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Models of structure formation with a cosmological constantL provide a good fit to the observed power
spectrum of galaxy clustering. However, they suffer from several problems. Theoretically, it is difficult to
understand why the cosmological constant is so small in Planck units. Observationally, while the power spectra
of cold dark matter plusL models have approximately the right shape, the COBE-normalized amplitude for a
scale-invariant spectrum is too high, requiring galaxies to be antibiased relative to the mass distribution.
Attempts to address the first problem have led to models in which a dynamical field supplies the vacuum
energy, which is thereby determined by fundamental physics scales. We explore the implications of such
dynamicalL models for the formation of large-scale structure. We find that there are dynamical models for
which the amplitude of the COBE-normalized spectrum matches the observations. We also calculate the
cosmic microwave background anisotropies in these models and show that the angular power spectra are
distinguishable from those of standard cosmological constant models.@S0556-2821~97!03704-1#

PACS number~s!: 98.80.Bp, 98.80.Cq

I. INTRODUCTION

The cosmological constant has had a long and tortured
history since Einstein first introduced it in 1917 in order to
obtain static cosmological solutions@1#. Under observational
duress, it has been periodically invoked by cosmologists and
then quickly forgotten when the particular crisis passed. His-
torical examples include the first ‘‘age crisis’’ arising from
Hubble’s large value for the expansion rate, the apparent
clustering of quasistellar objects~QSO’s! at a specific red-
shift, and early cosmological tests which indicated a negative
deceleration parameter.

Recently, a cosmological model with substantial vacuum
energy, a relic cosmological constantL, has again come into
vogue for several reasons@2#. First, dynamical estimates of
the mass density on the scales of galaxy clusters, the largest
gravitationally bound systems, suggest thatVm50.260.1
for the matter (m) which clusters gravitationally~whereV is
the present ratio of the mean mass density of the Universe to
the critical Einstein–de Sitter density,V58pGr/3H2) @3#.
However, if a sufficiently long epoch of inflation took place
during the early Universe, the present spatial curvature
should be negligibly small,V tot51. A cosmological con-
stant, with effective density parameterVL[L/3H0

2

512Vm , is one way to resolve the discrepancy between
Vm andV tot .

The second motivation for the revival of the cosmological
constant is the ‘‘age crisis’’ for spatially flatVm51 models.
Current estimates of the Hubble expansion parameter from a
variety of methods appear to be converging toH0.70610
km/sec Mpc21, while estimates of the age of the Universe

from globular clusters are holding attgc.13–15 Gyr or
more. Thus, observations imply a value for the ‘‘expansion
age’’ H0t05(H0 /70 km/sec Mpc21)(t0/14 Gyr!.1.060.2.
This is higher than that for the standard Einstein–de Sitter
model withVm51, for whichH0t052/3. On the other hand,
for models with a cosmological constant,H0t0 can be larger.
For example, forVL50.6512Vm , H0t050.89.

Third, cold dark matter~CDM! models for large-scale
structure formation, which include a cosmological constant
~hereafter,LCDM!, provide a better fit to the shape of the
observed power spectrum of galaxy clustering than does the
‘‘standard’’ Vm51 CDM model @4#. Figure 1 shows the
inferred galaxy power spectrum today~based on a recent
compilation @5#!, compared with the matter power spectra
predicted by standard CDM and aLCDM model with
VL50.6. In both cases, the Hubble parameter has been fixed
to h[H0 /(100 km/sec Mpc

21)50.7 and the baryon density
toVB50.0255, in the center of the range allowed by primor-
dial nucleosynthesis. Linear perturbation theory has been
used to calculate the model power spectraP(k), defined by
^d(k)d* (k8)&5(2p)3P(k)dD(k2k8), where d(k) is the
Fourier transform of the spatial matter density fluctuation
field anddD is the Diracd function. Here and throughout, we
have taken the primordial power spectrum to be exactly scale
invariant, Pprimordial(k)}k

n with n51. Standard CDM
clearly gives a poor fit to the shape of the observed spectrum
@6#, while theLCDM model gives a good fit to the shape of
the observed spectrum. The amplitudes of the model spectra
in Fig. 1 have been fixed at large scales by observations of
cosmic microwave background~CMB! anisotropies by the
Cosmic Background Explorer~COBE! satellite@7,8#.
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Despite these successes, cosmological constant models
face several difficulties of their own. On aesthetic grounds, it
is difficult to understand why the vacuum energy density of
the Universe,rL[L/8pG, should be of order (1023 eV! 4,
as it must be to have a cosmological impact (VL;1). On
dimensional grounds, one would expect it to be many orders
of magnitude larger, of ordermPl

4 or perhapsmSUSY
4 . Since

this is not the case, we might plausibly assume that some
physical mechanism sets the ultimate vacuum energy to zero.
Why then is it not zero today?

The cosmological constant is also increasingly observa-
tionally challenged. Preliminary results from ongoing
searches@9# for distant Type Ia supernovae indicate that
VL,0.47~at 95% C.L.! for spatially flatL models. Further-
more, inL models a larger fraction of distant QSO’s would
be gravitationally lensed than that in aL50 universe; sur-
veys for lensed QSO’s have been used to infer the bound
VL&0.7 @10#.

In this paper, we focus on a third problem of cosmologi-
cal constant models, the amplitude of the power spectrum of
galaxy clustering. The shape of theLCDM power spectrum
in Fig. 1 matches the galaxy power spectrum; however, the
COBE-normalized amplitude is too high. Indeed, a number
of analyses have found that this problem persists on all
scales.

On the largest scales (k,0.1 h Mpc21), linear theory
should be adequate, and Fig. 1 suggests that the amplitude is
too high by at least a factor of 2.

On intermediate scales, we can quantify the amplitude
through the dispersion of the density field smoothed over
top-hat spheres of radiusR58 h21 Mpc21, denoteds8,
wheres2(R)54p*0

`k2P(k)W2(kR)dk, andW(kR) is the
Fourier transform of the spatial top-hat window function of
radiusR. In theLCDM model of Fig. 1, COBE normaliza-
tion yieldss8.1.3 @8#, while galaxy surveys generally indi-
cates8,gal.1 for optically selected galaxies and;0.8 for
galaxies selected by infrared flux. This high COBE normal-
ization also marginally conflicts with the abundance of rich
galaxy clusters@11#. Using the observed cluster x-ray tem-
perature distribution function and modeling cluster formation

using Press-Schechter theory, for thisLCDM model the
cluster abundance impliess8.1.020.26

10.35 @12#, where the er-
rors are approximate 95% C.L.

N-body simulations indicate that the power spectrum am-
plitude is higher by a factor of 2 to 3 than that found in
galaxy surveys at small scales,k*0.4 h Mpc21 @13#. Thus,
the cosmological constant model would require galaxies to
be substantiallyantibiasedwith respect to the mass distribu-
tion, sgal,sr . Models of galaxy formation, however, sug-
gest that the bias parameter,b[sgal/sr , is greater than
unity @14,15#.

Motivated by these difficulties, we consider models in
which the energy density resides in a dynamical scalar field
rather than in a pure vacuum state. ThesedynamicalL mod-
els @16,17# were proposed in response to the aesthetic diffi-
culties of cosmological constant models. They were also
found @16# to partially alleviate their observational problems
as well; for example, the statistics of gravitationally lensed
QSO’s yields a less restrictive upper bound onH0t0 in these
models@18#. We emphasize here that they may also solve the
galaxy clustering amplitude problem.

To get a preview of this conclusion, Fig. 1 also shows the
COBE-normalized power spectrum for a dynamicalL model
with present scalar field density parameterVf50.6 ~see Sec.
III for a discussion of these models!. While the shape of the
spectrum is identical to that of theLCDM model with
VL50.6, the scalar field model has a lower amplitude, and
thus provides a better fit to the galaxy clustering data. In Sec.
II, we explain these features of the power spectrum for the
standardLCDM model and for generic dynamicalL mod-
els. The remaining sections investigate in detail a specific
class of models as a worked example. Section III reviews the
scalar field model, based on ultralight, pseudo-Nambu-
Goldstone bosons~PNGB’s! @16#. To explore the parameter
space of this model, we have adapted a code which solves
the linearized Einstein-Boltzmann equations for perturba-
tions to a Friedman-Robertson-Walker~FRW! background.
The appendices contain details of these modifications. Sec-
tion IV discusses the qualitative features of cosmic evolution
in the PNGB models and presents results of our calculation
for the amplitude of the power spectrum in this model. In
Sec. V we present the cosmic microwave background~CMB!
power spectrum for a particular set of model parameters,
followed by the conclusion.

II. THE POWER SPECTRUM

A. The shape ofP„k…

Figure 1 suggests that standard CDM could be improved
by simply shifting the turnover in the power spectrum to
larger scales~smaller wave numberk). This is a plausible
fix, for the location of the turnover corresponds to the scale
that entered the Hubble radius when the Universe became
matter dominated. On scales smaller than this, the fluctuation
amplitude is suppressed compared to that on larger scales,
because matter perturbations inside the Hubble radius cannot
grow in a radiation-dominated universe. This scale is deter-
mined by the ratio of matter to radiation energy density at
early times. To ‘‘fix’’ CDM, one must decrease the ratio
r̄m / r̄ r in the Universe today below that predicted by the
standard Einstein–de Sitter model. The matter and radiation

FIG. 1. COBE-normalized power spectra for standard CDM,
LCDM with VL50.6, and scalar fieldVf50.6 models. In all
modelsh50.7,VB50.0255, andn51. The data points are based
on a recent compilation of galaxy clustering data by Peacock and
Dodds@5#.
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densities scale asr̄m5 r̄m,0a
23 and r̄ r5 r̄ r ,0a

24, where the
cosmic scale factora is normalized to unity today (a051)
and the subscript 0 denotes the present. Thus, the epoch of
matter-radiation equality is determined by the present energy
densities of matter and radiation:

aeq5
r̄ r ,0

r̄m,0
5
4.331025

Vmh
2 . ~1!

Decreasing the matter to radiation density ratio shifts the
epoch of matter-radiation equality closer to the present,
thereby moving the turnover in the power spectrum to larger
scales.

Indeed, this shift is precisely what is done in several cur-
rently popular models of structure formation. Examples in-
clude ~i! models with a lower Hubble constant than that in-
dicated by observations@19#, ~ii ! models with extra
relativistic degrees of freedom@20#, and ~iii ! models with a
cosmological constant@4#. Sincer̄m}Vmh

2, a lower Hubble
constant decreases the ratio of matter to radiation density
today. Adding more relativistic degrees of freedom adds to
the radiation content, decreasing the ratio of matter to radia-
tion. Finally, in spatially flatL models,Vm[12VL is re-
duced from its standard CDM value (Vm51), achieving a
similar effect.

Thus, the main benefit ofL models for the shape of the
power spectrum is thatVm is smaller than that in the stan-
dard CDM model. For the purpose of the power spectrum
shape, the value of the vacuum energy density at early times
is irrelevant, as long as it is negligible compared to the mat-
ter and radiation densities at matter-radiation equality. While
the time dependence of the vacuum energy density is differ-
ent for various dynamicalL models, all such models yield
the same power spectrum shape for a fixed value of the
present vacuum energy density. We emphasize this point in
Fig. 2, which shows the energy densities of matter, radiation,
L, and a specific dynamicalL model ~scalar fieldf), as a
function of scale factora. With VL andVf50.6 today, the
standard and dynamicalL models have the same shape for
P(k) ~shown in Fig. 1!, since they have identical values of

aeq. As we will see below, however, the amplitudes of the
power spectra in these models differ substantially.

B. The amplitude of P„k…

Compared to standard CDM, three new physical effects
@21# conspire to change the amplitude of the matter power
spectrum in COBE-normalizedL models:~i! the suppression
of growth of perturbations when the Universe becomesL
dominated,~ii ! the reduced gravitational potential, and~iii !
the integrated Sachs-Wolfe~ISW! effect. We review these
effects in turn.

The equations governing large scale perturbations in a flat
universe with matter and vacuum energy are

d̈1Haḋ2
3

2a2
H2Vmd50, ~2!

H25
H0
2

a3 FVm1VL

rL

rL,0
a3G . ~3!

Here, overdots denote derivatives with respect to conformal
time t, wheret[*dt/a(t), rL is the vacuum energy den-
sity, not necessarily equal to its present valuerL,0 , the den-
sity fluctuation amplitude d(x,t)[@rm(x,t)2 r̄m(t)#/
r̄m(t), andH is the Hubble expansion rate@we use units in
which \5c51#.

Equation ~2! essentially describes the behavior of a
damped harmonic oscillator. When the energy density of the
Universe becomes dominated by aL or a dynamicalL, i.e.,
the second term on the the right-hand side~RHS! in Eq. ~3!
becomes important, the damping becoming more severe.
When this happens, the growth of perturbations is sup-
pressed. As a function ofVm , this suppression can be de-
scribed by the scaling

d0 /d~z5100!}Vm
p , ~4!

whered0 is the perturbation amplitude today, andd (z5100) is
the amplitude at the epochz[(1/a)215100, chosen as an
arbitrary early epoch before the vacuum energy becomes dy-
namically important. InLCDM models, p.0.2. For dy-
namicalL models, the suppression exponent depends on the
details of the specific model, but it is generally greater than
that inLCDM models, because the dynamicalL dominates
earlier in the history of the Universe for fixedrL,0 . For the
model shown in Fig. 1,p.0.56. For open CDM models
~with L50), the scaling is alsop.0.56.

As a result of this suppression, one might expect the am-
plitude of the power spectrum inLCDM and dynamicalL
models to be smaller than that in standard CDM. However,
from the Poisson equation,

¹2F5
3

2a2
H2Vmd, ~5!

we haveF}Vmd, whereF is the gravitational potential
associated with large-scale density fluctuations. Since the
CMB anisotropy at large angle is a well-defined function of
the potential@22#, COBE normalization corresponds to fixing
the potential, i.e., to fixingVmd. For COBE-normalized

FIG. 2. Densityr̄ vs cosmic scale factora. FixingVL or Vf to
0.6 lowersVm from the standard CDM value of 1.0, pushing the
epoch of matter-radiation equalityaeq closer to today. The cross
denotesaeq for the standard CDM model and the asterisk denotes
aeq for theL andf models. The logarithm is to basee.
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models, the growth suppression and Poisson’s equation com-
bine to yield the scale-independent relationd}Vm

p21 . Thus,
the power spectrumP(k)}d2}Vm

21.6 in LCDM models. A
larger cosmological constant implies a smallerVm , which in
turn implies a larger amplitude for the power spectrum. In
dynamicalL models,p is not fixed at 0.2, so the amplitude
of the power spectrum can be smaller than that in standard
L models. For the model of Fig. 1, withp50.56, P(k)
}Vm

20.9.
The integrated Sachs-Wolfe~ISW! effect, which is due to

time evolution of the potential, also affects the amplitude of
the power spectrum. The changing potential at late times in
L models increases the anisotropy on the large angular
scales probed by COBE. Thus, for fixed COBE normaliza-
tion, the amplitude of the power spectrum decreases, chang-
ing the dependence of the power spectrum onVm to P
}Vm

21.4 in theLCDM model. In dynamicalL models, where
the potential typically changes more than it does in standard
L models, the ISW effect tends to be larger and is not a
power-law function ofVm . Hence, dynamicalL models
have less power thanLCDM and can even have less power
than standard CDM.

III. ULTRALIGHT SCALAR FIELDS

A number of models with a dynamicalL have been dis-
cussed in the literature@17#. We will focus on a particular
class of models motivated by the physics of pseudo-Nambu-
Goldstone bosons~PNGB’s! @16,23#.

It is conventional to assume that the fundamental vacuum
energy of the Universe is zero, owing to some as yet not
understood mechanism, and that this mechanism ‘‘com-
mutes’’ with other dynamical effects that lead to sources of
energy density. This is required so that, e.g., at earlier epochs
there can temporarily exist nonzero vacuum energy which
allows inflation to take place. With these assumptions, the
effective vacuum energy at any epoch will be dominated by
the heaviest fields which have not yet relaxed to their
vacuum state. At late times, these fields must be very light.

Vacuum energy is most simply stored in the potential en-
ergyV(f);M4 of a scalar field, whereM sets the charac-
teristic height of the potential, and we setV(fm)50 at the
minimum of the potential by the assumptions above. In order
to generate a nonzeroL at the present epoch,f must ini-
tially be displaced from the minimum (f iÞfm as an initial
condition!, and its kinetic energy must be small compared to
its potential energy. This implies that the motion of the field
is still overdamped,mf[AuV9(f i)u&3H055310233h eV.
In addition, forVL;1, the potential energy density should
be of order the critical density,M4;3H0

2mPl
2 /8p, or

M.331023h1/2 eV. Thus, the characteristic height and cur-
vature of the potential are strongly constrained for a classical
model of the cosmological constant.

This argument raises an apparent difficulty for such a
model: why is the mass scalemf 30 orders of magnitude
smaller thanM? In quantum field theory, ultralow-mass sca-
lars are notgenericallynatural: radiative corrections generate
large mass renormalizations at each order of perturbation
theory. To incorporate ultralight scalars into particle physics,
their small masses should be at least ‘‘technically’’ natural,

that is, protected by symmetries, such that when the small
masses are set to zero, they cannot be generated in any order
of perturbation theory, owing to the restrictive symmetry.

From the viewpoint of quantum field theory, PNGB’s are
the simplest way to have naturally ultralow-mass, spin-0 par-
ticles. PNGB models are characterized by two mass scales, a
spontaneous symmetry-breaking scalef ~at which the effec-
tive Lagrangian still retains the symmetry! and an explicit
breaking scalem ~at which the effective Lagrangian contains
the explicit symmetry-breaking term!. In terms of the mass
scales introduced above, generallyM;m and the PNGB
massmf;m2/ f . Thus, the two dynamical conditions on
mf andM above essentially fix these two mass scales to be
m;M;1023 eV, interestingly close to the neutrino mass
scale for the Mikheyev-Smirnov-Wolfenstein~MSW! solu-
tion to the solar neutrino problem, andf;MPl.1019 GeV,
the Planck scale. Since these scales have a plausible origin in
particle physics models, we may have an explanation for the
‘‘coincidence’’ that the vacuum energy is dynamically im-
portant at the present epoch. Moreover, the small massmf is
technically natural.

An example of this phenomenon is the ‘‘schizon’’ model
@23#, based on aZN-invariant low-energy effective chiral La-
grangian forN fermions, e.g., neutrinos, with mass of order
M , in which the small PNGB mass,mf.M2/ f , is protected
by fermionic chiral symmetries. The potential for the light
scalar fieldf is of the form

V~f!5M4@cos~f/ f !11#. ~6!

Sincef is extremely light, we assume that it is the only
classical field which has not yet reached its vacuum expec-
tation value. The constant term in the PNGB potential has
been chosen to ensure that the vacuum energy vanishes at the
minimum of thef potential, in accord with our assumption
that the fundamental vacuum energy is zero.

IV. COSMIC EVOLUTION AND LARGE-SCALE
POWER SPECTRUM IN PNGB MODELS

To study the cosmic evolution of these models, we focus
on the spatially homogeneous, zero-momentum mode of the
field, f (0)(t)5^f(x,t)&, where the angular brackets denote
spatial averaging. We are assuming that the spatial fluctua-
tion amplitudedf(x,t) is small compared tof (0), as would
be expected after inflation if the post-inflation reheat tem-
peratureTRH, f;MPl . The scalar equation of motion is
given in Appendix A.

The cosmic evolution off is determined by the ratio of
its mass,mf;M2/ f , to the instantaneous expansion rate,
H(t). Formf&3H, the field evolution is overdamped by the
expansion, and the field is effectively frozen to its initial
valuef i . Sincef is initially laid down in the early Universe
~at a temperatureT; f@M ), when its potential was dynami-
cally irrelevant, its initial value in a given Hubble volume
will generally be displaced from its vacuum expectation
valuefm5p f ~vacuum misalignment!. Thus, at early times,
the field acts as an effective cosmological constant, with
vacuum energy density and pressurerf.2pf;M4. At late
times,mf@3H(t), the field undergoes damped oscillations
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about the potential minimum; at sufficiently late times, these
oscillations are approximately harmonic, and the stress-
energy tensor off averaged over an oscillation period is that
of nonrelativistic matter, with energy densityrf;a23 and
pressurepf.0.

Let tx denote the epoch when the field becomes dynami-
cal, mf53H(tx), with corresponding redshift 11zx
51/a(tx)5(M2/3H0f )

2/3. For comparison, the Universe
makes the transition from radiation to matter domination at
zeq.2.33104Vmh

2, much earlier than when the field be-
comes dynamical. Thef2M parameter space is shown in
Fig. 3. In the far right portion of the figure, the field becomes
dynamical before the present epoch and currently redshifts as
nonrelativistic matter; on the far left,f is still frozen and
acts as an ordinary cosmological constant. In the dynamical
region, the present density parameter for the scalar field is
approximatelyVf;24p( f /MPl)

2, independent ofM @24#.
The quasihorizontal lines show contours of constantVf ,
assuming a typical initial field valuef i / f51.6 ~we will use
this value off i / f for all the plots below; the quoted limits
and results depend slightly on it!. The limit Vf,1 corre-
sponds approximately tof,3.531018 GeV. In the frozen
region, on the other hand,Vf is determined byM4, indepen-
dent of f , and the contours of constantVf are nearly verti-
cal. In this region, the boundVf,1 corresponds roughly to
M,0.003 eV.

Figure 4 shows contours of constantH0t0 in the same
parameter space. As expected, models with largeH0t0 are
concentrated toward the middle to left-hand portion of the
figure; as one moves to the right in the lower portion of the
figure,H0t0 asymptotically approaches the Einstein–de Sit-
ter value 2/3, since the scalar field currently redshifts as non-
relativistic matter and we have assumed a spatially flat uni-
verse. Consequently, the ‘‘interesting’’ region of parameter
space is the area near the ‘‘corner’’ in Figs. 3 and 4, in which
the field becomes dynamical at recent epochs,zx;0–3. This
has new consequences, compared toL models, for the clas-
sical cosmological tests, the expansion ageH0t0, and large-
scale structure. In this region, the mass of the PNGB field is
miniscule,mf;3H0;4310233 eV, and ~by construction!
its Compton wavelength is of order the current Hubble ra-

dius,lf5mf
215H0

21/3;1000h21 Mpc. Note that, as Fig.
3 indicates, the empty rectangular box in Figs. 4 and 5 ap-
proximately bounds the region of parameter space for which
Vf.1; this region is, therefore, excluded.

Figure 5 shows contours of the amplitude of galaxy clus-
tering in thef2M parameter space. The amplitude shown is
the quantity

lim
k→0

F ~P~k!/k!f

~P~k!/k!L
G , ~7!

i.e., the amplitude on large scales relative to that for a
LCDM model with the same effective density as the PNGB
model,VL5Vf . This amplitude ratio goes to unity in the
left-hand portion of the figure since that region corresponds
to a LCDM model. However, the amplitude ratio can be
substantially below one in the dynamical region on the right.
The cross marks the specific choiceM50.005 eV,
f51.88531018 GeV, with initial field value f i / f51.6,
yieldingVf50.6, which corresponds to the parameters used

FIG. 3. Contours ofVf in the PNGB parameter space, assum-
ing an initial field valuef i / f51.6. The cross marks the choice
M50.005 eV,f51.88531018GeV, yieldingVf50.6, which is the
model shown in Figs. 1, 2, and 6–9.

FIG. 4. Contours ofH0t0 in the PNGB parameter space for
f i / f51.6. The cross indicates the same model as in Fig. 3.

FIG. 5. Amplitude contours in the PNGB parameter space for
f i / f51.6. The amplitude shown is defined as
limk→0$@P(k)/k#f /@P(k)/k#L%, the amplitude on large scales rela-
tive to that of aLCDM model with the same effective density as
the PNGB model,VL5Vf . Again, the cross marks the sample
model for which both the power spectrum shape and amplitude
provide a good fit to the galaxy clustering data.
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for the dynamicalL curves in Figs. 1 and 2. For this case,
the x-ray cluster abundance yieldss8

cl.0.920.2
10.3 in good

agreement with the COBE normalizations8
COBE.0.8 for this

model. Figure 6 shows how density perturbations grow in
different models. From Eq.~4! and the text following, the
dynamicalL model has a higher amplitude at early times
than does aLCDM model with the same amplitude today.
As a consequence, there should be no problem accounting
for high-redshift objects such as QSO’s and Lyman-a clouds
in this model.

Note that the factord(z)/d0, relative to its value in the
standard CDM model, approachesVm

2p at z@1, wherep is
the scaling exponent discussed in Sec. II. As a result, the
nonlinear behavior of the dynamicalL model follows that of
an open model with the same value ofVm . We estimate the
nonlinear behavior by using the fitting formula of Ref.@25#,
following the original treatment@26# of Hamiltonet al. Fig-
ure 7 shows these nonlinear spectra. On scalesk<1 h
Mpc21, the amplitude of the power spectrum is indeed a
factor of 2 smaller in the dynamicalL model than in the
correspondingLCDM model.

We note by comparing Figs. 4 and 5 that the region of
parameter space in which the amplitude~antibias! problem is
solved, i.e., in which the amplitude ratio is approximately in
the range 0.3–0.5, is the one in which the age of the Uni-
verse is only slightly greater than in the Einstein–de Sitter
Vm51 case. For our specific model above,H0t050.73. For
the correspondingLCDM model with the same value of
Vm , H0t050.89, more comfortably within the observational
limits. This is a general feature of the dynamical models
considered here: for fixedVm , the standardL model gives
an upper bound onH0t0. Thus, the amplitude problem in this
model is resolved partially at the expense of the age problem.

On the other hand, theq0 constraints from supernovae and
gravitational lensing translate into weaker upper bounds on
H0t0 for the dynamical as opposed to the standardL models.
Although we have not thoroughly examined all models, it is
clear that one could explore the PNGB model parameter
space to obtain a more balanced compromise between the
age problem and the antibias problem. For example, for
f.2.531018 GeV andM.0.0035 eV, the amplitude ratio is
about 0.5, and one hasVf.0.75 andH0t0.0.9. In this case,
with h50.7, the power spectrum shape is reasonable
(Vmh.0.15) and the age of the universe ist.12.6 G yr.

Comparing Figs. 3 and 5, and focusing on the dynamical
region near the ‘‘corner’’ of the parameter space, we see that
the power spectrum shape and amplitude constraints fix the
free parameters of the model. That is, as noted in Sec. II, the
shape of the spectrum is fixed by requiringVf.0.6, which
determines the scalef . Near the corner, fixing the amplitude
then determines the other mass scaleM . While these figures
correspond to a specific choice of the initial field value
f i / f , the scalar field evolution is universal in the sense that
a shift in the mass scalef , accompanied by an appropriate
rescaling off i , leads to essentially identical evolution. Con-
sequently, compared toLCDM models, these dynamical
models have only one additional free parameter, the mass
M , to solve the amplitude~antibias! problem.

V. CMB ANISOTROPY

The angular power spectra of the cosmic microwave
background~CMB! anisotropy for dynamicalL models are

FIG. 6. Evolution of density perturbations. Shown is the density
fluctuation amplitude at redshiftz normalized to its present ampli-
tude,d(z)/d0, vs z. The models shown are standardVm51 CDM
~solid!, LCDM with VL50.6512Vm ~dotted!, an open CDM
model withVm50.4 ~short dashed!, and the dynamicalL model
with Vf50.6 ~long dashed!.

FIG. 7. Power spectra for COBE-normalized standard CDM
~solid! with s851.2; LCDM with VL50.6 ~dashed!, for which
s851.0; and the dynamicalL model withVf50.6 ~dotted!, for
which s850.8. The latter two models are normalized to the cluster
abundance and haveh50.7. Lower curves show the linear theory
power spectra, upper curves the nonlinear spectra obtained from
scaling relations extracted fromN-body simulations.
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distinguishable from those of standard CDM andLCDM
models. CMB angular power is usually expressed in terms
of the angular multipolesCl . If the sky temperature is
expanded in terms of spherical harmonics asT(u,f)
5S lmalmYlm(u,f), thenCl5^ualmu2&, where largel corre-
sponds to small angular scales. The angular power spectra
for standard CDM (Vm51), LCDM, and dynamicalL
models~the latter two withVm50.4) are shown in Figs. 8
and 9 forh50.7,VB50.0255, and primordial spectral index
n51. Following standard practice, we plot the product
l ( l11)Cl , normalized to its value atl510, vs l .

The appendices contain the details of the alterations re-
quired in the standard Boltzmann code to calculate the CMB
anisotropy in scalar field dynamicalL models. We can, how-
ever, identify two physical effects primarily responsible for
the differences in the CMB signature between theLCDM
and dynamicalL models shown in Figs. 8 and 9. First, the
present ages in conformal time coordinatest0 are different in
the two models. Even though the acoustic oscillations re-
sponsible for the peaks in the CMB angular spectrum occur
at the same physical scales~or same Fourier wave numbers

k), the correspondence betweenk and angular multipolel
differs. Typically, in a flat universe, a given multipolel cor-
responds to a fixed value ofkt0. Thus, the dynamicalL
angular spectra are shifted inl by the ratio of the present
conformal times in the two models. Second, since the scalar
field evolves at late times, the gravitational potential changes
more rapidly in the dynamicalL model. This leads to an
enhanced ISW effect and, therefore, a relatively largerCl at
large scales~low l ), as shown in Fig. 9. Thus, for models
normalized by COBE, which approximately fixes the spec-
trum at l.10, the angular amplitudel ( l11)Cl at small
scales~large l ) is smaller in the dynamicalL model.

VI. CONCLUSIONS

The observational arguments in favor of the resurrection
of the cosmological constant apply to dynamicalL models
as well. In addition, the dynamicalL models offer a poten-
tial physical explanation for the curious coincidence that
VL is close to 1, by relating the present vacuum energy
density to mass scales in particle physics. In the ultralight
pseudo-Nambu-Goldstone boson models, this is achieved
through spontaneous symmetry breaking near the Planck
scale,f;MPl , and explicit breaking at a scale reminiscent of
MSW neutrino masses,M;1023 eV. In combination with
the assumption that the true vacuum energy vanishes~due to
an as yet unknown physical mechanism!, such a model pro-
vides an example of a dynamicalL.

We have shown that such dynamical models can lead to a
lower amplitude for density fluctuations compared to stan-
dardL models, thereby alleviating the antibias problem. The
advantages of the cosmological constant for the shape of the
power spectrum are retained in the dynamical models as
well. Such dynamical models are, moreover, distinguishable
from constant-L models by virtue of their CMB angular
spectra.
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APPENDIX A: CHANGES IN STANDARD
BOLTZMANN CODE

This appendix and the following briefly outline the new
physics incorporated into the Boltzmann code inLCDM and
dynamicalL models. Since the Hubble parameter is deter-
mined by the sum over densities of all species,
H25(8pG)S ir i , inclusion of a cosmological constantL or
scalar fieldf changes the relationship between the cosmic
scale factora and conformal timet, since (da/dt)/a25H.
In addition to the species included in the standard Boltzmann
code, namely, baryons, cold dark matter, photons, and three
massless neutrinos, the density in a cosmological constant or
scalar field f is now included. InLCDM models, the
vacuum energy densityrL5L/8pG is constant. In the dy-
namical models, the scalar field energy densityrf can be
solved for with the scalar equation of motion for the homo-

FIG. 8. CMBR angular power spectra for standard CDM,
LCDM with VL50.6, and scalar fieldVf50.6 models. In all
modelsh50.7,VB50.0255, andn51. Plotted isl ( l11)Cl vs l ,
normalized atl510.

FIG. 9. Same as Fig. 8, but showing only the lowl multipoles to
emphasize the enhanced ISW effect in the PNGB model.
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geneous partf (0)(t) of the field,

f̈~0!12Haḟ~0!1a2dV~f~0!!/df~0!50, ~A1!

where the scalar field potential is

V~f!5M4@cos~f/ f !11#, ~A2!

and the scalar energy density

rf5
1

2a2
ḟ~0!21V~f~0!!. ~A3!

Here, overdots denote derivatives with respect to conformal
time t.

APPENDIX B: PERTURBATION EQUATIONS
FOR DYNAMICAL L MODELS

The general equation of motion for the scalar field
f(x,t) is derived by minimizing the action

S5E d4xA2gF12 gmn]mf]nf2V~f!G ~B1!

with respect to variations inf. The metric is that of a per-
turbed Friedmann-Robertson-Walker universe:

gmn~x,t!5gmn
~0!~t !1dgmn~x,t!, ~B2!

where gmn
(0) is the homogeneous part which describes the

Hubble expansion, anddgmn is the metric perturbation. In

synchronous gauge, the latter can be parametrized by the
variablesh,h33 as in @27#. The scalar field can be similarly
decomposed into a homogeneous part and a spatial perturba-
tion:

f~x,t!5f~0!~t !1df~x,t!, ~B3!

where f (0) is the solution to the spatially homogeneous
equation of Appendix A. Keeping only terms linear in
h, h33, anddf, and taking the Fourier transform yields the
equation of motion for the Fourier amplitudedfk :

~df̈k!12Ha~ḟk!˙ 1~k21a2@d2V/df2#f5f~0!~t!!~dfk!

5
ḣḟ~0!

2
. ~B4!

There will also be an additional source term in the Ein-
stein equation for the metric perturbation. Again following
the notation of@27#, the Einstein equation becomes

ḧ1Haḣ58pG~Sf1Su!, ~B5!

where the source term due tof is given by

Sf54~ ḋf!ḟ22a2~df!@dV/df#f5f~0!~t! , ~B6!

andSu contains the usual source terms for matter and radia-
tion @27#.
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