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We study the spectrum of primordial fluctuations in theories where the inflaton field is nonlinearly coupled
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Scales entering the theory through infrared divergences cause logarithmic corrections to the spectrum, tilting it
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I. INTRODUCTION

The inflationary scenario@1# allows us to consider how
the primordial seeds of macroscopic structures were gener-
ated in the Universe, since, because of its quantum nature,
the field that drives inflation can be decomposed into a mean
field and fluctuations around it. The former gives a homoge-
neous background of matter and the latter induces the pro-
duction of local inhomogeneities. These fluctuations evolve
and are amplified during the inflationary era. At the end of
this epoch, the inflaton field decays into relativistic ordinary
matter. Heuristic arguments show that, as a first approxima-
tion, a scale-invariant spectrum of density fluctuations re-
sults, in rough agreement with observations@2#.

Despite this success, the conventional method of identify-
ing the structure creating fluctuations with the quantum fluc-
tuations of the inflaton field during slow roll is conceptually
unsatisfactory, and eventually leads to an overestimation of
the produced density contrast~@3,4#!. The basic point is that
when we talk of the ‘‘metric,’’ or the density profile of the
Universe~as in ‘‘a Friedmann-Robertson-Walker metric,’’ or
even today, when we say ‘‘space-time is flat’’ when talking
about local physics! we are referring to a macroscopic con-
struct whereby microscopic~quantum! fluctuations of geom-
etry and matter fields are skipped over or coarse grained
away @5#. The difference between microscopic and macro-
scopic fluctuations is not merely one of wavelength: the real
difference is that macroscopic fluctuations, when left to un-
fold over the relevant space and time scales, effectively de-
cohere from each other and thus acquire individual reality.
Indeed, this is the process by which a quantum homogeneous
state ~such as the de Sitter invariant vacuum during slow
roll! may evolve into an inhomogeneous universe: decoher-
ence gives a formal device, such as the harmonic analysis of
quantum fluctuations, its physical content. Now, given that
macroscopic and microscopic fluctuations are to be distin-
guished~and structure formation definitively belongs to the
physics of the former, as cosmic structures are ‘‘classical,’’
individually existing objects!, the relationship between them

is not obvious and requires elucidation. In the same way that
the usual Brill-Hartle waves of general relativity@6#, being a
first-order effect, only react on the background metric at sec-
ond order, we should not expect microscopic fluctuations by
themselves to be lifted into the macroscopic level, but rather
that they will act on the macroscopic level as some higher-
order effect. The goal of this paper is to present a detailed
analysis of the action of microscopic fluctuations on the
macro level, obtaining from it an improved estimate of the
produced density contrast.

This issue can not even be posed correctly unless an open
system view of the inflaton dynamics is adopted. In this ap-
proach, the ‘‘decoherence,’’ that is, the conversion into
c-number, of theq-number fluctuations is due to the interac-
tion of the inflaton field with a partially unknown and uncon-
trolled environment. There are several proposals as to how
the exact separation of system and environment should be
carried out~@3,7,8#!.

In this paper we shall present an improved discussion of
to what extent primordial fluctuations are ‘‘quantum’’ or
‘‘classical,’’ from the viewpoint of the ‘‘consistent histo-
ries’’ approach to quantum mechanics@9#. As it turns out, a
detailed analysis of the conceptual difficulties of inflation
points the way to the solution of the quantitative problems as
well ~@3,4,10#!.

The consistent histories approach views quantum evolu-
tion as the coherent unfolding of individual histories for a
given system, the main physical input being the specification
of the particular histories relevant to the description of a
concrete observer’s experiences. For example, we could
choose our histories as containing an exhaustive description
of the values of all the fields in the theory at every space-
time location. A description in terms of these ‘‘fine grained’’
histories is equivalent to a full quantum field theoretic ac-
count of the dynamics. We shall rather assume that the rel-
evant histories for cosmological modeling are ‘‘coarse
grained.’’

Concretely, we shall assume that close enough fine
grained histories are physically indistinguishable and should
be bundled together as a single coarse grained history. Each
coarse grained history is thus labeled by the value of a typi-
cal or representative history within the bundle. The actual
histories in a given bundle will differ from this representative
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by amounts of the order of the quantum fluctuations of the
corresponding fields~we could consider also tighter or looser
coarse graining, but as a matter of fact these histories domi-
nate the actual evolution of the system@11#!.

Given a pair of coarse-grained histories, we can compute
the so-called decoherence functional~df! between them. The
df measures the quantum overlap between these two histo-
ries. If the df between any two histories of a given set is
strongly suppressed, then quantum interference effects will
be unobservable, and it will be possible to treat each history
classically, that is, to assign individual probabilities to each
of them. Moreover, the most likely histories will be those for
which the phase of the df is stationary, which yields the
‘‘equations of motion’’ for the representative history@12#.

Going back to the problem of generation of fluctuations in
inflation, our starting point is to assume that the evolution of
the model is described in terms of coarse grained histories as
said, and to compute the df between two generic coarse
grained histories. We shall show that, for a variety of models
involving coupling the inflaton to massless fields of different
spin, coarse grained histories are indeed mutually consistent,
and that the equations of motion, as derived from the deco-
herence functional, are stochastic. Thus, the representative
fields naturally evolve fluctuations, and these are responsible
for the creation of primordial density inhomogeneities at re-
heating.

It should be stressed that we are not assuming that the
representative fields are ‘‘classical’’; on the contrary, its
classical nature is a consequence of the theory itself, and
follows from the suppression of the df between generic
coarse grained histories. Physically, the representative field
is decohered by its progressive entanglement with the micro-
scopic quantum fluctuations which surround it. This en-
tanglement is a necessary consequence of the nonlinear in-
teraction between the two~for generic initial conditions!, and
at the level of the equations of motion for the representative
field it appears as damping, and noise. Thus, decoherence,
damping, and noise are just different manifestations of the
same process, a point further elaborated elsewhere~@4,11#!.

In what follows, we shall consider inflationary models
where the inflaton field is nonlinearly coupled to itself, and
to spin 1/2 and 1 massless fields, respectively~the spin 2
case has been dealt with in Ref.@4#!.

The paper is organized as follows. In the next section, we
consider in some detail a simple model of inflation, where
the inflaton interacts with itself through a cubic coupling.
Treating the fluctuations around the representative or physi-
cal value of the inflaton as a massless, minimally coupled
field, we shall derive the density contrast generated and dis-
cuss both the amplitude of the scale invariant spectrum and
the corrections to it. In the following two sections, we briefly
present the necessary adaptations when the inflaton is
coupled to massless, conformally invariant spin 1/2 and 1
fields, respectively, and discuss the corresponding changes in
the predictions of the theory. We summarize our results in
Sec. V.

II. FLUCTUATION GENERATION
FROM INFLATON SELF-COUPLING

A. The model

The production of the primordial seeds for structure gen-
eration began soon after the setup of inflation and ended in

the radiation dominated era. Although realistic description of
the phenomena that took place during this epoch requires a
detailed knowledge of the inflationary potential, it is com-
mon to consider toy models that simplify the mathematical
aspects of the problem, but are still accurate enough to give
a qualitative description of the related physics. We first con-
sider a cubic field theory as a model for the inflationary
universe:

V~f!5V~0!2 1
6 gf3, ~1!

wheref is a c-number, homogeneous field, whose precise
meaning shall be discussed below. The dynamics of geom-
etry is governed by the Friedmann equation

H25
V~f!

mP
2 , ~2!

whereH is the Hubble constant~we assume a spatially flat
Friedmann-Robertson-Walker~FRW! universe and work, in
this subsection, in the cosmological time frame! andmP is
Planck’s mass. This equation assumes vacuum dominance:
namely,

V~f!@ḟ2. ~3!

We shall also assume potential flatness, that is

V~f!;V~0!@gf3. ~4!

The field begins inflation at some small positive value and
then ‘‘rolls down’’ the slope of the potential~at some point
the potential must bend upwards again, but that concerns the
physics of reheating and shall not be discussed here
@13,14#!. The dynamics of the homogenous field is described
by the Klein-Gordon equation

f̈13Hḟ1~1/2!gf250 ~5!

~quantum corrections to this equation shall be discussed be-
low!. Under slow rollover conditions (f̈!3Hḟ), we find
the solution

f~ t !5f0H 12
gf0t

6H J 21

. ~6!

Slow roll over breaks down when

12
gf0t

6H
;
gf0

9H2 . ~7!

Vacuum dominance applies to the whole slow rolling pe-
riod under the mild boundf0<mP . Potential flatness re-
quiresH4/g2mP

2<1023. SinceH is essentially constant dur-
ing slow roll, the condition for enough inflationHt>60
impliesH2>10gf0. Current bounds onV suggest that this
bound is probably saturated; in this regime the flatness con-
dition is already satisfied given the other ones. The final
requirement on the model is enough reheating, namely
mP
2H2<(TGUT)

4.
The density contrast in the Universe is given in terms of

the fluctuations inf by the formula@15#
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S dr

r D
k
U
in

5H
dfk

ḟ
U
out

, ~8!

which relates the density contrast at horizon entry to the
amplitude of fluctuations at horizon exit. Conventional ac-
counts of the fluctuation generation process estimatedfk
from the value of the free quantum fluctuations of a scalar
field in a de Sitter universe (Hk23/2 at horizon crossing! and
thus find a Harrison-Zel’dovich~HZ! scale invariant spec-
trum with amplitude

H2

ḟ
;

g

H
;A g

f0
. ~9!

Thus, the observational bound of 1026 on the density con-
trast impliesg<10212f0.

One of the main aims of this paper is to present a different
estimate. In the approach to be presented below, the actual
fluctuations inf are much less than expected~of order
gk23/2), which leads to a revised estimatedr/r;(g/f0) ~no
square root!, and thus relaxing the bounds on the self-
coupling by six orders of magnitude. This is consistent with
recent findings by Matacz and by Calzetta and Hu@3,4#.

We proceed now to show how the revised estimate is
found.

B. Consistent histories account of fluctuation generation

Let us now upgrade the inflaton fieldf to a full fledged
quantum fieldF with a potential

V~F!5V~0!1cF2 1
6 gF3 ~10!

~we have added the linear term for renormalization pur-
poses!. The massless quantum fieldF obeys the Heisenberg
equation of motion

2hF2
dV

dF
50. ~11!

As described in the Introduction, we shall assume that the
fine details of the evolution of the inflaton are inaccessible to
cosmological observations. Thus, we shall split the field as in

F5f1w,

wheref represents a typical field history within a bundle of
indistinguishable configurations, andw describes the unob-
served microscopic fluctuations. We identifyf with the clas-
sical inflaton field of the previous subsection.w obeys lin-
earized equations

2hw2gfw50. ~12!

The equation forf is obtained by subtracting Eq.~12!
from Eq. ~11!:

2hf1c2 1
2 gf22 1

2 g^w2&f5 1
2 g~w22^w2&f!,

where ^ . . . &f means the expectation value of the quantity
between brackets, evaluated around a particular configura-
tion f of the physical field. If the constantc takes the value

c5 1
2g^w2&0 ~which corresponds to evaluatêw2& for the

false-vacuum configurationf50), and the right-hand side is
neglected, this equation admits the false vacuum solution
f50 in a de Sitter geometrygmn5 @1/(Ht)2# hmn .

We can also linearize this last expression to get the wave
equation for small fluctuations inf. The additional hypoth-
esis that the phases of the microscopic fieldw are aleatory
assures that the right-hand side of this equation is always
small. Indeed, if we were to identifyf with the expectation
value ofF, we would drop this term altogether. Since we are
not doing such an identification, we shall retain it a little
longer, simply observing that we can evaluate this term at the
false vacuumf50 configuration:

2hf1 1
2 g~^w2&f2^w2&0!5g j~x!, ~13!

where

j ~x![ 1
2 @w2~x!2^w2&f~x!# ~14!

is seen as a noise source. The self-correlation of this source
is given by the so-called noise kernel@4,16#:

N~x1 ,x2![
1
2 ^$ j ~x1!, j ~x2!%&f' 1

2 ^$ j ~x1!, j ~x2!%&0 .
~15!

The last term is a valid approximation provided the physical
field f remains close to its false vacuum configuration.

It is common to write Eq.~13! as

2hxf~x!1g2E d4x8A2
~4!gD~x,x8!f~x8!5g j~x!,

~16!

where

D~x,x8![2
1

2g

d^w2&~x!

df~x8!
U

f50

is the dissipation kernel~@4,16#!. The physical meaning of
the noise and dissipation kernels is borne out by the df be-
tween two histories described by different typical fields

D@f,f8#5E DwDw8ei [S~f1w!2S~f81w8!] ,

where the integral is over fluctuation fields matched on a
constant time surface in the far future. Actual evaluation
yields ~@4,16#!

D~f,f8!;e~ i I2R!,

I5S~f!2S~f8!1~g2/2!E d4xA2
~4!gd4x8

3A2
~4!g8~f2f8!~x!D~x,x8!~f1f8!~x8!,

R5~g2/2!E d4xA2
~4!gd4x8A2

~4!g8~f2f8!~x!N~x,x8!

3~f2f8!~x8!.
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We see that the dissipation kernel contributes to the phase
of the df close to the diagonal, and thus to the equations of
motion for the most likely histories, while the noise kernel
directly determines whether interference effects are sup-
pressed or not, and thus the consistency of the chosen coarse
grained histories.

C. Actual estimates of fluctuation generation

The above treatment of fluctuation generation implies that
there are essentially two sources of fluctuations inf,
namely, uncertainties in the initial value data off at the
beginning of inflation, and fluctuations induced by stochastic
sources during the slow roll period~as we shall see below,
noise generation cuts off naturally after horizon crossing!.

Let us assume that decoherence is efficient~see below!,
and thus that we can deal with each history individually.
Then we must conclude that only those histories where the
initial value off is exceptionally smooth may lead to infla-
tion ~see the Appendix!. This limitation on initial data for
inflation has been discussed by several authors, most notably
from numerical simulations by Goldwirth and Piran@17#, and
from general arguments by Calzetta and Sakellariadou,
Deruelle and Goldwirth@18#, and others. Discarding the fluc-
tuations in the initial conditions, we find the solution

f~x!5gE d4x1A2
~4!gGret~x,x1! j ~x1!,

whereGret is the scalar field retarded propagator, and the
two-point correlation function

1

2
^$f~xW ,t!,f~0,t!%&

'g2E d4x1A2
~4!gE d4x2A2

~4!gGret„~xW ,t!,x1…

3Gret„~0,t!,x2…N~x1 ,x2!.

The noise and dissipation kernels can be written as

N~x1 ,x2!'Re@^ j ~x1! j ~x2!&0#5Re~^w1w2&0
2!, ~17!

D~x1 ,x2!'Im~^w1w2&0
2!u~t12t2!. ~18!

Returning to the fluctuation field associated to thegF3

coupling, we can write

^w~x1!w~x2!&05H2L~r ,t1 ,t2!, ~19!

whereL is the dimensionless function

L~r ,t1 ,t2!5
1

2p2E
0

` dk

k2r
sin~kr ! f k~t1! f k* ~t2!. ~20!

The f k are the positive frequency modes for the free field in
a de Sitter geometry and are solutions for Eq.~12! valid to
first order. Thesef k are functions of one single variable
kt i :

f k~t i !5eikt i~12 ikt i !.

In the same ‘‘first-order’’ approach, we can consider that
Gret is well described by the free-field retarded propagator:

Gret~x,x1!52 i
H2

~2p!3
u~t2t1!E d3k

2k3
eik

W
•~xW2xW1!

3@ f k~t! f k* ~t1!2 f k* ~t! f k~t1!#.

It is easy to see that the spatial Fourier transform of this
quantity can be written asH2k23G(kt,b i), where we have
defined the dimensionless variableb i5kt i and the wave-
number dependence has been factorized out ofG. Moreover,
if we look at Eqs.~15!, ~19!, and~20!, we conclude that the
spatial Fourier transform of the noise kernel can be written in
principle asH4k23N(b1 ,b2); i.e., it depends onk only
through the k23 factor. The Fourier transform of
^f(x1)f(x2)& becomes

Dk~kt!5
1

4

g2

k3
1

~2p!6
E

2`

kt db1

b1
4 E

2`

kt db2

b2
4 G~kt,b1!G~kt,b2!

3N~k,b1 ,b2!. ~21!

The double integral in Eq.~21! represents a function of the
comoving wave numberk and the conformal timet which
appears in the one-variable combinationkt.

As we shall show below, fluctuation generation is effec-
tive only until horizon crossing. As thek mode of the field
becomes greater than the horizon whenkt521, the last
consideration suggests that the integrals in Eq.~21! can be
truncated at this value, and will therefore take the form

Dk~kt521!5
1

4

g2

k3
1

~2p!6
E

2`

21db1

b1
4 E

2`

21db2

b2
4 G~21,b1!

3G~21,b2!N~k,b1 ,b2!. ~22!

If we take the above equations at face value, we find no
explicit k dependence within the integrand, and therefore the
spectrum of field fluctuations can be written as

Dk
sca~t!}g2

1

k3
, ~23!

where the superscript indicates that this prediction corre-
sponds to a scalar field theory. This is, of course, the well-
established prediction of a scale-invariant spectrum of den-
sity fluctuations.

However, in a de Sitter geometry a minimally coupled
massless scalar field is not well defined at the infrared limit,
and the propagators associated to it are divergent@19#. We
can handle this problem by introducing an infrared cutoff
and studying the way in which this new parameter modifies
the Harrison-Zel’dovich spectrum~a small inflaton mass
would have the same physical effects!. Our new propagator
is

Lcut~r ,t1 ,t2!5
1

2p2E
kinfra

` dk

k2r
sin~kr ! f k~t1! f k* ~t2!. ~24!

We want to find thek dependence ofDk for the noise
kernel associated to the cubic coupling between two scalar
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fields,f andw. N is obtained immediately from Eq.~17! as
N(x1 ,x2)5H4 Re@Lcut

2 (r ,t1 ,t2)#. As it was already noted,
if we consider the retarded propagators for the free field, then
only N will have a nontrivialk dependence. Of course,k
will always appear as an adimensional quantitykinfra /k.

In order to analyze the emergence of corrective terms to a
HZ spectrum, it is convenient to note thatN can be written
as

N5NHZ1Ninfra ,

where NHZ is independent ofkinfra , and Ninfra contains
kinfra only as ln(k/kinfra). It is now evident that, after perform-
ing the double integration for theNHZ term in Eq.~22!, one
will arrive to the usualDk}k

23 Harrison-Zel’dovich spec-
trum. Furthermore, the logarithmic terms can be factored out
of the integral, i.e., the corrective terms to the spectrum will
have the form ln(k/kinfra), and Eq.~22! will just give the
amplitude for this corrections. This means that, provided the
phenomena that induce the generation of fluctuations are ef-
fective only until horizon crossing and that it is a good ap-
proximation to consider free-retarded propagators for the
field, the spectrum of fluctuations takes the form

Dk
sca~kt521!5

C

k3 F11BlnS k

kinfra
D G , ~25!

whereC is the Harrison-Zel’dovich amplitude andB is the
amplitude of the corrections. An actual evaluation shows that
B is positive and that its numerical value is about 531023.
This result tells us that the logarithmic corrections increase
the spectral power, specially for small scales~largek), and
the spectrum moves slightly to the blue.

As for the amplitude of the scale invariant part of the
spectrum, we may adopt the simple estimate Eq.~23!. This
leads to the revised boundg<1026f0 discussed at the be-
ginning of this section.

D. Loose ends

The method developed in this section to describe the gen-
eration of primordial fluctuations can be applied with only
trivial modifications to other nonlinear theories involving the
inflaton, as shall be demonstrated below by considering cou-
plings to spin 1/2 and 1 fields. However, before we proceed,
it is convenient to discuss in full two essential elements of
our argument, namely, that coarse grained histories described
by generic values off are truly consistent, and that super-
horizon fluctuations are dynamically decoupled from the
noise sources@more concretely, we must show that on super-

horizon scalesdfk;dtkḟ(t), since this formula enters the
derivation of Eq.~8!#.

Let us first consider the issue of consistency. We wonder
if the history we have considered, starting from vanishing
initial conditions at the beginning of inflation, is truly deco-
hered from any other history differing from it by amounts of
the order of the quantum fluctuations of a scalar field in de
Sitter space. If this is the case, then we are justified to treat
this history classically.

The answer to this question lies on whether the df be-
tween any such two histories is strongly suppressed or not. In
other terms, we must compute

22ln@ uD~f,f8!u#[g2E d4xA2g~x!d4x8A2g~x8!

3~f2f8!~x!N~x,x8!~f2f8!~x8!.

~26!

Or, Fourier transforming on the space variables

g2E d3k

~2p!3
dt

~Ht!4
dt8

~Ht8!4
~fk2fk8!~ t !

3Nk~t,t8!~fk2fk8!~t8!. ~27!

For each mode, the integral extends from the beginning of
inflation up to horizon crossing. Due to thet4 suppression
factor, the integral is actually dominated by the upper limit.
In this regime

Nk~t,t8!;H4/k3. ~28!

By choice, the value of the product of the fields is close to
the expectation value of quantum fluctuations, namely

~fk2fk8!~t!~fk2fk8!~t8!;~H2/k3!d~0!;~H2/k3!kinfra
23

~29!

~as follows from conventional quantization in the de Sitter
background!

Ek21 dt

~Ht!4
;k3/H4. ~30!

Finally,

2 ln@ uD~f,f8!u#[E d3k

~2pk!3 S gH D 2S k

kinfra
D 3. ~31!

As we have seen,g2/H2;g/f0;1026, and so decoher-
ence obtains for all modesk@102kinfra . For example, if we
take kinfra as corresponding to the horizon length at the be-
ginning of inflation, and fine tune the model so that this will
also correspond to the horizon today, all modes entering the
horizon prior to recombination would be classical in this
sense. Of course, in a realistic modelkinfra would be much
larger than today’s horizon, and all physically meaningful
modes will be decohered. In this case, moreover, we would
obtain decoherence even between histories much closer to
each other than the quantum limit.

Let us consider now the issue of noise on super horizon
scales. In order to arrive to the previous results, we have
considered the integration of our expression for the power
spectrum of the fluctuations of the field@Eq. ~21!# from the
beginning of inflation up to the moment in which each mode
k crossed the horizon. The full expression can be rewritten as
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Dk~t!52
g2

H4

1

~2p!6 H E2`

21db1

b1
4 E

2`

21db2

b2
4 G1G2N

1E
21

kt db1

b1
4 E

21

kt db2

b2
4 G1G2N

12E
21

kt db1

b1
4 E

2`

21db2

b2
4 G1G2N J , ~32!

where the second and third terms represent the contribution
of a given mode when it is outside the horizon. In the previ-
ous sections, we have ignored these terms. If we consider the
behavior of the noise kernelN far away from the horizon, it
is easy to verify that the last term may be effectively ignored.
The second term requires some additional considerations.
First we observe that the noise kernel is not oscillatory out-
side the horizon, so the sources at different times are strongly
correlated. We can writej k(t); j kAN(kt), where thej k are
time-independent Gaussian variables. The wave equation
that governs the evolution of each mode may be written as

2f̈k1~Ht!2k2fk~t!1g2E
2`

t dt8

~Ht8!4
D~t2t8!fk~t8!

5g jk~t!.g jkAN~kt!, ~33!

whereD, j k , andN indicate the spatial Fourier transforms
of the dissipation kernel, the source and the noise kernel,
respectively. When the mode is outside the horizon
(uktu!1), we can write the last equation as

2f̈k1g2E
2`

t dt8

~Ht8!4
D~t2t8!fk~t8!.g jkAN~kt!.

~34!

The dissipative term is dominated by the contribution
close to the upper limit, and it can be written as

g2

H4 dfk~t!E
2`

t dt8

t8 4D~t2t8!. ~35!

The dissipation kernel can be obtained from Eq.~18!. The
asymptotic expressions near and far away from the coinci-
dence limitt.t8 are, respectively,

A2 ~4!gDnear~t2t8!'
p

t8 4 S 53 ln@k~t2t8!#21.50D
3~t2t8!3,

A2 ~4!gDaway~t2t8!'2
pt

2k

1

t8 3sin@k~t2t8!#

3 ln@k~t2t8!#.

The upper formula holds whent2t8<k21. Dnear goes to
zero rapidly ast2t8→0 and its contribution to the integral
in Eq. ~35! will be completely negligible. Moreover, the os-
cillatory part ofDaway cancels the contribution of the dissi-
pative term far away from the coincidence limit. From these

observations, we conclude that dissipation is not effective for
modes that are outside the horizon, i.e., those modes behave
as a free field.

SinceN(kt) grows at most logarithmically, we find that
the particular solution to Eq.~33! vanishes faster than
O(t), while the homogeneous~growing! solution is ‘‘fro-
zen’’ into a constant value. Thus the value offk obeys the
usual ~classical! Klein-Gordon equation while beyond the
horizon, and the conventional derivation of Eq.~8! holds
@15#.

III. YUKAWA COUPLING

Now we consider the interaction between the inflaton field
and a massless Dirac field. The Lagrangian density for a
theory in which two Dirac fields are coupled to a scalar
massless field is

L5]mF]mF1
i

2
~C̄gm]mC2]mC̄gmC!1 f C̄CF,

where f is an arbitrary coupling constant. The equation of
motion for the inflatonF is

2hF1m2F2 f C̄C50.

If we consider the separation ofF in a mean field and fluc-
tuationsF5f1w, the linearized equation of motion for the
physical field is

2hf~x!1m2f~x!5 f j Yuk~x!,

where

j Yuk~x!5C̄~x!C~x!.

The noise kernel, defined as the mean value of the anticom-
mutator of the sources@see Eq.~15!#, takes the form

NYuk~x1 ,x2!'
1
2 ^$ j Yuk~x1!, j Yuk~x2!%&0

' 1
2 @^C̄~x1!C~x1!C̄~x2!C~x2!&01~1↔2!#.

~36!

The four-point function can be reduced to a product of
two-point functions which correspond to the fermionic
propagators:

^C̄~x1!C~x1!C̄~x2!C~x2!&5^C̄~x1!C~x2!&

3^C~x1!C̄~x2!&,

where

^C̄~x1!C~x2!&[2 iS1~x22x1!,

^C~x1!C̄~x2!&[2 iS2~x12x2!.

These expressions allow us to write the noise kernel as

NYuk~x1 ,x2!'2 1
2 f

2S2~x12x2!S
1~x22x1!. ~37!
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This expression is valid provided the scalar field remains
near its false vacuum configuration. As the spinor field is
conformally invariant, the propagators corresponding to a
curved space-time can be written in terms of those associated
to a Minkowskian geometry@20#. For a de Sitter background
geometry, we have

SdS
6 ~x1 ,x2!5H3~t1t2!

3/2SMink
6 ~x1 ,x2!.

The Minkowskian propagators for the spinor field can be
written as derivatives of the scalar field propagators

S652 igm]mD
656

1

~2p!3
gm]mE d3k

2k
ei ~6kx02kW•xW !.

The noise kernel takes the form

NYuk52 f 2H4~t1t2!
3]mDMink

2 ~x12x2!]
mDMink

2 ~x12x2!.

To arrive to a specific integral for the power spectrum
generated by the Yukawa coupling, we can proceed in close
analogy to the scalar field case@Eq. ~22!#:

Dk
Yuk~kt521!52

1

4

f 2

k3
H4

~2p!6
E

2`

21db1

b1
E

2`

21db2

b2

3G~21,b1!G~21,b2!N Yuk

N Yuk5
1

2
F~]mDMink

2 ]mDMink
2 1c.c.!,

whereF(•••) represents the three-dimensional Fourier trans-
form of (•••).

As we are now considering conformal fields, the propaga-
tors are perfectly defined and the last expression will produce
a ‘‘pure’’ HZ spectrum. As in the scalar field, there are no
relevant corrections coming from the ultraviolet limit. The
spectrum produced by this coupling will be of the scale-
invariant form

Dk
Yuk~kt521!5

C8

k3
.

As a rough approximation, we may takeC8' f 2H4, leading
to

dr

r
;
Hdf

ḟ
;
H3f

gf2 .

As we can writeH;Agf, we obtain

dr

r
;Ag

f
f .

Given our previous estimate for the self-coupling, agreement
between this expression and the observational data requires
that the coupling constantf;1023.

IV. ELECTROMAGNETIC COUPLING

As a last example, let us consider the coupling between
the inflaton field and a massless vectorial field. The Lagrang-

ian density for a theory with massless scalar and electromag-
netic fields is

L5~]m1 ieAm!F~]m2 ieAm!F*2 1
4 F

mnFmn

from which we can deduce the equation of motion

2~h2e2AmAm2 ie]mA
m!F22ieAm]mF50.

If we decompose the inflaton field in its physical and virtual
componentsF5f1w and write linearized equations, we
obtain

2hw50,

where we are assuming thatAm is always small and can be
thought as a fluctuation in the electromagnetic potential
Vm50. The more general caseAm5Vm1dAm would give
essentially the same results for the small deviationsdAm.
The equation for the physical field is

2~h2e2AmAm!f52ieAm]mw1 ie~]mA
m!w.

The right-hand side of this equation defines the source

j ~x!5„Am]mw1 1
2 ~]mA

m!w….

As usual, the noise kernel associated to this source is
N(x1 ,x2).^@ j (x1), j (x2)#&0 where

^ j ~x1! j ~x2!&0

5^Am~x1!A
n~x2!&0]m,1]n,2̂ w~x1!w~x2!&0

1 1
4 ]m,1]n,2̂ A

m~x1!A
n~x2!&0^w~x1!w~x2!&0

1 1
2 ]n ,2̂

Am~x1!A
n~x2!&0]m,1̂ w~x1!w~x2!&0

1 1
2]m,1̂ A

m~x1!A
n~x2!&0]n,2̂ w~x1!w~x2!&0 . ~38!

Before we proceed, it will be convenient to write this
expression in terms of the propagators of the interacting
fields. The scalar propagator has been considered in a previ-
ous section. It can be shown that a massless vectorial field
couples to the space-time curvature conformally. This result
implies that the covariant electromagnetic propagators for a
de Sitter geometry are identical to the Minkowskian ones
@20#:

^Aa~x1!Ab~x2!&dS5^Aa~x1!Ab~x2!&Mink[^Aa~x1!Ab~x2!&.

Rising indexes withgmn(xi)5(Ht i)
2hmn and adopting the

Feynman gauge, where the Minkowskian electromagnetic
and scalar propagators are related by

^Aa~x1!Ab~x2!&52 ihabD
1~x12x2!,

we obtain

^Aa~x1!Ab~x2!&dS5 iH 4~t1t2!
2hmnDMink

1 ~x12x2!.

As this is a propagator for a conformal field, it is well
defined and will not produce any correction to the power
spectrum. Only the factors which correspond to the inflaton
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in Eq. ~38! will produce corrections. In order to get these
corrections, we must consider the truncated scalar propaga-
tors defined in a previous section@see Eqs.~19! and~24!#. As
we have already seen, the cutoff dependence can be isolated
as log(k/kinfra), wherek is a parameter that will be associated
to the Fourier transform of the noise kernel. Thus we can say
that the sought for corrections will be logarithmic:

Dk
Em~kt521!5

C9

k3 F11B9lnS k

kinfra
D G .

As in the previous examples we considered,C9 is unde-
termined because it includes the square of the coupling con-
stant. Roughly,C9;H4e2, leading toe&1023 to match den-
sity production bounds. The ultraviolet contribution is
always irrelevant.B9 measures the relative importance of the
logarithmic corrections compared with the HZ background.

V. CONCLUSIONS

We considered fluctuation generation in the context of
three elementary regularizable field theories that represent
the interaction of the inflaton with itself and other massless
fields of different spin. In each case, we obtained the power
spectrum for the field fluctuationsDk , which can be easily
related to the primordial density inhomogeneities that consti-
tuted the seeds for structure generation. These fluctuations
are produced by a random noise source. We found that the
predicted spectrum is scale invariant when only conformal
fields contribute to the noise term; in a more general situa-
tion, such as when the source includes the virtual scalar field,
there appear logarithmic corrections.

Two features of our results stand out, namely, that we
satisfy current observational bounds on the amplitude of the
primordial spectrum for values of the inflaton self-coupling
much larger than previously reported, and that the correc-
tions to the HZ spectrum depend not only on the shape of the
inflaton potential, but also on what exactly the inflaton is
coupled to.

Concerning the first issue, it should be clear that the dras-
tic relaxation on the bounds for the inflaton self-coupling we
have obtained is related to much tighter bounds on the initial
conditions for the inflaton field than previously used. Of
course, this is not the only factor that determines this relax-
ation, for which we would also have to consider, at least, the
rôle of the dissipation terms, which have been ignored so far.
In this sense, it might seem that we have just traded one fine
tuning for another. However, it should be remembered that
the fine tuning of initial conditions is not added ad hoc to
match the COBE observations, but it is independently nec-
essary to obtain inflation at all. As a matter of fact, this fine
tuning is necessary even if we accept the usual estimate of
g/f0;10212. So, even if not yet totally satisfactory, it may
be said that the model has improved in regard to fine tuning.
As we mentioned previously, a similar result concerning fine
tuning has been obtained by Matacz@3# and by Calzetta and
Hu @4#. Matacz considered a phenomenological model of in-
flation consisting of a system surrounded by an environment
of time-dependent harmonic oscillators that back-react on the
former acting as a stochastic source of white noise. The ap-
proach by Calzetta and Hu consisted on coarse graining the

graviton degrees of freedom associated to the geometry of
space-time. The latter methodology is followed closely in the
present work. We complement its results in some aspects
such as making the explicit calculation of the most relevant
physical quantities, generalizing the possible interactions of
the scalar field, and computing the main corrections to the
scale invariant spectrum.

In the long run, it may well be that the second aspect of
our conclusions, namely, the much wider scope to seek cor-
rections to the fundamental Harrison-Zel’dovich spectrum,
will prove to be more relevant. Indeed, it is well known that
for any observed spectrum it is possible to ‘‘taylor’’ an in-
flationary potential that will reproduce it@21#. But thesead
hoc potentials have no other motivation than matching this
result, and more often than not are unmotivated or even
pathological from the standpoint of current high-energy
physics. The extra freedom afforded by the possibility that
the primordial spectrum of fluctuations could depend on the
coupling of the inflaton to other fields~which must exist if
we are to have reheating! could be the key to building sim-
pler and yet more realistic theories of the generation of pri-
mordial fluctuations.

Of course, the massless theories considered in this paper
are too simplistic to live up to this promise. Couplings to
massive fields, and even the possibility that the inflaton
could be part of a larger, maybe grand unified, theory, ought
to be considered before actual predictions may be extracted.
We continue our research on this key issue in early universe
cosmology.
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APPENDIX: HOMOGENEOUS INITIAL CONDITIONS

In this appendix we try to clarify the reasons why we have
considered homogeneous initial conditions at the beginning
of inflation. We show that the requirement of vacuum domi-
nance at the beginning of inflation excludes classical fluctua-
tions larger than 1026 of the conventional vacuum fluctua-
tions on any interesting scale.

To start with, we consider the energy density associated to
these classical fluctuations

r;ḟ21¹f21V~f! ~A1!

as measured by a comoving observer. The fluctuations in the
energy pick up first- and second-order terms, which are de-
noted asdr1 anddr2, respectively:
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dr1;ḟ0dḟ1V8~f!df,

dr2;dḟ21¹df21V9~f0!df2. ~A2!

We will only consider the second-order terms. These terms

dominate overdr1 for small ḟ0 . For modes far inside the
horizon the last term can be neglected. If the fluctuations
behave as a massless field, it follows that

drk;~dḟk!
25kphys

2 ~dfk!
2. ~A3!

As usual, the scalesk refer to comoving quantities, while the
kphys5k/a5kuHhu stand for quantities measured in terms of
physical lengths. The spatial average for the field fluctuations
can be written as

^dfkdfk8&'
~Hh!2

k
skd~k2k8!, ~A4!

wheresk measures the ratio between the classical fluctua-
tions in question and the quantum vacuum fluctuations in the
de Sitter invariant vacuum~which we include here only to
have something familiar to compare against!. This expres-
sion allows us to write

dr

r U
in

;S 1

mPH
D 2E d3kS kaD

2 ~Hh!2

k
skU

out

, ~A5!

where we have used the Einstein equation to substitute
r;(mPH)

22, and we have assumed that thed function in
^dfk

2& cancels the divergence associated to the infinite vol-
ume over which this average is taken. If we also assume that
sk obeys a power law, the last expression can be written as

dr

r
;S k4

a4mP
2H2Dsk , ~A6!

wherek corresponds to the lowest~in wavelength! fluctua-
tion scale. The scale factora and the quantitysk are evalu-
ated at the beginning of inflation. In terms of the physical
wavelength, we have

dr

r
;S l Pl horD

2S l hor
lphys

D 4sk . ~A7!

Obviously, the model is consistent only if this expectation
value is lower than one, i.e.:

sk<S l Pl horD
22S l hor

lphys
D 24

. ~A8!

This means that we have an upper limit for the amount of
classical fluctuations which are present~at a given scale! at
the beginning of inflation, if there is to be inflation at all.

The question we must face now is whether this bound still
allows for fluctuations the size of those which will build up
subsequently through matching to an effective stochastic
source, as we have demonstrated in the main part of this
paper. These latter fluctuations amount to around 1026 of the
quantum zero point fluctuations in the models we have con-
sidered.

The wavelengths where it is possible to havesk>1026

~so that initial classical fluctuations can dominate the fluc-
tuations generated from the stochastic source! must obey

lphys>1023/2Al p3 l hor . ~A9!

We now recall the known result

l P3 l hor5Tr
22 , ~A10!

whereTr is the reheating temperature. Thus, we have the
condition

lphys>1023/2
1

Tr
. ~A11!

It is convenient to phrase this condition in terms of the
present wavelength of the same fluctuation

lphysu today>1023/2
1

Tr
3eN3

Tr
T0

, ~A12!

whereN is the number ofe foldings during inflation,Tr the
temperature at reheating, andT0 the temperature today.

In natural units,T0
21;10228d0, whered0 is the present

size of the horizon. Thus, we must have

lphysu today>10229.53eN3d0. ~A13!

Most inflationary models predict values ofN over 60 and
even larger. Thus, classical fluctuations that havesk>1026

at the beginning of inflation are excluded on any cosmologi-
cally relevant scale.
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