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Primordial fluctuations from nonlinear couplings
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We study the spectrum of primordial fluctuations in theories where the inflaton field is nonlinearly coupled
to massless fields and/or to itself. Conformally invariant theories generically predict a scale-invariant spectrum.
Scales entering the theory through infrared divergences cause logarithmic corrections to the spectrum, tilting it
towards the blue. We discuss in some detail whether these fluctuations are quantum or classical in nature.
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[. INTRODUCTION is not obvious and requires elucidation. In the same way that
the usual Brill-Hartle waves of general relativit§], being a
The inflationary scenaripl] allows us to consider how first-order effect, only react on the background metric at sec-
the primordial seeds of macroscopic structures were geneond order, we should not expect microscopic fluctuations by
ated in the Universe, since, because of its quantum naturéhemselves to be lifted into the macroscopic level, but rather
the field that drives inflation can be decomposed into a meathat they will act on the macroscopic level as some higher-
field and fluctuations around it. The former gives a homogeorder effect. The goal of this paper is to present a detailed
neous background of matter and the latter induces the pranalysis of the action of microscopic fluctuations on the
duction of local inhomogeneities. These fluctuations evolvenacro level, obtaining from it an improved estimate of the
and are amplified during the inflationary era. At the end ofproduced density contrast.
this epoch, the inflaton field decays into relativistic ordinary  This issue can not even be posed correctly unless an open
matter. Heuristic arguments show that, as a first approximasystem view of the inflaton dynamics is adopted. In this ap-
tion, a scale-invariant spectrum of density fluctuations reproach, the “decoherence,” that is, the conversion into
sults, in rough agreement with observati¢g@s c-number, of theg-number fluctuations is due to the interac-
Despite this success, the conventional method of identifytion of the inflaton field with a partially unknown and uncon-
ing the structure creating fluctuations with the quantum fluctrolled environment. There are several proposals as to how
tuations of the inflaton field during slow roll is conceptually the exact separation of system and environment should be
unsatisfactory, and eventually leads to an overestimation afarried out([3,7,9)).
the produced density contra$8,4]). The basic point is that In this paper we shall present an improved discussion of
when we talk of the “metric,” or the density profile of the to what extent primordial fluctuations are “quantum’” or
Universe(as in “a Friedmann-Robertson-Walker metric,” or “classical,” from the viewpoint of the “consistent histo-
even today, when we say “space-time is flat” when talkingries” approach to quantum mechani®. As it turns out, a
about local physigswe are referring to a macroscopic con- detailed analysis of the conceptual difficulties of inflation
struct whereby microscopi@uantum fluctuations of geom- points the way to the solution of the quantitative problems as
etry and matter fields are skipped over or coarse grainedell ([3,4,10).
away [5]. The difference between microscopic and macro- The consistent histories approach views quantum evolu-
scopic fluctuations is not merely one of wavelength: the reation as the coherent unfolding of individual histories for a
difference is that macroscopic fluctuations, when left to un-given system, the main physical input being the specification
fold over the relevant space and time scales, effectively desf the particular histories relevant to the description of a
cohere from each other and thus acquire individual realityconcrete observer's experiences. For example, we could
Indeed, this is the process by which a quantum homogeneoutioose our histories as containing an exhaustive description
state (such as the de Sitter invariant vacuum during slowof the values of all the fields in the theory at every space-
roll) may evolve into an inhomogeneous universe: decohertime location. A description in terms of these “fine grained”
ence gives a formal device, such as the harmonic analysis dfistories is equivalent to a full quantum field theoretic ac-
guantum fluctuations, its physical content. Now, given thatcount of the dynamics. We shall rather assume that the rel-
macroscopic and microscopic fluctuations are to be distinevant histories for cosmological modeling are ‘“coarse
guished(and structure formation definitively belongs to the grained.”
physics of the former, as cosmic structures are “classical,” Concretely, we shall assume that close enough fine
individually existing objects the relationship between them grained histories are physically indistinguishable and should
be bundled together as a single coarse grained history. Each
coarse grained history is thus labeled by the value of a typi-
*Electronic address: calzetta@iafe.uba.ar cal or representative history within the bundle. The actual
TElectronic address: relat@iafe.uba.ar histories in a given bundle will differ from this representative
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by amounts of the order of the quantum fluctuations of thehe radiation dominated era. Although realistic description of
corresponding fieldéve could consider also tighter or looser the phenomena that took place during this epoch requires a
coarse graining, but as a matter of fact these histories domdetailed knowledge of the inflationary potential, it is com-
nate the actual evolution of the systgfri]). mon to consider toy models that simplify the mathematical
Given a pair of coarse-grained histories, we can comput@spects of the problem, but are still accurate enough to give
the so-called decoherence functio(ef) between them. The 5 qualitative description of the related physics. We first con-

df measures the quantum overlap between these two hist@ider a cubic field theory as a model for the inflationary
ries. If the df between any two histories of a given set is|niverse:

strongly suppressed, then quantum interference effects will
be unobservable, and it will be possible to treat each history V() =V(0)— Lgdd 1
classically, that is, to assign individual probabilities to each ($)=V(0)~ 594" @

of them. Moreover, the most likely histories will be those forwhereqb is a c-number, homogeneous field, whose precise

which the pr]:ase of tr}e d‘; is stationary, Whri?hoﬁ'qigl]ds theeaning shall be discussed below. The dynamics of geom-
“equations of motion” for the representative hist . ; : :
Going back to the problem of generation of fluctuations inetry is governed by the Friedmann equation

inflation, our starting point is to assume that the evolution of V()
the model is described in terms of coarse grained histories as H2=—5", %)
said, and to compute the df between two generic coarse mp

grained histories. We shall show that, for a variety of models . .
involving coupling the inflaton to massless fields of differentWhereH is the Hubble constarive assume a spatially flat

spin, coarse grained histories are indeed mutually consisterfifiedmann-Robertson-WalkeFRW) universe and work, in
and that the equations of motion, as derived from the decohis subsection, in the cosmological time franasmd mp is
herence functional, are stochastic. Thus, the representatifdanck’s mass. This equation assumes vacuum dominance:
fields naturally evolve fluctuations, and these are responsibleamely,
for the creation of primordial density inhomogeneities at re- )
heating. V(¢p)> ¢2. ©)

It should be stressed that we are not assuming that the
representative fields are “classical”; on the contrary, its We shall also assume potential flatness, that is
classical nature is a consequence of the theory itself, and 3
follows from the suppression of the df between generic V(¢)~V(0)>ge”. 4
coarse grained histories. Physically, the representative field . L . .
is decohered by its progressive entanglement with the micro- 1€ field begins inflation at some small positive value and
scopic quantum fluctuations which surround it. This en-then “rolls down” the slope of the potentidat some point

tanglement is a necessary consequence of the nonlinear iH1€ Potential must bend upwards again, but that concerns the
teraction between the twi@or generic initial conditions and ~ Pysics of reheating and shall not be discussed here
at the level of the equations of motion for the representativgy?”l@' The dynamics of the homogenous field is described

field it appears as damping, and noise. Thus, decoherenc®y the Klein-Gordon equation
damping, and noise are just different manifestations of the
same process, a point further elaborated elsewtér&1]).

In what follows, we shall consider inflationary models
where the inflaton field is nonlinearly coupled to itself, and
to spin 1/2 and 1 massless fields, respectivge spin 2
case has been dealt with in RE4)).

b+3Hp+(1/2gh?=0 (5)

(quantum corrections to this equation shall be discussed be-

low). Under slow rollover conditionsé(<3H ¢), we find
the solution

The paper is organized as follows. In the next section, we -1

. ; . X . ; g oot
consider in some detail a simple model of inflation, where o=l 1— =11t . (6)
the inflaton interacts with itself through a cubic coupling. 6H
Treating the fluctuations around the representative or physi- S| I breaks d h
cal value of the inflaton as a massless, minimally coupled Ow roll over breaks down when
field, we shall derive the density contrast generated and dis- gbot g
cuss both the amplitude of the scale invariant spectrum and — 6_|—(|)~ 9_H(2)' (7)

the corrections to it. In the following two sections, we briefly
present the necessary adaptations when the inflaton is

coupled to massless, conformally invariant spin 1/2 and 1. (\j/acudum ::Ihomm_?(;]c; apphei to th%vvtholtg flm(‘)IV\{[ rolling pe-
fields, respectively, and discuss the corresponding changes fipd under the mild boundsy<mp. Potential flatness re-

: 40202 103 < ; :
the predictions of the theory. We summarize our results ifltireSH/g"mp=<10"". SinceH is essentially constant dur-

Sec. V. ing slow roll, the condition for enough inflatiohit=60
implies H2=10g¢,. Current bounds o) suggest that this
Il. ELUCTUATION GENERATION bound is probably saturated; in this regime the flatness con-
EROM INFLATON SELF-COUPLING dition is already satisfied given the other ones. The final
requirement on the model is enough reheating, namely
A. The model m,ng 2$(TGUT)4-

The production of the primordial seeds for structure gen- The density contrast in the Universe is given in terms of
eration began soon after the setup of inflation and ended ithe fluctuations inp by the formulal15]
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Sp c=39(¢?), (which corresponds to evaluatg?) for the

— , (8) false-vacuum configuratiop=0), and the right-hand side is

Pl out neglected, this equation admits the false vacuum solution

. _ _ #=0 in a de Sitter geometrg,,,= [1/(H7)?] 7,,,.

which relates the density contrast at horizon entry to the e can also linearize this last expression to get the wave
amplitude of fluctuatlo_ns at horlzc_)n exit. Conven'FlonaI ac-gquation for small fluctuations ith. The additional hypoth-
counts of the fluctuation generation process estimaf®  esis that the phases of the microscopic figldire aleatory
from the value of the free quglgr}gum fluctuations of a scalaisgyres that the right-hand side of this equation is always
field in a de Sitter universeHk™ **at horizon crossingand  gmal. Indeed, if we were to identif with the expectation
thus find a Harrison-Zel'dovicHZ) scale invariant spec- yajye ofd, we would drop this term altogether. Since we are

5
¢

in

trum with amplitude not doing such an identification, we shall retain it a little
) longer, simply observing that we can evaluate this term at the
H_N 9 _./8 (9) false vacuump=0 configuration:
¢ H b0
. _ —O¢+ 3 9((e?)s—(#%)0)=0i(x), (13
Thus, the observational bound of 10on the density con-
trast impliesg<10"12¢,,. where
One of the main aims of this paper is to present a different
estimate. In the approach to be presented below, the actual J0= 3 [02(X)— (92 4(X)] (14)

fluctuations in¢ are much less than expectédf order

gk~ ¥?), which leads to a revised estimaip/p~(9/¢o) (N0 is seen as a noise source. The self-correlation of this source
square root and thus relaxing the bounds on the self-is given by the so-called noise kerridl,16];
coupling by six orders of magnitude. This is consistent with
recent findings by Matacz and by Calzetta and[B4]. = 1/rj i ~ L1 i

We proceed now to show how the revised estimate is NOaX)= 2 ({100) 101 2<{J(Xl)’J(X2)}>O'(15)
found.

The last term is a valid approximation provided the physical
B. Consistent histories account of fluctuation generation field ¢ remains close to its false vacuum configuration.

Let us now upgrade the inflaton fielgl to a full fledged It is common to write Eq(13) as

qguantum field® with a potential
_ 2 4,1 [(4) ’ N — i
V(@)ZV(O)'FC(D— é_gq:,S (10) Dx¢(x)+g fd X — gD(X!X )¢(X ) gj(X),
(16)
(we have added the linear term for renormalization pur-
pose$. The massless quantum field obeys the Heisenberg where
equation of motion )
D(xx')= 1 &e)(x)
dv A= T 5g TSk
~00— 2==0. (11) 29 9¢(X') |,

) . ) is the dissipation kerngl[4,16]). The physical meaning of
As described in the Introduction, we shall assume that thg1e noise and dissipation kernels is borne out by the df be-

fine details of the evolution of the inflaton are inaccessible tween two histories described by different typical fields
cosmological observations. Thus, we shall split the field as in

=g+, D[¢,¢']=f DD’ e[S e,

where ¢ represents a typical field history within a bundle of _ ) _ _

indistinguishable configurations, and describes the unob- where the integral is over fluctuation fields matched on a

served microscopic fluctuations. We identifywith the clas- constant time surface in the far future. Actual evaluation

sical inflaton field of the previous subsectiap.obeys lin-  Yields ([4,16])

earized equations .
q D(, ') ~ell R,

—~O¢—gde=0. (12

The equation forg is obtained by subtracting Eq12) |=3(¢)—S(¢')+(92/2)f d*x\ Pgdix’
from Eq. (11):
XN (= ¢ ) (D (XX )b+ ") (X'),
—O¢+c—396°— 39(0?) =3 9(e*—(¢?)y),

where( . ..), means the expectation value of the quantity RZ(QZ/Z)f d*xvPgdx’ VHg' (¢— ") ON(X,X')
between brackets, evaluated around a particular configura-
tion ¢ of the physical field. If the constacttakes the value X(p—e")(X").



55 PRIMORDIAL FLUCTUATIONS FROM NONLINEAR COUPLINGS 1815

We see that the dissipation kernel contributes to the phada the same “first-order” approach, we can consider that
of the df close to the diagonal, and thus to the equations o6, is well described by the free-field retarded propagator:
motion for the most likely histories, while the noise kernel 5 s
directly determines whether interference effects are sup- G X Xe) = — | H o(7— )fﬂeik‘.(;;ﬂ
pressed or not, and thus the consistency of the chosen coarse re X, X (2m)3 T 2K

grained histories. . .
X[F(n) e (7)) = (D f(T2) ]

It is easy to see that the spatial Fourier transform of this
The above treatment of fluctuation generation implies thatjuantity can be written akl’k~3G(kr,3;), where we have
there are essentially two sources of fluctuations ¢in  defined the dimensionless variabfg=k7; and the wave-
namely, uncertainties in the initial value data #fat the  number dependence has been factorized ogt dfloreover,
beginning of inflation, and fluctuations induced by stochastidf we look at Eqgs.(15), (19), and(20), we conclude that the
sources during the slow roll periogs we shall see below, spatial Fourier transform of the noise kernel can be written in
noise generation cuts off naturally after horizon crosging  principle asH*k 3MB;,8,); i.e., it depends ork only
Let us assume that decoherence is efficisee belowy, through the k=3 factor. The Fourier transform of
and thus that we can deal with each history individually.{¢(x,) ¢(x,)) becomes
Then we must conclude that only those histories where the
initial value of ¢ is exceptionally smooth may lead to infla- 192 1 (kdBy (k7 dB,
tion (see the Appendjx This limitation on initial data for Aw(k)= 2K (27T)ﬁf_mﬁ_‘11 _m_gg(kT"Bl)g(kT"B2)
inflation has been discussed by several authors, most notably
from numerical simulations by Goldwirth and Pirgi¥], and XN(K,B1.82). (2D
from general arguments by Calzetta and Sakellariadou,

Deruelle and Goldwirtfi18], and others. Discarding the fluc- The double integral in Eq21) represents a function of the
tuations in the initial conditions, we find the solution comoving wave numbek and the conformal time- which

appears in the one-variable combination
. As we shall show below, fluctuation generation is effec-
— 4 (4) ’
¢(x)—gf d™X1 V=G Gre X, X0) 1 (Xa), tive only until horizon crossing. As thle mode of the field
becomes greater than the horizon whHer=—1, the last
where G is the scalar field retarded propagator, and theconsideration suggests that the integrals in 4) can be

C. Actual estimates of fluctuation generation

two-point correlation function truncated at this value, and will therefore take the form
1. o 1g? 1 [ [1dB,
5{¢(x,7),6(07)}) Akr=—1)=713 2m°) . gt 700—1219(— 1,81)
- XG(—1,82)N(k,B1,82)- 22
=02 %™ [ d TgGr(X.7x0) AL B ) #
If we take the above equations at face value, we find no
X Gred(0,7),X2)N(X1,X2). explicit k dependence within the integrand, and therefore the

spectrum of field fluctuations can be written as
The noise and dissipation kernels can be written as

1
. . N
N(X1, %) ~Re(j(x0)i (X2))o]=Re({¢1¢2)d),  (17) AAD=0* 23
D(Xq, %) =IM({@102)&) 0( 71— 7). (18  where the superscript indicates that this prediction corre-

sponds to a scalar field theory. This is, of course, the well-
Returning to the fluctuation field associated to tie®  established prediction of a scale-invariant spectrum of den-

coupling, we can write sity fluctuations.
However, in a de Sitter geometry a minimally coupled
{(o(X) @(X2))o= HZA(I',Tl,TZ), (19 massless scalar field is not well defined at the infrared limit,
and the propagators associated to it are diverfiest We
whereA is the dimensionless function can handle this problem by introducing an infrared cutoff

dk and studying the way in which this new parameter modifies
1 (= . the Harrison-Zel'dovich spectrunga small inflaton mass

—_ . *
A(r,71,7m2)= 2772J0 kzrsm(kr)fk( m)fi(72). (20 would have the same physical efféct®ur new propagator

is
The f| are the positive frequency modes for the free field in 1 dk
a de Sitter geometry and are solutions for Etp) valid to A1 _ fw sin(kn f fx 24
first order. Thesef, are functions of one single variable all71072) = 57 ki r KT nknf(r)fc(m2). (24

Kri:
I _ We want to find thek dependence oA, for the noise
fi(m)=e*Ti(1—ik). kernel associated to the cubic coupling between two scalar
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fields, ¢ and . N is obtained immediately from Eq17) as , o s ,
N(Xq,Xp)=H* REAZ(r,71,75)]. As it was already noted, —2In[|D(¢.,¢")|]=g f d*x\=g(x)d*x’ y=g(x")
if we consider the retarded propagators for the free field, then

only A will have a nontrivialk dependence. Of coursk, X(p= " )XIN(XX" ) (= )(X").
will always appear as an adimensional quaniity;./K. (26)
In order to analyze the emergence of corrective terms to a
HZ spectrum, it is convenient to note th&fcan be written
as Or, Fourier transforming on the space variables
N=Nuz+ Ninfra:

2] d°k dr dr’ et

where Nz is independent ofkia, and N, contains 9 (273 (Hn)? (Hr')4(¢k b (1)

Kinira ONIY @s Ink/kinia) - 1t is now evident that, after perform-

ing the double integration for th&},, term in Eq.(22), one XNi(7,7") (b= i) (7). (27)

will arrive to the usualA k™3 Harrison-Zel'dovich spec-

trum. Furthermore, the logarithmic terms can be factored out For each mode, the integral extends from the beginning of

of the integral, i.e., the corrective terms to the spectrum W'"inflation up to horizon crossing. Due to thé suppression

have the form Ifknra), and Eq.(22) will just give the factor, the integral is actually dominated by the er limit
amplitude for this corrections. This means that, provided th this: regirlne gratis actually ! y upper fimit.

phenomena that induce the generation of fluctuations are ef-
fective only until horizon crossing and that it is a good ap-
proximation to consider free-retarded propagators for the Ny (7,7")~H*K3. (28
field, the spectrum of fluctuations takes the form

By choice, the value of the product of the fields is close to
, (25 the expectation value of quantum fluctuations, namely

C
AFkr=—1)= 5| 1+BIn

kinfra)

whereC is the Harrison-Zel'dovich amplitude ardl is the Y, NG (1213 (42/L3\ -3
amplitude of the corrections. An actual evaluation shows that((f)k P (M) (b= b (7))~ (HTK) 5(0)~ (HK Kinra
B is positive and that its numerical value is about 50 3. (29)
This result tells us that the logarithmic corrections increase
the spectral power, specially for small scalesgek), and (as follows from conventional quantization in the de Sitter
the spectrum moves slightly to the blue. backgroung

As for the amplitude of the scale invariant part of the
spectrum, we may adopt the simple estimate @8). This 1 dr
leads to the revised bourg<10 8¢, discussed at the be- f 7~ K3HA, (30)
ginning of this section. (H7)

D. Loose ends Finally,

The method developed in this section to describe the gen-
eration of primordial fluctuations can be applied with only a3k [(g\?/ k \3
trivial modifications to other nonlinear theories involving the —In[|D(¢,¢')|]Ej Sk 3(ﬁ) (k ) . (3
inflaton, as shall be demonstrated below by considering cou- (2mk) infra
plings to spin 1/2 and 1 fields. However, before we proceed,
it is convenient to discuss in full two essential elements of As we have seerg?/H?~g/$,~10"8, and so decoher-
our argument, namely, that coarse grained histories describeghce obtains for all modgs>10%k;,. For example, if we
by generic values of are truly consistent, and that super- take k;, as corresponding to the horizon length at the be-
horizon fluctuations are dynamically decoupled from theginning of inflation, and fine tune the model so that this will
hoise sourcefmore concretely, we must show that on super-also correspond to the horizon today, all modes entering the
horizon scalesS¢,~ 87,.¢(t), since this formula enters the horizon prior to recombination would be classical in this
derivation of Eq.(8)]. sense. Of course, in a realistic modegl;,, would be much

Let us first consider the issue of consistency. We wondelarger than today’s horizon, and all physically meaningful
if the history we have considered, starting from vanishingmodes will be decohered. In this case, moreover, we would
initial conditions at the beginning of inflation, is truly deco- obtain decoherence even between histories much closer to
hered from any other history differing from it by amounts of each other than the quantum limit.
the order of the quantum fluctuations of a scalar field in de Let us consider now the issue of noise on super horizon
Sitter space. If this is the case, then we are justified to treagcales. In order to arrive to the previous results, we have
this history classically. considered the integration of our expression for the power

The answer to this question lies on whether the df bespectrum of the fluctuations of the fiel&q. (21)] from the
tween any such two histories is strongly suppressed or not. Iheginning of inflation up to the moment in which each mode
other terms, we must compute k crossed the horizon. The full expression can be rewritten as
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g> 1 -1dB; (—1dB, observations, we conclude that dissipation is not effective for
A(r)=— He W[ f ? ?ngzf\/' modes that are outside the horizon, i.e., those modes behave
e PSR as a free field.
krdB; (krdB, Since M(kr) grows at most logarithmically, we find that
+ jlﬁ_‘{ 71[3—421%92/\/ the particular solution to Eq(33) vanishes faster than

O(7), while the homogeneouirowing solution is “fro-
krdB; (~1dB, zen” into a constant value. Thus the value &f obeys the

+2f — —491%/\/}, (32)  usual (classical Klein-Gordon equation while beyond the
181 )= B horizon, and the conventional derivation of E@) holds

where the second and third terms represent the contributio%ls]'
of a given mode when it is outside the horizon. In the previ-
ous sections, we have ignored these terms. If we consider the IIl. YUKAWA COUPLING

behavior of the noise kerngVfar away from the horizon, it Now we consider the interaction between the inflaton field
is easy to verify that thellast term may bg effectlvely_ |gn0(ed.and a massless Dirac field. The Lagrangian density for a
The second term requires some additional considerationgneory in which two Dirac fields are coupled to a scalar
First we observe that the noise kernel is not oscillatory outynassiess field is

side the horizon, so the sources at different times are strongly
correlated. We can writg (7)~j vMk7), where thej, are J— — —
time-independent Gaussian variables. The wave equation £=J,Pd*P+ E(WVMﬁM‘P—ﬁﬂ‘I’V“‘I’)Jrf‘I"I’@,
that governs the evolution of each mode may be written as
wheref is an arbitrary coupling constant. The equation of

- T dr’ . i .
— i+ (HT)2K2 by ( 7-)+ng7 (HT)"’D(T_ ) (7)) motion for the inflatond is
~O®+mPd— Py =0.

=gik(1)=0jiVNK7), (33
If we consider the separation df in a mean field and fluc-

whereD, ji, andV indicate the spatial Fourier transforms tyations® = ¢+ ¢, the linearized equation of motion for the
of the dissipation kernel, the source and the noise kernephysical field is

respectively. When the mode is outside the horizon

(|kr|<1), we can write the last equation as —O¢(X)+M2B(X) = fyudX),

- T dr’ , , . where

_¢k+ng_ mD(T—TWk(T):ngVN(kT)- B
(34) Jyuk(X) =T(X) ¥ (X).
The dissipative term is dominated by the contributionThe noise kernel, defined as the mean value of the anticom-
close to the upper limit, and it can be written as mutator of the sourcesee Eq(15)], takes the form
2 ’ . .
g9 7 dr . Nyuk(X1,X2) =~ 3 X1), i vu(X
m‘sd)k( ’T) J‘iwﬁp(,r_ T ) (35) Yuk( 1 2) 2 <{Jilk( 1) JYuk(_Z)}>O
~ 3 [{(P(x) P (x) ¥ (%) ¥ (X2))o+ (12)].
The dissipation kernel can be obtained from ELg). The (36)
asymptotic expressions near and far away from the coinci-
dence limit7=7" are, respectively, The four-point function can be reduced to a product of
. two-point functions which correspond to the fermionic
’7T .
[ (4)ngnea( — T!)% F(gln[ k(T_ 7_/)] —1.50 propagators:
N3 (W(x) P (X)) W(x) W(X2)) = (¥ (x1) ¥ (X))
X(r—1")°, -
X(W (x1)W(X2)),
@ , ar 1 | ,
NV gDawa)( 77 )~— 2Kk FS"{ K(r—17")] where
s In[k(7— )], (W(x) W (xp))=—1S" X xy),

The upper formula holds when— 7' <k~ 1. Dy, goes to (\If(xl)\IT(xz))E—iS‘(xl—xz).

zero rapidly asr— 7' —0 and its contribution to the integral

in Eq. (35) will be completely negligible. Moreover, the os-  These expressions allow us to write the noise kernel as
cillatory part of D,,, cancels the contribution of the dissi-

pative term far away from the coincidence limit. From these Nyuk(X1,X2)~— 3 287 (X;—X)ST (x,—x1).  (37)
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This expression is valid provided the scalar field remaindan density for a theory with massless scalar and electromag-
near its false vacuum configuration. As the spinor field isnetic fields is

conformally invariant, the propagators corresponding to a

curved space-time can be written in terms of those associated L=(d,+ieA,)D(d,—ieA,)D* — 3 FAYF L

to a Minkowskian geometr§20]. For a de Sitter background

geometry, we have from which we can deduce the equation of motion
Sas(X1,%2) =H3(7172) ¥*Syjn( X1, X2). —(O-€*A*A, —ied, A*)D—2ieA"d, > =0.
The Minkowskian propagators for the spinor field can belf we decompose the inflaton field in its physical and virtual
written as derivatives of the scalar field propagators componentsb= ¢+ ¢ and write linearized equations, we
obtain
S*=—iy*9, DT ==+ ! 1y ok i(+kxg—k-x)
=—ly " _—(277_)37 " 2ke . _D(,DZO,

where we are assuming that* is always small and can be
thought as a fluctuation in the electromagnetic potential
Nyue= — F2HA(7175)39 D yink (X1 — X2) D ppinge (X1 — X2) . V#=0. The more general cas®*=V*+ 5A* would give
essentially the same results for the small deviatioAs'.
To arrive to a specific integral for the power spectrumThe equation for the physical field is
generated by the Yukawa coupling, we can proceed in close ) _ .
analogy to the scalar field cafgq. (22)]: —(L—€A*A,) p=2ieA'd o +ie(d A")¢.

12 H* [-1dB; (-1dB, The right-hand side of this equation defines the source

The noise kernel takes the form

AMMkr=-1)== 23 >—5| —| —
K 4 k3 (277)6 —w B1J)-= B2 j(X):(AM&M(P‘F %((QMAM)(P)-

_ _ Yuk
XG(= 1Y~ LN As usual, the noise kernel associated to this source is
1 N(X1,%2)=([](X1),](X2)])o where
N = SF(3,D ok Dini + €-€),

(J(X0)]j(%2))0

whereF(---) represents the three-dimensional Fourier trans- Y
() rep =(A*(X1)A"(X2))0d .19, K #(X1) @(X2) o

form of (---).
As we are how co.nsidering conformal fieId;, the.propaga— + %5M,1t9y,z<A”(X1)A”(Xz)>o<QD(Xl)90(X2)>o
tors are perfectly defined and the last expression will produce
a “pure” HZ spectrum. As in the scalar field, there are no + 50, (A (X)A”(X2) )od . 1{ (X1) 9(X2) Do
relevant corrections coming from the ultraviolet limit. The N ,
spectrum produced by this coupling will be of the scale- + 30, (A (XA (X2))odu A e(X1) ¢(X2))o- (38

invariant form L . . .
ariant fo Before we proceed, it will be convenient to write this

' expression in terms of the propagators of the interacting
AE“k(kT= -1)=—+%. fields. The scalar propagator has been considered in a previ-
ous section. It can be shown that a massless vectorial field
couples to the space-time curvature conformally. This result

As a rough approximation, we may taks ~f?H*, leading  “9UF . )
implies that the covariant electromagnetic propagators for a

to
de Sitter geometry are identical to the Minkowskian ones
Sp Hop H3f [20]:
o 9P (Aa(XD)Ag(X2)has= (Aa(X) Ag(X2) Duink=(Aa(X1) Ag(X2)) .
As we can writeH~ \/g¢, we obtain Rising indexes withg#”(x;)=(Hr,)?»*" and adopting the
Feynman gauge, where the Minkowskian electromagnetic
Sp \ﬁ : and scalar propagators are related by
p ¢

(AL(X)Az(X2))=—17,5D " (X1—Xz),
Given our previous estimate for the self-coupling, agreement .

between this expression and the observational data requircg\’se obtain
that the coupling constarit~10"3.
(AL(X1)Ag(X2) ) as= IH*(7172) 2 7*"D i (X1 — X2).

IV. ELECTROMAGNETIC COUPLING - : -
As this is a propagator for a conformal field, it is well
As a last example, let us consider the coupling betweemnlefined and will not produce any correction to the power

the inflaton field and a massless vectorial field. The Lagrangspectrum. Only the factors which correspond to the inflaton
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in Eqg. (38) will produce corrections. In order to get these graviton degrees of freedom associated to the geometry of
corrections, we must consider the truncated scalar propagapace-time. The latter methodology is followed closely in the
tors defined in a previous sectifpgee Eqs(19) and(24)]. As  present work. We complement its results in some aspects
we have already seen, the cutoff dependence can be isolatedch as making the explicit calculation of the most relevant
as logkkiira) ,» Wherek is a parameter that will be associated physical quantities, generalizing the possible interactions of
to the Fourier transform of the noise kernel. Thus we can sathe scalar field, and computing the main corrections to the

that the sought for corrections will be logarithmic: scale invariant spectrum.
In the long run, it may well be that the second aspect of
" our conclusions, namely, the much wider scope to seek cor-
AfM(kr=—-1)= & 1+ B"ln(k ” rections to the fundamental Harrison-Zel'dovich spectrum,
infra will prove to be more relevant. Indeed, it is well known that

for any observed spectrum it is possible to “taylor” an in-
flationary potential that will reproduce [i21]. But thesead
"Hoc potentials have no other motivation than matching this
result, and more often than not are unmotivated or even
pathological from the standpoint of current high-energy
physics. The extra freedom afforded by the possibility that
the primordial spectrum of fluctuations could depend on the
coupling of the inflaton to other fieldavhich must exist if

V. CONCLUSIONS we are to have reheatipgould be the key to building sim-
pler and yet more realistic theories of the generation of pri-

As in the previous examples we consider€d,is unde-
termined because it includes the square of the coupling co
stant. RoughlyC”~H%e?, leading toe<10" 3 to match den-
sity production bounds. The ultraviolet contribution is
always irrelevantB” measures the relative importance of the
logarithmic corrections compared with the HZ background.

We considered fluctuation generation in the context o . .
three elementary regularizable field theories that represefgordial fluctuations. _ . o
the interaction of the inflaton with itself and other massless ©f course, .th_e mas_sless theong—:-s cons!dered n t_h|s paper
fields of different spin. In each case, we obtained the powef'® too S'!“P"S“C to live up to this promise. Coupllngs to
spectrum for the field fluctuations,, which can be easily Massive fields, and even the possmlllty_ 'that the inflaton
related to the primordial density inhomogeneities that consti—co'Jld be part of a larger, maybe gra_nd_ unified, theory, ought
tuted the seeds for structure generation. These fluctuatior} be con5|dered before actual pred|ct!ons may be extr_acted.
are produced by a random noise source. We found that th e continue our research on this key issue in early universe
predicted spectrum is scale invariant when only conformaF°Smology.
fields contribute to the noise term; in a more general situa-
tion, such as when the source includes the virtual scalar field, ACKNOWLEDGMENTS
there appear logarithmic corrections.

Two features of our results stand out, namely, that Weg
satisfy current observational bounds on the amplitude of th
primordial spectrum for values of the inflaton self-coupling E
much larger than previously reported, and that the correc-
tions to the HZ spectrum depend not only on the shape of th

Ln(;‘ll?t?end pt)c())tentlal, but also on what exactly the inflaton IS bhase TransitiongSaint John's College, Santa Fe, New
P : Mexico), where parts of it were completed. This work has

Concerning the first issue, it should be clear that the dras[-)een partially supported by Universidad de Buenos Aires
tic relaxation on the bounds for the inflaton self-coupling we ONICET and Fundaciv Antorchas, and by the Commis- '
have obtained is related to much tighter bounds on the initia ion of the European Communities L;nder Contract No. CI1*
conditions for the inflaton field than previously used. Of CJ94-0004 '

course, this is not the only factor that determines this relax-
ation, for which we would also have to consider, at least, the
role of the dissipation terms, which have been ignored so far. APPENDIX: HOMOGENEOUS INITIAL CONDITIONS

In this sense, it might seem thfit we have just traded one fine |, this appendix we try to clarify the reasons why we have
tuning for another. However, it should be remembered that,ngjgered homogeneous initial conditions at the beginning
the fine tuning of initial conditions is not added ad hoc t0 ¢ inflation. We show that the requirement of vacuum domi-
match the COBE observations, but it is independently necqance ot the beginning of inflation excludes classical fluctua-

essary to obtain inflation at all. As a matter of fact, this finey,o larger than 10° of the conventional vacuum fluctua-
tuning is necessary even if we accept the usual estimate @f,n5 on any interesting scale.

g/ po~10"*2 So, even if not yet totally satisfactory, it may 1 gtart with, we consider the energy density associated to
be said that the model has improved in regard to fine tuningy,ase classical fluctuations

As we mentioned previously, a similar result concerning fine

tuning has been obtained by Matd&} and by Calzetta and _

Hu [4]. Matacz considered a phenomenological model of in- p~ P2+ V P2+ V() (A1)
flation consisting of a system surrounded by an environment

of time-dependent harmonic oscillators that back-react on thas measured by a comoving observer. The fluctuations in the
former acting as a stochastic source of white noise. The apenergy pick up first- and second-order terms, which are de-
proach by Calzetta and Hu consisted on coarse graining theoted assp,; and 8p,, respectively:
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atacz, Diego Mazzitelli, Emil Mottola, Juan Pablo Paz, and
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roject. We also wish to thank the hospitality of the Univer-
idad de Barcelona and the Workshop on Non Equilibrium
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Sp1~ bodb+V' ()5 Obviously, the model is consistent only if this expectation
! ' value is lower than one, i.e.:
Spr~ 8P*+V 82+ V" (o) 52 (A2) [\ =2 |\ ~4
P hor
Ihor )\phy

We will only consider the second-order terms. These terms

dominate overdp, for small ¢,. For modes far inside the This means that we have an upper limit for the amount of
horizon the last term can be neglected. If the fluctuationglassical fluctuations which are preséat a given scaleat
behave as a massless field, it follows that the beginning of inflation, if there is to be inflation at all.
The question we must face now is whether this bound still
- 2 allows for fluctuations the size of those which will build u
5pk~(5¢k)2:kphy45¢k)2' (A3) subsequently through matching to an effective stochastic
source, as we have demonstrated in the main part of this
As usual, the scaldsrefer to comoving quantities, while the paper. These latter fluctuations amount to around®xd the

Kohys=k/a=k|H 7| stand for quantities measured in terms of quantum zero point fluctuations in the models we have con-
physical lengths. The spatial average for the field fluctuationsjdered.

can be written as The wavelengths where it is possible to hawg=10"°
(so that initial classical fluctuations can dominate the fluc-
(H7)? tuations generated from the stochastic soumast obey
(8udhcr) ~ —— ocd(k—K'), (A4)
Nphys= 107321 X 1 (A9)

where o, measures the ratio between the classical fluctua- We now recall the known result

tions in question and the quantum vacuum fluctuations in the

de Sitter invariant vacuuniwhich we include here only to IpX Ipe=T; 2, (A10)
have something familiar to compare agajngthis expres-
sion allows us to write

1 2
N( H) [
in Mp

where we have used the Einstein equation to substitut
p~(mpH) 2, and we have assumed that th€function in
(8¢?2) cancels the divergence associated to the infinite vol- 1

ume over which this average is taken. If we also assume that )\phyJ today™ 10‘3’2T— ><eN><T—r, (A12)
o obeys a power law, the last expression can be written as r 0

where T, is the reheating temperature. Thus, we have the
condition

k
a

op

p

2(Hnp)?
k

1
. (A5) Nphys> 10 3’2T—. (A11)
r

Oy

out

g is convenient to phrase this condition in terms of the
present wavelength of the same fluctuation

S K4 whereN is the number o€ foldings during inflation,T, the
p .

~ W) ok (A6)  temperature at reheating, aiig the temperature today.

p la'mpH In natural units,T, *~10"2%d,, whered, is the present

wherek corresponds to the lowesin wavelength fluctua- size of the horizon. Thus, we must have

tion scale. The scale factarand the quantityr, are evalu- os N
ated at the beginning of inflation. In terms of the physical N phyd today™ 10" 27X "X d,. (AL13)

wavelength, we have . . .
Most inflationary models predict values df over 60 and

s 02| 4 even larger. Thus, classical fluctuations that haye 108
_pw(_") ( horj o (A7) at the beginning of inflation are excluded on any cosmologi-
P \lho! \Nphy cally relevant scale.
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