7!

We can further simplify this equation by puttingf;mPl ,
which corresponds to the end of inflation. From Eq.~5.4! the
Hubble constant now becomes

H25
8p

3
lmPl

2 . ~5.8!

Equation ~5.7! is now an Ornstein-Uhlenbeck process for
which the stationary distribution gives

^df2&5
2l2mPl

2

9p5 . ~5.9!

In this case Eq.~5.6! becomes

dr

r
;l. ~5.10!

Observational constraints then requirel;1026. Performing
an exactly analogous calculation for the Starobinsky equa-
tion ~1.4! gives

dr

r
;Al, ~5.11!

which leads to the conventional resultl;10212.
Clearly the theory developed here leads to a dramatic eas-

ing of the fine-tuning required in this model. The result
~5.10! was obtained previously by Calzetta and Hu@13# us-
ing an entirely different approach based on coarse-graining
graviton degrees of freedom. They pointed out that this new
value ofl is consistent with the inflaton taking part in non-
Abelian gauge interactions with a coupling constant of
1022.

VI. DISCUSSION AND CONCLUSION

In this paper we have argued that the conventional theory
of inflaton dynamics@1#, along with Starobinsky’s theory of
stochastic inflation@5,6#, was problematic because it could
not explain the quantum-to-classical transition and it pre-
dicted an overproduction of primordial density fluctuations.
It was concluded that a theory which could address these
issues would involve a conceptual shift that comes with be-
ing based on the principles of nonequilibrium quantum-
statistical physics. There have been initial attempts to do this

@12,39# using the system-environment split originally pro-
posed by Starobinsky@5#. However, as pointed out in the
Introduction, these models are very complex and this has so
far prevented them from being used in a detailed study of
inflaton dynamics.

In this paper a new simplified theory of inflaton dynamics
was developed. This approach is free of the problems asso-
ciated with the conventional theory. It is based on the Hamil-
tonian ~4.7! which describes the quantum dynamics of the
inflaton which has been coarse grained over the apparent
horizon of a de Sitter inflationary phase. The origin of the
noise source is the back reaction of quantum fluctuations
with wavelengths shorter than the coarse-graining scale. The
noise is of a multiplicative nature because its origin is the
mode-mode coupling induced by the self-interaction of the
inflaton. For a free field this theory predicts no noise term as
we should expect@11–13,17#. Apart from addressing the
problems of the conventional theory, the other essential fea-
ture is the relative simplicity of the results~4.7! and ~4.14!.
The major simplification was made by ignoring information
about spatial correlations between the order parameters of
different regions. This allows a description based on a single
degree of freedom. Further significant simplification was ob-
tained by invoking the standard slow roll assumptions. With
this we were able to argue that the potential renormalization
and nonlocal dissipation terms were negligible and that the
colored noise could be approximated by a white noise in the
semiclassical limit. In this case the theory is independent of
the arbitrary parametere. The correlation time does depend
on e but only logarithmically. The robustness of this theory
to the coarse-graining volume, which is parametrized bye,
must be considered a major success. Another very important
feature for applications to inflation is that the theory de-
scribes a minimally coupled scalar field with an arbitrary
potential.

The slow roll semiclassical equation of motion~4.14! is a
superior alternative to the Starobinsky equation for a number
of reasons. It is the approximate semiclassical limit of the
quantum open system~4.7!. This allows the validity of the
semiclassical limit to be dynamically derived. The ‘‘classi-
cality’’ of the Starobinsky equation is simply postulated and
is not a natural outcome of any quantum open system. A
quantum-mechanical description, for which the Starobinsky
equation is the semiclassical limit, has been attempted using
methods developed some time ago to describe the quantum
dynamics of classically dissipative systems@10#. However,
this amounts to simply ‘‘quantizing’’ an unjustified semiclas-
sical equation of motion rather than deriving the quantum
theory from fundamental physics. In any case, such a proce-
dure is highly suspect because it misconstrues the redshift
term 3Hḟ in the Starobinsky equation as damping. This re-
peats an old error in quantum mechanics of confusing a time-
dependent mass with a real dissipation@43#. The other major
advantage is that Eq.~4.14! leads to a dramatic easing of the
fine-tuning required in the theory. We showed this for the
lf4 potential. The fine-tuning problem is systematic to all
potentials of interest in inflation. Similarly, we should expect
that Eq.~4.14! will lead to a large easing of the fine-tuning
required for these potentials. Finally, the dramatic easing of
the fine tuning constraints will make Eq.~4.14! much simpler
to numerically simulate than the Starobinsky equation. Yi
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and Vishniac @7# numerically simulated the Starobinsky
equation for thelf4 potential. They usedl51026 in their
simulations because the supposedly correct value of 10212

was numerically intractable. The former value ofl is a natu-
ral outcome of the theory presented here.

As for future work, the quantum decoherence generated
by the noise term in Eq.~4.7! will allow a dynamical inves-
tigation of entropy generation and the quantum-to-classical
transition. Decoherence studies have been previously at-
tempted@12,39#. However, because these models were very
complicated, the authors were restricted to numerically cal-
culating the diffusion coefficient in the quantum master
equation. Unfortunately this tells us nothing about whether
or not enough decoherence will occur in the model to justify
a semiclassical description. The critical dynamical aspect to
this problem is the competition between the coherence gen-
erating nonlinear potential and inflation expansion effects,
and the decohering stochastic term. This can only be inves-
tigated with a full solution of the nonunitary quantum dy-
namics. If the noise term is strong enough, we would hope
that decoherence will justify a semiclassical description.
However, we must also remember that the noise cannot be so
large as to destroy the essentially deterministic slow roll dy-
namics of the local order parameterf. The inflaton dynam-
ics described by Eq.~4.7! is the first viable theory to permit
a detailed study of the quantum-to-classical of the local order
parameterf. This is the critical process that leads to the
generation of classical density fluctuations.

Assuming that the semiclassical description~4.14! is
valid, we can use this equation to deduce the amplitude and
spectrum of the generated primordial density fluctuations,
along with the implications this has for coupling constants of
various inflaton potentials. Also of great interest is the gen-
eration of any relevant non-Gaussian features in the resulting
probability distribution off @7# and the implications of Eq.
~4.14! for the very large scale structure of the universe@8#.
So far, these issues have only been addressed with the Star-
obinsky equation as their theoretical foundation. An interest-
ing technical issue is what effect relaxing the white noise
approximation would have on these results. Investigations
into the implications of the theory presented here are in
progress.

ACKNOWLEDGMENTS

I would like to thank the Australia Research Council for
their generous support of this research.

APPENDIX: CALCULATING THE INFLUENCE
FUNCTIONAL

The exact influence functional for the action of the type
~2.10! has been previously found to be@40#

F@f,f8#5)
k

$ak@f8#ak* @f#2bk@f8#bk* @f#%21,

~A1!

wherea andb are Bogolubov coefficients which must sat-
isfy the constraint

uau22ubu251. ~A2!

The influence functional~A1! differs from that in@40# be-
cause we have here taken into account the double set of
modes in the action~2.10!. The Bogolubov coefficients are
solutions of the equations

ȧ52 igb2 iha, ~A3!

ḃ5 ihb1 iga, ~A4!

where

g~s!5
1

2 S a3~s!v2~s!

k
2

k

a3~s! D , ~A5!

h~s!5
1

2 S k

a3~s!
1
a3~s!v2~s!

k D , ~A6!

and

v2~s!5k2/a21V9„f~s!…. ~A7!

We must havea51 andb50 at t i as our initial conditions.
Defining

U~ t,t i !5S a@f t,t i
# b* @f t,t i

#

b@f t,t i
# a* @f t,t i

# D , ~A8!

the solution of Eqs.~A3! and ~A4! can be written as

U~ t,t i !5T expS 2 i E
t i

t

dsu~s! D , ~A9!

where

u~s!5S h~s! g~s!

2g~s! 2h~s!
D . ~A10!

We will write

u„s…5u0„s…1u1„s…, ~A11!

where

u1~s!5
a3~s!V9„f~s!…

2k S 1 1

21 21D . ~A12!

In this case we have

U~ t,t i !5U0~ t,t i !U1~ t,t i !, ~A13!

whereU0(t,t i) is U(t,t i) evaluated atV9(f)50. The equa-
tion of motion forU1 is

U̇1~s,t i !52 i @U0
21~s,t i !u1~s!U0~s,t i !#U1~s,t i !,

~A14!

whereU21 denotes the inverse matrix. This inverse is

U21~ t,t i !5S a* @f t,t i
# 2b* @f t,t i

#

2b@f t,t i
# a@f t,t i

# D ~A15!
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because of the constraint~A2!. From Eqs.~A13! and~A8! we
have

a@f t,t i
#5a0~ t,t i !a1@f t,t i

#1b0* ~ t,t i !b1@f t,t i
#,

~A16!

b@f t,t i
#5b0~ t,t i !a1@f t,t i

#1a0* ~ t,t i !b1@f t,t i
#.

~A17!

Substituting this into the influence functional~A1! and using
the constraint~A2!, we find

F@f,f8#5)
k

$a1@f8#a1* @f#2b1@f8#b1* @f#%21,

~A18!

where we have dropped thek subscript on the Bogolubov
coefficients.

To second order inV9 the solution to Eq.~A14! is

U1~ t,t i !512 i E
t i

t

dsU0
21~s,t i !u1~s!U0~s,t i !

2E
t i

t

dsE
t i

s

ds8U0
21~s,t i !u1~s!U0~s,t i !

3U0
21~s8,t i !u1~s8!U0~s8,t i !. ~A19!

Using this solution and Eq.~A18!, the influence action be-
comes

SIF@f,f8#5(
k

H 2
1

2kEt i
t

dsa3~s!D~s!Xk~s!Xk* ~s!1
i

8k2Et i
t

dsE
t i

s

ds8a3~s!a3~s8!D~s!D~s8!@Xk*
2~s!Xk

2~s8!

1Xk
2~s!Xk*

2~s8!#2
i

4k2Et i
t

dsE
t i

s

ds8a3~s!a3~s8!D~s!S~s8!@Xk*
2~s!Xk

2~s8!2Xk
2~s!Xk*

2~s8!#J , ~A20!

where

D~s!5V9„f~s!…2V9„f8~s!…,

S~s!5
1

2
@V9„f~s!…1V9„f8~s!…# ~A21!

and

Xk~s!5a0~s,t i !1b0~s,t i !. ~A22!

Using Eqs.~A3! and~A4! we can show that Eq.~A22! obeys
the classical equation of motion

Ẍ13
ȧ

a
Ẋ1

k2

a2
X50, ~A23!

subject to the initial conditions

X~ t i !51, Ẋ~ t i !52 ik. ~A24!

These initial conditions ensurea(t i)51 andb(t i)50.
Taking the continuum limit we have

(
k
→

V

4p2E
kmin

`

k2dk, ~A25!

where we adopt the notation thatV is a symmetric function
of s ands8, i.e.,V2[V(s)V(s8). In this case the influence
action ~A20! becomes

SIF@f,f8#52E
t i

t

dsD~s! f ~s!

1E
t i

t

dsE
t i

s

ds8D~s!S~s8!m~s,s8!

1 i E
t i

t

dsE
t i

s

ds8D~s!D~s8!n~s,s8!,

~A26!

where

f ~s!5a3~s!
V

8p2E
kmin

`

dkkXk~s!Xk* ~s!, ~A27!

n~s,s8!5a3~s!a3~s8!
V

32p2E
kmin

`

dk@Xk*
2~s!Xk

2~s8!

1Xk
2~s!Xk*

2~s8!#, ~A28!

and
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m~s,s8!52 ia3~s!a3~s8!
V

16p2E
kmin

`

dk@Xk*
2~s!Xk

2~s8!

2Xk
2~s!Xk*

2~s8!#. ~A29!

From the action~2.8! we see that it isc2 that couples to
the system. The truncation of the solution~A19! amounts to
assuming thatc2 generates a Gaussian noise source on the
system. This is proved in Sec. IV. The Gaussian property
ensures that only the first two cumulants of the stochastic
process generated byc2 appear in the influence functional.
The influence functional can be expressed in the alternative
form @40#

f ~s!;^c2~s!&,

m~s,s8!;^c2~s!c2~s8!&2^c2~s8!c2~s!&, ~A30!

n~s,s8!;^c2~s!c2~s8!&1^c2~s8!c2~s!&

22^c2~s!&^c2~s8!&,

which makes this clearer. For a Gaussian process all higher
order cumulants vanish because all higher order moments
can be expressed in terms of first and second moments.
Clearly, then, the truncation of the solution~A19! is an
equivalent approximation to writing all higher order mo-
ments ofc2 in terms of first and second moments.

Our quantum field theory has the commutator

@F~x!,PF~y!#5 i\d~x2y!, ~A31!

wherePF(y) is the canonical field momentum derived from
the action~2.3!. Using this commutator we can show that our
coarse-grained field~2.5! and a similarly defined coarse-
grained canonical momentum will obey the usual single-
particle quantum-mechanical commutator only after we per-
form the scaling

\→V~s!\ ~A32!

on the Planck constant. This is a natural consequence of
reducing a quantum-field theoretic problem to a quantum
mechanical problem and has been discussed previously@10#.
We have set\51 in this paper, but the scaling~A32! is
equivalent to scaling the effective action~4.4! by V(s). This
gives the new system action

S@f#5E
t i

t

dsa3~s!F12ḟ2~s!2V~f!G , ~A33!

and it requires that we must scale the functions~A27!–~A29!
as

f ~s!→V21f ~s!, m~s,s8!→V21m~s,s8!,

n~s,s8!→V22n~s,s8!. ~A34!

Equation~A23! is identical to Eq.~2.13! when we scale
X by the scale factor and transform to conformal time. For a
de Sitter phase, the solution of Eq.~2.13! leads to

Xk~s!5
e2 ikh

a~s! S 12
i

kh D . ~A35!

Strictly speaking an appropriate linear combination of these
complex mode functions is required to satisfy the initial con-
ditions ~A24!. However, the time-dependent low frequency
cutoff ensures that any dependence on the initial condition is
a transient effect. So the description based on the mode func-
tion ~A35! is accurate on the Hubble time scale. With Eq.
~A35! we are now in a position to calculate Eqs.~A27!–
~A29! using Eq.~2.15! as the low frequency cutoff.

We will first consider the functionf (s). This function is
ultraviolet divergent which is not surprising sincef;^c2&.
We will adopt the usual nonrigorous renormalization proce-
dure here simply by imposing the inflationary ultraviolet cut-
off k5Ha @see Brandenberger~1984! @2# and Habib@14##.
This cutoff is determined by demanding that the energy den-
sity of inflaton fluctuations be less than the potential~which
is supposed to dominate! and that the inflaton fluctuations
can be taken to be in the vacuum state. This is discussed by
Liddle and Lyth@1#. We must also perform the scaling~A34!
on Eq.~A27! which eliminates the volume factorV from Eq.
~A27!. We, therefore, find

f ~s!5
a~s!

8p2E
eHa

Ha

dkS k1
1

kh2D5
H2

8p2e
3Hs@1/21 ln~1/e!#,

e!1. ~A36!

The smalle limit is necessary in order to ignore the spatial
gradient term in the system sector. This was shown in Sec. II
where it was also discussed that we requiree to be small but
finite. We are therefore never faced with any problems asso-
ciated with infrared divergences.

After performing the scaling~A34! on Eq.~A28! and sub-
stituting Eq. ~A35! into Eq. ~A28! we find that the noise
kernel becomes

n~s,s8!5
a~s!a~s8!

16Vp2 E
eHa

`

dkFcos2kdhS 11
2

k2hh8

2
dh
2

k2h2h82
1

1

k4h2h82
D 12dhsin2kdhS 1

khh8

1
1

k3h2h82
D G , ~A37!

where
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dh5h2h8. ~A38!

The noise kernel is clearly ultravioletfinite and therefore
requires no renormalization. This should not be surprising.
From Eq.~A30! we know that the kernels are built from the
quadratic field operatorsc2 rather than the linear operators
c of conventional two-point functions~which are well
known to be ultraviolet divergent!. The integrals in Eq.
~A37! can be done by using the integral identities

E eikx

km
dk5

1

m21 F2
eikx

km21 1 ixE eikx

km21dkG , ~A39!

E eikx

k
dk5Ci~kx!1 iSi~kx!, ~A40!

where Si and Ci are the sine and cosine integral functions.
We then find that Eq.~A37! becomes

n~s,s8!5
H4

128p6e
6HsF3pe3H21dd~d!1cos@4esinh~Hd/2!#@2112e218e2sinh2~Hd/2!#1sin@4esinh~Hd/2!#

3S 8esinh~Hd/2!2
3e3

2
sinh21~Hd/2! D116e3Si@4esinh~Hd/2!#@3sinh~Hd/2!12sinh3~Hd/2!#G , ~A41!

wheredd denotes the Dirac delta function which is not to be
confused withd defined in Eq.~3.10!. This noise kernel does
not diverge fore!1 because the scaling~A34! makes the
kernel proportional toV21. Using Eq.~2.11! with L5Ha
we find that

V215
3e3H3e3Hs

4p4 , ~A42!

which shows thatV21 scales the kernel bye3. The noise
kernel ~A41! has a correlation time which we will define as
the time when the argument of the cosine in Eq.~A41!
equalsp/4. We then find that the correlation time scaletc is

tc52H21ln~p/8e!. ~A43!

The noise kernel is highly oscillatory ford.tc . It is there-
fore effectively cut off beyond the correlation time. We can
therefore consider the approximate noise kernel

n~s,s8!.
H4

64p6e
6Hscos@4esinh~Hd/2!#1O~e2!,

e!1 and d,tc . ~A44!

Clearly the noise kernel has simplified greatly. However,

what is most pleasing is that the noise kernel has lost its
algebraic dependence one. Because the noise kernel is ul-
traviolet finite, we did not impose the inflationary cutoff.
Had we done so, the cutoff would have contributed terms of
ordere3 into the noise kernel. Thus in the smalle limit the
noise kernel is also independent of any ultraviolet cutoff.

We will now consider the dissipation kernel~A29!. The
scaling~A34! eliminates the volume factorV from the ker-
nel in Eq.~A29! which upon substituting Eq.~A35! becomes

m~s,s8!5
a~s!a~s8!

8p2 E
eHa

Ha

dkFsin2kdhS 11
2

k2hh8

2
dh
2

k2h2h82
1

1

k4h2h82
D 22dhcos2kdhS 1

khh8

1
1

k3h2h82
D G . ~A45!

All of the terms in the above integral are ultraviolet finite
except for the first flat space contribution which leads to a
logarithmic divergence. For this reason we have used the
inflationary ultraviolet cutoff. Using the integrals~A39! and
~A40! we find that Eq.~A45! becomes

m~s,s8!5
H

48p2e
3Hs$sin@4esinh~Hd/2!#@2e23112e2118e21sinh2~Hd/2!#1cos@4esinh~Hd/2!#@ 3

2 sinh
21~Hd/2!

28e22sinh~Hd/2!#216Ci@4esinh~Hd/2!#@3sinh~Hd/2!12sinh3~Hd/2!#

2sin@4sinh~Hd/2!#@1418sinh2~Hd/2!#2cos@4sinh~Hd/2!#@ 3
2 sinh

21~Hd/2!28sinh~Hd/2!#

116Ci@4sinh~Hd/2!#@3sinh~Hd/2!12sinh3~Hd/2!#%. ~A46!

We are only interested in the dissipation kernel ford,tc . For times greater than this the dissipation kernel is highly
oscillatory and therefore effectively cut off. In this regime we can use the approximations

cosx.12x2/2, sinx.x2x3/3, ~A47!
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to get the leading order approximation to the dissipation kernel~A46! which is

m~s,s8!.
H

p2e
3Hs$ 1

32sinh
21~Hd/2!1sinh~Hd/2!1 10

9 sinh
3~Hd/2!2Ci@4esinh~Hd/2!#@sinh~Hd/2!1 2

3 sinh
3~Hd/2!#

2sin@4sinh~Hd/2!#@ 7
241 1

6 sinh
2~Hd/2!#2cos@4sinh~Hd/2!#@ 1

32sinh
21~Hd/2!2 1

6 sinh~Hd/2!#

1Ci@~4sinh~Hd/2!#@sinh~Hd/2!1 2
3 sinh

3~Hd/2!#1O~e2!%, e!1 and d,tc . ~A48!

Remarkably we find that in this approximation the dissipation kernel has lost its algebraic dependence one.
Unfortunately the dissipation kernel cannot be approximated to a simple expression like the noise kernel. However, the slow

roll conditions of inflation ensure that we need only consider an order of magnitude estimate of the integral,

E
s2tc

s

ds8m~s,s8!;tcm~s,s2tc!, ~A49!

which we obtain by multiplying the correlation timetc defined in Eq.~A43! by the dissipation kernel evaluated atd5tc .
From Eq.~A48! we can write

m~s,s2tc!.
10H

9p2 e
3Hse23Htc/2sinh3~Htc/2!.

H

8p2e
3Hs, ~A50!

where we used

sinh~Htc/2!.eHtc/2/2. ~A51!

Using Eq.~A43! and ~A50! we find that Eq.~A49! becomes

E
s2tc

s

ds8m~s,s8!;
e3Hs

4p2 ln~p/8e!. ~A52!
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