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By using relations derived from renormalization group equations~RGEs!, we find that strong indirect
constraints can be placed on the top squark mixing phase inAt from the electric dipole moment of the neutron
(dn). Sincemt is large, any GUT-scale phase inAt feeds into other weak scale phases through RGEs, which
in turn contribute todn . ThusCP-violating effects due to a weak-scaleAt are strongly constrained. We find
that uIm At

EWu must be smaller than or of orderuIm BEWu, making the electric dipole moment of the top quark
unobservably small in most models. Quantitative estimates of the contributions todn fromAu , Ad , andB show
that substantial fine-tuning is still required to satisfy the experimental bound ondn . While the low energy
phases of theA’s are not as strongly constrained as the phase ofBEW, we note that the phase of a universal
AGUT induces large contributions in the phase ofBEW through RGEs, and is thus still strongly constrained in
most models with squark masses below a TeV.@S0556-2821~97!03703-X#

PACS number~s!: 12.60.Jv, 11.10.Hi, 11.30.Er, 12.10.Kt

I. INTRODUCTION

Supersymmetry~SUSY! @1# is one of the most compelling
extensions of the standard model~SM!. It is the only known
perturbative solution to the naturalness problem@2#, it unifies
the gauge coupling constants for the observed value of
sin2uW , it allows radiative electroweak~EW! symmetry
breaking, and the lightest SUSY partner provides a good
dark matter candidate. SUSY models with such features are
generally in excellent agreement with experiment, and there
is even the possibility that a recent Collider Detector at Fer-
milab ~CDF! event@3# is of supersymmetric origin@4#.

One of the few phenomenological problems associated
with SUSY models is their generically large predictions for
the electric dipole moment~EDM! of the neutron,dn . Su-
persymmetric models with universal soft breaking param-
eters have two physical phases, beyond the Cabibbo-
Kobayashi-Maskawa~CKM! and strong phases of the SM,
which can be taken to be the triscalar and biscalar soft break-
ing parametersA andB. These phases give a large contribu-
tion to dn , of order 10

222 ~100 GeV/MSUSY!
2e cm, where

MSUSY is a characteristic superpartner mass. The experimen-
tal upper bound ondn is of order 10

225 e cm @5#, so that if
superpartner masses are near the weak scale, the phases of
these complex soft parameters must be fine-tuned to be less
than or of order 1022–1023 since there is noa priori reason
for them to be small@6#. If one wants to avoid such a fine-
tuning, there are two approaches: suppressdn with very large
squark masses~greater than a TeV! @7#, or construct models
in which the new SUSY phases naturally vanish@8#. Models
with very heavy squarks are unappealing because in such
models lightest supersymmetric particle~LSP! annihilation is
usually suppressed enough so that the relic density is unac-
ceptably large@9#. They also lead to a fine-tuning problem of
their own in getting theZ boson mass to come out right in
EW symmetry breaking.

It is natural to consider solutions of the second type, and

demand that the soft phases be zero by some symmetry.
While that would leave only a small CKM contribution todn
@10–13#, and thus avoid any fine-tuning in meeting the ex-
perimental bound ondn , it would also mean that there is no
non-SMCP violation, which is needed by most schemes for
electroweak baryogenesis@14#. Also, such models do not
generate signals of non-SMCP violation, such as those in-
volving top squark mixing. There are ways of naturally ob-
taining small nonzero soft phases which leave sufficientCP
violation for baryogenesis@15–18#, but these phases would
still have to meet the bounds fromdn and would probably be
unobservably small in most EW processes—unless the soft
terms are not universal.

Recently it has been pointed out that large non-SMCP-
violating top quark couplings could be probed at high energy
colliders@19#. A measurement of a large top quark EDM, for
example, would indicate physics beyond the SM, and it is
interesting to ask whether SUSY models can yield an observ-
able effect. Several references have attempted to useCP
violation from top squark mixing due to the complex param-
eter At to yield largeCP-violating effects in collider pro-
cesses involving top quarks@20#. Such papers either explic-
itly or implicitly assume nonuniversal soft couplingsAq at
the grand unified theory~GUT! scale, otherwise, the phase of
At would be trivially constrained bydn . We consider
whether it is possible to obtain large effects due to the phase
of At at the EW scale by relaxing the universality ofA. We
will show that due to renormalization-group-induced effects
on other low energy phases, the phase ofAt is strongly con-
strained bydn , and it is not possible, for most areas of pa-
rameter space, to have largeCP-violating effects due to the
imaginary part ofAt .

We will assume that no parameters are fine-tuned and
thus we will require the phases at the GUT scale to be either
identically zero~presumably through some symmetry! or no
less than 1/10. If one permits an arbitrary degree of fine-
tuning, the whole SUSYCP violation issue becomes moot,
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and one can derive no constraints on the phase ofAt . While
one can construct models which give small universal phases,
as we said above, the fine-tuning needed to evade the con-
straints we derive is unlikely to be explained naturally. Our
approach in this paper is to assume the reasonable fine-
tuning criterion we have just outlined, and ask what it im-
plies about low energy SUSYCP-violating phenomenology.

In Sec. II, we review the basics of SUSYCP violation.
We present our results derived from renormalization group
equations~RGEs! in Sec. III, and impose the neutron EDM
constraints on ImAt using those results in Sec. IV. In Sec. V
we discuss top-squark mixing-inducedCP-violating observ-
ables in more detail in light of our constraints on the phase of
At , and we give some concluding remarks in Sec. VI. The
details from Sec. III are written up in Appendix A, and the
full one-loop calculation for the SUSY contribution to the
neutron EDM is given in Appendix B.

II. SUSY CP-VIOLATING PHASES

The soft breaking potential in the MSSM is

2Lsoft5 1
2 umi u2uw i u21

1
2(

l
Mlll1e i j @AUŨR*YUQ̃L

i #Hu
j

1e i j @ADD̃R*YD
† Q̃L

j #Hd
i 1e i j @AEẼR*YE

† L̃L
j #Hd

i

~1!

1e i j BmHu
i Hd

j 1H.c.,

where we takeAU5diag$Au ,Ac ,At%, AD5diag$Ad ,As ,Ab%,
andAE5diag$Ae ,Am ,At%; YU , YD , andYE are the Yukawa

coupling matrices;Q̃, L̃, ŨR , D̃R , andẼR are the squark and
slepton fields;l are the gauginos; andwi are the scalars in
the theory.

A common simplifying assumption is that this soft La-
grangian arises as the result of a GUT-scale supergravity
~SUGRA! model with universal soft triscalar couplingA,
gaugino massMl5M1/2, and scalar massmi5m0 . This pro-
vides an explanation for the absence of flavor-changing neu-
tral currents which arise from loops with squarks of nonde-
generate mass@21#. Such supersymmetric models have only
two independent physicalCP-violating phases beyond the
CKM and strong phases of the SM@10# although these
phases appear in several different linear combinations in low
energy phenomenology@17,22#. We will take the two physi-
cal phases to be ArgA and ArgB.

It turns out that allCP-violating vertices in this model
arise through the diagonalization of complex mass matrices
@15#. The complex quantities which appear in these matrices
areAq1m*Rq andm, whereRq is tanb ~the ratio of Higgs
vacuum expectation values! for q5d, s, b and cotb for
q5u,c,t, and where the phase ofm is simply equal to the
phase ofB* by a redefinition of fields. Thus fordn , which
involves onlyu and d quarks, there are only contributions
from three low energy combinations of the two SUSY GUT
phases: Arg~Ad2m tanb!, Arg~Au2m cotb!, and Argm. ~In
Appendix B, a complete expression ofdn is given which
includes suppressed contributions from phases of the other
squark mixings.!

Even with universal boundary conditions, the elements of
the matricesAU , AD , andAE have distinct phases at the EW
scale because of renormalization group evolution. We will
also relax, in some places, the assumption that their phases
started the same at the GUT scale. We assume~for simplic-
ity! that these matrices are diagonal. One possible conse-
quence of this approach is that one could havedn.0 because
Im Ad and ImAu.0, but otherAq , notablyAt , could have
large phases which lead to observable effects. These include
angular correlations and polarizations@20#, including effects
attributable to the electric dipole moment of the top quark,
dt . As discussed in the Introduction, this scenario is strongly
constrained by RGE running.

III. RENORMALIZATION GROUP FLOW
OF COMPLEX SOFT TERMS

The goal of this section is to demonstrate how a large
phase inAt can feed into other parameters in the theory
through renormalization group running. The imaginary part
of At at the weak scale,Āt

EW, is determined by running
Āt
GUT ~and, for large tanb, Āb

GUT! down to the weak scale via
the renormalization group equations.~For compactness of
notation, we will definex̄5Im x in the following sections.!
We will show that largeĀt

EW induces potentially large values
of B̄EW andĀu,d

EW, which give an unacceptably large neutron
electric dipole moment.

Rather than write RGEs for the whole effective theory, we
need only consider a complete subset of them which includes
Aq andB. The running of these soft terms depends upon the
gaugino masses, the top and bottom Yukawas~we ignore
tiny effects from the other Yukawa couplings!, and the gauge
coupling constantsaa5l a

2/4p ~a51,2,3!. We define
t51/4p ln~Q/MGUT! and write

dMa

dt
52baaaMa , ~2!

dAt
dt

52caaaMa112a tAt12abAb , ~3!

dAu,c
dt

52caaaMa16a tAt , ~4!

dAb
dt

52ca8aaMa12a tAt112abAb , ~5!

dAd,s
dt

52ca8aaMa16abAb , ~6!

dB

dt
52ca-aaMa16a tAt16abAb , ~7!

da t

dt
52a t~2caaa16a t1ab!, ~8!

dab

dt
52ab~2ca8aa1a t16ab!, ~9!
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daa

dt
52baaa

2, ~10!

wherea is summed from 1 to 3, and

ba5~ 33
5 ,1,23!, ~11!

ca5~ 13
15 ,3,

16
3 !, ~12!

ca85~ 7
15 ,3,

16
3 !, ~13!

ca-5~ 3
5 ,3,0!, ~14!

and the Yukawa coupling constantsa t,b5l t,b
2 /4p are related

to the masses by

l t5
g2

&

mt

mW

1

sin b
, lb5

g2

&

mb

mW

1

cosb
. ~15!

We note that some references@23# list thea tAt coefficient in
Eq. ~4! as 2, but we have confidence that the coefficient is
actually 6@13,24#. Nevertheless, our conclusions do not de-
pend qualitatively on this coefficient.

We are mainly interested in the evolution ofĀq and B̄.
We can set the phase of the common gaugino mass to zero at
the GUT scale by a phase rotation and thenM̄ i50 at all
scales. Therefore the RGE for the imaginary parts of theAq
andB can be written without theMa terms:

dĀt
dt

512a tĀt12abĀb , ~16!

dĀb
dt

52a tĀt112abĀb , ~17!

dĀu
dt

56a tĀt , ~18!

dĀd
dt

56abĀb , ~19!

dB̄

dt
56a tĀt16abĀb . ~20!

Using the above RGEs, we can derive the useful relations

DB̄5DĀu,c1DĀd,s5
6
14 ~DĀt1DĀb!, ~21!

DĀu,c5
3
35 ~6DĀt2DĀb!, ~22!

DĀd,s5
3
35 ~6DĀb2DĀt!, ~23!

whereDB̄5B̄GUT2B̄EW, etc. For small tanb, we can neglect
mb so that these relations simplify to

DB̄5DĀu,c53DĀb5
1
2DĀt ,

DĀd,s50. ~24!

Thus, given the GUT values, to obtain the low energy values
for the imaginary parts of all the soft terms, one only needs
to find Āt

EW andĀb
EW, and for small tanb, we only need the

former.
In the small tanb limit ~ab.0!, we can use Eq.~16! to

obtain the ratio of EW- to GUT-scale values of the imagi-
nary part ofAt :

r t[Āt
EW/Āt

GUT5expF2E
tEW

tGUT
12a t~ t !dtG . ~25!

If the top quark were light, the integral in Eq.~25! would be
small andr t would be close to 1, but since the top quark is
heavy, we find thatr t is well below 1. We can use the rela-
tions in Eq.~24! and the definition forr t in Eq. ~25! to relate
the low energy values for the imaginary parts ofAt to B and
Au ~for small tanb!:

Āt
EW5

22r t
12r t

~B̄EW2B̄GUT!5
22r t
12r t

~Āu
EW2Āu

GUT!. ~26!

We will make the simplifying assumption thatĀu
GUT and

B̄GUT are zero. As we will see in the next section, this is
reasonably well justified by our fine-tuning criterion, at least
for the phase ofB.

Next, we must findr t . We obtain a pseudoanalytic solu-
tion to Eq.~25! in terms of EW- and GUT-scale quantities in
Eq. ~A1! of Appendix A, but this is useful only if one has
already obtained the GUT values for thea’s by numerical
integration of the RGEs. While we cannot find a truly ana-
lytic solution to Eq.~25!, we can place an analytic upper
bound onr t which is sufficient to make our point. We note
that the integral in Eq.~25! is simply the area under the curve
of the top Yukawaat as it runs from the EW scale to the
GUT scale. Thus we can place an upper bound onr t simply
by finding a lower bound to that area. In Appendix A, we do
this by placing a lower bound ona t(t) at eacht, and we
obtain

r t&1212a t
EW/ f EW, ~27!

which is valid for small tanb as long as 12a t
EW, f EW. Here

f EW[2caaa
EW.1.5132/3(as

EW20.12), and so, for example,
Eq. ~27! is valid for mt5175 if 1.3,tanb!mt/mb ~for
smaller tanb, r t gets closer to zero, but does not actually
reach it!. Thus we have placed an analytic bound on the
running of At completely in terms of EW quantities. For
as(MZ)50.12, sinb→1 ~moderate tanb!, and mt5175
~mt5160!, we find thatr t,0.43 ~r t,0.52!, which, from Eq.
~26!, corresponds touĀt

EWu,1.5uB̄EWu(uĀt
EWu,2.2uB̄EW). For

small tanb, the bound is even stronger, so that for tanb small
enough to neglectmb effects, we obtain

uĀt
EWu,2.2 min$uB̄EWu,uĀu

EWu%, ~28!

and in practice the coefficient is less than 2.
In Fig. 1, we plotr t(5Āt

EW/Āt
GUT) as a function of the top

Yukawa coupling for different values ofas(MZ) in the limit
where effects proportional tomb can be ignored. For
mt.160 GeV,lt is always greater than about 0.87 for all
values of tanb, which means thatr t is always less than 0.45,
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in agreement with our analytic bounds. Also plotted are
2B̄EW/Āt

GUT5(12r t)/2, and 2B̄EW/Āt
EW5(12r t)/2r t ,

which is greater than 1~0.6! for mt5175 ~160!. Thus
uĀt

EWu&uB̄EWu, in agreement with our analytic results.
Next we consider moderate tanb, where one must take

into account the mixing ofĀt and Āb but where tanb is not
of ordermt/mb . For Āb

GUT/Āt
GUT.0, these effects lowerr t ,

and one can simply use themb50 upper bound onr t derived
above.1

For Āb
GUT/Āt

GUT,0 ~recall that with universalA this ratio
would simply be11!, one simply maximizes the positive
contribution tor t from Āb to obtain~see Appendix A!

r t,1212a t
EW/ f EW2 1

6 ~Āb
GUT/Āt

GUT!
ab
EW

a t
EW2ab

EW. ~29!

Note that the last term raises the upper bound onr t , but the
effect is small until tanb gets quite close tomt/mb . For
mt5175 GeV, Āb

GUT52Āt
GUT, and tanb50.7mt/mb.35

~recall that we are evaluating all quantities at the EW scale,
and somb is somewhat lower than the value atq

25mb
2!, we

find the boundr t,0.6.
Effects due tomb are evident in Figs. 2–4, which show

Āt
EW, B̄EW, Āu

EW, andĀd
EW, normalized toĀt

GUT, as a func-
tion of tanb for various GUT-scale boundary conditions. In
Fig. 2, only the phase ofAt

GUT is nonzero, while in Figs. 3
and 4,Āb

GUT has values of1Āt
GUT and2Āt

GUT, respectively.
In all cases,r t ~the solid curve! remains below 0.35 and has
its largest value just below tanb5mt/mb for Āb

GUT/Āt
GUT

,0 ~Fig. 4!, in agreement with our analytic results. This
means that the EW value for the phase ofAt is constrained to
be less than about a third, independent of constraints from
low energyCP-violating observables. The magnitude of the
imaginary part induced intoB̄EW/Āt

GUT by Āt is greater than

0.35 except for large tanb and Āb
GUT/Āt

GUT,0. For
tanb5mt/mb and Āb

GUT/Āt
GUT,0, B̄EW actually goes

through zero, becauseDB̄ gets equal and opposite contribu-
tions fromDĀt andDĀb there. At that point thet andb RGE
coefficients are almost exactly the same at eacht @because
the Yukawa coupling runnings differ only in a smallU~1!
coefficient#, and the boundary conditions have opposite
signs, so thatĀt(t).2Āb(t) for all t. Of courseĀa

EW and
Ād
EW are nonzero because they involve different linear com-

binations ofDĀt and DĀb , and so there is still a strong
constraint onĀt from dn there.

Finally we note that for large tanb, one can place con-
straints onĀb

GUT as well, since it can then affect other low
energy phases through renormalization group running. For
tanb;mt/mb , the constraints are of the same order as on
Āt
GUT, while for small tanb, Āb

GUT is unconstrained~though
theĀt contribution toĀb

EW for small tanb is constrained to be
small andĀb

EW can be large only ifuĀb
GUTu@uĀt

GUTu!.

IV. BOUNDS FROM THE NEUTRON EDM

Now that we have placed an upper bound on the magni-
tude ofĀt in terms ofĀu , Ād , andB̄, we need to explore the

1There is a subtlety for the case of small positiveĀb
GUT/Āt

GUT for
which there can be a net positive contribution tor t if Āb runs down
below zero. However, the maximum effect on the bound is very
small.

FIG. 1. Plot of the ratios~a! r t5Āt
EW/Āt

GUT , ~b! (12r t)/25

2B̄EW/Āt
GUT , and ~c! (12r t)/2r t52B̄EW/Āt

EW versus the top
quark Yukawa coupling foras(MZ)50.11860.006.

FIG. 2. The ratios of imaginary parts to ImAt
GUT versus tanb

with Im At
GUTÞ0 and ImAb

GUT50. The solid line is
Im At

EW/Im At
GUT , the dashed line is ImBEW/Im At

GUT , and the up-
per ~lower! dotted line is ImAd

EW/Im At
GUT (Im Au

EW/Im At
GUT).

FIG. 3. Same as Fig. 2 with ImAb
GUT5Im At

GUT .
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constraints on the latter three imaginary parts~in low energy
observables, we will drop the label EW!. As we mentioned
in the Introduction, one of the strongest constraints onCP-
violating phases is the electric dipole moment~EDM! of the
neutron,dn . In Appendix B, we write expressions for the full
supersymmetric contribution todn . One sees that all the
pieces are proportional toĀu , Ād , or m̄ ~except for the neg-
ligibly small pieces proportional toĀq!. We can redefine the
Higgs fields so that the phase ofm is just the opposite of the
phase ofB, and thus

m̄52UmBUB̄5UmBUS 12r t
2r t

Āt2B̄GUTD , ~30!

where the right-hand side~RHS! follows for small tanb.
In order to estimate the size ofm̄ we will need an estimate

of um/Bu in Eq. ~30!. We can find this ratio by considering the
two equations whichm andB need to satisfy to ensure that
EW symmetry breaking occurs and that theZ boson gets the
right mass:

2Bm52~mHu

2 1mHd

2 12m2!sin 2b, ~31!

m252
mZ
2

2
1
mHd

2 2mHu

2 tan2 b

tan2 b21
. ~32!

In the limit that tanb→`, we see that the right-hand side of
Eq. ~32! goes to zero, and soB→0, whereasm2 is not forced
to zero. For tanb→1, the right-hand side of Eq.~32! blows
up, forcingm to take on very large values. Whenm2 domi-
nates Eq.~31! and tanb51, then we are led to a value of
uBu5umu. So in both the tanb→` limit and the tanb→1 limit
we find thatumu>uBu. We have run thousands of models nu-
merically@25# which include the one-loop corrections to Eqs.
~31! and ~32! and found thatumu*uBu is indeed a good rela-
tionship for most of the parameter space. As expected, it is
violated most strongly for intermediate values of tanb. For
example, for tanb510 we have found a small region of pa-
rameter space whereumu/uBu is as low as 0.4, although most
solutions preferumu/uBu.1. We will assume thatumu/uBu*1,
and thus the fine-tuning constraint on the phase ofB is even
stronger than on what we obtain below for the phase ofm.

From Appendix B, we see thatdn can be written in terms
of the three imaginary parts:

dn
10225 e cm

5kn
Au

Āu

m0
1kn

Ad
Ād

m0
1kn

m m̄

m0

5kn
Au

Āu

m0
1kn

Ad
Ād

m0
2kn

mUmBU B̄

m0
, ~33!

where we have normalized the RHS by the SUSY mass scale
m0 and the LHS by the region of the experimental bound so
that the coefficientsk are dimensionless. We can rewrite the
EW imaginary parts in Eq.~33! using Eq.~24! as

dn
10225 e cm

5
dn
GUT

10225 e cm
1
12r t
2r t

S 2kn
Au1kn

mUmBU D Āt

m0
,

~34!

wheredn
GUT/10225 e cm is just Eq.~33! with EW values of

Āu,d and B̄ replaced by GUT quantities. It vanishes if
Āu,d
GUT andB̄GUT are zero. In supergravity models,uAGUTu and

uBGUTu are of orderm0, so that barring fine-tuned cancella-
tions, the GUT-scale phases must be less than order 1/kn . If
the k’s are greater than order 10, then our fine-tuning crite-
rion dictates that we set the GUT phases to zero~presumably
protected by some symmetry!. Thus we need an estimate of
the kn’s.

In Figs. 5~a!, 5~b!, and 5~c!, we plot the values forkn
Au,

kn
Ad, and k n

m, respectively, in many different models as a
function of squark mass and as a function of tanb in Figs.
5~d!, 5~e!, and 5~f!. We see thatkn

Au and kn
Ad are fairly flat

functions of tanb, whereas2k n
m increases with tanb due to

them tanb terms in the expression fordn . We also see that
most models give kn

Au.2(0.8), kn
Au.7(3), and

uk n
mu.100~40!, for squark masses below 500 GeV~1 TeV!,

so that order-1 phases in all the SUSY complex quantities
usually give a neutron EDM which is of order 100~40! times
the experimental bound. We note that these are substantially
larger contributions~and thus stronger constraints! than
claimed by the recent work of Falk and Olive@26#, though
this is probably due to the fact that they use very heavy
squark masses in an effort to find the smallest fine-tuning of
phases consistent with cosmology. While one can argue
whether or not the bounds on the phases ofAu,d represent a
fine-tuning, the bound on the phase ofm ~and thusB̄EW,
which comes fromB̄GUT andĀt

GUT! certainly does. Thus, by
our fine-tuning criterion, the phases ofBGUT and At

GUT

should be zero. We note that in the case of universalA it is
irrelevant whether or not the low energy phases ofAu andAd
are strongly constrained, since the phase of the universal
AGUT makes a large contribution to the low energy value of
m̄ ~sinceĀt

GUT5ĀGUT!.
To give an idea of what level of neutron EDM one ex-

pects with different initial assumptions, we plot, in Fig. 6,
dn/10

225 e cm with universaluAGUTu for three cases:~a!,~d!
ArgAt

GUT5ArgAb
GUT50.1 and all other phases zero,~b!,~e!

ArgAt
GUT52ArgAb

GUT50.1 and all other phases zero, and
~c!,~f! universal phases ArgAGUT5ArgBGUT50.1. As one
can see, even with phases of order 0.1, most models have an
absolute value fordn/10

225 e cm greater than 1, inconsistent
with the experimental bounds.

FIG. 4. Same as Fig. 2 with ImAb
GUT52Im At

GUT .
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As can be gathered by the spread of points in the scatter
plots and the number of parameters involved, the results de-
pend on one‘s model assumptions. For example, if one re-
quires tanb to be small~say, because ofb-t unification!, and
the squarks are allowed to be very heavy, then there is very
little fine-tuning needed for the current experimental bound
on dn . On the other hand, if SUSY is detected at the CERN
e1e2 collider LEP 2 or Fermilab TeV 33, then even the
smallest tanb models would require fine-tuning.

In minimal supergravity models the natural scale for theA
terms ism0. In Fig. 7 we have plotteddn/10

225 e cm versus
Im At

EW/m0 to succinctly demonstrate how quickly the EDM
rises when ImAt

EWÞ0. To construct this plot we chose a
random phase forAt at the GUT scale, forced all other
phases equal to zero at that scale, and then ran all the param-
eters down to the weak scale. A sharp drop indn occurs at
Im At

EW/m0.0 because ImAt
GUT can be small there and thus

induces only small phases into the other low energy soft
parameters. Models withdn around 10225 e cm at
Im At

EW/m0.0 occur for low tanb where ImAt
GUT

@Im At
EW but wheredn otherwise tends to be smaller. This

means that most models withdn below the experimental
bound in Fig. 6 also have a small EW value for ImAt , and
thus from Fig. 7 we can place a stronger constraint on
Im At

EW than we obtained on ImAt
GUT: Im At

EW/m0&1/20.
Thus we conclude that models with universal GUT-scale

phases of the soft parameters and models in which only
At
GUT has a nonzero phase have difficulty meeting the bounds

from dn and our fine-tuning criterion. Models with nonzero
Āc
GUT, Ās

GUT, or Āl
GUT can meet the constraint fromdn with-

out fine-tuning, as can those with nonzeroĀb
GUT for small

tanb. For the remainder of the paper, we will for simplicity

set all the GUT-scale phases to zero except for that ofAt .
Even though our fine-tuning criterion implies thatĀt

GUT

should be zero, we find it useful to ask what effects one
would have if one allows that fine-tuning.

V. TOP QUARK EDM

Now that the top quark has finally been discovered, one
can envision some nice experiments which measure proper-
ties of this known particle. Future colliders, such as the NLC,
can provide many precision measurements of the production
cross-section and decay properties of the top quark. It is
possible that signatures of new physics could arise out of
such a study. One property of the top quark which has re-
ceived much attention@19# is the possibility of measuring its
EDM by looking at the decay distributions of thet t̄ pairs.
~OtherCP-violating observables are possible, such as those
arising fromt→bW decays, but we will make our point only
with the top quark EDM.! It is generally estimated that the
top quark EDM (dt) can be measured to values as low as
;10218 e cm @19#. Given the constraints which we derived
above, we ask if the minimal supersymmetric standard model
can yield a value fordt this large.

In the context of supersymmetry, it has been proposed
@20# that a largedt is possible if the phase ofAt

EW is of order
1. But in Sec. III, we showed thatĀt

EW is constrained to be
smaller than or of order of the phases which contribute todn .
The EDM of the top quark is thus constrained to be less than
a constant times the neutron EDM:

dt
dn

&j
mt

md

detM q̃
2

detM t̃
2 , ~35!

FIG. 5. Scatter plots of~a! and ~d! kn
Au, ~b! and ~e! kn

Ad, and~c! and ~f! kn
m versus squark mass and versus tanb. Each point represents

a solution of the supersymmetric parameter space with universal scalar and gaugino mass terms which is within other experimental limits.

1616 55ROBERT GARISTO AND JAMES D. WELLS



where detMq̃
25mq̃1

2 mq̃2

2 is the determinant of the~down!

squark mass-squared matrix, and the value ofj depends
upon many different SUSY parameters, but is generically of
order 1. Normalizingdn to the experimental bound, we see
that

dt&j
detM q̃

2

detM
t̃

2

dn
expt

10225 e cm
2310221 e cm. ~36!

In addition to this constraint, we recall that the phase ofAt at
the EW scale must be less than about 1/3, just from the RGE
suppression factorr t . Thus, as long as detMd̃.detM t̃ , we
expectdt to fall about three orders of magnitude below de-
tectability at proposed future high energy colliders.

We can turn this analysis around. If a large top quark
EDM is discovered, can it be explained in the MSSM? One
possibility is that a conspiracy occurs between several large
phases in the theory to renderdn below experimental limits,
and yet produce adt detectable at high energy colliders. This
is equivalent to saying that all the order 1 coefficients which
we absorbed into the parameterj in Eq. ~36! actually con-
spire to givej*103. As we argued in the Introduction, we
would not view this as a likely explanation.

Another possibility to consider is that the top squarks are
much lighter than the other squarks. Fordt to be observable,
we would need the determinants in Eq.~35! to have a ratio
*103. This is possible, but it too would require some fine-
tuning. The large top-quark-induced running of thet̃R goes
in the right direction—the lightest top squark mass eigen-

value tends to be smaller than the other quarks. However,t̃2
generally tracks fairly well with the other squarks,q̃L , and
thus, we estimate that

detMd
2

detM
t̃

2 &
m

d̃

2

m
t̃ 1

2 , ~37!

which means that we would needmt̃ 1
&md̃ /A1000 to yield

an observabledt . If experiment determines thatmt̃ 1
.80

GeV, then this condition would imply that the superpartners

FIG. 6. Scatter plots ofdn/10
225 e cm versus squark mass and versus tanb for ~a! and ~d! Arg At

GUT5Arg Ab
GUT50.1 with all other

phases zero,~b! and ~e! Arg At
GUT52ArgAb

GUT50.1 with all other phases zero, and or~c! and ~f! universal phases
ArgAGUT5ArgBGUT50.1. Each point represents a solution of the supersymmetric parameter space with universal scalar and gaugino mass
terms which is within other experimental limits.

FIG. 7. Scatter plot ofdn/10
225 e cm versus ImAt

EW/m0. Each
point represents a solution of the supersymmetric parameter space
with universal scalar and gaugino mass terms which is within other
experimental limits.
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of the light quarks are above 2.5 TeV. This is essentially the
heavy squark ‘‘solution’’ to theCP violation problem we
mentioned in the Introduction, with an additional fine-tuning
implied by the small ratiomt̃ 1

/md̃ .
Finally, one could appeal to differences betweendt and

dd due to effects proportional tomt
2/v2, which are negligible

in dd . To achievej of order 103, one again needs a fine-
tuned conspiracy of couplings.

Thus we conclude that if a largedt were found, one would
probably have to look beyond the MSSM for an explanation.

VI. CONCLUDING REMARKS

It has long been noted that the phases of soft supersym-
metric parameters generically lead to an unacceptably large
neutron EDM. This fine-tuning problem has slowly become
less vexing as the theoretical expectations for the squark
masses have risen faster than the experimental bound on the
neutron EDM has fallen. Nevertheless, for squark masses
below about a TeV, we showed in Sec. V that the phase ofB
and universal phase ofA do not meet the fine-tuning crite-
rion set forth in the Introduction@see Fig. 6~c!#. Certainly, if
supersymmetry is discovered at LEP 2 or TeV 33, a funda-
mental explanation for the absence of a neutron EDM would
be needed, and any scheme for baryogenesis at the EW scale
would require that mechanism to leave small effective low
energy phases in the soft terms@15–18#.

From the phenomenological point of view, it is tempting
to postulate that the soft phases are not universal, that the
EW phase ofAt is large, while the other phases which di-
rectly contribute to the neutron EDM are small. This would
allow interesting signatures of supersymmetricCP violation
to be visible in top quark physics at future colliders. But we
have demonstrated by using the renormalization group equa-
tions that the imaginary part ofAt must be less than twice the
imaginary part ofB, andAt-inducedCP-violating observ-
ables such as the top quark EDM are thus expected to be
unobservably small in almost all minimal SUSY models.

These constraints are particularly important for models of
EW baryogenesis which rely upon the phase of the top
squark LR mixing parameter,At1m* tanb, to generate
enoughCP violation for baryogenesis. Such models must
also have sufficiently smalluAt1m* tanbu to ensure that the
phase transition is first order@27#. There has also been a
recent attempt to explain the observedCP violation in the
neutral kaon system with zero CKM phase and nonzero off-
diagonal phases in the generalA matrices@28#. If the univer-
sal diagonalA parameter has a large phase at the GUT scale,
it will, as we noted above, give a large contribution todn
through a renormalization-group-induced phase inm, as well
as from a direct contribution. One could evade such bounds
by insisting that the off-diagonal components of theA ma-
trices have a large phase, while the phases of the diagonal
A’s and ofB vanish. Although this hypothesis can probably
be technically consistent with our fine-tuning criterion
~phases either zero or large!, this scenario strikes us as un-
natural.
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APPENDIX A

In this appendix, we provide the details related to our
analytic results of Sec. III. It is interesting to note that we can
use the RGEs for the top Yukawa and gauge coupling con-
stants in Eqs.~8! and ~10! to write a pseudoanalytical solu-
tion to r t5Im At

EW/Im At
GUT. The integral in Eq.~25! can be

rewritten as ln(at
EW/a t

GUT)2(a(ca /ba)ln(aa
GUT/aa

EW),
which allows us to write a pseudoanalyticr t in terms of EW
and GUT-scale quantities~the latter of which cannot be
found analytically!:

r t5
a t
EW

a t
GUT Pa51

3 S aa
EW

aa
GUTD ca /ba. ~A1!

To place an analytic upper bound onr t , we must place a
lower bound on the area* tEW

tGUT12a t(t)dt. We will need the

ab50 limit of the running of the top Yukawa coupling in Eq.
~8!,

da t

dt
52 f ~ t !a t112a t

2, ~A2!

where f (t)52caaa . While this cannot be solved analyti-
cally, we note thata3(t) runs down with energy and one can
show thatf (t) will be at its maximum value at the EW scale.
Thus if we takef (t) to the constantf EW, we will minimize
the running ofat , and Eq.~A2! can be solved analytically to
yield the bound

a t~ t !.F 12f EW1S 1

a t
EW2

12

f EW
DefEW~ t2tEW!G21

, ~A3!

which is valid for 12a t
EW, f EW @largera t

EW allows the bound
on at(t) to reach infinity for t,tGUT and thus makes the
bound useless#, which corresponds to tanb.1.3 for
mt5175. If we replaceat(t) in the integral above by the
RHS of Eq. ~A3!, we can find an analytic solution for the
lower bound on the area which, for the relevant range off EW
and tEW, can be approximated by

2 fEWtEW2 lnF12a t
EW

f EW
1S 12

12a t
EW

f EW
De2 fEWtEWG

.2 lnF12
12a t

EW

f EW
G , ~A4!

which yields Eq.~27! directly.
For moderate tanb, we need to includemb effects which

mix Āt with Āb , andat with ab . The coupled differential
equations~16! and~17! can be solved analytically only if the
coefficients, which here are proportional toat and ab , are

constants. To obtain bounds on the running ofĀt andĀb , we
can break up the range of energy fromtEW to tGUT into small
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regions where the coefficients are effectively constant, and
iteratively evolve from the GUT scale down to the weak
scale. At each energyt j , the value forĀt is given by

Āt~ t j11!.Āt~ t j !exp@212a t~ t j !dt#2
1

6
Āb~ t j !

3H ab~ t j !

a t~ t j !2ab~ t j !
$exp@212ab~ t j !dt#

2exp@212a t~ t j !dt#%J , ~A5!

provided that T[ab/(a t2ab) is not large. Here
dt5t j2t j11, which is positive. Iterating Eq.~A5! gives a
complicated expression with terms proportional to each of
theT(t j )’s. However, each of these terms is positive, so that
takingT(t j ) to its maximum value maximizes the size of the
quantity in$ %’s in Eq. ~A5!, which is what we need for the
case Āb

GUT/Āt
GUT,0. Once we takeT(t j )→Tmax, many

terms cancel, and we are left with~taking dt→0! the upper
limit

Āt
EW,Āt

GUT expS 2E
tEW

tGUT

12a t~ t !dtD
2
1

6
Āb
GUTS ab

a t2ab
D
max

FexpS 2E
tEW

tGUT

12ab~ t !dtD
2expS 2E

tEW

tGUT

12a t~ t !dtD G . ~A6!

One can show analytically thatT(t) reaches its maximum
value at the lowest energy of the range, and thus we can
replace Tmax by ab

EW/(a t
EW2ab

EW). To obtain a simpler
bound, one can reduce the@ #’s in Eq. ~A6! to 1 by taking a
lower bound onab(t) to be zero and an upper bound on
at(t) to be infinity. Finally one uses themb.0 bound onr t
obtained in Eq.~27! for the first term in Eq.~A6! to obtain
the upper bound onr t in Eq. ~29!.

APPENDIX B

In this appendix we present analytic expressions for the
full one-loop SUSY contribution to the neutron electric di-
pole momentdn . The gluino@11# and chargino@7# contribu-
tions appear in the literature. While an expression for the

neutralino contribution is given by Kizukuri and Oshimo@7#,
it is written in terms of 434 complex unitary matrices which
must be determined numerically. Below we give an expres-
sion for this neutralino contribution solely in terms of the
mass matrices@and other minimal supersymmetric standard
model ~MSSM! parameters# and a useful approximation to
that expression, which do not require calculating complex
unitary matrices.

To find the neutron EDM, we first calculate the EDM of
the up and down quarks (dq) from one-loop diagrams with
photons attached to either (a) an internal boson or (b) an
internal fermion line. Then the neutron EDM is related to the
quark EDM’s in the naive quark model bydn5(4dd2du)/3,
though recent work has argued that this expression overesti-
matesdn if the strange quark carries a large fraction of the
neutron and proton spin@29#. The Feynman integrals associ-
ated with (a) and (b) are @30#

I a~x!5
1

~12x!2 F2
3

2
1
x

2
2

ln x

12xG ,
I b~x!5

1

~12x!2 F121
x

2
1
x ln x

12x G . ~B1!

As we mentioned earlier, all SUSYCP-violating effects
arise from diagonalizing complex mass matrices@15#. Gluino
loops contribute to the quark EDMdq through the complex
phase in the left-right mixing elements for up and down
squarks:

dq~ g̃!5
22

3p
Qqeas

mqmg̃ Im~Aq2mRq!

mq̃0

4 I bS mg̃
2

mq̃0

2 D .
~B2!

We have averaged over the nearly degenerate squark
mass eigenstates for simplicity:mq̃0

2 5mq̃1
mq̃2

and I (x0)

5[ I (x1)1I (x2)]/2. Here Qqe is the charge of quarkq,
Rq5tanb~cotb! for q5d(u), andmq̃ is the gluino mass.
~Note that we use Imz for the imaginary part ofz in this
appendix because it is clearer thanz̄ in more complicated
expressions.!

The chargino contribution is proportional to the imaginary
part of products of elements of the matricesU andV which
diagonalize the chargino mass matrix. It turns out that one
can write those products directly in terms of the elements of
the chargino mass matrix, so that the chargino contribution
to dq can be written

dq~ x̃1!5
e

~4p!2 H g2Rq

mqmW̃ Im m

mq̃
08

4

@vI a~y1!1Qq8I
b~y1!#2@vI a~y2!1Qq8I

b~y2!#

y12y2

1
mq Rem

sin b cosb
@vI a~y0!1Qq8I

b~y0!# (
r5qi8

dsb or uct
Im~Ar2mRq8!

mr̃ 0

4

mr
2uVqru2

v2 J , ~B3!
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wheremW̃ is theW-ino mass,v511~21! for q5d(u), y1
5mx̃1

2 /mq̃
08

2
, andI (y0)5[ I (y1)1I (y2)]/2. The primed quan-

tities refer to the SU~2! partner, and so ifq5d, thenq85u
and r is summed over the set$u,c,t%. Previous expressions
for dq(x̃

1) have neglected the squark mixing piece, which is
the second term in Eq.~B3!. This piece is suppressed relative
to the other contributions bymr

2uVqru
2/v2, which is less than

1024 for q5u or d ~but it can affect the EDMs of other
quarks!, though it is interesting that there is a~tiny! direct
contribution todn from ImAt .

The neutralino contribution

dq~ x̃0!5
2Qqe

~4p!2
1

mq̃0

2

mq

vq H (
h51

1,2

~aLh
q 2aRh

q !Im Fhq̂

1
Re~Aq1mRq!vq

mq̃0

2 (
h,l

1,2

aLh
q aRl

q Im Fhl

2
Im~Aq2mRq!vq

mq̃0

2 (
h,l

1,2

aLh
q aRl

q ReFhlJ
~B4!

arises from the 434 complex neutralino mass matrix. The
index q̂53~4! for q5d(u). Recall @31# that the ‘‘1’’ and
‘‘2’’ weak eigenstates are gauginos, and the ‘‘3’’ and ‘‘4’’
weak eigenstates are Higgsinos which couple to down and up
quarks respectively. Thus ‘‘34’’ and ‘‘43’’ terms are absent,
which will allow us to simplify expressions involving the
neutralino mass matrix, since that is the position of the com-
plex coefficientm. We have dropped terms of ordermf

2/v2

relative to the others. The gauge coefficientsaLi are

aL1
q 5&g tan uw~Qq2T3L

q !5&g tan uw/6, ~B5!

aL2
q 5&gT3L

q , ~B6!

and theaRi are the same as theaLi with T3L→T3R50. The
neutralino phases appear through a 434 matrix

Fhl5(
i51

4

Uhi
T M̂ ii I i i

bUıl , ~B7!

whereU diagonalizes the neutralino mass matrixM , andM̂
is the diagonal result. HereI i j

b5I b(xi)d i j i.e., I i j
b is the di-

agonal matrix of Feynman integrals for the corresponding
mass eigenvalues inM̂ . In the limit that theI b(xi) are equal,
the real part ofFhl can simply be written

ReFhl.I b~x0!ReMhl , ~B8!

where I b(x0)5( i
4I b(xi)/4. The imaginary part ofFhl is

more difficult because it vanishes in the limit of degenerate
neutralino masses~except for the irrelevant ‘‘34’’ and ‘‘43’’
terms!. We know that Imm is the only complex coefficient in
the neutralino mass matrixM , and so we can write

Im Fhl.Vhl Im m, ~B9!

whereVhl is a real matrix to be determined. This allows us
to see thatdg(x̃

0) is proportional to Imm and Im(Aq2mRq),
just as the other contributions are. It turns out that ImFhl is
proportional to Im(MM*M )hl , Im(MM*MM*M )hl , and
Im(MM*MM*MM*M )hl ~except for the ‘‘34’’ and ‘‘43’’
pieces!. To extract the Imm dependence, we ignore all terms
of higher order in Imm/umu, which is a valid approximation
for the phases allowed by the experimental bound ondn .
Then these products@for (h,l )Þ~3,4!, ~4,3!# simplify as fol-
lows:

Im~MM*M !hl.Im m (
p50

2

~21!p~MR
pPMR

22p!hl , ~B10!

Im~MM*MM*M !hl.Im m (
p50

4

~21!p~MR
pPMR

42p!hl ,

~B11!

Im~MM*MM*MM*M !hl

.Im m (
p50

6

~21!p~MR
pPMR

62p!hl ,

~B12!

whereMR5ReM andP is a matrix with21 in the 34 and
43 positions and 0 everywhere else@so that Im(mP)
5Im M #. After some calculation, we obtain an expression
for the imaginary part of the complex matrixF:

Im Fhl.Vhl Im m

. 3
2 Im m(

s51

4 S I ~xs!2(
j

Þs

I ~xj !D F (
i , j ,k

Þs

e i kM̂ i
4M̂ j

6(
p50

2

~21!p~MR
pPMR

22p!hl2(
i , j ,k

Þs

e i jk M̂ i
2M̂ j

6

3 (
p50

4

~21!p~MR
pPMR

42p!hl1 (
i ,,k

Þs

e i jk M̂ i
2M̂ j

4(
p50

6

~21!p~MR
pPMR

62p!hlGF (
i , j ,k

Þs

e i jk M̂ i
4M̂ j

6S 3M̂s
22(

n

Þs

M̂n
2D

2(
ı, j ,k

Þs

e i jk M̂ i
2M̂ j

6S 3M̂ s
42(

n

Þs

M̂n
4D 1(

ı, j ,k

Þs

e i jk M̂ i
2M̂ j

4S 3M̂ s
62(

n

Þs

M̂n
6D G21

, ~B13!
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where( j
Þs means sum over the three members of the set

$1,2,3,4%2$s%. HereM̂ j are the mass eigenvalues ofM̂ ~i.e.,
the four physical neutralino masses!.

The expression above is completely analytic and exact
except for the approximation we made in dropping higher
order terms in Imm/umu, but it has so many terms that it is not
that useful. Let us find an approximation to this expression
using the information about the neutralino mass eigenstates,
namely, that they are fairly close together and the heaviest
neutralino is lighter than the squarks~x4!1! in most SUSY
models. This means that we can take a simple linear fit to the
Feynman integral by evaluatingI b(x) at the lowest and high-
est values ofx:

I b~x!.K01K1x.I b~x1!1S41~x2x1!, ~B14!

whereS41 is the slope

S415
I b~x4!2I b~x1!

x42x1
, ~B15!

and xj5mx̃
j
0 /mq̃0

. Thus K15S41 and K05I b(x1)2S41x1 .

Note that this approximation gives exact values forx1 and
x4, and is only off forx2 andx3—a rough estimate is that the
approximation is correct to about 5%.

If we plug Eq.~B14! into ImFhl in Eq. ~B7!, we see that
the K0 piece vanishes~except for the ‘‘34’’ and ‘‘43’’
pieces!, and we obtain

Im Fhl.S41
Im~MM*M !hl

mq̃0

2 .
S41
mq̃0

2

3Im m (
p50

2

~21!p~MR
pPMR

22p!hl . ~B16!

The neutralino contribution todq is found by plugging Eq.
~B8! for ReFhl and Eq.~B13! or Eq. ~B16! for Im Fhl into
~B4!.

Finally, we want to relate the expressions for the three
SUSY contributions to the quark EDM in Eqs.~B2!, ~B3!,
and~B4! in terms of the coefficientskn from Sec. IV. Using
the naive quark model,dn54/3dd21/3du , we can write
k n
x54/3k d

x21/3k u
x and

kq
x5

dq
x

10225 e cm

m0

Im x
, ~B17!

where x5Au , Ad , or m, and d q
x is the contribution todq

from complex quantityx. We can see that if we neglect the
tiny second term ofdq(x̃

1) in Eq. ~B3!, thenkn
Au(kn

Ad) gets
contributions only from the gluino and neutralino contribu-
tions todu(dd), whereask n

m gets contributions from all three
of the SUSY contributions todu anddd .
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