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Models of structure formation with a cosmological constAnprovide a good fit to the observed power
spectrum of galaxy clustering. However, they suffer from several problems. Theoretically, it is difficult to
understand why the cosmological constant is so small in Planck units. Observationally, while the power spectra
of cold dark matter plug. models have approximately the right shape, the COBE-normalized amplitude for a
scale-invariant spectrum is too high, requiring galaxies to be antibiased relative to the mass distribution.
Attempts to address the first problem have led to models in which a dynamical field supplies the vacuum
energy, which is thereby determined by fundamental physics scales. We explore the implications of such
dynamicalA models for the formation of large-scale structure. We find that there are dynamical models for
which the amplitude of the COBE-normalized spectrum matches the observations. We also calculate the
cosmic microwave background anisotropies in these models and show that the angular power spectra are
distinguishable from those of standard cosmological constant md&&556-282(197)03704-1

PACS numbsd(s): 98.80.Bp, 98.80.Cq

I. INTRODUCTION from globular clusters are holding af.~13-15 Gyr or
more. Thus, observations imply a value for the “expansion
The cosmological constant has had a long and torturedge” Hoto=(Ho/70 km/sec Mp¢ %) (t,/14 Gyn=1.0+0.2.
history since Einstein first introduced it in 1917 in order to This is higher than that for the standard Einstein—de Sitter
obtain static cosmological solutiof$]. Under observational model withQ,= 1, for whichHyt,= 2/3. On the other hand,
duress, it has been periodically invoked by cosmologists anébr models with a cosmological constahtgt, can be larger.
then quickly forgotten when the particular crisis passed. HisFor example, fo) ,=0.6=1—Q,,, Hyt;=0.89.
torical examples include the first “age crisis” arising from  Third, cold dark mattefCDM) models for large-scale
Hubble’s large value for the expansion rate, the apparerdtructure formation, which include a cosmological constant
clustering of quasistellar objectQSO’s at a specific red- (hereafter,ACDM), provide a better fit to the shape of the
shift, and early cosmological tests which indicated a negativ@bserved power spectrum of galaxy clustering than does the
deceleration parameter. “standard” ),,=1 CDM model[4]. Figure 1 shows the
Recently, a cosmological model with substantial vacuuminferred galaxy power spectrum toddpased on a recent
energy, a relic cosmological constaht has again come into compilation[5]), compared with the matter power spectra
vogue for several reasong]. First, dynamical estimates of predicted by standard CDM and ACDM model with
the mass density on the scales of galaxy clusters, the largegt, =0.6. In both cases, the Hubble parameter has been fixed
gravitationally bound systems, suggest tfa,=0.2+0.1  to h=H,/(100 km/sec Mpc)=0.7 and the baryon density
for the matter n) which clusters gravitationallfwhereQ) is  to Q15=0.0255, in the center of the range allowed by primor-
the present ratio of the mean mass density of the Universe f@ial nucleosynthesis. Linear perturbation theory has been
the critical Einstein—de Sitter densitf=8mGp/3H?) [3].  used to calculate the model power sped(), defined by
However, if a sufficiently long epoch of inflation took place (5(k) 5* (k"))=(2m)3P(k) 5p(k—k’), where §(k) is the
during the early Universe, the present spatial curvaturgourier transform of the spatial matter density fluctuation
should be negligibly small{2,,;=1. A cosmological con- field andsp is the Diracs function. Here and throughout, we
stant, with effective density parametefl,=A/3H5  have taken the primordial power spectrum to be exactly scale
=1-Q,, is one way to resolve the discrepancy betweennvariant, Ppimorgiaf k)K" with n=1. Standard CDM
Q. and Q. clearly gives a poor fit to the shape of the observed spectrum
The second motivation for the revival of the cosmological[6], while the ACDM model gives a good fit to the shape of
constant is the “age crisis” for spatially fl&2,,=1 models. the observed spectrum. The amplitudes of the model spectra
Current estimates of the Hubble expansion parameter fromia Fig. 1 have been fixed at large scales by observations of
variety of methods appear to be convergingtg=70+10 cosmic microwave backgroun@CMB) anisotropies by the
km/sec Mpc !, while estimates of the age of the Universe Cosmic Background ExplordCOBE) satellite[7,8].
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using Press-Schechter theory, for tiisCDM model the
cluster abundance impliesg=1.0"332 [12], where the er-
rors are approximate 95% C.L.
N-body simulations indicate that the power spectrum am-
5 plitude is higher by a factor of 2 to 3 than that found in
] galaxy surveys at small scaldsz0.4 h Mpc™* [13]. Thus,
the cosmological constant model would require galaxies to
be substantialantibiasedwith respect to the mass distribu-
E tion, o4a<o,. Models of galaxy formation, however, sug-
] gest that the bias parametdy=oy,/o,, is greater than
I ] unity [14,15.
T Motivated by these difficulties, we consider models in
oor . o which the energy density resides in a dynamical scalar field
k (b Mpc™) rather than in a pure vacuum state. ThdgeamicalA mod-
) els[16,17] were proposed in response to the aesthetic diffi-
FIG. 1. COBE-normalized power spectra for standard CDM,cyties of cosmological constant models. They were also
ACDM with ©,=0.6, and scalar field},=0.6 models. In all " f5nq[16] to partially alleviate their observational problems
modelsh=0.7, {1=0.0255, anch=1. The data points are based ,q el for example, the statistics of gravitationally lensed
(Sr;é;\d;e[g]ent compilation of galaxy clustering data by Peacock an SO's yields a less restrictive upper boundHgt, in these
' modelg 18]. We emphasize here that they may also solve the
galaxy clustering amplitude problem.
Despite these successes, cosmological constant models To get a preview of this conclusion, Fig. 1 also shows the
face several difficulties of their own. On aesthetic grounds, ICOBE-normalized power spectrum for a dynamigamodel
is difficult to understand why the vacuum energy density ofwith present scalar field density paramefey= 0.6 (see Sec.
the Universep,=A/87G, should be of order (IT° eV)*, |l for a discussion of these modeldVhile the shape of the
as it must be to have a cosmological impafy(~1). On  spectrum is identical to that of th& CDM model with
dimensional grounds, one would expect it to be many orders) , = 0.6, the scalar field model has a lower amplitude, and
of magnitude larger, of ordenp, or perhapsng,sy. Since  thus provides a better fit to the galaxy clustering data. In Sec.
this is not the case, we might plausibly assume that som#, we explain these features of the power spectrum for the
physical mechanism sets the ultimate vacuum energy to zergtandardA CDM model and for generic dynamical mod-
Why then is it not zero today? els. The remaining sections investigate in detail a specific
The cosmological constant is also increasingly observaelass of models as a worked example. Section Il reviews the
tionally challenged. Preliminary results from ongoing scalar field model, based on ultralight, pseudo-Nambu-
searcheq9] for distant Type la supernovae indicate thatGoldstone bosonéPNGB’s) [16]. To explore the parameter
0,<0.47(at 95% C.L) for spatially flatA models. Further- space of this model, we have adapted a code which solves
more, inA models a larger fraction of distant QSO’s would the linearized Einstein-Boltzmann equations for perturba-
be gravitationally lensed than that infe=0 universe; sur- tions to a Friedman-Robertson-WalkgfRW) background.
veys for lensed QSO’s have been used to infer the boun@he appendices contain details of these modifications. Sec-
0,=0.7[10]. tion IV discusses the qualitative features of cosmic evolution
In this paper, we focus on a third problem of cosmologi-in the PNGB models and presents results of our calculation
cal constant models, the amplitude of the power spectrum dbr the amplitude of the power spectrum in this model. In
galaxy clustering. The shape of theCDM power spectrum  Sec. V we present the cosmic microwave backgra@dB)
in Fig. 1 matches the galaxy power spectrum; however, thpower spectrum for a particular set of model parameters,
COBE-normalized amplitude is too high. Indeed, a numbefollowed by the conclusion.
of analyses have found that this problem persists on all

P(k) (h~3 Mpc?)

scales. Il. THE POWER SPECTRUM
On the largest scalesk€0.1 h Mpc™1), linear theory
should be adequate, and Fig. 1 suggests that the amplitude is A. The shape ofP(k)
too high by at least a factor of 2. Figure 1 suggests that standard CDM could be improved

On intermediate scales, we can quantify the amplitudesy simply shifting the turnover in the power spectrum to
through the dispersion of the density field smoothed ovefarger scalegsmaller wave numbek). This is a plausible
top-hat spheres of radiuR=8 h ' Mpc!, denotedag, fix, for the location of the turnover corresponds to the scale
where 02(R) =4[ ;k?P(k)W?(kR)dk, and W(kR) is the  that entered the Hubble radius when the Universe became
Fourier transform of the spatial top-hat window function of matter dominated. On scales smaller than this, the fluctuation
radiusR. In the ACDM model of Fig. 1, COBE normaliza- amplitude is suppressed compared to that on larger scales,
tion yieldsog=1.3[8], while galaxy surveys generally indi- because matter perturbations inside the Hubble radius cannot
cate og g1 for optically selected galaxies and0.8 for ~ grow in a radiation-dominated universe. This scale is deter-
galaxies selected by infrared flux. This high COBE normal-mined by the ratio of matter to radiation energy density at
ization also marginally conflicts with the abundance of richearly times. To “fix” CDM, one must decrease the ratio
galaxy clusterd11]. Using the observed cluster x-ray tem- p.,/p, in the Universe today below that predicted by the
perature distribution function and modeling cluster formationstandard Einstein—de Sitter model. The matter and radiation
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20[ T T T T ] aeq- As we will see below, however, the amplitudes of the

T e COM model ] power spectra in these models differ substantially.
Py b

B. The amplitude of P(k)

Compared to standard CDM, three new physical effects
[21] conspire to change the amplitude of the matter power
spectrum in COBE-normalizetl models:(i) the suppression
of growth of perturbations when the Universe becomes
dominated,(ii) the reduced gravitational potential, afid)
the integrated Sachs-Wolf@SW) effect. We review these
effects in turn.

The equations governing large scale perturbations in a flat

log(p)

ooty universe with matter and vacuum energy are
FIG. 2. Densityp vs cosmic scale factar. Fixing 2, or Q,to P o i 2 .
0.6 lowers(},, from the standard CDM value of 1.0, pushing the o+Has 2a’ H*nd=0, @
epoch of matter-radiation equali,q closer to today. The cross
denotesa,, for the standard CDM model and the asterisk denotes H% oA
aqq for the A and ¢ models. The logarithm is to base H2= = Q.+ QA—a3 3
PALO

" —_— _-3 —— -4
densities Sﬁak;" atﬁm—_pm,oa Iand dp{—p r,%a @ dwherci ;he Here, overdots denote derivatives with respect to conformal
cosmic scale facton is normalized to unity todays,=1) time 7, where r=fdt/a(t), p, is the vacuum energy den-

and the subscript 0 denotes the present. Thus, the epoch St not necessarilv equal to its present v the den-
matter-radiation equality is determined by the present energgity’ fluctuation nglitude 5(X?T)E[pm(a)?’:_?'_zn(7)]/

densities of matter and radiation: ﬁ(r), andH is the Hubble expansion rafeve use units in

— 5 whichA=c=1].
eng _43x107 12 _ 1) Equation (2) essentially describes the behavior of a
Pm,o Qmh damped harmonic oscillator. When the energy density of the

Universe becomes dominated bylaor a dynamicalA, i.e.,

Decreasing the matter to radiation density ratio shifts théhe second term on the the right-hand sig¢1S) in Eq. (3)
epoch of matter-radiation equality closer to the presentpecomes important, the damping becoming more severe.
thereby moving the turnover in the power spectrum to largeWhen this happens, the growth of perturbations is sup-
scales. pressed. As a function d®,,, this suppression can be de-

Indeed, this shift is precisely what is done in several cur-scribed by the scaling
rently popular models of structure formation. Examples in-
clude (i) models with a lower Hubble constant than that in- 80/ 82=100% Qh, (4)
dicated by observationd19], (ii) models with extra
relativistic degrees of freedof20], and (iii) models with a ~ whered, is the perturbation amplitude today, afig- 100 is
cosmological constat]. Sincep,,<Q,h?, a lower Hubble the amplitude at the epoct=(1/a) —1= 100, chosen as an
constant decreases the ratio of matter to radiation densit§bitrary early epoch before the vacuum energy becomes dy-
today. Adding more relativistic degrees of freedom adds tdxamically important. INnACDM models, p=0.2. For dy-
the radiation content, decreasing the ratio of matter to radiadamicalA models, the suppression exponent depends on the
tion. Finally, in spatially flatA models,Q,=1—Q, is re- details of the specific model, but it is generally greater than
duced from its standard CDM valu&€)(,=1), achieving a that in ACDM models, because the dynamicaldominates
similar effect. earlier in the history of the Universe for fixgg, . For the

Thus, the main benefit ok models for the shape of the model shown in Fig. 1p=0.56. For open CDM models
power spectrum is thal,, is smaller than that in the stan- (with A=0), the scaling is alsp=0.56.
dard CDM model. For the purpose of the power spectrum As a result of this suppression, one might expect the am-
shape, the value of the vacuum energy density at early timgglitude of the power spectrum inCDM and dynamicalA
is irrelevant, as long as it is negligible compared to the matmodels to be smaller than that in standard CDM. However,
ter and radiation densities at matter-radiation equality. Whildrom the Poisson equation,
the time dependence of the vacuum energy density is differ-
ent for various dynamicah models, all such models yield
the same power spectrum shape for a fixed value of the
present vacuum energy density. We emphasize this point in
Fig. 2, which shows the energy densities of matter, radiationwe have® x5, where ® is the gravitational potential
A, and a specific dynamical model(scalar field¢), as a associated with large-scale density fluctuations. Since the
function of scale factoa. With 2, and(},=0.6 today, the CMB anisotropy at large angle is a well-defined function of
standard and dynamica#l models have the same shape for the potentia[22], COBE normalization corresponds to fixing
P(k) (shown in Fig. ], since they have identical values of the potential, i.e., to fixingQ},,6. For COBE-normalized

V2= 2 H0, (5
P
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models, the growth suppression and Poisson’s equation conthat is, protected by symmetries, such that when the small

bine to yield the scale-independent relati@nﬂgfl. Thus, masses are set to zero, they cannot be generated in any order

the power spectrurﬁ(k)ocg%cgr;l-ﬁ in ACDM models. A  of perturbation theory, owing to the restrictive symmetry.

larger cosmological constant implies a smafley,, which in From the viewpoint of quantum field theory, PNGB's are

turn implies a larger amplitude for the power spectrum. Inthe simplest way to have naturally ultralow-mass, spin-0 par-

dynamicalA models,p is not fixed at 0.2, so the amplitude ticles. PNGB models are characterized by two mass scales, a

of the power spectrum can be smaller than that in standargPontaneous symmetry-breaking scil@t which the effec-

A models. For the model of Fig. 1, with=0.56, P(k) tive Lagrangian still retains the symmetrgnd an explicit

o 950-9_ breaking scale. (at which the effective Lagrangian contains
The integrated Sachs-WolféSW) effect, which is due to  the explicit symmetry-breaking tejmin terms of the mass

time evolution of the potential, also affects the amplitude ofScales introduced above, generaWy~x and the PNGB

the power spectrum. The changing potential at late times if1ass My~ u?/f. Thus, the two dynamical conditions on

A models increases the anisotropy on the large anguldfs andM above essentially fix these two mass scales to be

scales probed by COBE. Thus, for fixed COBE normaliza-#~M~10"° eV, interestingly close to the neutrino mass

tion, the amplitude of the power spectrum decreases, changcale for the Mikheyev-Smirnov-WolfensteiiMSW) solu-

ing the dependence of the power spectrum@p to P ton to the solar neutrino problem, arfd-Mp=10" GeV,

« Q- *in the ACDM model. In dynamicalk models, where the Planck scale. Since these scales have a plausible origin in

the potential typically changes more than it does in standarfarticle physics models, we may have an explanation for the

A models, the ISW effect tends to be larger and is not g coincidence” that the vacuum energy is dynamically im-

power-law function of€),,. Hence, dynamicalh models Portantat the present epoch. Moreover, the small magsts

have less power thahCDM and can even have less power t€chnically natural. - _ L
than standard CDM. An example of this phenomenon is the “schizon” model

[23], based on & y-invariant low-energy effective chiral La-
grangian forN fermions, e.g., neutrinos, with mass of order
M, in which the small PNGB masm¢zM2/f, is protected
by fermionic chiral symmetries. The potential for the light
A number of models with a dynamical have been dis- scalar field¢ is of the form
cussed in the literaturgl7]. We will focus on a particular
class of models motivated by the physics of pseudo-Nambu- —_ M4
Goldstone bosonéPNGB’s) [16,23. V(¢)=MTcod ¢/f)+1]. ©
It is conventional to assume that the fundamental vacuum
energy of the Universe is zero, owing to some as yet noPince ¢ is extremely light, we assume that it is the only
understood mechanism, and that this mechanism “ComC|aSSica| field which has not yet reached its vacuum expec-
mutes” with other dynamical effects that lead to sources oftation value. The constant term in the PNGB potential has
energy density. This is required so that, e.g., at earlier epocHeen chosen to ensure that the vacuum energy vanishes at the
there can temporarily exist nonzero vacuum energy whictninimum of the¢ potential, in accord with our assumption
allows inflation to take place. With these assumptions, théhat the fundamental vacuum energy is zero.
effective vacuum energy at any epoch will be dominated by
the heaviest fields which have not yet relaxed to their
vacuum state. At late times, these fields must be very light.
Vacuum energy is most simply stored in the potential en-
ergy V(¢)~M* of a scalar field, wherd! sets the charac- To study the cosmic evolution of these models, we focus
teristic height of the potential, and we 3ét¢,,) =0 at the on the spatially homogeneous, zero-momentum mode of the
minimum of the potential by the assumptions above. In ordefield, ¢(®)(7)=(¢(x,7)), where the angular brackets denote
to generate a nonzerd at the present epocl) must ini-  spatial averaging. We are assuming that the spatial fluctua-
tially be displaced from the minimum¢;# ¢,, as an initial  tion amplitudes¢(x,7) is small compared te®), as would
condition, and its kinetic energy must be small compared tobe expected after inflation if the post-inflation reheat tem-
its potential energy. This implies that the motion of the fieldperature Tgy<f~Mp,. The scalar equation of motion is
is still overdampedm,=|V"(#;)[<3H,=5x10"*h eV.  given in Appendix A.
In addition, for(Q2,~1, the potential energy density should  The cosmic evolution ofp is determined by the ratio of
be of order the critical densityM*~3H2m3/87, or its mass,my~M?/f, to the instantaneous expansion rate,
M=3x10 3h2eV. Thus, the characteristic height and cur- H(7). Form,=<3H, the field evolution is overdamped by the
vature of the potential are strongly constrained for a classica¢xpansion, and the field is effectively frozen to its initial
model of the cosmological constant. value ¢; . Sinceg is initially laid down in the early Universe
This argument raises an apparent difficulty for such aat a temperaturg~ f>M), when its potential was dynami-
model: why is the mass scala, 30 orders of magnitude cally irrelevant, its initial value in a given Hubble volume
smaller tharM ? In quantum field theory, ultralow-mass sca- will generally be displaced from its vacuum expectation
lars are nogenericallynatural: radiative corrections generate value ¢,,= 7f (vacuum misalignment Thus, at early times,
large mass renormalizations at each order of perturbatiothe field acts as an effective cosmological constant, with
theory. To incorporate ultralight scalars into particle physicsyacuum energy density and pressggg=—p 4~ M4, At late
their small masses should be at least “technically” naturaltimes,m,>3H(7), the field undergoes damped oscillations

Ill. ULTRALIGHT SCALAR FIELDS

IV. COSMIC EVOLUTION AND LARGE-SCALE
POWER SPECTRUM IN PNGB MODELS
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FIG. 4. Contours ofHgyty in the PNGB parameter space for

FIG. 3. Contours of}, in the PNGB parameter space, assum- ot el o
/f=1.6. The cross indicates the same model as in Fig. 3.

ing an initial field valueg;/f=1.6. The cross marks the choice i
M =0.005 eV,f=1.885< 10"® GeV, yielding(} ,= 0.6, which is the
model shown in Figs. 1, 2, and 6-9. dius, A y=m,*=Hy*/3~1000h ~* Mpc. Note that, as Fig.

3 indicates, the empty rectangular box in Figs. 4 and 5 ap-
about the potential minimum; at sufficiently late times, theseproximately bounds the region of parameter space for which
oscillations are approximately harmonic, and the stress),>1; this region is, therefore, excluded.
energy tensor o averaged over an oscillation period is that ~ Figure 5 shows contours of the amplitude of galaxy clus-
of nonrelativistic matter, with energy denSi%~a73 and tering in thef —M parameter space. The amplitude shown is

pressurg ;,=0. the quantity

Let 7, denote the epoch when the field becomes dynami-
cal, m,=3H(r,), with corresponding redshift £z, im (P(K)/K) 4 )
=1/a(r,)=(M?/3H,f)?3. For comparison, the Universe ol (P(K)K) A |

makes the transition from radiation to matter domination at

Z=2.3x10'0ph?, much earlier than when the field be- je. the amplitude on large scales relative to that for a
comes dynamical. Thé—M parameter space is shown in A cDM model with the same effective density as the PNGB
Fig. 3. In the far right portion of the figure, the field beCOl:neSmode|,QA:Q¢_ This amplitude ratio goes to unity in the
dynamical before the present epoch and currently redshifts gft-nand portion of the figure since that region corresponds
acts as an ordinary cosmological constant. In the dynamicaypstantially below one in the dynamical region on the right.
region, the present density parameter for the scalar field ighe cross marks the specific choick!=0.005 eV,
approximately() ,~24m(f/Mp)?, independent oM [24]. -1 gg5¢10!® GeV, with initial field value & /f=1.6,

The quasihorizontal lines show contours of constBny,  yjelding ), = 0.6, which corresponds to the parameters used
assuming a typical initial field valué; /f=1.6 (we will use

this value of¢; /f for all the plots below; the quoted limits

and results depend slightly on.itThe limit ,<1 corre- 7.0x10'8 :
sponds approximately t6<3.5x10'® GeV. In the frozen soxio’®E
region, on the other han€ , is determined b4, indepen- ’
dent off, and the contours of constaf¥, are nearly verti- s.ox10'8F-
cal. In this region, the bounf ,<1 corresponds roughly to
M <0.003 eV. o 40x0'%E
Figure 4 shows contours of constadtty in the same i_’twmwé_

parameter space. As expected, models with laigg, are :
concentrated toward the middle to left-hand portion of the ,,..oE
figure; as one moves to the right in the lower portion of the
figure, Hoto asymptotically approaches the Einstein—de Sit-  roxi0®F
ter value 2/3, since the scalar field currently redshifts as non- : 3
relativistic matter and we have assumed a spatially flat uni- 0.000 0.002 0.004 0.006 0.008 0.010
verse. Consequently, the “interesting” region of parameter
Space IS the area near th? “comer” in Figs. 3 and 4, in Wh'Ch FIG. 5. Amplitude contours in the PNGB parameter space for
the field becomes dynamical at recent epoas,0-3. This 4 jf_16.  The amplitude shown is defined as

has new consequences, compared tonodels, for the clas- lim_o{[ P(k)/K],,/[P(k)/K]4}, the amplitude on large scales rela-

sical cosmological tests, the expansion &g, and |a|’9?' tive to that of aACDM model with the same effective density as
scale structure. In this region, the mass of the PNGB field ishe PNGB model2,=Q,. Again, the cross marks the sample

miniscule, m,~3Hy~4x10 3 eV, and (by constructiol  model for which both the power spectrum shape and amplitude
its Compton wavelength is of order the current Hubble ra-provide a good fit to the galaxy clustering data.
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FIG. 6. Evolution of density perturbations. Shown is the density .
fluctuation amplitude at redshift normalized to its present ampli- FIG. 7. Power spectra for COBE-normalized standard CDM
tude, 5(z)/ 8, vs z. The models shown are standdig,=1 cDM  (SOlid) with o75=1.2; ACDM with ,=0.6 (dashed| for which
(solid), ACDM with Q,=0.6=1—Q,, (dotted, an open CDM 0g=1.0; and the dynamicak model with ) ,=0.6 (dotted, for

model with ), =0.4 (short dashed and the dynamicalk model which ag=0.8. The latter two models are normalized to the cluster
with Q¢:0.6Tlong dashex abundance and have=0.7. Lower curves show the linear theory

power spectra, upper curves the nonlinear spectra obtained from

. . . . scaling relations extracted frodM-body simulations.
for the dynamicalA curves in Figs. 1 and 2. For this case, g y

the x-ray cluster abundance yields;=0.9"33 in good .
agreement with the COBE normalizatioff°®~0.8 for this ~ On the other hand, the, constraints from supernovae and
model. Figure 6 shows how density perturbations grow ingravitational lensing translate into weaker upper bounds on
different models. From Eq4) and the text following, the Hoto for the dynamical as opposed to the standancodels.
dynamical A model has a higher amplitude at early timesAlthough we have not thoroughly examined all models, it is
than does a\CDM model with the same amplitude today. clear that one could explore the PNGB model parameter
As a consequence, there should be no problem accountirgpace to obtain a more balanced compromise between the
for high-redshift objects such as QSO’s and Lymanlouds age problem and the antibias problem. For example, for
in this model. f=2.5x 10'® GeV andM =0.0035 eV, the amplitude ratio is
Note that the factois(z)/ 5y, relative to its value in the about 0.5, and one h&,=0.75 andH,t,=0.9. In this case,
standard CDM model, approach€s,” atz>1, wherep is  with h=0.7, the power spectrum shape is reasonable
the scaling exponent discussed in Sec. Il. As a result, the() ,h=0.15) and the age of the universetis12.6 G yr.
nonlinear behavior of the dynamicAl model follows that of Comparing Figs. 3 and 5, and focusing on the dynamical
an open model with the same value@f,. We estimate the region near the “corner” of the parameter space, we see that
nonlinear behavior by using the fitting formula of REZ5],  the power spectrum shape and amplitude constraints fix the
following the original treatmeni26] of Hamiltonet al. Fig-  free parameters of the model. That is, as noted in Sec. Il, the
ure 7 shows these nonlinear spectra. On scéled h  shape of the spectrum is fixed by requirifig,~0.6, which
Mpc~*, the amplitude of the power spectrum is indeed adetermines the scale Near the corner, fixing the amplitude
factor of 2 smaller in the dynamical model than in the then determines the other mass sddleWhile these figures
corresponding\ CDM model. correspond to a specific choice of the initial field value
We note by comparing Figs. 4 and 5 that the region ofg, /f, the scalar field evolution is universal in the sense that
parameter space in which the amplitu@etibias problemis 3 shift in the mass scale accompanied by an appropriate
solved, i.e., in which the amplitude ratio is approximately inrescaling ofg; , leads to essentially identical evolution. Con-
the range 0.3-0.5, is the one in which the age of the Unisequently, compared td CDM models, these dynamical
verse is only slightly greater than in the Einstein—de Sittefmodels have only one additional free parameter, the mass

Q,»=1 case. For our specific model aboyty=0.73. For M to solve the amplitudéantibiag problem.
the corresponding\ CDM model with the same value of

Q,,, Hotg=0.89, more comfortably within the observational
limits. This is a general feature of the dynamical models
considered here: for fixe,,, the standard\ model gives
an upper bound oHito. Thus, the amplitude problem inthis ~ The angular power spectra of the cosmic microwave
model is resolved partially at the expense of the age problenhackground CMB) anisotropy for dynamicalh models are

V. CMB ANISOTROPY
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Y R —— — . — k), the correspondence betwekrand angular multipold
differs. Typically, in a flat universe, a given multipdlecor-
responds to a fixed value &r,. Thus, the dynamical\
angular spectra are shifted inby the ratio of the present
conformal times in the two models. Second, since the scalar
field evolves at late times, the gravitational potential changes
more rapidly in the dynamicah model. This leads to an
enhanced ISW effect and, therefore, a relatively lageat
large scaleglow ), as shown in Fig. 9. Thus, for models
normalized by COBE, which approximately fixes the spec-
trum at =10, the angular amplitudé(l+1)C, at small
scales(largel) is smaller in the dynamicak model.

1(1+1)C,/110C,,

0 200 a0 eo 800 000 VI. CONCLUSIONS

The observational arguments in favor of the resurrection
FIG. 8. CMBR angular power spectra for standard CDM, of the cosmological constant apply to dynamidalmodels
ACDM with ©,=0.6, and scalar field),=0.6 models. In all a5 well. In addition, the dynamical models offer a poten-
modelsh=0.7, 5 =0.0255, anch=1. Plotted isl(I+1)C, vs |, {jg| physical explanation for the curious coincidence that
normalized af =10. Q, is close to 1, by relating the present vacuum energy
o density to mass scales in particle physics. In the ultralight
distinguishable from those of standard CDM an€DM  pseudo-Nambu-Goldstone boson models, this is achieved
models. CMB angular power is usually expressed in termgnrough spontaneous symmetry breaking near the Planck
of the angular multipolesC, . If the sky temperature is gcale f~M,py, and explicit breaking at a scale reminiscent of
expanded in terms of spherical harmonics &66,¢)  MSW neutrino massedyl ~10 2 eV. In combination with
=3 m&mYim(0,¢), thenC=(|ajn|*), where largel corre-  the assumption that the true vacuum energy vaniétes to
sponds to small angular scales. The angular power spectgh as yet unknown physical mechanjssuch a model pro-
models(the latter two with{),,=0.4) are shown in Figs. 8 \ve have shown that such dynamical models can lead to a
and 9 forh=0.7,Q=0.0255, and primordial spectral index |ower amplitude for density fluctuations compared to stan-
n=1. Following standard practice, we plot the productdardA models, thereby alleviating the antibias problem. The
I(1+1)C,, normalized to its value dt=10, vsl. advantages of the cosmological constant for the shape of the
The appendices contain the details of the alterations r%ower spectrum are retained in the dynamical models as
quired in the standard Boltzmann code to calculate the CMByell. Such dynamical models are, moreover, distinguishable
anisotropy in scalar field dynamicAl models. We can, how- from constantA models by virtue of their CMB angular
ever, identify two physical effects primarily responsible for spectra.
the differences in the CMB signature between th€ DM
and dynamicalA models shown in Figs. 8 and 9. First, the
present ages in conformal time coordinatgsre different in
the two models. Even though the acoustic oscillations re- \We thank Andrew Liddle and Martin White for useful
sponsible for the peaks in the CMB angular spectrum occugonversations. This work was supported in part by the U.S.
at the same physical scalésr same Fourier wave numbers DOE (at Fermilab and the NASA (at Fermilab through
Grant No. NAG 5-2788
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oot ’ APPENDIX A: CHANGES IN STANDARD

| oo 0,=0.6

E - - -- 0,206 E BOLTZMANN CODE

This appendix and the following briefly outline the new
physics incorporated into the Boltzmann code\ieDM and
dynamicalA models. Since the Hubble parameter is deter-
mined by the sum over densities of all species,
H2=(87G)3,p;, inclusion of a cosmological constaftor
scalar field¢ changes the relationship between the cosmic
scale factora and conformal timer, since ¢la/d7)/a?=H.

In addition to the species included in the standard Boltzmann

- 1 code, namely, baryons, cold dark matter, photons, and three

] S R N ] massless neutrinos, the density in a cosmological constant or
0 0 oo % 8 100 scalar field ¢ is now included. InACDM models, the
vacuum energy density, = A/87G is constant. In the dy-

FIG. 9. Same as Fig. 8, but showing only the lbmultipoles to ~ nhamical models, the scalar field energy dengify can be
emphasize the enhanced ISW effect in the PNGB model. solved for with the scalar equation of motion for the homo-

I(1+1)C,/110C,q
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geneous parp?)(7) of the field, synchronous gauge, the latter can be parametrized by the

. . variablesh,h;; as in[27]. The scalar field can be similarly

¢ 9+2Ha¢ ¥ +a%dV(¢'?)/dep @ =0, (A1)  decomposed into a homogeneous part and a spatial perturba-

tion:
where the scalar field potential is
_ 1(0)
V(¢)=M*[cod ¢/f)+1], (A2) d(x,7)=¢"7(7)+ 6¢(X,7), (B3)

and the scalar energy density where ¢ is the solution to the spatially homogeneous

equation of Appendix A. Keeping only terms linear in

1. h, hi3, andd¢, and taking the Fourier transform yields the
=02 (0) » M3z, ,
Ps 2a2¢ V(). (A3) equation of motion for the Fourier amplitudep, :
Here, dots d te derivati ith tt f I y =
tir(;;etover ots denote derivatives with respect to conformal (5¢>k)+2Ha(¢k)+(k2+az[d2V/d¢>2]¢=¢<o>(7))(6¢>k)
hep(©
APPENDIX B: PERTURBATION EQUATIONS = (B4)

FOR DYNAMICAL A MODELS

The general equa’[ion of motion for the scalar field There will also be an additional source term in the Ein-
&(x,7) is derived by minimizing the action stein equation for the metric perturbation. Again following
the notation off27], the Einstein equation becomes
S= f d*x\—g

with respect to variations iw. The metric is that of a per-
turbed Friedmann-Robertson-Walker universe:

1

h+Hah=87G(S,+S,), (B5)
where the source term due #is given by

9. (X, 7) =gi)(7) + 89,,,(X, 7), (B2) Sy=4(3¢) p—2a2(64)[dVId] - yoir),  (BE)

where g{%) is the homogeneous part which describes theandS, contains the usual source terms for matter and radia-
Hubble expansion, andg,,, is the metric perturbation. In tion [27].
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