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All-sky analysis of polarization in the microwave background
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Using the formalism of spin-weighted functions we present an all-sky analysis of polarization in the cosmic
microwave backgroun@CMB). Linear polarization is a second-rank symmetric and traceless tensor, which can
be decomposed on a sphere into spi2 spherical harmonics. These are the analogues of the spherical
harmonics used in the temperature maps and obey the same completeness and orthogonality relations. We
show that there exist two linear combinations of spi@ multipole moments which have opposite parities and
can be used to fully characterize the statistical properties of polarization in the CMB. Magnetic-type parity
combination does not receive contributions from scalar modes and does not cross correlate with either tem-
perature or electric-type parity combination, so there are four different power spectra that fully characterize
statistical properties of CMB. We present their explicit expressions for scalar and tensor modes in the form of
line of sight integral solution and numerically evaluate them for a representative set of models. These general
solutions differ from the expressions obtained previously in the small scale limit both for scalar and tensor
modes. A method to generate and analyze all-sky maps of temperature and polarization is given and the
optimal estimators for various power spectra and their corresponding variances are discussed.
[S0556-282(197)06704-0

PACS numbd(s): 98.70.Vc, 98.80.Cq

I. INTRODUCTION It is clear from previous discussion that additional infor-
mation will be needed to constrain some of the cosmological
The field of cosmic microwave backgrounCMB) parameters. While the epoch of reionization could in prin-
anisotropies has become one of the main testing grounds faiple be determined through the high redshift observations,
the theories of structure formation and early universe. Sincerimordial gravity waves can only be detected at present
the first detection by the Cosmic Background Explorerfrom CMB observations. It has been long recognized that
(COBE) satellite[1] there have been several new detectionghere is additional information present in the CMB data in
on smaller angular scalésee[2] for a recent review There the form of linear polarizatiof7—12). Polarization could be
is hope that future experiments such as MAB] and particularly useful for constraining the epoch and degree of
COBRAS/SAMBA[4] will accurately measure the anisotro- reionization because the amplitude is significantly increased
pies over the whole sky with a fraction of a degree angulaiand has a characteristic signat(ii]. Recently it was also
resolution, which will help to determine several cosmologi-shown that density perturbatiofscalar modesdo not con-
cal parameters with an unprecedented accuf&tyNot all  tribute to polarization for a certain combination of Stokes
of the cosmological parameters can be accurately determingghrameters, in contrast with the primordial gravity waves
by the CMB temperature measurements. On large anguldfd4—16, which can therefore in principle be detected even
scales cosmic variandéinite number of multipole moments for very small amplitudes. Polarization information which
on the sky limits our ability to extract useful information will potentially become available with the next generation of
from the observational data. If a certain parameter onlyexperiments will thus provide significant additional informa-
shows its signature on large angular scales then the accuratign that will help to constrain the underlying cosmological
with which it can be determined is limited. For example, model.
contribution from primordial gravity waves, if present, will Previous work on polarization has been restricted to the
only be important on large angular scales. Because both scamall scale limit(e.g., [8-10,14,17,18. The correlation
lar and tensor modes contribute to the temperature anisofunctions and corresponding power spectra were calculated
ropy one cannot accurately separate them if only a smallor the StokeQ andU parameters, which are defined with
number of independent realizatiofisultipoleg contain a  respect to a fixed coordinate system in the sky. While such a
significant contribution from tensor modes. Similarly, reion- coordinate system is well defined over a small patch in the
ization tends to uniformly suppress the temperature anisotrasky, it becomes ambiguous once the whole sky is considered
pies for all but the lowest multipole moments and is thusbecause one cannot define a rotationally invariant orthogonal
almost degenerate with the amplitude6]. basis on a sphere. Note that this is not problematic if one is
only considering cross-correlation function between polar-
ization and temperatufd.0,11], where one can fiQ or U at
*Electronic address: matiasz@arcturus.mit.edu a given point and average over temperature, which is rota-
"Electronic address: useljak@cfa.harvard.edu tionally invariant. However, if one wants to analyze the auto-
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correlation function of polarization or perform directly the \yhere é1=coapél+ sinzpéz and gé:_sin¢,é1+ Cogrl,éz_ This
power spectrum analysis on the dawhich, as argued in means we can construct two quantities from the StaBes
[14], is more efficient in terms of extracting the signal from gnqu parameters that have a definite value of Ssiee the

the data then a more general analysis of polarization is re-Appendix for a review of spin-weighted functions and their
quired. A related problem is the calculation of rotationally properties:

invariant power spectrum. Although it is relatively simple to

calculateQ andU in the coordinate system where the wave o 21y ) -

vector describing the perturbation is aligned with thaxis, (Q%iU)"(n)=e""(Q=iU)(n). 2
superposition of the different modes becomes complicated

becauseQ and U have to be rotated to a common frame We may therefore expand each of the quantities in the ap-
before the superposition can be done. Only in the small scalpropriate spin-weighted basis:

limit can this rotation be simply expressgt¥], so that the

power spectra can be calculated. However, as argued above, ~ .

this is not the regime where polarization can make the most T(N)=2 armYim(N),

significant impact in breaking the parameter degeneracies im

caused by cosmic variance. A more general method that

would allow one to analyze polarization over the whole sky ) - -

has been lacking so far. (Q‘L'U)(”):% azjm2Yim(N),

In this paper we present a complete all-sky analysis of
polarization and its corresponding power spectra. In Sec. Il
we expand polarization in the sky in spin-weighted harmon-
ics [19,20, which form a complete and orthonormal system
of tensor functions on the sphere. Recently, an alternative
expansion in tensor harmonics has been presda@dOur , : L
approach differs both in the way we expand polarization on aLQ a”qU are def.med ata g|\ienAd|rect|c'nnN|th rgspect 0 t.he
sphere and in the way we solve for the theoretical powegPherical coordinate systera(e,). Using the first equation
spectra. We use the line of sight integral solution of theln Ed. (A5) one can show that the expansion coefficients for
photon Boltzmann equatidi21] to obtain the correct expres- the polarization variables satis®* |, =a,;m. For tem-
sions for the polarization-polarization and temperatureperature the relation iay |, =ar .
polarization power spectra both for sca{&ec. 1)) and ten- The main difficulty when computing the power spectrum
sor (Sec. IV modes. In contrast with previous work the of polarization in the past originated in the fact that the
expressions presented here are valid for any angular scafokes parameters are not invariant under rotations in the
and in Sec. V we show how they reduce to the correspondinglane perpendicular ta. While Q and U are easily calcu-
small scale expressions. In Sec. VI we Qisguss how to genated in a coordinate system where the wave vektisrpar-
erate and analyze all-sky maps of polarization and what thg e 153 the superposition of the different modes is compli-

accuracy is with which one can reconstruct the varioug.,iaq by the behavior & andU under rotation$Eq. (1)].
power spectra when cosmic variance and noise are included.

This is followed by discussion and conclusions in Sec. VII. or each wave vectdrand direction on the sky one has 1o

For completeness we review in the Appendix the basic proptotate theQ andU parameters from thk andn dependent

erties of spin-weighted functions. All the calculations in thisbasis into a fixed basis on the sky. Only in the small scale
paper are restricted to a flat geometry. limit is this process well defined, which is why this approxi-

mation has always been assumed in previous work
[8-10,14,17. However, one can use the spin raising and
Il. STOKES PARAMETERS AND SPIN- S lowering operator® andd defined in the Appendix to obtain
SPHERICAL HARMONICS spin-zero quantities. These have the advantage of lreing
tationally invariantlike the temperature and no ambiguities
connected with the rotation of coordinate system arise. Act-
ing twice withd, d on Q=iU in Eq. (3) leads to

(Q—iU)(ﬁ)=% a_2im—2Yim(N). ©)

The CMB radiation field is characterized by &2 inten-
sity tensorl;; . The Stokes paramete@ andU are defined
asQ=(l1;—1,9)/4 andU=1,42, while the temperature an-
isotropy is given byT=(11;+1,5)/4. In principle the fourth
Stokes parametel that describes circular polarization
would also be needed, but in cosmology it can be ignored
because it cannot be generated through Thomson scattering.
While the temperature is invariant under a right-handed ro-
tation in the plane perpendicular to direction Q andU 62(Q—iU)(ﬁ):E
transform under rotation by an angleas

1/2 R
azimYim(n),

_ . (142)!
62(Q+|U)(n)=% {u—z)!

1/2

[+2)! -
( ) afz,ImYIm(n)- (4)

(1—2)!

The expressions for the expansion coefficients are

Q' =Qcos2)+ Usin2y,

U’ =—Qsin2/+Ucos2y, 1) aT"m:f dQY(MT(n), ®)
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az,|m:fd92Y (N)(Q+iU)(n)

(1+2)1]712

“la=2)

f dQYE (M)32(Q+iU)(n),

a—z,|m:JdQ LYE(M(Q—iU)(n)

C[a+2)
(1=2)

—-1/2
deY (N)32(Q—iU)(n).

Instead ofa,,, a_ym it is convenient to introduce their
linear combination$20]

g im=—(azmta_zm)/2,

(6)

ag,im= [ (a2,lm_ a72,Im)/2-

These two combinations behave differently under parity

transformation: whileE remains unchangeB changes the

sign[20], in analogy with electric and magnetic fields. The
sign convention in Eq(6) makes these expressions consis-
tent with those defined previously in the small scale limit

[14].
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~ A 1 - . .
E(n)=- 5[6|2(Q+IU)+62(Q—IU)]

1/2

[+2)! -
( ) aE,ImYIm(n)’

=2y

=2

B()=5{0%(Q+iU) ~6%(Q-iU)]
(I+2)1]? -
=2 ag,imYim(N). €)

These variables have the advantage of being rotationally in-
variant and easy to calculate in real space. These are not
rotationally invariant versions of andU, becaus&? and

5?2 are differential operators and are more closely related to
the rotationally invariant Laplacian ¢ andU. In | space

the two are simply related as

(1+2)1]72

=2y 1o

aEB)Im= a(E,B),Im-

Ill. POWER SPECTRUM OF SCALAR MODES

To characterize the statistics of the CMB perturbations The usual starting point for solving the radiation transfer

only four power spectra are needed, thoselfoE, B and the
cross correlation betweel and E. The cross correlation
betweenB andE or B and T vanishes becausg has the
opposite parity off andE. We will show this explicitly for

is the Boltzmann equation. We will expand the perturbations
in Fourier modes characterized by wave vegtdror a given
Fourier mode we can work in the coordinate system where

Klzand @€;,8,) = (&y,&,4). For each plane wave the scattering

scalar and tensor modes in the following sections. The powetan be described as the transport through a plane parallel
spectra are defined as the rotationally invariant quantities medium[22,23. Because of azimuthal symmetry only the

1
CT|:—2|+1§ (aT 1mat,im)
l *
CE|:—2|+1§ (ag 1mag,im)»

1
CBFM% <a§,|maB,|m>:

1

CCIZM% (aT imag,im)» (7)

in terms of which,
(@Y |/ atim) =Cr18/1 Smrm.
<a’é,| 'mrAE,1m) = CE1011 Smrm,
<a§,|1mraB,|m>= Cgi61"10m'm,
(@l ' maeim=Ccid 6mm.

®

<a’B€'| 'm’aE,|m> = <a;,| ’m’aT,|m>: 0

Q Stokes parameter is generated in this frame and its ampli-
tude only depends on the angle between the photon direction
and wave vectoru=n-k. The Stokes parameters for this
mode areQ=A%(7,k,u) andU=0, where the superscript

S denotes scalar modes, while the temperature anisotropy is
denoted WithA(TS)(T,k,,u). The Boltzmann equation can be
written in the synchronous gauge [@524]

- 1. 1. .
AP +ikpA = - ch—=(h+67)Py(n)

. 1
+x| AP+ AR +ipv,+ EPZ(M)H},

. _ 1
AR +ikuAP =i — AP +5[1- Pz(M)]H}

M=AF+A5)+AR. (12)
Here the derivatives are taken with respect to the conformal
time 7. The differential optical depth for Thomson scattering
is denoted ag=anX.o1, wherea(r) is the expansion fac-
tor normalized to unity todayn, is the electron density, is

the ionization fraction, and is the Thomson cross section.
The total optical depth at time is obtained by integrating

K, k(7)= fTOK(T)dT The sources in these equations involve

For real space calculations it is useful to introduce twothe mu|t|po|e moments of temperature and po|ar|zat|0n

scalar quantltleE(n) and B(n) defined as

which are defined ad (k,u) =321 +1)(—i)'A(K)P,(u),
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where P,(u) is the Legendre polynomial of ordér Tem-

. . "> : . . Up 31 .
perature anisotropies have additional sources in metric per- SP(k,7)=g| Arpt+2a+ < 2t mel e (nta)
turbationsh and » and in baryon velocity terny, .

To obtain the complete solution we need to evolve the : .
anisotropies until the present epoch and integrate over all the gl —+—|+—>,
Fourier modes, k 4k 4k

A LAOLAWG
T<S>(ﬁ)=f d3ké(k) A (7= 70,k 1), II=Ar+Ap;+Ap0,
where x=k(7o—7) and a=(h+67)/2k?. We have intro-
(Q(S)JriU(S))(ﬁ):f d3ké(k)e 2 knA ) (7= 70,k 1), duced the visibility functiorg(7) = kexp(— «). Its peak de-
fines the epoch of recombination, which gives the dominant
contribution to the CMB anisotropies.
(Q<S)—iU(S))(ﬁ)=f d3ké(k)e? PnA S (7= 710,k, 1), Because in thé(|z coordinate framé&J =0 andQ is only
(12 a function of x it follows from Eg. (A3) that
3%(Q+iU)=8%(Q—iU), so that ,a,=_,am,. Scalar
where ¢y , is the angle needed to rotate tkendn depen- Modes thus contribute only to tfecombination and van--
dent basis to a fixed frame in the sky. This rotation was dshes identically. Acting with the spin raising operator twice
source of complications in previous attempts to characteriz€n the integral solution foa? [Eq. (14)] leads to the fol-
the CMB polarization. We will avoid it in what follows by lowing expressions for the scalar polarizatién
working with the rotationally invariant quantities. We intro-
duced£(k), which is a random variable used to characterize

the initial amplitude of the mode. It has the following statis- (s 3 (7 ) 2 2 ix
tical property: Ag (1o, kp)==7 . drg(n)II(7,k)d[(1— u?)“e™#]
3 (o 212/ 12 i
(€" (k) &(ko)) =P 4(k) 8(ky— ko), (13 =7), drg(nII(7,k)(1+d,)°(x“e™ ).
whereP 4(K) is the initial power spectrum. (15)
To obtain the power spectrum we integrate the Boltzmann
equation(11) along the line of sighf21]: The power spectra defined in E() are rotationally in-
o variant quantities so they can be calculated in the frame
A(TS)(TO,k,,u):f dre™#S(k,7), (14)  wherek|z for each Fourier mode and then integrated over all
0

the modes, as different modes are statistically independent.
The present day amplitude for each mode depends both on
A(pS)(To,k,M)= §(1—,u2)ffodre‘X“g(r)H(k,r), its_evolution_qnd on its initial amplitude. For temperature
4 0 anisotropyT it is given by[21]

1 2

A 70 .
C<T~?=2|+1J d3kP¢(k)% Jdﬂvrm(n)fo drS®(k, 7)€~

2 T
:(47-,)2J kzdkPqﬁ(k){foodrgrs)(kﬁ)h(x)}
(16)

where j,(x) is the spherical Bessel function of ordet and we used that in the k||2 frame
JdQYE (ne* = Jar(2l+1 i'j,()i) Smo- For the spectrum dE polarization the calculation is similar. Equati¢tb) is used
to compute the power spectrum Bfwhich combined with Eq(10) gives

s 1 (-2

! 3 70 . 0 70 2 ix
CE =3 107 f kP (k) 2 ’Z JO dOYH(N) JO drg(nII(k, D[ 1+ (xe"*) 2

(I=2)! 2

3

+2)1

|
=(4w)22| —2)1 j k?dkPy(k)

- 2
J|(X)} ' 17

3 (7
2| Caratminio
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To obtain the last expression we used the differential equa- A (M. A K =1(1—= u2)e2¢£L(K) + (1— u2)e 2¢£2(k
tion satisfied by the spherical Bessel functions, ' (munk) [(~ #IETER)+ (1= w7 &(]
il +2jIx+[1=1(1+1)/x?]j,=0. If we introduce XA (7, 1,K),

A= fdrSTS)(kr)J|(x) (AQ +IA)(mn K =[(1= w)?* P (k) + (1+ )
x e 2422k JAD (7, 1.,K),

Ak E:tgifoTodTS(ES)(k'T)j'(X)’ (A=A (7N K) =[(1+ p)2®*EX(K) + (1— p)?
Xe—2i¢§2(k)]zg)(7,ﬂ,k), (22)

Sg(T)H(Tk) ~T ~T . .
S (kr)=——"—m— (18)  whereA{" andAL are the variables introduced by Polnarev

4x® to describe the temperature and polarization perturbations
generated by gravity waves. They satisfy the Boltzmann

then the power spectra far andE and their cross correla- equation[8,18]

tion are simply given by

AP +ikuAD = —h- k[ A" -w],

(S) — 2 2 (S) 2 ~ ~ .~

1~ 3~
V=A% + —A D+ Aty
cf = (4m? [ KakP, (AR 0AS K. (19

3
Ago+ A<T> —=AG)|. (23)
Equations(18) and(19) are the main results of this section. 70

Just like in the scalar case these equations can be integrated
IV. POWER SPECTRUM OF TENSOR MODES along the line of sight to give

The method of analysis used in previous section for scalar
polarization can be used for tensor modes as well. The situ- 2 2ig el “2ig g2
ation is somewhat more complicated here because for eacléT (70,0, K)=[(1= u?)e? P& (k) + (1~ u?)e &kl
Fourier mode gravity waves have two independent polariza- 0
tions usually denoted with- and X . For our purposes it is Xf dre*“S(k,7),
convenient to rotate this combination and work with the fol- 0

lowing two linear combinations: -
g (AG +iAL)(7,n,k)

fm (6 i8I\, =[(1=w)?® € () + (14 p)%e 2 ?6%(K)]
X f “dreb sk, 7),
0

E=(ET+igN12, (20)

(AQ =AY (79,1,k)
where¢’s are independent random variables used to charac-
terize the statistics of the gravity waves. These variables

have the statistical properties =[(1+ p)2@ Y (K) +(1—p)2e 29£2(K) ]
(E% (Kp) £ (ko)) = (£2* (Ky) €2(Ky)) = (k) k), X forodreiX“S(pT)(k,T), (29
where
(€ (k) €2(kp) =0, (21) STk, 7)= —he *+ g,
wherePy (k) is the primordial power spectrum of the gravity gPT)(k,T): —g¥. (25)
Wal\;\efrlle coordinate frame wheid|z and ©1.6)=(&y.€p) Acting twice with the spin raising and lowering operators

tensor perturbations can be decomposefil#slg on the terms with¢! gives
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20 AT L A(T) - Le2id | Cq-all 2 \? 2 2 ixu
(G +IAGN(r0,n K = £ | drST(k,n)| —opct | [(1= ) (1 p)%e]

— £ | “drsD i n - 200 BooTL(1- e,

- (7o 2 \? .
62(Ag)—iAg>)(ro,n,k)=gl(k)ez"f’fo drS(pT)(k,r)(—&,u— 1_M2) [(1—u?) (14 u)%e™#]
— ek [ oSl - E00+BOOTL(1- %), @
0

where we introduced operato%(sx) =—12+x1- (9)2(] —8xd, andB(x) =8x+ 2x2d, . Expressions for the terms proportional
to &2 can be obtained analogously.

For tensor modes all three quantiti&§” A(ET), andAg) are nonvanishing and given by

A(TT)(TO’ﬁ’k):[(1_,U~2)92i¢§1(k)+(1—M2)9_2i¢§2(k)]fTOdTS(TT)(T,k)eiX",
0
Ag)(To,ﬁ!k):[(1—Mz)e2i¢§1(k)+(1_M2)e’2i¢§2(k)]g(x) fOTOdTSg)(T,k)eiX”,

A (70,8 K) =[(1— 2?4 £4(K) — (1— pP)e 2 4E2(K)1B(%) JOTOdTSg)(T,MeiXM. (27)

From these expressions and E@.and(21), one can explicitly show thaB does not cross correlate with eithEror E.
The temperature power spectrum can be obtained easily in this formulation:

4 P 2
Cl =g | KakP0 | [ i [ arsik - w2 e
21+1 m 0

2

(1-2)! T 1 _
=4772(|+2)!f k?dk P, (k) foodfs@(k,f)fﬁldﬂpﬁ(m(l—ﬂz)e'w

(1-2)! 2

_ 0L T ! d_2 _ ix
—an?i o [k [ ParsTikn [ du P p2 e

L (-2) 2 2

2 o (T) ! d AV IR
=41 (I+2)!J k“dk P, (k) jo drS; (k'T)f—lde_,uzpl(M)(l+&x) e

2

(1-2)!

=4m° szdkP (k) fTOdTS(TD(k T)Jl duPy(p)(1+ 53 (x%e™H)
(1+2)! "1 o T TR O

2
) (28)

(142)!

0 J1(x)
(|—2)!J kzdkph(k)Uo AS¢ (k1) S

= (4m)?

where we usedY|,=[(2I+1)(I—m)!/(4m)(I+m)! 1¥2P"(n)e™? and P"(u)=(—1)™(1— u?)™%(d™/du™)P,(«). Note
that the calculation involved in the last step is the same as for the scalar polarization. The final expression agrees with the
expression given ifi21], which was obtained using the radial decomposition of the tensor eigenfunf@ish#\lthough the
final result is not new, the simplicity of the derivation presented here demonstrates the utility of this approach and will in fact
be used to derive tensor polarization power spectra.

The expressions for the andB power spectra are now easy to derive by noting that the angular dependemg)fand

A(ET) in Eq. (27) are equal to those fok(TT) . The expressions only differ in t@and B operators that can be applied after the
angular integrations are done. This way we obtain, using(Hg,
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2

J1(%)

X2

cf=(am? kzdkph“)‘ fo%dfs@(km)é(x)

_ 40
21>|((ZX)+ J|X(X)

=(4w)2f kzdkPh(k)(fOTodrsg)(k,T){—j|(x)+j|”(x)+

)2
To ~ i 2 T

Cgl)=(4w)2f kzdkPh(k)U drs<pT>(k,r)B(x)—rJ'(x) =(4w)2f k2dkph(k)<f *drs(k, 7)
0 X 0

4

. i
2j{(x)+ "

2
) . (29

For computational purposes it is convenient to further sim- . o[ -
plify these expressions by integrating by parts the derivatives T(n)=(2m) f d4T(he'" v (33
j| (x) andj;(x). This finally leads to

(I+2)! (7 11(x)
s o

To expands= =2 weighted functions we use

=t " 2L e
2Ym=|(Tagyr| &Y (2m) ToTe
Age= f Pars{Th(k, i), (1-2)1]2 1_
E,BI 0 E.B | oY= W 62Y|m—>(277)_2|—2626”'0, (34)
SOk =gl w v N 2V ‘I’) . (Z‘I’ +4‘I’ which leads to the expression
E ( vT)_g k2 XZ kX g kz kX 1
v (Q‘f’iU)(ﬁ):_(ZW)Zf d2|[E(|)+iB(|)]I—2628”'0,
_29P1
- (Q—iU)(ﬁ)=—(2W)2jdZI[E(I)—iB(I)]igze”'”_
Sg'(k,7) =g ~ T T (30 (35)

. From Eg.(A2) we obtain, in the small scale limit,
The power spectra are given by

1 ) ) )
_62ell~0: _efz|(¢7</>|)e|l-0’
CY)=(4m)? J k2dkPo(K)[ A (K)12, 2

1-— :
320l 0— _ o2i(d—dpgl-0
cl)=(4m)? f K2dkP, (AT (AT (K), (3 e = e e (36)

. il)=le'?
whereX stands forT, E, or B. Equations(30) and (31) are ~ Where Grily)=let™. L . .
the main results of this section. The above expression was derived in the spherical basis

wheree;=e, and e,=€,, but in the small scale limit one
can define a fixed basis in the sky perpendicular to

_ _ . . 7z €=g,ande}=g,. The Stokes parameters in the two co-
In this section we derive the expressions for polarizationyrdinate systems are related by

in the small scale limit. The purpose of this section is to

V. SMALL SCALE LIMIT

make a connection with previous work on this subject (Q+iU) =e 2%(Q+iU),
[8,9,14,17 and to provide an estimate on the validity of the
small scale approximation. In the small scale limit one con- (Q—iU)' =e?9(Q—iU). (37)

siders only directions in the sky which are close t@, in
which case instead of spherical decomposition one may use@ombining Eqs(35)—(37) we find
plane wave expansion. For temperature anisotropies we re-

Pece Q’(0)=(277)_2J d2I[E(1)cog2¢,)—B(I)sin(2¢,)]e'"?,
Z aT,|mY|m(ﬁ)—>f dAT(he'" (32)

U’<0>=<2w>*2f dA[E())sin(2¢) +B(I)cog 2 e’ %,
so that 8
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These relations agree with those givenid], which were 10-12 g — — .
derived in the small scale approximation. As already shown s E %
there, power spectra and correlation functions@mand U £ 10-u4 r 1
used in previous work on this subjg&,9,17 can be simply g_ - E
derived from these expressions. Of course, for scalar modes2. 10 3 3
B (1)=0, while for the tensor modes bota("(l) and ¥ 107 g k
B(M(I) combinations contribute. = w0 1

The expressions fof) and U [Eq. (38)] are easier to 10w E
compute in the small scale limit than the general expressions 107 1 10 100
presented in this papdEgq. (3)], because Fourier analysis 1

allows one to use fast Fourier transform techniques. In addi-

tion, the characteristic signature of scalar polarization is  jg-1s
simple to understand in this limit and can in principle be

directly observed with the interferometer measuremghts E 101
On the other hand, the exact power spectra derived in thisQ
paper[Eqgs.(18), (19), and(30), (31)] are as simple or even &f
simpler to compute with the integral approach than their 'f 1071
small scale analogs. Note that this need not be the case if on&
uses the standard approach where the Boltzmann equation is {g-
first expanded in a hierarchical system of coupled differential
equationg7]. In Fig. 1 we compare the exact power spec- 10 100
trum (solid lineg with the one derived in the small scale 1
approximation(dashed lines both for scalaE (a) and ten-

sorE (b) andB (c) combinations. The two models are stan- 10-13
dard cold dark mattefCDM) with and without reionization.
The latter boosts the amplitude of polarization on large
scales. The integral solution for scalar polarization in the g;
small scale approximation was given[ial] and is actually £
more complicated that the exact expression presented in thist,
paper. In the reionized case the small scale approximationz
agrees well with the exact calculation even at very large 107
scales, while in the standard recombination scenario there are

Ll LRI R

10-14

10-15

1 10

A . ; 100
significant differences fof<30. Even though the relative 1

error is large in this case, the overall amplitude on these

scales is probably too small to be observed. FIG. 1. Comparison between exact calculatisalid lines and

For tensors the small scale approximation results in Edsmall scale approximatiofdashed linesfor standard CDM model
(30) without the terms that contair~* or x 2. Because with and without reionization. In the latter case we use optical depth
ji(x)~0 for x<I these terms are suppressed Iby} and  of 0.2. The reionized models are the upper curves on large scales.
=2, respectively, and are negligible compared to other term3he comparison is for scald (a) and tensorE (b) and B (c)
for largel. The small scale approximation agrees well with polarization power spectra. The spectra are in units of
the exact calculation foB combination[Fig. 1(c)], espe- T5=(2.729 Ky and are normalized to COBE. While the predic-
cially for the no-reionization model. For tHe combination tions agree for largé there are significant discrepancies in certain
the agreement is worse and there are notable discrepancig@dels for small.
between the two even &t-100. We conclude that although
the small scale expressions for the power spectrum can pr@olarization will give useful information on large angular
vide a good approximation in certain models, there is nascales, where Fourier analysise., division of the sky into
reason to use these instead of the exact expressions. Theally flat patchegis not possible. In addition, it is impor-
exact integral solution for the power spectrum requires naant to know how to simulate an all-sky map which preserves
additional computational expense compared to the smajproper correlations between neighboring patches of the sky
scale approximation and it should be used whenever accuragmd with which small scale analysis can be tested for pos-
theoretical predictions are required. sible biases.

To make an all-sky map we need to generate the multi-
pole momentsit |, agm, andag . This can be done by
a generalization of the method given[it¥]. For each one

In this section we discuss issues related to simulating andiagonalizes the correlation matriM;=C+;, My=Cg,
analyzing all-sky polarization and temperature maps. ThiVl,=M,;=C¢, and generates from a normalized Gaussian
should be especially useful for future satellite missig#d],  distribution two pairs of random numberdor real and
which will measure temperature anisotropies and polarizaimaginary components @ . ,,). Each pair is multiplied with
tion over the whole sky with a high angular resolution. Suchthe square root of eigenvalues ldf and rotated back to the
an all-sky analysis will be of particular importance if reion- original frame. This gives a realization oy ., and
ization and tensor fluctuations are important, in which caseg ., with correct cross-correlation properties. Ff, .

VI. ANALYSIS OF ALL-SKY MAPS
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the procedure is simpler, because it does not cross correlate The estimator for the temperature power spectruh2@
with eitherT or E, so a pair of Gaussian random variables is
multiplied with C”2 to make a realization Ofig .. Of - |arm/® w-lle
course, for scalarag ;,=0. =~ 20+1 Wr

Once ag |, and ag, are generated we can form their
linear combinationsy,,, anda_,,,,, which are equal in the Similarly for polarization and cross correlation the optimal
scalar case. Finally, to make a mapQff) andU(n) inthe ~ €Stimators are given bji4]
sky we perform the sum in E@3), using the explicit form of

|2

%, (41)

i i i n |aE Im| ,1 1242
spin-weighted harmonicsY,,(n) [Eq. (A6)]. To reconstruct =[> EFTE e b,
the polarization power spectrum from a map @¢n) and "

U(n) one first combines them iQ+iU andQ—iU to ob- A lagml? ] 2
tain spin =2 quantities. Performing the integral over CBF[% 2|'+1 —Wpl e,

+2Yim [EQ. (5)] projects out..,ay,, from whichag ;, and
ag,m can be obtained.

Once we have the multipole moments we can construct Cei=
various power spectrum estimators and analyze their vari-
ances. In the case of full sky coverage one may generalize i ) ) ]
the approach irf26] to estimate the variance in the power The covariance matrix between the different estimators,
spectrum estimator in the presence of noise. We will assumov(XX')={((X—(X))(X' —(X"})) is easily calculated us-
that we are given a map of temperature and polarization witing Eq. (40). The diagonal terms are given by
Npix pixels and that the noise is uncorrelated from pixel to
pixel and also betweeil, Q, andU. The rms noise in the
temperature igr; and that inQ andU is op . If temperature
and polarization are obtained from the same experiment by
adding and subtracting the intensities between two orthogo-
nal polarizations then the rms noise in temperature and po- COV(C )= 21+1
larization are related by2= o3/2 [14].

ag |mat.imt g, maT | 22
> = el (42)

2(21+1)

_ 2 2
+WT lel Ub)Z'

2
CovCr) =577 (Cm

T (Cerwpteh)?,

Under these conditions and using the orthogonality of the s 2 12
.Y,m We obtain the statistical property of noise, Cov(Ca) =5 1(CBI+WP )2,
2
. o
Al e y— T 5 S 1 2,2
<( T,Im T, > Npix 1" Cmm COV(C I) 2|+1[CCI+(CTI+WT1 I b)
) 8mwod A 125
(9% @l ) =~ 8 S, x(Cerrwp'e ) “3
IX
The nonzero off diagonal terms are
8o
<(an02|3|e anmse, ,> = 5” ) / A A 2
" 2! Npix e CoUCrCg)) = 2|+1CCI1
(@5 agsim) =0, (39 ,
. . CoMEq,Ce) = =—Co (Cr+wr e
where by assumption there are no correlations between the MCriCe) = 57 Cal(Critwr e ),
noise in temperature and polarization. With these and Egs.
(6) and(8) we find A A 2 1gi%0
CovCeCel) = 5; +1CCI(CEI+WP b) (44)

2
<a'T',ImaT,I’m’>:(CTIe_|20b+W‘F1)5II’5mm’a
These expressions agree in the small scale limit with those
<aE,|maE,l’m’>=(CEIe7|20§+WI;l) S B given in[14]. Note that the theoretical analysis is more com-
plicated if all four power spectrum estimators are used to
deduce the underlying cosmological model. For example, to
test the sensitivity of the spectrum on the underlying param-
eter one uses the Fisher information matrix apprda&ghlf

_2,.2 —1
(ag map,'m)=(Cge b+ wph) 81 r S

- 2 2 . . . .
(af imaT,irm)=Ccie” o8 Sy only temperature information is given then for edch de-
rivative of the temperature spectrum with respect to the pa-
(a’g ,,m,aEJm):(a’é U @Tam) = 0. (40) rameter under investigation is computed and this information

is then summed over all weighted by Cov’ l(CT,) In the
For simplicity we characterized the beam smearing bymore general case discussed here instead of a single deriva-
e'*702 where o is the Gaussian size of the beam and wetive we have a vector of four derivatives and the weighting is
deflnedWT‘},:Mm%P/N [14,24. given by the inverse of the covariance matrix,
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dCy PP dCy, the temperature and for tHe andB polarization, as can be
@jj ZZ s, COV (CX|CY|)¥- (45  seen from Eqs(15) and (27). This result holds even for the
XY S | defect models, where the same source generates scalar, vec-
) ) _ ) ~ tor, and tensor perturbations.
where «;; is the Fisher information or curvature matrix,  |n summary, future CMB satellite missions will produce
Cov ! is the inverse of the covariance matris;, are the  ajl-sky maps of polarization and these maps will have to be
cosmological parameters one would like to estimate, an@nalyzed using techniques similar to the one presented in this
X,Y stands forT,E,B,C. For eachl one has to invert the paper. Polarization measurements have the sensitivity to cer-
covariance matrix and sum ov¥randY, which makes the tain cosmological parameters which is not achievable from
numerical evaluation of this expression somewhat more inthe temperature measurements alone. This sensitivity is par-
volved. ticularly important on large angular scales, where previously
used approximations break down and have to be replaced
VIIl. CONCLUSIONS with the exgct gxpressions for the polarization power spectra
presented in this paper.
In this paper we developed the formalism for an all-sky

analysis of polarization using the theory of' spin-vyeigh_ted ACKNOWLEDGMENTS
functions. We show that one can define rotationally invariant
electric and magnetic-type parity fields and B from the We would like to thank D. Spergel for helpful discus-

usual Q and U Stokes parameters. A complete statisticalSions. US acknowledges useful discu_ssions with M. Kami-
characterization of CMB anisotropies requires four correla-onkowski, A. Kosowsky, and A. Stebbins.
tion functions, the autocorrelations @f E, andB and the

cross correlation betweds and T. The pseudoscalar nature APPENDIX: SPIN-WEIGHTED FUNCTIONS
of B makes its cross correlation with and E vanish. For _ ] _ ] _
scalar modes the field vanishes. In this appendix we review the theory of spin-weighted

Intuitive understanding of these results can be obtained bfHnctions and their expansion in sprspherical harmonics.
considering polarization created by each plane wave giverhis was used in the main text to make an all-sky expansion
by directionk. Photon propagation can be described by scatof StokesQ andU Stokes parameters. The main application
tering through a plane-parallel medium. The cross sectioff these functions in the past was in the theory of gravita-

only depends on the angle between photon diredticand tional wave radiatiorisee, e.9.[28]). Our discussion follows

k, so for a local coordinate system oriented in this directionCIOSer that of Goldbergt al. [19], which is based on the

only theQ Stokes parameter will be generated, whilewill work by Newman and _Penrq:ﬁ_’éO]. We refer to these refer-
vanish by symmetry argumerita2]. In the real universe one ences for a more d‘?ta"‘?d discussion. s
has to consider a superposition of plane waves so this prop- For any given d|rect|or_1 on the sphere specified by the
erty does not hold in real space. However, by performing thgng_les 0.4), one can (_jeflne three orthogonal veciors, one
analog of a plane wave expansion on the sphere this proper{)@d!al a-nd MO tangentlgl to the sphere. L?t US. (AjenAote the
becomes valid again and leads to the vanishin@ éf the radial direction vector Wltm_ and the tangentl_al witle,, e,.
scalar case. For tensor perturbations this is not true even ihn€ latter two are only defined up to a rotation around
this k dependent frame, because each plane wave consists of A function (6, ¢) defined on the sphere is said to have
two different independent “polarization” states, which de- spins if under a right-handed rotation oé{,e,) by an angle
pend not only on the direction of plane wave, but also on they it transforms as¢f’(6,¢$)=e"'sf(6, ). For example,
azimuthal angle perpendicular ko The symmetry above is given an arbitrary vectoa on the sphere the quantities
thus explicitly broken. BotQ andU are generated in this a.e +ia-e,, n-a, and a-e,—ia-e, have spin 1, 0, and
frame and, equivalently, both andB are generated in gen- —1, respectively. Note that we use a different convention for
eral. rotation than Goldbergt al.[19] to agree with the previous
Combining the formalism of spin-weighted functions and|iterature on polarization.
the line of sight solution of the Boltzmann equation we ob- A scalar field on the sphere can be expanded in spherical
tained the exact expressions for the power spectra both ftfarmonics),,(6, ), which form a complete and orthonor-
scalar and tensor modes. We present their numerical evaluaﬂa| basis. These functions are not appropriate to expand
tions for a representative set of models. A numerical implespin_weighted functions witls# 0. There exist ana|og sets
mentation of the solution is publicly available and can beof functions that can be used to expand spifunctions, the
obtained from the authof27]. We also compared the exact so-called spirs spherical harmonicsY, (6, ¢). These sets

solutions to their analogs in the small scale approximationyf functions (one set for each particular spisatisfy the
obtained previously. While the latter are accurate for all bulsagme completness and orthogonality relations:

the largest angular scales, the simple form of the exact solu-

tion suggests that the small scale approximation should be 2= 1

replaced with the exact solution for all calculations. If both f dd’f dcoshsY ', 1/ (6,8)sYim(6,¢)= 611 Smm,
scalars and tensors are contributing to a particular combina- 0 -1

tion then the power spectrum for that combination is ob-

tained by adding the individual contributions. Cross- * Py — Y _ ,
correlation terms between different types of perturbations %‘ $Vim( 0, 9)sYim(60",¢7) = 0($= §7) o(coS—coss’).
vanish after the integration over azimuthal angldoth for (A1)
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An important property of spis- functions is that there (I—s)1]2/? .
exists a spin raisingowering operatord () with the prop- sVim= I 0%Y|n(0=s=l),
erty of raising (lowering the spin weight of a function,
(0sF)" =e ' CTI £ (5.F)" =e D5 . Their explicit (1+s)1]1/2 _
expression is given by Yim= = (—=1)°67%,, (—I<s<0).
o 9 K P
0sf(6,¢)= —sir(6) a0 'csa 0)ﬂ¢ SN0t (8. ). The following properties of spin-weighted harmonics are
also useful:
- L J J | .
0sf (6, )= —sin™¥( 0)[ﬁ—|csq 0)ﬁ sinf(0)f(0, ). YE=(—1)% Y,

(A2)
OsYim=[(1=8) (I +s+ 1)1 1Yim,
In this paper we are interested in polarization, which is a

quantity of spin=2. Thed andd operators acting twice on SSYlm: —[(1+s)(1=s+1) 1% 1Yim,
a function . ,f(u,¢) that satisfiesd,f =imsf can be ex-
pressed as 30sY | m=—(1=8)(I+s+1)Y . (A5)
2
— m . . .
32.f(u, :( ot ) 1— u?)f (. d)], Fmglly, to construct a map of p(_)larlzatlon one needs an ex-
2t (1 &) N (=00 ()] plicit expression for the spin-weighted functions:
2 1/2
m - M =m)! 21+1
2 = — 3y — —_ 2 _aimg )
0 *Zf(/d‘v¢) ( a/‘l‘ 1_M2) [(1 M )*Zf(lu‘!d))]a sYIm(n) € (|+S)I(I_S)I Aar Slnz(alz)
(A3)
[—s I+s
where u=cos(@). With the aid of these operators one can XZ r r+s—m
expressgY|, in terms of the spin-zero spherical harmonics
Y\m, Which are the usual spherical harmonics: X(—1)' 7St Mo FSTM(/2). (AB)
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