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Using the formalism of spin-weighted functions we present an all-sky analysis of polarization in the cosmic
microwave background~CMB!. Linear polarization is a second-rank symmetric and traceless tensor, which can
be decomposed on a sphere into spin62 spherical harmonics. These are the analogues of the spherical
harmonics used in the temperature maps and obey the same completeness and orthogonality relations. We
show that there exist two linear combinations of spin62 multipole moments which have opposite parities and
can be used to fully characterize the statistical properties of polarization in the CMB. Magnetic-type parity
combination does not receive contributions from scalar modes and does not cross correlate with either tem-
perature or electric-type parity combination, so there are four different power spectra that fully characterize
statistical properties of CMB. We present their explicit expressions for scalar and tensor modes in the form of
line of sight integral solution and numerically evaluate them for a representative set of models. These general
solutions differ from the expressions obtained previously in the small scale limit both for scalar and tensor
modes. A method to generate and analyze all-sky maps of temperature and polarization is given and the
optimal estimators for various power spectra and their corresponding variances are discussed.
@S0556-2821~97!06704-0#

PACS number~s!: 98.70.Vc, 98.80.Cq

I. INTRODUCTION

The field of cosmic microwave background~CMB!
anisotropies has become one of the main testing grounds for
the theories of structure formation and early universe. Since
the first detection by the Cosmic Background Explorer
~COBE! satellite@1# there have been several new detections
on smaller angular scales~see@2# for a recent review!. There
is hope that future experiments such as MAP@3# and
COBRAS/SAMBA @4# will accurately measure the anisotro-
pies over the whole sky with a fraction of a degree angular
resolution, which will help to determine several cosmologi-
cal parameters with an unprecedented accuracy@5#. Not all
of the cosmological parameters can be accurately determined
by the CMB temperature measurements. On large angular
scales cosmic variance~finite number of multipole moments
on the sky! limits our ability to extract useful information
from the observational data. If a certain parameter only
shows its signature on large angular scales then the accuracy
with which it can be determined is limited. For example,
contribution from primordial gravity waves, if present, will
only be important on large angular scales. Because both sca-
lar and tensor modes contribute to the temperature anisot-
ropy one cannot accurately separate them if only a small
number of independent realizations~multipoles! contain a
significant contribution from tensor modes. Similarly, reion-
ization tends to uniformly suppress the temperature anisotro-
pies for all but the lowest multipole moments and is thus
almost degenerate with the amplitude@5,6#.

It is clear from previous discussion that additional infor-
mation will be needed to constrain some of the cosmological
parameters. While the epoch of reionization could in prin-
ciple be determined through the high redshift observations,
primordial gravity waves can only be detected at present
from CMB observations. It has been long recognized that
there is additional information present in the CMB data in
the form of linear polarization@7–12#. Polarization could be
particularly useful for constraining the epoch and degree of
reionization because the amplitude is significantly increased
and has a characteristic signature@13#. Recently it was also
shown that density perturbations~scalar modes! do not con-
tribute to polarization for a certain combination of Stokes
parameters, in contrast with the primordial gravity waves
@14–16#, which can therefore in principle be detected even
for very small amplitudes. Polarization information which
will potentially become available with the next generation of
experiments will thus provide significant additional informa-
tion that will help to constrain the underlying cosmological
model.

Previous work on polarization has been restricted to the
small scale limit ~e.g., @8–10,14,17,18#!. The correlation
functions and corresponding power spectra were calculated
for the StokesQ andU parameters, which are defined with
respect to a fixed coordinate system in the sky. While such a
coordinate system is well defined over a small patch in the
sky, it becomes ambiguous once the whole sky is considered
because one cannot define a rotationally invariant orthogonal
basis on a sphere. Note that this is not problematic if one is
only considering cross-correlation function between polar-
ization and temperature@10,11#, where one can fixQ or U at
a given point and average over temperature, which is rota-
tionally invariant. However, if one wants to analyze the auto-
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correlation function of polarization or perform directly the
power spectrum analysis on the data~which, as argued in
@14#, is more efficient in terms of extracting the signal from
the data! then a more general analysis of polarization is re-
quired. A related problem is the calculation of rotationally
invariant power spectrum. Although it is relatively simple to
calculateQ andU in the coordinate system where the wave
vector describing the perturbation is aligned with thez axis,
superposition of the different modes becomes complicated
becauseQ and U have to be rotated to a common frame
before the superposition can be done. Only in the small scale
limit can this rotation be simply expressed@14#, so that the
power spectra can be calculated. However, as argued above,
this is not the regime where polarization can make the most
significant impact in breaking the parameter degeneracies
caused by cosmic variance. A more general method that
would allow one to analyze polarization over the whole sky
has been lacking so far.

In this paper we present a complete all-sky analysis of
polarization and its corresponding power spectra. In Sec. II
we expand polarization in the sky in spin-weighted harmon-
ics @19,20#, which form a complete and orthonormal system
of tensor functions on the sphere. Recently, an alternative
expansion in tensor harmonics has been presented@16#. Our
approach differs both in the way we expand polarization on a
sphere and in the way we solve for the theoretical power
spectra. We use the line of sight integral solution of the
photon Boltzmann equation@21# to obtain the correct expres-
sions for the polarization-polarization and temperature-
polarization power spectra both for scalar~Sec. III! and ten-
sor ~Sec. IV! modes. In contrast with previous work the
expressions presented here are valid for any angular scale
and in Sec. V we show how they reduce to the corresponding
small scale expressions. In Sec. VI we discuss how to gen-
erate and analyze all-sky maps of polarization and what the
accuracy is with which one can reconstruct the various
power spectra when cosmic variance and noise are included.
This is followed by discussion and conclusions in Sec. VII.
For completeness we review in the Appendix the basic prop-
erties of spin-weighted functions. All the calculations in this
paper are restricted to a flat geometry.

II. STOKES PARAMETERS AND SPIN- S
SPHERICAL HARMONICS

The CMB radiation field is characterized by a 232 inten-
sity tensorI i j . The Stokes parametersQ andU are defined
asQ5(I 112I 22)/4 andU5I 12/2, while the temperature an-
isotropy is given byT5(I 111I 22)/4. In principle the fourth
Stokes parameterV that describes circular polarization
would also be needed, but in cosmology it can be ignored
because it cannot be generated through Thomson scattering.
While the temperature is invariant under a right-handed ro-
tation in the plane perpendicular to directionn̂, Q and U
transform under rotation by an anglec as

Q85Qcos2c1Usin2c,

U852Qsin2c1Ucos2c, ~1!

where ê185coscê11sincê2 and ê2852sincê11coscê2. This
means we can construct two quantities from the StokesQ
andU parameters that have a definite value of spin~see the
Appendix for a review of spin-weighted functions and their
properties!:

~Q6 iU !8~ n̂!5e72ic~Q6 iU !~ n̂!. ~2!

We may therefore expand each of the quantities in the ap-
propriate spin-weighted basis:

T~ n̂!5(
lm

aT,lmYlm~ n̂!,

~Q1 iU !~ n̂!5(
lm

a2,lm2Ylm~ n̂!,

~Q2 iU !~ n̂!5(
lm

a22,lm22Ylm~ n̂!. ~3!

Q andU are defined at a given directionn with respect to the
spherical coordinate system (êu ,êf). Using the first equation
in Eq. ~A5! one can show that the expansion coefficients for
the polarization variables satisfya22,lm* 5a2,l2m . For tem-
perature the relation isaT,lm* 5aT,l2m .

The main difficulty when computing the power spectrum
of polarization in the past originated in the fact that the
Stokes parameters are not invariant under rotations in the
plane perpendicular ton̂. While Q andU are easily calcu-
lated in a coordinate system where the wave vectork is par-
allel to ẑ, the superposition of the different modes is compli-
cated by the behavior ofQ andU under rotations@Eq. ~1!#.
For each wave vectork and direction on the skyn̂ one has to
rotate theQ andU parameters from thek and n̂ dependent
basis into a fixed basis on the sky. Only in the small scale
limit is this process well defined, which is why this approxi-
mation has always been assumed in previous work
@8–10,14,17#. However, one can use the spin raising and
lowering operatorsZ andZ defined in the Appendix to obtain
spin-zero quantities. These have the advantage of beingro-
tationally invariant like the temperature and no ambiguities
connected with the rotation of coordinate system arise. Act-
ing twice withZ, Z onQ6 iU in Eq. ~3! leads to

Z 2~Q1 iU !~ n̂!5(
lm

F ~ l12!!

~ l22!! G
1/2

a2,lmYlm~ n̂!,

Z2~Q2 iU !~ n̂!5(
lm

F ~ l12!!

~ l22!! G
1/2

a22,lmYlm~ n̂!. ~4!

The expressions for the expansion coefficients are

aT,lm5E dVYlm* ~ n̂!T~ n̂!, ~5!
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a2,lm5E dV2Ylm* ~ n̂!~Q1 iU !~ n̂!

5F ~ l12!!

~ l22!! G
21/2E dVYlm* ~ n̂!Z2~Q1 iU !~ n̂!,

a22,lm5E dV22Ylm* ~ n̂!~Q2 iU !~ n̂!

5F ~ l12!!

~ l22!! G
21/2E dVYlm* ~ n̂!Z2~Q2 iU !~ n̂!.

Instead ofa2,lm , a22,lm it is convenient to introduce their
linear combinations@20#

aE,lm52~a2,lm1a22,lm!/2,

aB,lm5 i ~a2,lm2a22,lm!/2. ~6!

These two combinations behave differently under parity
transformation: whileE remains unchangedB changes the
sign @20#, in analogy with electric and magnetic fields. The
sign convention in Eq.~6! makes these expressions consis-
tent with those defined previously in the small scale limit
@14#.

To characterize the statistics of the CMB perturbations
only four power spectra are needed, those forT, E, B and the
cross correlation betweenT and E. The cross correlation
betweenB andE or B and T vanishes becauseB has the
opposite parity ofT andE. We will show this explicitly for
scalar and tensor modes in the following sections. The power
spectra are defined as the rotationally invariant quantities

CTl5
1

2l11(m ^aT,lm* aT,lm&,

CEl5
1

2l11(m ^aE,lm* aE,lm&,

CBl5
1

2l11(m ^aB,lm* aB,lm&,

CCl5
1

2l11(m ^aT,lm* aE,lm&, ~7!

in terms of which,

^aT,l 8m8
* aT,lm&5CTld l 8 ldm8m ,

^aE,l 8m8
* aE,lm&5CEld l 8 ldm8m ,

^aB,l 8m8
* aB,lm&5CBld l 8 ldm8m ,

^aT,l 8m8
* aE,lm&5CCld l 8 ldm8m ,

^aB,l 8m8
* aE,lm&5^aB,l 8m8

* aT,lm&50. ~8!

For real space calculations it is useful to introduce two
scalar quantitiesẼ(n̂) and B̃(n̂) defined as

Ẽ~ n̂![2
1

2
@Zu2~Q1 iU !1Z2~Q2 iU !#

5(
lm

F ~ l12!!

~ l22!! G
1/2

aE,lmYlm~ n̂!,

B̃~ n̂![
i

2
@Z2~Q1 iU !2Z2~Q2 iU !#

5(
lm

F ~ l12!!

~ l22!! G
1/2

aB,lmYlm~ n̂!. ~9!

These variables have the advantage of being rotationally in-
variant and easy to calculate in real space. These are not
rotationally invariant versions ofQ andU, becauseZ2 and
Z2 are differential operators and are more closely related to
the rotationally invariant Laplacian ofQ andU. In l space
the two are simply related as

a~ Ẽ,B̃!,lm5F ~ l12!!

~ l22!! G
1/2

a~E,B!,lm . ~10!

III. POWER SPECTRUM OF SCALAR MODES

The usual starting point for solving the radiation transfer
is the Boltzmann equation. We will expand the perturbations
in Fourier modes characterized by wave vectork. For a given
Fourier mode we can work in the coordinate system where
ki ẑand (ê1 ,ê2)5(êu ,êf). For each plane wave the scattering
can be described as the transport through a plane parallel
medium @22,23#. Because of azimuthal symmetry only the
Q Stokes parameter is generated in this frame and its ampli-
tude only depends on the angle between the photon direction
and wave vector,m5n̂• k̂. The Stokes parameters for this
mode areQ5DP

(S)(t,k,m) andU50, where the superscript
S denotes scalar modes, while the temperature anisotropy is
denoted withDT

(S)(t,k,m). The Boltzmann equation can be
written in the synchronous gauge as@7,24#

ḊT
~S!1 ikmDT

~S!52
1

6
ḣ2

1

6
~ ḣ16ḣ !P2~m!

1k̇F2DT
~S!1DT0

~S!1 imvb1
1

2
P2~m!PG ,

ḊP
~S!1 ikmDP

~S!5k̇F2DP
~S!1

1

2
@12P2~m!#PG ,

P5DT2
~S!1DP2

~S!1DP0
~S! . ~11!

Here the derivatives are taken with respect to the conformal
time t. The differential optical depth for Thomson scattering
is denoted ask̇5anexesT , wherea(t) is the expansion fac-
tor normalized to unity today,ne is the electron density,xe is
the ionization fraction, andsT is the Thomson cross section.
The total optical depth at timet is obtained by integrating
k̇, k(t)5*t

t0k̇(t)dt. The sources in these equations involve
the multipole moments of temperature and polarization,
which are defined asD(k,m)5( l(2l11)(2 i ) lD l(k)Pl(m),
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wherePl(m) is the Legendre polynomial of orderl . Tem-
perature anisotropies have additional sources in metric per-
turbationsh andh and in baryon velocity termvb .

To obtain the complete solution we need to evolve the
anisotropies until the present epoch and integrate over all the
Fourier modes,

T~S!~ n̂!5E d3kj~k!DT
~S!~t5t0 ,k,m!,

~Q~S!1 iU ~S!!~ n̂!5E d3kj~k!e22ifk,nDP
~S!~t5t0 ,k,m!,

~Q~S!2 iU ~S!!~ n̂!5E d3kj~k!e2ifk,nDP
~S!~t5t0 ,k,m!,

~12!

wherefk,n is the angle needed to rotate thek and n̂ depen-
dent basis to a fixed frame in the sky. This rotation was a
source of complications in previous attempts to characterize
the CMB polarization. We will avoid it in what follows by
working with the rotationally invariant quantities. We intro-
ducedj(k), which is a random variable used to characterize
the initial amplitude of the mode. It has the following statis-
tical property:

^j* ~k1!j~k2!&5Pf~k!d~k12k2!, ~13!

wherePf(k) is the initial power spectrum.
To obtain the power spectrum we integrate the Boltzmann

equation~11! along the line of sight@21#:

DT
~S!~t0 ,k,m!5E

0

t0
dteixmST

~S!~k,t!, ~14!

DP
~S!~t0 ,k,m!5

3

4
~12m2!E

0

t0
dteixmg~t!P~k,t!,

ST
~S!~k,t!5gS DT,012ä1

v̇b
k

1
P

4
1
3P̈

4k2
D 1e2k~ḣ1ä !

1ġS vb
k

1
3Ṗ

4k2
D 1

3g̈P

4k2
,

P5DT2
~S!1DP2

~S!1DP0
~S! ,

where x5k(t02t) and a5(ḣ16ḣ)/2k2. We have intro-
duced the visibility functiong(t)5k̇exp(2k). Its peak de-
fines the epoch of recombination, which gives the dominant
contribution to the CMB anisotropies.

Because in theki ẑ coordinate frameU50 andQ is only
a function of m it follows from Eq. ~A3! that
Z2(Q1 iU )5Z2(Q2 iU ), so that 2alm522alm . Scalar
modes thus contribute only to theE combination andB van-
ishes identically. Acting with the spin raising operator twice
on the integral solution forDP

(S) @Eq. ~14!# leads to the fol-
lowing expressions for the scalar polarizationẼ:

D
Ẽ

~S!
~t0 ,k,m!52

3

4E0
t0
dtg~t!P~t,k!]m

2 @~12m2!2eixm#

5
3

4E0
t0
dtg~t!P~t,k!~11]x

2!2~x2eixm!.

~15!

The power spectra defined in Eq.~7! are rotationally in-
variant quantities so they can be calculated in the frame
whereki ẑ for each Fourier mode and then integrated over all
the modes, as different modes are statistically independent.
The present day amplitude for each mode depends both on
its evolution and on its initial amplitude. For temperature
anisotropyT it is given by @21#

CTl
~S!5

1

2l11E d3kPf~k!(
m

U E dVYlm* ~ n̂!E
0

t0
dtST

~S!~k,t!eixmU25~4p!2E k2dkPf~k!F E
0

t0
dtST

~S!~k,t! j l~x!G2,
~16!

where j l(x) is the spherical Bessel function of orderl and we used that in the ki ẑ frame
*dVYlm* (n̂)e

ixm5A4p(2l11)i l j l(x)dm0. For the spectrum ofE polarization the calculation is similar. Equation~15! is used
to compute the power spectrum ofẼ which combined with Eq.~10! gives

CEl
~S!5

1

2l11

~ l22!!

~ l12!! E d3kPf~k!(
m

U 34E0t0dVYlm* ~ n̂!E
0

t0
dtg~t!P~k,t!@11]x

2#2~x2eixm!U2
5~4p!2

~ l22!!

~ l12!! E k2dkPf~k!S 34E0t0dtg~t!P~t,k!~@11]x
2#2@x2 j l~x!# ! D 2

5~4p!2
~ l12!!

~ l22!! E k2dkPf~k!F34E0t0dtg~t!P~t,k!
j l~x!

x2 G2. ~17!
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To obtain the last expression we used the differential equa-
tion satisfied by the spherical Bessel functions,
j l912 j l8/x1@12 l ( l11)/x2# j l50. If we introduce

DTl
~S!~k!5E

0

t0
dtST

~S!~k,t! j l~x!,

DEl
~S!~k!5A~ l12!!

~ l22!! E0
t0
dtSE

~S!~k,t! j l~x!,

SE
~S!~kt!5

3g~t!P~t,k!

4x2
, ~18!

then the power spectra forT andE and their cross correla-
tion are simply given by

CT,El
~S! 5~4p!2E k2dkPf~k!@DT,El

~S! ~k!#2,

CCl
~S!5~4p!2E k2dkPf~k!DTl

~S!~k!DEl
~S!~k!. ~19!

Equations~18! and ~19! are the main results of this section.

IV. POWER SPECTRUM OF TENSOR MODES

The method of analysis used in previous section for scalar
polarization can be used for tensor modes as well. The situ-
ation is somewhat more complicated here because for each
Fourier mode gravity waves have two independent polariza-
tions usually denoted with1 and3. For our purposes it is
convenient to rotate this combination and work with the fol-
lowing two linear combinations:

j15~j12 i j3!/A2,

j25~j11 i j3!/A2, ~20!

wherej ’s are independent random variables used to charac-
terize the statistics of the gravity waves. These variables
have the statistical properties

^j1* ~k1!j
1~k2!&5^j2* ~k1!j

2~k2!&5
Ph~k!

2
d~k12k2!,

^j1* ~k1!j
2~k2!&50, ~21!

wherePh(k) is the primordial power spectrum of the gravity
waves.

In the coordinate frame wherek̂i ẑ and (e1 ,e2)5(eu ,ef)
tensor perturbations can be decomposed as@17,18#

DT
~T!~t,n̂,k!5@~12m2!e2ifj1~k!1~12m2!e22ifj2~k!#

3D̃T
~T!~t,m,k!,

~DQ
~T!1 iDU

~T!!~t,n̂,k!5@~12m!2e2ifj1~k!1~11m!2

3e22ifj2~k!#D̃P
~T!~t,m,k!,

~DQ
~T!2 iDU

~T!!~t,n̂,k!5@~11m!2e2ifj1~k!1~12m!2

3e22ifj2~k!#D̃P
~T!~t,m,k!, ~22!

whereD̃T
(T) andD̃P

(T) are the variables introduced by Polnarev
to describe the temperature and polarization perturbations
generated by gravity waves. They satisfy the Boltzmann
equation@8,18#

D̃
˙
T
~T!1 ikmD̃T

~T!52ḣ2k̇@D̃T
~T!2C#,

D̃
˙
P
~T!1 ikmD̃P

~T!52k̇@D̃P
~T!1C#,

C[F 110D̃T0
~T!1

1

7
D̃T2

~T!1
3

70
D̃T4

~T!

2
3

5
D̃P0

~T!1
6

7
D̃P2

~T!2
3

70
D̃P4

~T!G . ~23!

Just like in the scalar case these equations can be integrated
along the line of sight to give

DT
~T!~t0 ,n̂,k!5@~12m2!e2ifj1~k!1~12m2!e22ifj2~k!#

3E
0

t0
dteixmST

~T!~k,t!,

~DQ
~T!1 iDU

~T!!~t0 ,n̂,k!

5@~12m!2e2ifj1~k!1~11m!2e22ifj2~k!#

3E
0

t0
dteixmSP

~T!~k,t!,

~DQ
~T!2 iDU

~T!!~t0 ,n̂,k!

5@~11m!2e2ifj1~k!1~12m!2e22ifj2~k!#

3E
0

t0
dteixmSP

~T!~k,t!, ~24!

where

ST
~T!~k,t!52ḣe2k1gC,

SP
~T!~k,t!52gC. ~25!

Acting twice with the spin raising and lowering operators
on the terms withj1 gives
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Z2~DQ
~T!1 iDQ

~T!!~t0 ,n̂,k!5j1~k!e2ifE
0

t0
dtSP

~T!~k,t!S 2]m1
2

12m2D 2@~12m2!~12m!2eixm#

5j1~k!e2ifE
0

t0
dtSP

~T!~k,t!@2 Ê~x!2 i B̂~x!#@~12m2!eixm#,

Z2~DQ
~T!2 iDQ

~T!!~t0 ,n̂,k!5j1~k!e2ifE
0

t0
dtSP

~T!~k,t!S 2]m2
2

12m2D 2@~12m2!~11m!2eixm#

5j1e2if~k!E
0

t0
dtSP

~T!~k,t!@2 Ê~x!1 i B̂~x!#@~12m2!eixm#, ~26!

where we introduced operatorsÊ(x)52121x2@12]x
2#28x]x andB̂(x)58x12x2]x . Expressions for the terms proportional

to j2 can be obtained analogously.
For tensor modes all three quantitiesDT

(T) , D
Ẽ

(T)
, andD

B̃

(T)
are nonvanishing and given by

DT
~T!~t0 ,n̂,k!5@~12m2!e2ifj1~k!1~12m2!e22ifj2~k!#E

0

t0
dtST

~T!~t,k!eixm,

D
Ẽ

~T!
~t0 ,n̂,k!5@~12m2!e2ifj1~k!1~12m2!e22ifj2~k!#Ê~x!E

0

t0
dtSP

~T!~t,k!eixm,

D
B̃

~T!
~t0 ,n̂,k!5@~12m2!e2ifj1~k!2~12m2!e22ifj2~k!#B̂~x!E

0

t0
dtSP

~T!~t,k!eixm. ~27!

From these expressions and Eqs.~6! and ~21!, one can explicitly show thatB does not cross correlate with eitherT or E.
The temperature power spectrum can be obtained easily in this formulation:

CTl
~T!5

4p

2l11E k2dkPh~k!(
m

U E dVYlm* ~ n̂!E
0

t0
dtST

~T!~k,t!~12m2!e2ifeixmU2

54p2
~ l22!!

~ l12!! E k2dkPh~k!U E
0

t0
dtST

~T!~k,t!E
21

1

dmPl
2~m!~12m2!eixmU2

54p2
~ l22!!

~ l12!! E k2dkPh~k!U E
0

t0
dtST

~T!~k,t!E
21

1

dm
d2

dm2Pl~m!~12m2!2eixmU2

54p2
~ l22!!

~ l12!! E k2dkPh~k!U E
0

t0
dtST

~T!~k,t!E
21

1

dm
d2

dm2Pl~m!~11]x
2!2eixmU2

54p2
~ l22!!

~ l12!! E k2dkPh~k!U E
0

t0
dtST

~T!~k,t!E
21

1

dmPl~m!~11]x
2!2~x2eixm!U2

5~4p!2
~ l12!!

~ l22!! E k2dkPh~k!U E
0

t0
dtST

~T!~k,t!
j l~x!

x2 U2, ~28!

where we usedYlm5@(2l11)(l2m)!/(4p)( l1m)! #1/2Pl
m(m)eimf and Pl

m(m)5(21)m(12m2)m/2(dm/dmm)Pl(m). Note
that the calculation involved in the last step is the same as for the scalar polarization. The final expression agrees with the
expression given in@21#, which was obtained using the radial decomposition of the tensor eigenfunctions@25#. Although the
final result is not new, the simplicity of the derivation presented here demonstrates the utility of this approach and will in fact
be used to derive tensor polarization power spectra.

The expressions for theE andB power spectra are now easy to derive by noting that the angular dependence forD
Ẽ

(T)
and

D
B̃

(T)
in Eq. ~27! are equal to those forDT

(T) . The expressions only differ in theÊ andB̂ operators that can be applied after the
angular integrations are done. This way we obtain, using Eq.~10!,
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CEl
~T!5~4p!2E k2dkPh~k!U E

0

t0
dtSP

~T!~k,t!Ê~x!
j l~x!

x2 U2

5~4p!2E k2dkPh~k!S E
0

t0
dtSP

~T!~k,t!F2 j l~x!1 j l9~x!1
2 j l~x!

x2
1
4 j l8~x!

x G D 2,
CBl

~T!5~4p!2E k2dkPh~k!U E
0

t0
dtSP

~T!~k,t!B̂~x!
j l~x!

x2 U25~4p!2E k2dkPh~k!S E
0

t0
dtSP

~T!~k,t!F2 j l8~x!1
4 j l
x G D 2. ~29!

For computational purposes it is convenient to further sim-
plify these expressions by integrating by parts the derivatives
j l8(x) and j l9(x). This finally leads to

DTl
~T!5A~ l12!!

~ l22!! E0
t0
dtST

~T!~k,t!
j l~x!

x2
,

DE,Bl
~T! 5E

0

t0
dtSE,B

~T! ~k,t! j l~x!,

SE
~T!~k,t!5gS C2

C̈

k2
1
2C

x2
2

Ċ

kx
D 2ġS 2Ċ

k2
1
4C

kx
D

22g̈
C

k2
,

SB
~T!~k,t!5gS 4C

x
1
2Ċ

k
D 12ġ

C

k
. ~30!

The power spectra are given by

CXl
~T!5~4p!2E k2dkPh~k!@DXl

~T!~k!#2,

CCl
~T!5~4p!2E k2dkPh~k!DTl

~T!~k!DEl
~T!~k!, ~31!

whereX stands forT, E, or B. Equations~30! and ~31! are
the main results of this section.

V. SMALL SCALE LIMIT

In this section we derive the expressions for polarization
in the small scale limit. The purpose of this section is to
make a connection with previous work on this subject
@8,9,14,17# and to provide an estimate on the validity of the
small scale approximation. In the small scale limit one con-
siders only directions in the skyn̂ which are close toẑ, in
which case instead of spherical decomposition one may use a
plane wave expansion. For temperature anisotropies we re-
place

(
lm

aT,lmYlm~ n̂!→E d2lT~ l!ei l•u, ~32!

so that

T~ n̂!5~2p!22E d2lT~ l!ei l•u. ~33!

To expands562 weighted functions we use

2Ylm5F ~ l22!!

~ l12!! G
1/2

Z2Ylm→~2p!22
1

l 2
Z2ei l•u,

22Ylm5F ~ l22!!

~ l1s!! G
1/2

Z2Ylm→~2p!22
1

l 2
Z2ei l•u, ~34!

which leads to the expression

~Q1 iU !~ n̂!52~2p!2E d2l@E~ l!1 iB~ l!#
1

l 2
Z2ei l•u,

~Q2 iU !~ n̂!52~2p!2E d2l@E~ l!2 iB~ l!#
1

l 2
Z2ei l•u.

~35!

From Eq.~A2! we obtain, in the small scale limit,

1

l 2
Z2ei l•u52e22i ~f2f l !ei l•u,

1

l 2
Z2el•u52e2i ~f2f l !el•u, ~36!

where (l x1 i l y)5 leif l.
The above expression was derived in the spherical basis

where ê15êu and ê25êf , but in the small scale limit one
can define a fixed basis in the sky perpendicular to
ẑ, ê185êx and ê285êy . The Stokes parameters in the two co-
ordinate systems are related by

~Q1 iU !85e22if~Q1 iU !,

~Q2 iU !85e2if~Q2 iU !. ~37!

Combining Eqs.~35!–~37! we find

Q8~u!5~2p!22E d2l@E~ l!cos~2f l !2B~ l!sin~2f l !#e
i l•u,

U8~u!5~2p!22E d2l@E~ l!sin~2f l !1B~ l!cos~2f l !#e
i l•u.

~38!
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These relations agree with those given in@14#, which were
derived in the small scale approximation. As already shown
there, power spectra and correlation functions forQ andU
used in previous work on this subject@8,9,17# can be simply
derived from these expressions. Of course, for scalar modes
B(S)( l)50, while for the tensor modes bothE(T)( l) and
B(T)( l) combinations contribute.

The expressions forQ and U @Eq. ~38!# are easier to
compute in the small scale limit than the general expressions
presented in this paper@Eq. ~3!#, because Fourier analysis
allows one to use fast Fourier transform techniques. In addi-
tion, the characteristic signature of scalar polarization is
simple to understand in this limit and can in principle be
directly observed with the interferometer measurements@14#.
On the other hand, the exact power spectra derived in this
paper@Eqs.~18!, ~19!, and~30!, ~31!# are as simple or even
simpler to compute with the integral approach than their
small scale analogs. Note that this need not be the case if one
uses the standard approach where the Boltzmann equation is
first expanded in a hierarchical system of coupled differential
equations@7#. In Fig. 1 we compare the exact power spec-
trum ~solid lines! with the one derived in the small scale
approximation~dashed lines!, both for scalarE ~a! and ten-
sorE ~b! andB ~c! combinations. The two models are stan-
dard cold dark matter~CDM! with and without reionization.
The latter boosts the amplitude of polarization on large
scales. The integral solution for scalar polarization in the
small scale approximation was given in@21# and is actually
more complicated that the exact expression presented in this
paper. In the reionized case the small scale approximation
agrees well with the exact calculation even at very large
scales, while in the standard recombination scenario there are
significant differences forl,30. Even though the relative
error is large in this case, the overall amplitude on these
scales is probably too small to be observed.

For tensors the small scale approximation results in Eq.
~30! without the terms that containx21 or x22. Because
j l(x);0 for x, l these terms are suppressed byl21 and
l22, respectively, and are negligible compared to other terms
for large l . The small scale approximation agrees well with
the exact calculation forB combination@Fig. 1~c!#, espe-
cially for the no-reionization model. For theE combination
the agreement is worse and there are notable discrepancies
between the two even atl;100. We conclude that although
the small scale expressions for the power spectrum can pro-
vide a good approximation in certain models, there is no
reason to use these instead of the exact expressions. The
exact integral solution for the power spectrum requires no
additional computational expense compared to the small
scale approximation and it should be used whenever accurate
theoretical predictions are required.

VI. ANALYSIS OF ALL-SKY MAPS

In this section we discuss issues related to simulating and
analyzing all-sky polarization and temperature maps. This
should be especially useful for future satellite missions@3,4#,
which will measure temperature anisotropies and polariza-
tion over the whole sky with a high angular resolution. Such
an all-sky analysis will be of particular importance if reion-
ization and tensor fluctuations are important, in which case

polarization will give useful information on large angular
scales, where Fourier analysis~i.e., division of the sky into
locally flat patches! is not possible. In addition, it is impor-
tant to know how to simulate an all-sky map which preserves
proper correlations between neighboring patches of the sky
and with which small scale analysis can be tested for pos-
sible biases.

To make an all-sky map we need to generate the multi-
pole momentsaT,lm , aE,lm , andaB,lm . This can be done by
a generalization of the method given in@14#. For eachl one
diagonalizes the correlation matrixM115CTl , M225CEl ,
M125M215CCl and generates from a normalized Gaussian
distribution two pairs of random numbers~for real and
imaginary components ofal6m). Each pair is multiplied with
the square root of eigenvalues ofM and rotated back to the
original frame. This gives a realization ofaT,l6m and
aE,l6m with correct cross-correlation properties. ForaB,l6m

FIG. 1. Comparison between exact calculation~solid lines! and
small scale approximation~dashed lines! for standard CDM model
with and without reionization. In the latter case we use optical depth
of 0.2. The reionized models are the upper curves on large scales.
The comparison is for scalarE ~a! and tensorE ~b! and B ~c!
polarization power spectra. The spectra are in units of
T0
25(2.729 K)2 and are normalized to COBE. While the predic-

tions agree for largel there are significant discrepancies in certain
models for smalll .
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the procedure is simpler, because it does not cross correlate
with eitherT or E, so a pair of Gaussian random variables is
multiplied with CBl

1/2 to make a realization ofaB,l6m . Of
course, for scalarsaB,lm50.

Once aE,lm and aB,lm are generated we can form their
linear combinationsa2,lm anda22,lm , which are equal in the
scalar case. Finally, to make a map ofQ(n̂) andU(n̂) in the
sky we perform the sum in Eq.~3!, using the explicit form of
spin-weighted harmonicssYlm(n̂) @Eq. ~A6!#. To reconstruct
the polarization power spectrum from a map ofQ(n̂) and
U(n̂) one first combines them inQ1 iU andQ2 iU to ob-
tain spin 62 quantities. Performing the integral over
62Ylm @Eq. ~5!# projects out62alm , from which aE,lm and
aB,lm can be obtained.

Once we have the multipole moments we can construct
various power spectrum estimators and analyze their vari-
ances. In the case of full sky coverage one may generalize
the approach in@26# to estimate the variance in the power
spectrum estimator in the presence of noise. We will assume
that we are given a map of temperature and polarization with
Npix pixels and that the noise is uncorrelated from pixel to
pixel and also betweenT, Q, andU. The rms noise in the
temperature issT and that inQ andU is sP . If temperature
and polarization are obtained from the same experiment by
adding and subtracting the intensities between two orthogo-
nal polarizations then the rms noise in temperature and po-
larization are related bysT

25sP
2 /2 @14#.

Under these conditions and using the orthogonality of the
sYlm we obtain the statistical property of noise,

^~aT,lm
noise!* aT,l 8m8

noise &5
4psT

2

Npix
d l l 8dmm8,

^~a2,lm
noise!* a2,l 8m8

noise &5
8psP

2

Npix
d l l 8dmm8,

^~a22,lm
noise !* a22,l 8m8

noise &5
8psP

2

Npix
d l l 8dmm8,

^~a22,lm
noise !* a2,l 8m8

noise &50, ~39!

where by assumption there are no correlations between the
noise in temperature and polarization. With these and Eqs.
~6! and ~8! we find

^aT,lm* aT,l 8m8&5~CTle
2 l2sb

2
1wT

21!d l l 8dmm8,

^aE,lm* aE,l 8m8&5~CEle
2 l2sb

2
1wP

21!d l l 8dmm8,

^aB,lm* aB,l 8m8&5~CBle
2 l2sb

2
1wP

21!d l l 8dmm8,

^aE,lm* aT,l 8m8&5CCle
2 l2sb

2
d l l 8dmm8,

^aB,l 8m8
* aE,lm&5^aB,l 8m8

* aT,lm&50. ~40!

For simplicity we characterized the beam smearing by
el

2sb/2 wheresb is the Gaussian size of the beam and we
definedwT,P

2154psT,P
2 /N @14,26#.

The estimator for the temperature power spectrum is@26#

ĈTl5F(
m

uaT,lmu2

2l11
2wT

21Gel2sb
2
. ~41!

Similarly for polarization and cross correlation the optimal
estimators are given by@14#

ĈEl5F(
m

uaE,lmu2

2l11
2wP

21Gel2sb
2
,

ĈBl5F(
m

uaB,lmu2

2l11
2wP

21Gel2sb
2
,

ĈCl5F(
m

aE,lm* aT,lm1aE,lmaT,lm*

2~2l11! Gel2sb
2
. ~42!

The covariance matrix between the different estimators,
Cov(X̂X̂8)5^(X̂2^X̂&)(X̂82^X̂8&)& is easily calculated us-
ing Eq. ~40!. The diagonal terms are given by

Cov~ĈTl
2 !5

2

2l11
~ĈTl1wT

21el
2sb

2
!2,

Cov~ĈEl
2 !5

2

2l11
~ĈEl1wP

21el
2sb

2
!2,

Cov~ĈBl
2 !5

2

2l11
~ĈBl1wP

21el
2sb

2
!2,

Cov~ĈCl
2 !5

1

2l11
@ĈCl

2 1~ĈTl1wT
21el

2sb
2
!

3~ĈEl1wP
21el

2sb
2
!#. ~43!

The nonzero off diagonal terms are

Cov~ĈTlĈEl!5
2

2l11
ĈCl
2 ,

Cov~ĈTlĈCl!5
2

2l11
ĈCl~ĈTl1wT

21el
2sb

2
!,

Cov~ĈElĈCl!5
2

2l11
ĈCl~ĈEl1wP

21el
2sb

2
!. ~44!

These expressions agree in the small scale limit with those
given in @14#. Note that the theoretical analysis is more com-
plicated if all four power spectrum estimators are used to
deduce the underlying cosmological model. For example, to
test the sensitivity of the spectrum on the underlying param-
eter one uses the Fisher information matrix approach@5#. If
only temperature information is given then for eachl a de-
rivative of the temperature spectrum with respect to the pa-
rameter under investigation is computed and this information
is then summed over alll weighted by Cov21(ĈTl

2 ). In the
more general case discussed here instead of a single deriva-
tive we have a vector of four derivatives and the weighting is
given by the inverse of the covariance matrix,
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a i j5(
l

(
X,Y

]CXl

]si
Cov21~ĈXlĈY l!

]CYl

]sj
, ~45!

where a i j is the Fisher information or curvature matrix,
Cov21 is the inverse of the covariance matrix,si are the
cosmological parameters one would like to estimate, and
X,Y stands forT,E,B,C. For eachl one has to invert the
covariance matrix and sum overX andY, which makes the
numerical evaluation of this expression somewhat more in-
volved.

VII. CONCLUSIONS

In this paper we developed the formalism for an all-sky
analysis of polarization using the theory of spin-weighted
functions. We show that one can define rotationally invariant
electric and magnetic-type parity fieldsE and B from the
usualQ and U Stokes parameters. A complete statistical
characterization of CMB anisotropies requires four correla-
tion functions, the autocorrelations ofT, E, andB and the
cross correlation betweenE andT. The pseudoscalar nature
of B makes its cross correlation withT andE vanish. For
scalar modes theB field vanishes.

Intuitive understanding of these results can be obtained by
considering polarization created by each plane wave given
by directionk. Photon propagation can be described by scat-
tering through a plane-parallel medium. The cross section
only depends on the angle between photon directionn̂ and
k, so for a local coordinate system oriented in this direction
only theQ Stokes parameter will be generated, whileU will
vanish by symmetry arguments@22#. In the real universe one
has to consider a superposition of plane waves so this prop-
erty does not hold in real space. However, by performing the
analog of a plane wave expansion on the sphere this property
becomes valid again and leads to the vanishing ofB in the
scalar case. For tensor perturbations this is not true even in
this k dependent frame, because each plane wave consists of
two different independent ‘‘polarization’’ states, which de-
pend not only on the direction of plane wave, but also on the
azimuthal angle perpendicular tok. The symmetry above is
thus explicitly broken. BothQ andU are generated in this
frame and, equivalently, bothE andB are generated in gen-
eral.

Combining the formalism of spin-weighted functions and
the line of sight solution of the Boltzmann equation we ob-
tained the exact expressions for the power spectra both for
scalar and tensor modes. We present their numerical evalua-
tions for a representative set of models. A numerical imple-
mentation of the solution is publicly available and can be
obtained from the authors@27#. We also compared the exact
solutions to their analogs in the small scale approximation
obtained previously. While the latter are accurate for all but
the largest angular scales, the simple form of the exact solu-
tion suggests that the small scale approximation should be
replaced with the exact solution for all calculations. If both
scalars and tensors are contributing to a particular combina-
tion then the power spectrum for that combination is ob-
tained by adding the individual contributions. Cross-
correlation terms between different types of perturbations
vanish after the integration over azimuthal anglef both for

the temperature and for theE andB polarization, as can be
seen from Eqs.~15! and ~27!. This result holds even for the
defect models, where the same source generates scalar, vec-
tor, and tensor perturbations.

In summary, future CMB satellite missions will produce
all-sky maps of polarization and these maps will have to be
analyzed using techniques similar to the one presented in this
paper. Polarization measurements have the sensitivity to cer-
tain cosmological parameters which is not achievable from
the temperature measurements alone. This sensitivity is par-
ticularly important on large angular scales, where previously
used approximations break down and have to be replaced
with the exact expressions for the polarization power spectra
presented in this paper.
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APPENDIX: SPIN-WEIGHTED FUNCTIONS

In this appendix we review the theory of spin-weighted
functions and their expansion in spin-s spherical harmonics.
This was used in the main text to make an all-sky expansion
of StokesQ andU Stokes parameters. The main application
of these functions in the past was in the theory of gravita-
tional wave radiation~see, e.g.,@28#!. Our discussion follows
closely that of Goldberget al. @19#, which is based on the
work by Newman and Penrose@20#. We refer to these refer-
ences for a more detailed discussion.

For any given direction on the sphere specified by the
angles (u,f), one can define three orthogonal vectors, one
radial and two tangential to the sphere. Let us denote the
radial direction vector withn and the tangential withê1, ê2.
The latter two are only defined up to a rotation aroundn.

A function sf (u,f) defined on the sphere is said to have
spins if under a right-handed rotation of (ê1,ê2) by an angle
c it transforms assf 8(u,f)5e2 isc

sf (u,f). For example,
given an arbitrary vectora on the sphere the quantities
a•ê11 ia•ê2, n•a, and a•ê12 ia•ê2 have spin 1, 0, and
21, respectively. Note that we use a different convention for
rotation than Goldberget al. @19# to agree with the previous
literature on polarization.

A scalar field on the sphere can be expanded in spherical
harmonics,Ylm(u,f), which form a complete and orthonor-
mal basis. These functions are not appropriate to expand
spin-weighted functions withsÞ0. There exist analog sets
of functions that can be used to expand spin-s functions, the
so-called spin-s spherical harmonicssYlm(u,f). These sets
of functions ~one set for each particular spin! satisfy the
same completness and orthogonality relations:

E
0

2p

dfE
21

1

dcosusYl 8m8
* ~u,f!sYlm~u,f!5d l 8 ldm8m ,

(
lm

sYlm* ~u,f!sYlm~u8,f8!5d~f2f8!d~cosu2cosu8!.

~A1!
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An important property of spin-s functions is that there
exists a spin raising~lowering! operatorZ ~Z) with the prop-
erty of raising ~lowering! the spin weight of a function,
(Zsf )85e2 i (s11)cZsf , (Zsf )85e2 i (s21)cZsf . Their explicit
expression is given by

Zsf ~u,f!52sins~u!F ]

]u
1 icsc~u!

]

]f Gsin2s~u!sf ~u,f!,

Zsf ~u,f!52sin2s~u!F ]

]u
2 icsc~u!

]

]f Gsins~u!sf ~u,f!.

~A2!

In this paper we are interested in polarization, which is a
quantity of spin62. TheZ andZ operators acting twice on
a function 62f (m,f) that satisfies]fsf5 imsf can be ex-
pressed as

Z22f ~m,f!5S 2]m1
m

12m2D 2@~12m2!2f ~m,f!#,

Z222f ~m,f!5S 2]m2
m

12m2D 2@~12m2!22f ~m,f!#,

~A3!

wherem5cos(u). With the aid of these operators one can
expresssYlm in terms of the spin-zero spherical harmonics
Ylm , which are the usual spherical harmonics:

sYlm5F ~ l2s!!

~ l1s!! G
1/2

ZsYlm~0<s< l !,

sYlm5F ~ l1s!!

~ l2s!! G
1/2

~21!sZ2sYlm ~2 l<s<0!.

~A4!

The following properties of spin-weighted harmonics are
also useful:

sYlm* 5~21!s2sYl2m ,

ZsYlm5@~ l2s!~ l1s11!#1/2s11Ylm ,

ZsYlm52@~ l1s!~ l2s11!#1/2s21Ylm ,

ZZsYlm52~ l2s!~ l1s11!sYlm . ~A5!

Finally, to construct a map of polarization one needs an ex-
plicit expression for the spin-weighted functions:

sYlm~ n̂!5eimfF ~ l1m!! ~ l2m!!

~ l1s!! ~ l2s!!

2l11

4p G1/2sin2l~u/2!

3(
r

S l2s
r D S l1s

r1s2mD
3~21! l2r2s1mcot2r1s2m~u/2!. ~A6!
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