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Constraints on supersymmetric soft phases from renormalization group relations
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By using relations derived from renormalization group equatiR6&E9g, we find that strong indirect
constraints can be placed on the top squark mixing phaéeg fiom the electric dipole moment of the neutron
(dn). Sincem; is large, any GUT-scale phase Aq feeds into other weak scale phases through RGEs, which
in turn contribute tad,,. ThusCP-violating effects due to a weak-scalg are strongly constrained. We find
that |Im A™Y| must be smaller than or of ordm BE"|, making the electric dipole moment of the top quark
unobservably small in most models. Quantitative estimates of the contributidpdram A, A4, andB show
that substantial fine-tuning is still required to satisfy the experimental bourd}, oWhile the low energy
phases of thé\’s are not as strongly constrained as the phasB®f, we note that the phase of a universal
ACYT induces large contributions in the phaseB5t¥ through RGEs, and is thus still strongly constrained in
most models with squark masses below a TES0556-282(197)03703-X]

PACS numbgs): 12.60.Jv, 11.10.Hi, 11.30.Er, 12.10.Kt

[. INTRODUCTION demand that the soft phases be zero by some symmetry.
While that would leave only a small CKM contribution d¢ig
SupersymmetrySUSY) [1] is one of the most compelling [10-13, and thus avoid any fine-tuning in meeting the ex-
extensions of the standard mod&M). It is the only known  perimental bound od,, it would also mean that there is no
perturbative solution to the naturalness prob[@fyit unifies  non-SMCP violation, which is needed by most schemes for
the gauge coupling constants for the observed value oflectroweak baryogenesfd4]. Also, such models do not
sirf6,,, it allows radiative electroweakEW) symmetry generate signals of non-SKIP violation, such as those in-
breaking, and the lightest SUSY partner provides a goodolving top squark mixing. There are ways of naturally ob-
dark matter candidate. SUSY models with such features argining small nonzero soft phases which leave suffic@Rt
generally in excellent agreement with experiment, and thergiolation for baryogenesigl5-18, but these phases would
is even the possibility that a recent Collider Detector at Ferstill have to meet the bounds frody and would probably be
milab (CDF) event[3] is of supersymmetric origifé]. unobservably small in most EW processes—unless the soft
One of the few phenomenological problems associateterms are not universal.
with SUSY models is their generically large predictions for Recently it has been pointed out that large non-SK-
the electric dipole momenEDM) of the neutrond,. Su-  violating top quark couplings could be probed at high energy
persymmetric models with universal soft breaking param-<olliders[19]. A measurement of a large top quark EDM, for
eters have two physical phases, beyond the Cabibbexample, would indicate physics beyond the SM, and it is
Kobayashi-MaskawdCKM) and strong phases of the SM, interesting to ask whether SUSY models can yield an observ-
which can be taken to be the triscalar and biscalar soft brealable effect. Several references have attempted toGiBe
ing parameter& andB. These phases give a large contribu- violation from top squark mixing due to the complex param-
tion to d,,, of order 10%? (100 GeVMg,sy)%e cm, where eter A, to yield large CP-violating effects in collider pro-
M gysy is @ characteristic superpartner mass. The experimercesses involving top quarf&0]. Such papers either explic-
tal upper bound oml, is of order 102° e cm[5], so that if itly or implicitly assume nonuniversal soft couplinds, at
superpartner masses are near the weak scale, the phasedhaf grand unified theor§GUT) scale, otherwise, the phase of
these complex soft parameters must be fine-tuned to be legs would be trivially constrained byd,. We consider
than or of order 10°—10 3 since there is n@ priori reason  whether it is possible to obtain large effects due to the phase
for them to be small6]. If one wants to avoid such a fine- of A, at the EW scale by relaxing the universality Af We
tuning, there are two approaches: supprgswith very large  will show that due to renormalization-group-induced effects
squark masse@reater than a TeM 7], or construct models on other low energy phases, the phasépfs strongly con-
in which the new SUSY phases naturally vani8h Models  strained byd,,, and it is not possible, for most areas of pa-
with very heavy squarks are unappealing because in suatameter space, to have lar@eP-violating effects due to the
models lightest supersymmetric parti€leSP) annihilation is  imaginary part ofA, .
usually suppressed enough so that the relic density is unac- We will assume that no parameters are fine-tuned and
ceptably largd9]. They also lead to a fine-tuning problem of thus we will require the phases at the GUT scale to be either
their own in getting théZ boson mass to come out right in identically zero(presumably through some symmetor no
EW symmetry breaking. less than 1/10. If one permits an arbitrary degree of fine-
It is natural to consider solutions of the second type, anduning, the whole SUSYCP violation issue becomes moot,
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and one can derive no constraints on the phask, oiVhile Even with universal boundary conditions, the elements of
one can construct models which give small universal phaseshe matriced\;, Ap , andAg have distinct phases at the EW
as we said above, the fine-tuning needed to evade the coreeale because of renormalization group evolution. We will
straints we derive is unlikely to be explained naturally. Ouralso relax, in some places, the assumption that their phases
approach in this paper is to assume the reasonable finastarted the same at the GUT scale. We ass(foresimplic-
tuning criterion we have just outlined, and ask what it im-ity) that these matrices are diagonal. One possible conse-
plies about low energy SUSE P-violating phenomenology. quence of this approach is that one could hdye0 because

In Sec. Il, we review the basics of SUSIP violation.  Im Ay and ImA,=0, but otherA, notablyA;, could have
We present our results derived from renormalization grouparge phases which lead to observable effects. These include
equationg RGES in Sec. Ill, and impose the neutron EDM angular correlations and polarizatiof], including effects
constraints on I, using those results in Sec. IV. In Sec. V attributable to the electric dipole moment of the top quark,
we discuss top-squark mixing-induc€dP-violating observ-  d,. As discussed in the Introduction, this scenario is strongly
ables in more detail in light of our constraints on the phase otonstrained by RGE running.
A;, and we give some concluding remarks in Sec. VI. The
details from Sec. Il are written up in Appendix A, and the
full one-loop calculation for the SUSY contribution to the
neutron EDM is given in Appendix B.

IIl. RENORMALIZATION GROUP FLOW
OF COMPLEX SOFT TERMS

The goal of this section is to demonstrate how a large
phase inA; can feed into other parameters in the theory
through renormalization group running. The imaginary part
of A at the weak scaleA:", is determined by running

AGYT (and, for large tag, AGUT) down to the weak scale via
the renormalization group equationd-or compactness of
notation, we will define<_—lm x in the following sectiong.

We will show that IargeA induces potentially large values

of BEW andAu 4» which give an unacceptably large neutron

(1)  electric dipole moment.
Rather than write RGEs for the whole effective theory, we

need only consider a complete subset of them which includes

A4 andB. The running of these soft terms depends upon the
— i — gaugino masses, the top and bottom Yukawas ignore
\;v:de;e v_vsi;esl{;e\ﬂ\u dlag§6¢'A°YAt} 'aﬁ(EJI)Y dlaarge{?ﬁe’%dﬁg\}ﬂ’/a tiny effects from the other Yukawa couplingsnd the gauge

E el r ,,L u: b E coupling constantsa,=\ 247 (a=1,2,3. We define

coupling matricesQ, L, Uy, DR, andER are the squark and  t=1/4# In(Q/Mgyy) and write
slepton fields,\ are the gauginos; ang, are the scalars in

II. SUSY CP-VIOLATING PHASES
The soft breaking potential in the MSSM is

Loor=31mi[?| ]+ 52 M+ €[ AyURYUQLIH,
+ €[ AoDRYLQLIHy+ €[ AER YELL Ty

+&;BuH HL+H.c.,

the theory.

dMm

a
A common simplifying assumption is that this soft La- TZZbaaaM @)
grangian arises as the result of a GUT-scale supergravity
(SUGRA) model with universal soft triscalar coupling, dA
gaugino mas#, =M, and scalar mass; =m,. This pro- o =2C a Mo+ 120,A+ 2apA,, 3)
vides an explanation for the absence of flavor-changing neu-
tral currents which arise from loops with squarks of nonde- dA

generate mag®1]. Such supersymmetric models have only
two independent physical P-violating phases beyond the
CKM and strong phases of the SJL0] although these

d‘t"c =2C a M+ 6aA,,

4

phases appear in several different linear combinations in low dA, )
energy phenomenolodyl7,22. We will take the two physi- gt = 2Ca®aMat 2aiAct 12apA, )
cal phases to be Ar4 and ArgB.
It turns out that allCP-violating vertices in this model dA,
arise through the diagonalization of complex mass matrices T’S=20;aaMa+ 6apAp, (6)

[15]. The complex quantities which appear in these matrices
areAq+u* Ry anq u, whereR is tang (the ratio of Higgs
vacuum expectation valuegor g=d, s, b and cotg for
g=u,c,t, and where the phase @f is simply equal to the
phase ofB* by a redefinition of fields. Thus fad,, which
involves onlyu andd quarks, there are only contributions

B
T = 2CH @aMa+ At Baphy,

@)

d
from three low energy combinations of the two SUSY GUT % =2a(—Caayt+6ait+ ay), (8)
phases: Ar@Ay—u tan B), Arg(A,—u cot B), and Argu. (In
Appendix B, a complete expression df is given which q
includes suppressed contributions from phases of the other dap _ o
squark mixings. ar ~ 2%(~Cadat artBay), ©



%=2baa§, (10)
wherea is summed from 1 to 3, and
ba=(%,1,-3), 11
ca=(13,3,%), (12
ci=(15.3,%), (13
ca=(330, (19

and the Yukawa coupling constanig, =\ Eb/4w are related
to the masses by

g m 1

9 m 1 G2 My 1
v2 My sin B’

"2 My cosB’

N\t Ap (15

We note that some referende3] list the oA, coefficient in
Eq. (4) as 2, but we have confidence that the coefficient i

actually 6[13,24]. Nevertheless, our conclusions do not de-B

pend qualitatively on this coefficient. _ _
We are mainly interested in the evolution Af, and B.

CONSTRAINTS ON SUPERSYMMETRIC SOFT PHASE . .

1613

Thus, given the GUT values, to obtain the low energy values
for the imaginary parts of all the soft terms, one only needs
to find AR and AW, and for small taB, we only need the
former.

In the small tap limit (,=0), we can use Eq(16) to
obtain the ratio of EW- to GUT-scale values of the imagi-
nary part ofA;:

¢ — AEW/AGUT_ exp[_ j T o mdt} 25
t— 7\t t t .
t

EW

If the top quark were light, the integral in E(5) would be
small andr; would be close to 1, but since the top quark is
heavy, we find that, is well below 1. We can use the rela-
tions in Eq.(24) and the definition for, in Eq. (25) to relate
the low energy values for the imaginary partsfgfto B and

A, (for small taB):

= (AZ"=ASTD.

P —-2r, — J—
EW_ t (BEW_BGUT)—

t 1_rt (26)

We will make the simplifying assumption th#C®"T and

UT are zero. As we will see in the next section, this is
reasonably well justified by our fine-tuning criterion, at least
for the phase oB.

We can set the phase of the common gaugino mass to zero at Next, we must find',. We obtain a pseudoanalytic solu-

the GUT scale by a phase rotation and thdp=0 at all
scales. Therefore the RGE for the imaginary parts ofAhe
andB can be written without thé/, terms:

. 12atAt+ ZCl’bAb y

at (10
d_T =20 A+ 12apA,,, 17)
d_xu —BayA, (18

dt
% =6apAp, (19
d—t_=6atA—t+ BapAy, . (20

Using the above RGEs, we can derive the useful relations

AB=AA, +AAG = &H(AA+AA,), (2D
AA, = 5(BAA—AA), (22)
AAqs=5(6AA—AA), (23

whereAB=BCSYT—BEW, etc. For small taf, we can neglect
my, so that these relations simplify to

AB=AA, =3AA,=1AA,,

AA4=0. (24)

tion to Eq.(25) in terms of EW- and GUT-scale quantities in
Eqg. (Al) of Appendix A, but this is useful only if one has
already obtained the GUT values for thés by numerical
integration of the RGEs. While we cannot find a truly ana-
lytic solution to Eq.(25), we can place an analytic upper
bound onr, which is sufficient to make our point. We note
that the integral in Eq25) is simply the area under the curve
of the top Yukawae; as it runs from the EW scale to the
GUT scale. Thus we can place an upper bound asimply
by finding a lower bound to that area. In Appendix A, we do
this by placing a lower bound or,(t) at eacht, and we
obtain

re=1-212a:"few, (27)
which is valid for small tag as long as 1@FV<fg,,. Here
few=2c,a5"=1.5+32/3(«E"V—-0.12), and so, for example,
Eqg. (27) is valid for m=175 if 1.3<tans<mJ/m, (for
smaller taiB, r; gets closer to zero, but does not actually
reach ). Thus we have placed an analytic bound on the
running of A, completely in terms of EW quantities. For
ag(Mz)=0.12, sirB—1 (moderate tad), and m,=175
(m,=160), we find thatr,<0.43(r,<0.52, which, from Eq.
(26), corresponds thAFY| < 1.5 BFW|(|AFY| < 2.2 BEW). For
small tarB, the bound is even stronger, so that for@amall
enough to neglean, effects, we obtain

|ABY) <2.2 mir{| BEY,|AEY}, (29)
and in practice the coefficient is less than 2.

In Fig. 1, we plotr,(= AF"/ASYT) as a function of the top
Yukawa coupling for different values a@f,(M ;) in the limit
where effects proportional tan, can be ignored. For
m>160 GeV,\, is always greater than about 0.87 for all
values of ta, which means that, is always less than 0.45,
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FIG. 1. Plot of the ratioga) r,= AE’IAET, (b) (1—r)/2=
—BEW/ASYT and (o) (1-ry)/2r,=—BEWAEY versus the top
quark Yukawa coupling foreg(M,)=0.118+0.006.
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FIG. 2. The ratios of imaginary parts to IAf"T versus tag
with ImASY"™#0 and ImASY'=0. The solid line is
Im AP/ Im ASYT | the dashed line is IBFY/Im A°YT, and the up-
per (lowen dotted line is IMAFY/Im ASYT (Im AEY/Im ASYT).

in_agreement with our analytic bounds. Also plotted are

—BEW/ASYT=(1-r)/2, and —-BEW/AFW=(1-ry/2r,,
which is_greater than 10.6) for m=175 (160. Thus
|AEW|<|BEY, in agreement with our analytic results.

Next we consider moderate {@nwhere one must take
into account the mixing of\;, and A, but where tag is not
of orderm,/my,. For AGUT/AGUT>O these effects lowar,
and one can simply use timao 0 upper bound on, derived
above!

For <0 (recall that with universah this ratio
would S|mply be+1), one simply maximizes the positive
contribution tor, from A, to obtain(see Appendix A

AGUT/AGUT

oW
EW_
ay

r<1-12a;"/fey— %(A_EUT/A_?UT) w- (29

Note that the last term raises the upper bound Qrbut the
effect is small until ta@ gets quite close ton/m,. For
=175 GeV, AGUT=—A%YT and tanB=0.7m/m,~35

0.35 except for large tgh and ASUT/ASYT<0. For
tang=m/m, and ASY/ASYT<0, BEW actually goes
through zero, becauileB gets equal and opposite contribu-
tions fromAA; andAA, there. At that point thé andb RGE
coefficients are almost exactly the same at eafbecause
the Yukawa coupling runnings differ only in a small(1)
coefficien], and the boundary conditions have opposite

signs, so that\(t)=—A(t) for all t. Of courseAS" and

AEW are nonzero because they involve different linear com-
binations of AA; and AA,, and so there is still a strong
constraint omA, from d,, there.

Finally we note that for large tg one can place con-
straints onASYT as well, since it can then affect other low
energy phases through renormalization group running. For
tan3~my/m,, the constraints are of the same order as on
ASYT | while for small tar, ASYT is unconstrainedthough
the A contrlbutlon toA5" for small tang is constrained to be

small andAEW can be large only ifACUT|>|ASYT)).

(recall that we are evaluating all quantities at the EW scale,

and som,, is somewhat lower than the valuegft=m2), we
find the bound;<0.6.

Effects due tom, are ewdent in Figs. 2—4, which show
AEY BEW AEW andAEY, normalized toASYT, as a func-
tion of tarB for various GUT-scale boundary conditions. In
Fig. 2, only the phase oAS"T is nonzero, while in Figs. 3
and 4,ASYT has values of- AGUT and—ASYT, respectively.

In all casesr, (the solid curvé remains below 0.35 and has
its largest value just below tg=m/m, for ASUT/ASYT
<0 (Fig. 4, in agreement with our analytic results. This
means that the EW value for the phasé\pfs constrained to

be less than about a third, independent of constraints from

low energyC P-violating observables. The magnitude of the
imaginary part induced int8=Y/ASUT by A, is greater than

There is a subtlety for the case of small positA&T/ASYT for
which there can be a net positive contributiorr taf A, runs down

IV. BOUNDS FROM THE NEUTRON EDM

Now_that we have placed an_upper bound on the magni-
tude ofA; in terms ofA,, A4, andB, we need to explore the

below zero. However, the maximum effect on the bound is very

small.
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FIG. 3. Same as Fig. 2 with IAZYT=Im AYT.
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§ T =7 m, and the LHS by the region of the experimental bound so
& 0 5(’) e T that the coefficient& are dimensionless. We can rewrite the
T 1 EW imaginary parts in Eq33) using Eq.(24) as
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FIG. 4. Same as Fig. 2 with Iz""= —Im ASYT,

_ o _ whered$T/107% e cm is just Eq.(33) with EW values of
constraints on the Iatter three imaginary pdinslow energy A . and B replaced by GUT quantities. It vanishes if
observables, we will drop the label EWAs we mentioned ASHT andB®YT are zero. In supergravity mode|8°Y"| and

in the Introduction, one of the strongest constraintsCdPr SUT . .
violating phases is the electric dipole moméBDM) of the  [B~~ | are of ordemy, so that barring fine-tuned cancella-
neutrond, . In Appendix B, we write expressions for the full flons, the GUT-scale phases must be less than ordégr I
supersymmetric contribution td,,. One sees that all the the ks_ are greater than order 10, then our fine-tuning crite-
pieces are proportional #,, Ay, or u (except for the neg- Fon dictates that we set the GUT phases to Zpresumably
ligibly small pieces proportional té,,). We can redefine the protected by some symmejryThus we need an estimate of

Higgs fields so that the phase afis just the opposite of the theky's.

phase ofB, and thus In Figs. Ha), 5(b), and %c), we plot the values fok:\“,
k:\d, and k&, respectively, in many different models as a

n=— ﬁ_:’ﬁ‘(ﬂg_gsm), (30) function of squark mass and as a function of@an Figs.

Bl IBI\ 2r, 5(d), 5(e), and 5f). We see thak’" and k' are fairly flat

where the right-hand sidRHS) follows for small tars. functions of tamB, whereas—k{ increases with tg8 due to

In order to estimate the size pfwe will need an estimate the u tan terms in t_he exApressmn fat; . XVe also see that
of |u/B| in Eq. (30). We can find this ratio by considering the Most models  give k;*>2(0.8), k“>7(3), and
two equations which: andB need to satisfy to ensure that |k4|>100(40), for squark masses below 500 G&V TeV),
EW symmetry breaking occurs and that théoson gets the SO that order-1 phases in all the SUSY complex quantities
right mass: usually give a neutron EDM which is of order 1000) times
the experimental bound. We note that these are substantially
ZB,zL:—(mﬁ +mﬁd+2,u2)sin 28, (3D larger contributions(and thus stronger constraintshan
‘ claimed by the recent work of Falk and Oliy26], though
m2 M —m? tarf B this is probably due to the fact that they use very heavy
ul=— _Z d u ] (320  squark masses in an effort to find the smallest fine-tuning of
2 tart -1 phases consistent with cosmology. While one can argue
whether or not the bounds on the phase#\pf; represent a
fine-tuning, the bound on the phase of (and thusBEY,

which comes fronB®YT and A®Y") certainly does. Thus, by

In the limit that tag—oo, we see that the right-hand side of
Eq. (32) goes to zero, and $—0, whereas.? is not forced
to zero. For tap—1, the right-hand side of Eq32) blows

up, forcing u to take on very large values. Wherf domi- our fine-tuning  criterion, the_phases &°°r a_nd AFGL.JT
nates Eq(31) and taB=1, then we are led to a value of should be zero. We note that in the case of univefsilis

|B|=|]. So in both the tafi— limit and the ta—1 limit irrelevant whether or not the low energy phasespandA,

we find that|u/=|B|. We have run thousands of models nu- are strongly constrained,_ sin_ce the phase of the universal
SUT makes a large contribution to the low energy value of

merically[25] which include the one-loop corrections to Egs. ~SUT. ~CuUT
(31) and (32) and found thatu|=|B| is indeed a good rela- # (SINCEA"'=A"").
tionship for most of the parameter space. As expected, it is TO give an idea of what level of neutron EDM one ex-
violated most strongly for intermediate values of gafror ~ Pects with different initial assumptions, we plot, in Fig. 6,
example, for tag=10 we have found a small region of pa- dn/10~>° e cm with universallA®"T| for three cases(a),(d)
rameter space whelg]/|B| is as low as 0.4, although most ArgAZ"'=ArgAg"™=0.1 and all other phases zer(),(e)
solutions prefefu)/|B|>1. We will assume thau/|B|=1, ArgAZ’T=—ArgASYT=0.1 and all other phases zero, and
and thus the fine-tuning constraint on the phasB & even  (c),(f) universal phases AAFYT=ArgB®"=0.1. As one
stronger than on what we obtain below for the phasg.of can see, even with phases of order 0.1, most models have an
From Appendix B, we see thal, can be written in terms absolute value fod, /10" ?° e cm greater than 1, inconsistent
of the three imaginary parts: with the experimental bounds.
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FIG. 5. Scatter plots ofa) and (d) k’:“, (b) and (e) k:d, and(c) and(f) k& versus squark mass and versus fafEach point represents
a solution of the supersymmetric parameter space with universal scalar and gaugino mass terms which is within other experimental limits.

As can be gathered by the spread of points in the scatteset all the GUT-scale phases to zero except for thahof
plots and the number of parameters involved, the results de&even though our fine-tuning criterion implies thAfUT
pend on one‘s model assumptions. For example, if one reshould be zero, we find it useful to ask what effects one
quires tarB to be small(say, because df-7 unification, and  would have if one allows that fine-tuning.
the squarks are allowed to be very heavy, then there is very
little fine-tuning needed for the current experimental bound V. TOP QUARK EDM
ond,. On the other hand, if SUSY is detected at the CERN
ete” collider LEP 2 or Fermilab TeV 33, then even the Now that the top quark has finally been discovered, one
smallest tag models would require fine-tuning. can envision some nice experiments which measure proper-

In minimal supergravity models the natural scale forAhe ties of this known particle. Future colliders, such as the NLC,
terms ism,. In Fig. 7 we have plotted, /10 ?° e cm versus ~ can provide many precision measurements of the production
Im AF"/mq to succinctly demonstrate how quickly the EDM cross-section and decay properties of the top quark. It is
rises when IMAEW=0. To construct this plot we chose a possible that signatures of new physics could arise out of
random phase for, at the GUT scale, forced all other Such a study. One property of the top quark which has re-
phases equal to zero at that scale, and then ran all the parafiived much attentiopl9] is the possibility of measuring its

eters down to the weak scale. A sharp dropljnoccurs at EDM by looking at the decay distributions of thé pairs.

Im A[EW/mO:O because |m\[GUT can be small there and thus (Other CP-violating observables are possible, such as those

induces only small phases into the other low energy sofffiSing fromt—bW decays, but we will make our point only

parameters. Models withd, around 102 ecm at with the top quark EDM. It is generally estimated that the
. n

Im A{EW/mOZO occur for low taB where ImA{GUT top quark EDM (;) can be measured to values as low as

>Im AtEW but whered, otherwise tends to be smaller. This 10~ ecm [1.9]' G'V‘?”. the constraints Wh'Ch we derived
. . above, we ask if the minimal supersymmetric standard model
means that most models witth, below the experimental

O can yield a value fod; this large.
bound in F'g.' 6 also have a small EW value for Ap, ar_1d In the context of supersymmetry, it has been proposed
thus from Fig. 7 we can place a stronger constraint o

Im A[EW than we obtained on IrA[GUT: ImAtEW/mos 1/20. r\[20] that a larged, is possible if the phase & is of order

Thus we conclude that models with universal GUT-scaIel' But in Sec. lll, we showed tha™ is c_onstram_ed to be
phases of the soft parameters and models in which onl maller than or of order of the phases which contribute:,to

ASYT has a nonzero phase have difficulty meeting the bound he E[t)M tOI the ti’ﬁ quarl: IS tkéusl\jl:gnstralned to be less than

from d, and our fine-tuning criterion. Models with nonzero a constant imes the neutron :
GUT GUT GUT ; ;

AZ7, Ag7, or AT can meet the constraint frody, with- dy m, detM%

out fine-tuning, as can those with nonzeA§"T for small —=

dn " my detM%' 39

tan 8. For the remainder of the paper, we will for simplicity
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FIG. 6. Scatter plots ofl,/10"2° e cm versus squark mass and versusgdor (a) and (d) Arg ASYT=Arg AZY"=0.1 with all other
phases zero,(b) and (e) Arg ASYT=—ArgASY"=0.1 with all other phases zero, and dc) and (f) universal phases
ArgACYT=ArgB®YT=0.1. Each point represents a solution of the supersymmetric parameter space with universal scalar and gaugino mass
terms which is within other experimental limits.

where del\/I%:mzalrn%2 is the determinant of thédown)  value tends to be smaller than the other quarks. Howeyer,
squark mass-squared matrix, and the value¢adepends generally trqcks fairly well with the other squarks,, and
upon many different SUSY parameters, but is generically of 'US: We estimate that

order 1. Normalizingd,, to the experimental bound, we see

2
that detMi mj
——=—, (37)
detM? my
detMZ gt 1
—21
de=¢ detM% 10%° ecm 2x10°“ ecm. (360 \yhich means that we would need; =mj/y1000 to yield

an observablel,. If experiment determines them;l>80

- . . GeV, then this condition would imply that the superpartners
In addition to this constraint, we recall that the phasé ot Py perp

the EW scale must be less than about 1/3, just from the RGE

suppression factar,. Thus, as long as déig=detM7, we LA L
expectd; to fall about three orders of magnitude below de- I
tectability at proposed future high energy colliders.

We can turn this analysis around. If a large top quark
EDM is discovered, can it be explained in the MSSM? One
possibility is that a conspiracy occurs between several large
phases in the theory to rendét below experimental limits,
and yet produce €, detectable at high energy colliders. This
is equivalent to saying that all the order 1 coefficients which
we absorbed into the parametéin Eq. (36) actually con-
spire to give£&=10®. As we argued in the Introduction, we
would not view this as a likely explanation.

Another possibility to consider is that the top squarks are
much lighter than the other squarks. Frto be observable,
we would need the determinants in E§5) to have a ratio FIG. 7. Scatter plot ofl,/1072° e cm versus IMA™"/m,. Each
=10°. This is possible, but it too would require some fine- point represents a solution of the supersymmetric parameter space

tuning. The large top-quark-induced running of fhegoes  with universal scalar and gaugino mass terms which is within other
in the right direction—the lightest top squark mass eigenexperimental limits.

P P N IR IR
—0.050 -0.025 0.000 0.025 0.050
Im(4&7")/myg
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of the light quarks are above 2.5 TeV. This is essentially thei. greatly appreciates the hospitality of the Brookhaven Na-
heavy squark “solution” to theCP violation problem we tional Laboratory HEP Theory Group. The work of R. G.
mentioned in the Introduction, with an additional fine-tuningwas supported in part by the Department of Energy, Contract
implied by the small rati(m’{llma. No. DE-AC02-76CH00016. The work of J. W. was sup-

Finally, one could appeal to differences betwekrand  Ported by the Department of Energy, Contract No. DE-
dg4 due to effects proportional tm2/v?, which are negligible AC03-76SF00515.
in dy. To achieve¢ of order 18, one again needs a fine-
tuned conspiracy of couplings. APPENDIX A

Thus we conclude that if a largk were found, one would

probably have to look beyond the MSSM for an explanation. In t_h|s appendix, we pro_wde the _deta||s related to our
analytic results of Sec. Ill. It is interesting to note that we can

use the RGEs for the top Yukawa and gauge coupling con-
stants in Egs(8) and (10) to write a pseudoanalytical solu-

It has long been noted that the phases of soft supersyntion tor,=Im A™"/Im ASYT. The integral in Eq(25) can be
metric parameters generically lead to an unacceptably largewritten  as  IngE"Y/aCUT) - 2 ,(ca/by) IN(aSVT o EW),
neutron EDM. This fine-tuning problem has slowly becomewhich allows us to write a pseudoanalyticin terms of EW
less vexing as the theoretical expectations for the squarknd GUT-scale quantitiegthe latter of which cannot be
masses have risen faster than the experimental bound on thgund analytically:
neutron EDM has fallen. Nevertheless, for squark masses

VI. CONCLUDING REMARKS

below about a TeV, we showed in Sec. V that the phad# of _ ac” 3 ag| calba
and universal phase @& do not meet the fine-tuning crite- rt_a?UT LSS} _aSUT (A1)

rion set forth in the Introductiopsee Fig. 6c)]. Certainly, if

supersymmetry is discovered at LEP 2 or TeV 33, a funda- To place an analytic upper bound on we must place a

mental explanation for the absence of a neutron EDM wouldower bound on the areﬁ:GUleat(t)dt. We will need the

be needed, and any scheme for baryogenesis at the EW scaclllezo limit of the running o?lyche top Yukawa coupling in Eq

would require that mechanism to leave small effective Iow(é’) '

energy phases in the soft terfis—1§. ’
From the phenomenological point of view, it is tempting day

to postulate that the soft phases are not universal, that the rTa

EW phase ofA,; is large, while the other phases which di-

rectly contribute to the neutron EDM are small. This would,nere f(t)=2c,a,. While this cannot be solved analyti-

allow interesting signatures of supersymme@iP violation cally, we note thatx(t) runs down with energy and one can

to be visible in top quark physics at future_ coI.Iiders. But weghow thatf (t) will be at its maximum value at the EW scale.
have demonstrated by using the renormalization group equgs if we takef(t) to the constantg,,, we will minimize

tions that the imaginary part & must be less than twice the he running ofa, , and Eq.(A2) can be solved analytically to
imaginary part ofB, and A;-induced C P-violating observ- yield the bound

ables such as the top quark EDM are thus expected to be

—f(t) ay+ 1207, (A2)

unobservably small in almost all minimal SUSY models. 12 1 12 ot ten) -1
These constraints are particularly important for models of ay(t)> gv + S gv e'ew!~tew (A3)
t

EW baryogenesis which rely upon the phase of the top

squark LR mixing parameter,A+u* tanB, to generate \yhich is valid for 12EW< £, [largera™" allows the bound
enoughCP violation for baryogenesis. Such models must, a(t) to reach infinity fort<tgyr and thus makes the
also have sufficiently smaJA+u* tang| to ensure that the 5 nq useleds which corresponds to tgf>1.3 for
phase transition is first ordd27]. There has also been a m=175. If we replacew(t) in the integral above by the
recent attempt to explain the observ€® violation in the  ppg of Eq.(A3), we can find an analytic solution for the

neutral kaon system with zero CKM phase and nonzero offj,.er bound on the area which, for the relevant rangé-gf
diagonal phases in the genefamatriceq 28]. If the univer- andtg,, can be approximated by

sal diagonalA parameter has a large phase at the GUT scale,

it will, as we noted above, give a large contributiondp 12atEW 12atEW
through a renormalization-group-induced phasg. s well —fewtew—1In < ( —

as from a direct contribution. One could evade such bounds EW

by insisting that the off-diagonal components of thema-

trices have a large phase, while the phases of the diagonal =—In
A’s and of B vanish. Although this hypothesis can probably

be technically consistent with our fine-tuning criterion \hich yields Eq.(27) directly.

(phases either zero or langehis scenario strikes us as un- o moderate taB, we need to includen, effects which
natural. mix A, with A,, and ¢, with a;,. The coupled differential

equationg16) and(17) can be solved analytically only if the
coefficients, which here are proportional 4 and ay,, are

We would like to thank G. Kane, S. P. Martin, D. Wyler, constants. To obtain bounds on the running\p&ndA;, , we
S. Thomas, A. Riotto, and A. Soni for helpful discussions. R.can break up the range of energy frogy, to tgr into small

)efEWtEW

fEW

12aFW
1 —

: (A4)

fEW

ACKNOWLEDGMENTS
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regions where the coefficients are effectively constant, andeutralino contribution is given by Kizukuri and Oshirfig,
iteratively evolve from the GUT scale down to the weakit is written in terms of 44 complex unitary matrices which
scale. At each enerdly, the value forA, is given by must be determined numerically. Below we give an expres-
1 sion for this neutralino contribution solely in terms of the
~ e _ N mass matrice$and other minimal supersymmetric standard
At =Adtj)exil —12a4(1)) o] = 5 Au(t)) model (MSSM) parametersand a useful approximation to
that expression, which do not require calculating complex
_ , unitary matrices.
{expl = 12a(t;) ot] To find the neutron EDM, we first calculate the EDM of
the up and down quarksig) from one-loop diagrams with
—exr[—lZat(tj)ﬁt]}}, (A5) photons attached to eithea) an internal boson orhk) an
internal fermion line. Then the neutron EDM is related to the
guark EDM’s in the naive quark model = (4dq—d,)/3,
i , though recent work has argued that this expression overesti-
provided that T=ay/(a;~a,) is not large. Here \nateq if the strange quark carries a large fraction of the

St=t;—t;,1, which is positive. Iterating Eq(A5) gives a  naytron and proton spii29]. The Feynman integrals associ-
complicated expression with terms proportional to each otiaq with @) and b) are[30]

the T(t;)’s. However, each of these terms is positive, so that
taking T(t;) to its maximum value maximizes the size of the

a’b(tj)
ay(t)) — ap(t))

quantity in{ }'s in Eq. (A5), which is what we need for the 3 x Inx
case ASUT/AZYT<0. Once we takeT(t;)— Tpa, many 1%(x) = ax?| 272 1)
terms cancel, and we are left wifteking 5t—0) the upper
limit . 1 1 x xlInx
| (X)=m §+§+ﬁ. (Bl)

R - tGUT
AEW< AT exp( - f 12at(t)dt)
tew As we mentioned earlier, all SUSE P-violating effects

1 o ouT arise from diagonalizing complex mass matrifes]. Gluino
_Z ASUT( _b) ex;{ - ft 12ab(t)dt) loops contribute to the quark EDM, through the complex
6 Gy tew phase in the left-right mixing elements for up and down
squarks:
J‘tGUT
—exp — 122 (t)dt”. (AB) 2
F{ tew ! 4 (§)=_—2 Ouea myMg IM(Aq— uRy) (b E
q 37 a s m% m,(z]. ’
0 0

One can show analytically that(t) reaches its maximum (B2)

value at the lowest energy of the range, and thus we c
replace T by a5V/(afV—af"). To obtain a simpler
bound, one can reduce thd's in Eq. (A6) to 1 by taking a i
lower bound onay(t) to be zero and an upper bound on =[1(X1) +1(xz)]/2. Here Qqe is the charge of quariq,
a(t) to be infinity. Finally one uses the,~0 bound orr, ~ Rq=tans(cotp) for g=d(u), and mg is the gluino mass.

obtained in Eq(27) for the first term in Eq(A6) to obtain  (Note that we use Ina for the imaginary part o in this
the upper bound on, in Eq. (29). appendix because it is clearer tharin more complicated

expressions.

The chargino contribution is proportional to the imaginary
part of products of elements of the matridésandV which

In this appendix we present analytic expressions for thaliagonalize the chargino mass matrix. It turns out that one
full one-loop SUSY contribution to the neutron electric di- can write those products directly in terms of the elements of
pole moment,,. The gluino[11] and chargind7] contribu-  the chargino mass matrix, so that the chargino contribution
tions appear in the literature. While an expression for theo d, can be written

3\e have averaged over the nearly degenerate squark
mass eigenstates for simplicityn%ozmalma2 and 1(xg)

APPENDIX B

e oo MgMiy IM w [012(y1) +Qq/1°(y1) ] —[w!*(Y2) + Qq/1°(y2)]

dg(X )= ——
aX™) (4m)? 9 me, Y1i—Y2
o
dsb or uct 2 2
my Re u IM(A, — uRy) M7V,
Sin(?87slg[w|E"(Yo)‘Fqulb()/o)] > rmi 1 rvzqr : (B3)

!
r=g; o
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wheremy, is the W-ino mass,w=+1(—1) for q=d(u), y;  whereU diagonalizes the neutralino mass matx andM
=m§ /m%,, and! (yo) =[1(y,) +1(y,)]/2. The primed quan- is the diagonal result. Herie} =1°(x) 3 i.e., 1} is the di-
"o agonal matrix of Feynman integrals for the corresponding

mass eigenvalues il . In the limit that thel b(xi) are equal,
the real part ofb,,, can simply be written

tities refer to the S(2) partner, and so ifj=d, thenq'=u
andr is summed over the séti,c,t}. Previous expressions
for dq(')?*) have neglected the squark mixing piece, which is
the second term in E¢B3). This piece is suppressed relative Re ®},=1°(xo)Re M, (B8)

to the other contributions by ?|V,,|*/v?, which is less than

10°* for g=u or d (but it can affect the EDMs of other \here 1°(x,) =3 #1°(x;)/4. The imaginary part ofb,, is
quarks, though it is interesting that there is(iny) direct  more difficult because it vanishes in the limit of degenerate

contribution tod, from Im A, . neutralino masse@xcept for the irrelevant “34” and “43”
The neutralino contribution termg. We know that Imu is the only complex coefficient in
the neutralino mass matriM, and so we can write

Qe 1 my| & Im ®p=Qy, | (B9)
~ g q m == m uw,
do(X0) =7z — — { 2 (afh—agy)Im Ppg e T A

(@m? mZ_vq | i | | N
0 where(),,, is a real matrix to be determined. This allows us

Re(Aq+ 1R)v, 12 to see thadg(xo) is pro.port.|onal to Imu and Im@q—,uRq_),

+—— 3> alald, Im Oy, just as the other contributions are. It turns out thatdg is

M, h.! proportional to ImMM*M),,, ImM(MM*MM*M),,, and

ImM(MM*MM*MM*M),, (except for the “34” and “43”
pieces. To extract the Imu dependence, we ignore all terms
of higher order in Imu/|u|, which is a valid approximation
for the phases allowed by the experimental bounddgn
(B4)  Then these producf$or (h,1)#(3,4), (4,3] simplify as fol-

1,2

IM(Aq— uRy)vg <

— q 59

—— 2, aja} Re ®
ot i Rey

lows:
arises from the %4 complex neutralino mass matrix. The 2
index q=3(4) for g=d(u). Recall[31] that the “1” and IM(MM*M)p=Im x>, (—1)P(MEPMZ P),,, (B10)
“2" weak eigenstates are gauginos, and the “3” and “4” p=0

weak eigenstates are Higgsinos which couple to down and up
quarks respectively. Thus “34” and “43"” terms are absent,

which will allow us to simplify expressions involving the  IM(MM*MM*M)py=Im x>, (=1)P(MRPME P)y,
neutralino mass matrix, since that is the position of the com- p=0

4

L B11
plex coefficientu. We have dropped terms of order?/v? (B1Y)
relative to the others. The gauge coefficieats are IM(MM*MM*MM* M),

aly=v2g tan 6,,(Q,— T3, )=v2g tan 4,,/6, (B5) .
. —1)P(MPPME—P
ad,=vagTy, (B6) Im MPZJO( DP(MgPMg ")ni,
, (B12)
and theag; are the same as tteg; with T5, —T;5=0. The
neutralino phases appear through>e44matrix whereMz=ReM andP is a matrix with—1 in the 34 and
4 43 positions and 0 everywhere eld§so that ImP)
b, = uTM.1°U ’ =Im M]. After some calculation, we obtain an expression
h .21 it T ®&7 for the imaginary part of the complex matrii:

Im (I)h|ZQh| Im M
#S 2 #s
i§j)k eiJkMi‘leGpZ:O (—1)p(MEPM§e7p)h|_i§j:k kMM

#S
l(xs)—; 1(x))

4
=3Imu2
s=1

4 #S 6 #S #S
szo (—1>P(M%PMé‘p>h|+§k e”kM?M;‘pEO (—1>p<MEPM2‘p>mHHEk €M iM? 3M§—§ Mﬁ)

#S

- E GljkMIZMJG
1),k

#5

M- M
n

#S
12014
+Zk EijkMi I\/IJ
L

#S

3ME-> M§
n

-1
, (B13
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whereEf&S means sum over the three members_of the set

{1,2,3,4—{s}. HereM, are the mass eigenvalues Mf (i.e.,
the four physical neutralino masges

The expression above is completely analytic and exact

except for the approximation we made in dropping higher
order terms in Imu/|u/, but it has so many terms that it is not

that useful. Let us find an approximation to this expression

using the information about the neutralino mass eigenstate

namely, that they are fairly close together and the heavies
neutralino is lighter than the squarks,<<1) in most SUSY (
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IM(MM*M)p Sy
Im ®p =Sy — o2
do do

2
XIm p 2, (~1P(MEPMZ Py (B1)
=

'the neutralino contribution td, is found by plugging Eg.
B8) for Red,,, and Eq.(B13) or Eq.(B16) for Im &, into

models. This means that we can take a simple linear fit to théBA')'

Feynman integral by evaluatin§(x) at the lowest and high-
est values ok:

1°(x) =Ko+ Kx=1°(x;) + Sy(x—x1),  (B14)
whereS,, is the slope
19(x4) — 1°(x7)
412;, (815)

Xq—Xq

and x;=myzo/mg,. Thus K;=S,; and Ko=1°(X1) — Sy .
Note that this approximation gives exact values Xgrand
X4, and is only off forx, andxz—a rough estimate is that the
approximation is correct to about 5%.

If we plug Eq.(B14) into Im &, in Eq. (B7), we see that
the K, piece vanisheqexcept for the “34” and “43”
piece$, and we obtain

Finally, we want to relate the expressions for the three
SUSY contributions to the quark EDM in Eq&82), (B3),
and(B4) in terms of the coefficientk,, from Sec. IV. Using
the naive quark modeld,=4/3d4—1/3d,, we can write
kX=4/3kj— 1/3k and

k)( dé mo

9102 ecmIm x’

(B17)

wherex=A,, Ay, or u, anddg is the contribution tod,
from complex quantityk. We can see that if we neglect the
tiny second term oﬂq(}T“) in Eq. (B3), thenk/:”(kf]\d) gets
contributions only from the gluino and neutralino contribu-
tions tod,(d4), whereak 4 gets contributions from all three
of the SUSY contributions td, anddy.
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