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Extending the standard model using charge quantization rules
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We examine extensions of the standard ma@¥), basing our assumptions on what has already been
observed; we do not consider anything fundamentally different, such as grand unification or supersymmetry,
which is not directly suggested by the SM itself. We concentrate on the possibility of additional low mass
fermions(relative to the Planck massand search for combinations of representations which do not produce
any gauge anomalies. Generalizations of the SM weak hypercharge quantization rule are used to specify the
weak hypercharge, modulo 2, for any given representation of the non-Abelian part of the gauge group. Strong
experimental constraints are put on our models, by using the renormalization group equations to obtain upper
limits on fermion masses and to check that there is ib) Uandau pole below the Planck scale. Our most
promising model contains a fourth generation of quarks without leptons and can soon be tested experimentally.
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[. INTRODUCTION tations of SUN) which must be combined to give the rep-
resentation of SUY). In particularN-ality has value 1 if a
Over the years there have been numerous attempts at esepresentation is an SN) N-plet (N), O if it is an SUN)
tending the standard modéSM). Some of these models singlet(1), and—1 if it is an SUN) anti-N-plet (N). Note
have been proposed with the purpose of explaining somgat in SU?2) the 2 representation is equivalent to tBeep-
particular feature of the SM. For example, grand unifiedresentation. We expect that in an extension of the SM this
theories (GUT’s) “explain” the convergence of coupling charge quantization relation or some generalization of it will
constants at some energy as a manifestation of a single fupg)q.
damental unified interaction. Other models such as super- an opvious way of extending the SM is to extend the
symmetry(SUSY) have been proposed for mainly aestheticgauge group. The standard model grdGMG) is [1,2]
reasons: SUSY introduces a symmetry between bosons and
fermions. But so far none of these attempts has been entirely R
successful, although SUSY GUT'’s are phenomenologicallBMG=S(U(2)®U(3))=U(1)®SUY2)®SY(3)/D3, (2
consistent with the unification of the SM gauge coupling
constants and do not suffer from the technical gauge hierafyhere the discrete group
chy problem.
Another approach to extending the SM is to look at the
SM itself and look for distinctive features which could be Dy={(e'?™ —1,,e2™3 ;)" ne 24} ©)
generalized or assumed to hold in an extended theory. The

SM has been so successful that, within our experimental angnsures the above quantization rilg is the identity of

calculational accuracy, it has proved to be a perfect descrlng(N)]_ We argue that the most obvious extension is to add

tion of nature(except for the gravitational interactiprSo a
natural method of extending the SM is to look for fundamen-" "€ 9roups o t_he sequence UESU(2)® SU(3) _anql to
use a different discrete group so that the quantization rule

tal features in the SM which could distinguish it from similar ; . /
) . ) . above is generalized to involve all the group components.
and, without experimental evidence, equally plausible mod- . :
X .__.._One of the groups we consider is
els. We propose that one such feature is charge quantization.
This can be expressed as
1 . Gs=U(1)®@SU(2)® SU(3)® SU(5)/D5, 4
%"— E“duality” + §“triality” =0 (mod ), (1)
where the discrete grouﬁs is defined as

wherey is the conventional weak hypercharge. The duality

has value 1 if the representation is an(8\doublet(2) and Do={(e2™Ns _ | @i2ml3|  ai2mms/5| \n-pqc 2 5

0 if it is an SU2) singlet(1). The triality has value 1 if the s={(e 12,8 3:€ 5)"ne Sy}, (5)
representation is an §B) triplet (3), 0 if it is an SU3)

singlet(1), and—1 if it is an SU3) antitriplet (3). In general whereNs=2*3*5 andms is an integer which is not a mul-
we can defineN-ality to be the number oN-plet represen- tiple of 5. This group gives a generalized quantization rule
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y 1 _ 1 ms For our models to be perturbatively valid, all Yukawa
5 5 duality” + Ztriality” +-z="quintality” =0 couplings at the electroweak scale must be not much greater
(mod 1), (6) than 1. However, we will sometimes take a somewhat higher
mass threshold for all the new fermions when checking to
which is the simplest generalization of the SM charge quansee if a model could be perturbatively valid up to the Planck
tization rule. Further generalizations are obtained by extendscale. For example, we can calculate the running gauge cou-
ing the sequence U(®)SU(2)® SU(3) with a set of S(N)  Pling constants, assuming that all the new fermions can be
factors, where th&l’s are greater than 3 and mutually prime. included in the renormalization group equatidf&GE's) at
The latter condition ensures that the generalized quantizatioi€ TeV scale. Thus we can check to see if any gauge cou-
rule shares the property with the SM rule, E@), that a pling constant becomes infinite below_ the Planck sige,
given allowed value of/2 implies a unique combination of if there are any Landau poles, especially for the U(1) cou-
N-alities: (duality, triality, . .., N;-ality, ...).: pling]. If the threshold was lower then the new fermlon_s
We will consider the fundamental scale to be the Planckvould effect the coupling constants even more but this
mass M pianey and our models will be a full description of Would only be a small effect. Obviously we do not want the
physics without gravity below this scale. The assumption€OUPling constants to become infinite or the theory will be
we make about our models essentially lead to the conclusioffconsistent. When we do this we find that there are few
that all new fermions with a mass significantly below self-consistent models_ allowed by our assumptions, in thg:
M pianck MUSt have a mass below the TeV scale as explaine@€nse that for any particular gauge group only a few combi-
in Sec. 1l B. Therefore our models all describe low energynations of fermions w_hlch ca_ncel the anomalies do not cause
physics(below the TeV scaleand have a desert up to the the U1) gauge coupling to diverge.
Planck scale where new physics will occur. We do not We will show that in the model with gauge groG; we
specify any details about the Planck scale physics since it §an add new fermions with masses accessible to present or
largely irrelevant to low energy physics. planned futL_Jre accelerators, in particular a fourth_ generation
We shall describe the gauge groups considered in thigf quarks without any new leptons. At present this model is
paper and the motivation for choosing such groups in Secconsistent and can be tested gxpenmentally in the near fu-
Il A 1. We shall consider general types of gauge groups andure- It can be viewed as the §|mplest altgrnatlve to the_ SM
also give specific examples, concentrating on the giGyp which has the same charqcterlstlc properties as the SM itself.
defined above. When we also impose the condition that all !N Sec. Il we shall outline our requirements for a viable
fermions are in fundamental or singlet representations, as ifiodel. We will discuss theoretical constraints such as
the SM, we are limited to the models which we shall con-anomaly cancellation as well as aesthetic extrapolations from
sider in this paper. After choosing the gauge group we wanthe SM, includi.ng charge quantization as already mentioned.
to examine which low mass fermiortiow relative to the N the Appendix we show how these ideas can be used to
Planck scalpcan exist in the model. We must check that thederive the SM generation. _ _
model is then consistent, both theoretically and experimen- N Sec. lll we shall discuss the experimental constraints
tally. which arise from the consistency of the SM with experi-
The main theoretical constraint is that there are no anomdnents. This includes the experimental limits on the mass of
lies as described in Sec. Il C. This greatly limits the choicethe top quark and the masses of new, undetected fermions.
of fermions and their weak hypercharges in our models. In In Sec. IV we will discuss the simplification of the
the Appendix we show how the SM generation of mass-&nomaly constraints when we assume that all fermions get a
protected fermions can be derived using our assumption@ass by the SM Higgs mechanism. _
about charge quantization, small representations, and !N Sec. V we shall show the difficulty of constructing a
anomaly cancellation. model where all the new fermions are in 5-plet or anti-5-plet
There is one important fact to keep in mind when proposJ€épresentations of 38). We shall show that such a solution
ing any extended model which has extra non-Abelian gaug# Nnot possible within the context of our model.
groups such as SW). As we already know from the SM, In Sec. VI we will see how the difficulties of Sec. V can
the SU3) group acts as a technicolor gro[®] and gives a P& overcome by also adding fermions which are(Blsin-
contribution to thew* andZz® masses. In the SM this con- JI€ts; in particular a fourth generation of quarks but no
tribution is very small but when confining groups with fourth generation of leptons. We will also show how such a
N>3 are considered we must carefully consider the effecBolution can be formulated in a more general gauge group.
this will have. Since we are not wanting the complications of N Sec. VIl we shall discuss the overall merits of such a
extended technicolor in order to generate quark and leptofodel and how easily it could be tested experimentally.
masses, we assume that there is a Higgs doublet and that the
masses of the weak gauge bosons are generated by a combi-
nation of the Higgs sector of the theory and the technicolor
effects of the gauge groups. This happens in exactly the same
way as in the SM where QCD gives a small contribution to  First we shall discuss which models we will be consider-
the W* andZ® masse$3]. ing as viable extensions of the SM and then we shall discuss
in detail the requirements for a potentially successful exten-
sion of the SM. We shall use some of these constraints when
This corresponds to the global group, associated with the genegonstructing models and the rest to check the consistency of
alized charge quantization rule, having a connected cé¢hier our models.

Il. DISCUSSION OF FORMALISM OF MODELS
AND THEORETICAL CONSTRAINTS
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A. Extrapolations from the SM where the discrete group

In this section we discuss aesthetic extrapolations from
the SM. These are features of the SM which have no obvious
explanation but in some way can be used to specify th%‘

635{(ei277/6,_|2,ei271'/3| 3)":neZG} (8)

del al iquel ick h ; nsures the quantization rule, Eq). We believe that the
model almost uniquely. We try to pick out these features ant st ovious extension is to add more special unitary groups
carry them over to or generalize them in our extended mode

o the sequence U(®)SU(2)® SU(3) and to use a different

Ydiscrete group so that the quantization rule above is general-

is that this is the most logical method although the feature&ed_ In[1] it is argued that the group should be of the form
chosen may of course be subject to personal prejudice.

1. Extending the gauge group and charge quantization GPEU(l)@SU(Z)@)Su(s)@SU(S)@. N ®SU(p)le ’(9

As stated in Sec. |, an obvious way of extending the SM is

to extend the gauge group. The SMG is where the product is over all St) where g is a prime
number less than or equal to the prime numpefhe dis-
SMG=U(1)®SU(2)®SU(3)/Ds, (7)  crete groupD,, is defined as
|
pr{(eiZﬂ'/Np,_|2,ei27r/3|3'ei277m5/5|5, L ,ei2wmp/p|p)n:nEZNp}, (10)

where N,=2*3*5%...xp and my is an integer which is not a multiple oN. In fact we can obviously choose
0=my=<N-—1 sincem, is really only defined modul®l. We also have the freedom to choose that there are, for example, at
least as many S(@@) doublets which ar@\ representations of SB{) asN representations since we can conjugate I)JUand
setmy— —my (mod N). We will use this fact later to eliminate duplicate solutions wheréNafilets and antN-plets have
been interchanged. This also allows us torfix=1.

This group gives a generalized quantization rule

%"— %“duality” + %“triality” + %“quintality” +.. 4+ M. p-ality” =0 (mod 1). 1y
We will also consider the more general groups defined as
SMGZNlNZ...NkEU(1)®SU(2)®SU(N1)®~ . ~®SU(Nk)/D2N1...Nk, (12
where
Donyoon = (627N, = 15, @27y Nay @27 N )M me Zi) (13)

Here N=2*N,*---*N, and theN; are odd and mutually the group[4,5]. This can be described by saying that it is
prime (we can obviously assume they are arranged in asvery skew. The intermingling of the various simple groups

cending order So the quantization rule is SU(2), SUNN,), ... , SUN,) implied by the charge quan-
tization rule, Eq(14), helps to suppress the number of outer
y 1 my my automorphisms and ‘“generalized automorphisms.” Thus a

5t 5d+ N—llnﬁ' et N—kknkEO (mod 1), (14 group like SMGy_y,.n, Would indeed be more skew than
groups without such intermingling. Alternatively we can de-
where we have defined to be the duality anah; to be the rive Eq. (14) directly as a natural generalization of the SM
N;-ality of a representation. The groups SM4s are the charge quantization rule, E{L).
minimal extensions of the SMG=XSMG,3) which are in- Of course it is possible that the apparent charge quantiza-
spired by the SMG, in the sense that each is also a cros®n rule in the SM is simply due to chance; i.e., the fermions
product of U(1) and a set of distinct special unitary groupsin the SM just happen to obey that particular rule. However,
with a charge quantization rule involving all the direct fac- we believe that the quantization rule is a fundamental feature
tors and contains the SMG as a subgroup. The property a¥f the SM; so we argue that it is very difficult to see how
the SMG that the value of/2 determines both the duality there cannot be a generalization of this rule in an extended
and triality extrapolates to the principle tha® should also model, while still retaining the general features of the SM. In
fix the N-ality, but then it is needed that 2, 3, addare fact the form of the generalized quantization rule is sug-
mutually prime. gested from the SM and there seems to be little choice in
It has been suggested that a defining property of the SMGelecting the rule since the SM rule appears to be the one
is that it has few outer automorphisms relative to the rank ofvhich involves all the direct factors equivalently. In fact the
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choice of the most complicated charge quantization rule irare examining in this paper in the sense that they contain
some way defines the SMG. This is why we have divided oubnly the SMG and additional special unitary group factors.
the discrete group§p andD,y ...y, This obviously does not include models which unify the in-
dividual components of the SMG. Models which involve
SUSY will not be considered here since we are making the
assumption of fundamental or singlet representations for all

In the SM, for each SWN) group, the_fermion represen- fermions. models with the non-SUSY. There have been
tations are eitheN-plet (N), anti-N-plet (N), or singlet(1). = many such models and the additional symmetries are usually
This can be described by saying that all the fermions lie inused to explain coupling constant unification, the number of
fundamental representations of each B)@roup to which  families in the SM, or the fermion mass hierarchy in a fairly
they couple. We pick this as a feature of the SM which wenatural way.
shall extend to our models. We note here that this is in con- In the models described in Sec. Il A1 the SM fermions
trast to some other attempts to extend the SM. For exampleannot couple to any new gauge fields because of the charge
in SUSY there are fermions in other representatiémg., quantization rule. This is due to the fact that all values of
gauginos in adjoint representation§undamental represen- y/2 in the SM are multiples of and so the charge quanti-
tations are also suggested[iB] since these make the Weyl zation rule, Eq(14), forces the SM fermions to be singlets of
equation most stable when considering random dynafnics. all SU(N) groups wheréN>3 are distinct primes.

Another feature is that the weak hypercharge is in some However, the situation is more complicated if we allow
way minimized in the SM, subject of course to the con-more than one SW) gauge group for any particulaX.
straints of anomaly cancellation and charge quantization, a#/here we hav&l=2 or 3 there are two distinct cases. In the
shown in the Appendix. So in our extended model we willfirst case the SM group S®) is an invariant subgroup of
choose hypercharge values close to zero when this is pothe extended group. We then call the extra BJgroups a
sible. More precisely, we choose to minimize the sum ofhorizontal symmetry. In the other case the SWJ(group in
weak hypercharges squared over all fermions. This will alsahe SMG is not an invariant subgroup and is generally a
minimize the running of the (1) gauge coupling constant diagonal subgroup of the extended group.
and so give each model the best chance of being consistent
up to the Planck scale, which we require as stated in Sec. 1. Invariant subgroup case: Horizontal symmetries
IMA 3.

2. Small representations

If we have one more S@2) or SU3) group then we can
_ ) ) have a horizontal symmetia non-Abelian symmetry which
3. Higher energies: Desert hypothesis places fermions from different generations in the same mul-
The SM has been tested at energies up to a few hundrdiplet). The idea of a gauged horizontal symmetry is not new
GeV. There have been many theories proposed which wouldnd has been used to try and explain the mass hierarchy of
be valid at energy scales ranging from 1 TeV up to thethe SM fermions[7]. However, an SU{) group with
Planck scale around 10TeV. Many of these theories have a N>3 is not a possible horizontal symmetry without intro-
large range of energy where no new physics occurs. Ongucing many more fermions because there are only three
example is GUT’s where there is typically no new physicsgenerations of SM fermions and the smallest nontrivial rep-
from the SM energy scale up to the grand unification scalgesentation of SUY) is theN-plet. For example iN=5 we
around 183 TeV. An alternative is that there is no new phys- would have an S(§) horizontal symmetry and so we would
ics until the Planck scale where we can be almost certain thateed at least five generations of SM fermions.
quantum gravity will have a significant effect. We shall  If the horizontal symmetry gauge group is &Y, then
adopt this view for our extended models. This means thawe must place fermions from different generations in the
once we have set the mass scale for the fermions in theame triplet(or antitripled. It turns out that the only way to
extended model, we can calculate the running coupling condo this, avoiding anomaliegee Sec. Il €and not introduc-
stants and check to see if there is a Landau pole below thi@g any new fermions, is to put all fermions in the safoe
Planck scale, i.e., whether the&1) gauge coupling becomes conjugaté representation of S@3) 4 as they are in the color
infinite below the Planck scale. If there is a Landau pole thergroup SU3)¢ of the SM; so that all three generations of
we will conclude that such a model is not consistent. left-handed quarks are put in a tripléor antitripley of
SU@3)y, etc. However, the SM fermions would not then
obey the charge quantization rule which might be expected,
similar to Eq.(14):
In this section we shall describe some alternative exten-
sions of the SM. We will consider groups similar to those we y

L+ Stet St,=0 (mod 1 15
§+§ +§tc+§tH= (mO ) ( )

B. Fermion representations and alternative groups

2In fact, from this point of view, each representation of the full  If the horizontal symmetry group is $2) then we can
gauge group should only be nonsinglet with respect to one nonmake some or all SM fermions triplets of &), but this is
Abelian factor. This is not true for the left-handed quarks but is truenot the smallest representation and so we do not favor this as
for all other fermions in the SM. However, the left-handed quarksexplained in Sec. Il A 2. We could place some fermions in
are required in order that there are no gauge anomalies. So we caloublets of SW2),,. This could be done, without introduc-
consider that the Weyl equation is as stable as possible if we onling any anomalies, by placing two generations of quarks in
have small representations. the same doublet or taking two generations and placing the
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fermions in the same representation of(3)y, as they are in mass differences within the second and third generations,
the SU2),_ group of the SM. Different doublets could con- e.g.,my,<<m;.

nect fermions from a different pair of generations. For ex- We note that the fermions in some of these models obey
ample left-handed quarks from the first and second generaxtended charge quantization rules which we would expect.
tions could be in the same doublet, right-handed “up” For example the fermions in the SMGmodel obey the
quarks from the first and third generations could be in thecharge quantization rules,

same doublet, and right-handed “down” quarks from the

second and third generations could be in the same doublet. " 1

This would not give any anomalies though it is difficult to &Jr =di+ =t;=0 (mod 1), (16)

see how this could be used to explain the fermion masses. 2 273

The main problem is that fermions in different generations

with very different masses are put in the same multiplet. Thigynere the three copies of the SMG are labeled byl, 2

means that the fermions would naturally get the same massyq 3. \jith three separate charge quantization rules, this is
It is difficult to break the symmetry in such a way that the hot tryly a straightforward extrapolation of the SM charge
masses of all the different fermions are split by rea“St'Cquantization rule. However it is similar in the sense that
amounts[7]. _ e these rules are required to produce the group $M@ich

We do not consider these possibilities in this paper be} ;5 a5 largey as the group SMG itseff.The quantity y
cause triplets of 8(2) are not fundamental representationsmeasures how strongly intermingled thélUsubgroups are
and the other possibilities, with gauge group (3l or it the semi-simple part via the dividing discrete groups
SU(3) i, mean that the fermions could not obey the extende(ﬁi.e” equivalently via the quantization r(8. It happens
charge quantization rule. Of course models involving hori-y, -+ groups of the form SMG have the largest possible
zontal symmetries do not enforce such charge quantizatiop,|,e of this measurg=In(6)/4. The charge quantization
rules. rules are chosen to maximizey for the group
SMG*®U(1); among all those with the same algebra al-
though this group does not have as large a valug a$ the

In the case where, for example, the @)t subgroup of  gvG. In fact y=In(6%/13=2In(6)/4 for the group
the SMG is not an invariant subgroup of the full gaUQeSMG3®U(1)
group, the only possibility is that it is a diagon@lr antidi- r
agona) subgroup of SB)". In this type of model different
generations can couple to different @Jand SU3) gauge
groups in the full gauge group. There would then be symme
try breaking to produce the SMG, in such a way that
SU(3) could be said to be a diagonal subgroup of all the
SU(3) groups in the full group which exists at energies

2. Noninvariant subgroup case: SMG as diagonal subgroup

However, the symmetry breaking scale of the group
SMG? is taken to be just below the Planck scale in the an-
tigrand unification model and in this paper we wish to study
the possibilities of new physics at much lower energies; en-
ergies of the same order of magnitude as the electroweak
scale rather than the Planck scale. This is still possible in
such a model but it then loses its ability to predict the gauge

higher t_har;] thehsymmetry br.eakirr:.ghsc;ciler.] In other Wordscoupling constants. Top-color models do introduce new dy-
SU3)c is then the subgroup in which all the 8) groups |\ 3mics at the TeV scale but in this paper we shall not con-
undergo the same transformations. In this way it is trivial t0giyar siych models.

cancel all the anomalies, since each generation of quarks an
leptons cancel all anomalies separately and couple to a
U(1)®@SU(2)® SU(3) subgroup of the full group in the C. Anomalies
same way as they couple to the SMG. This is in contrast to
the invariant subgroup case, where the SM fermions had to
couple to the SMG and also to other subgroups of the full In any chiral gauge theory, gauge anomalies can arise.
gauge group. Also in the diagonal case, the dimension ofhese anomalies lead to an inconsistent theory and so they
each representation is the same as in the SM, whereas, in theust not be present in a good theory. Each fermion repre-
invariant subgroup case, the dimensions were larger sincgentation makes its contribution to each type of anomaly. We
different SM representations were combined under the horisay that there is an anomaly present if the total contribution
zontal symmetry. to an anomaly from all the fermion representations is non-
This type of model has been propog&ilas an alternative zero.
to horizontal symmetries or grand unification. Examples in- As explained in Sec. Il A 1, the models considered in this
clude top-color modeld9] and the antigrand unification paper have gauge groups of the general form
model [10], where the group SM&=SMG® SMG® SMG
has been used to successfully predict the values of the gauge
coupling constants. The antigrand unification model has also®The quantity xy is defined in [5] for any group G as
been analyzed as a model to explain the hierarchy of SM(G)=In[q(G))/r(G) wherer(G) is the rank of the grouf [really
fermion masse$11]. Here the extended model with gauge the number of (1) factors in the maximal Abelian subgrol-ur-
group SMG® U(1); has been fairly successful at reproduc- ther,q(G) is defined as the order of the factor group, obtained by
ing the observed fermion masses in an order of magnituddividing the group of all Abelian charge combinations
approximation(reproducing all SM fermion masses within a (y;,y,, .. ..y;) allowed for any representations of the graBpby
factor of 2 or 3. The extra U(1) gauge symmetry is called the group of those Abelian charge combinations allowed for repre-
a flavor symmetry and is required to produce the observedentations trivial under the semisimple part of the gr@up

1. Gauge anomalies
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Another type of anomaly corresponds to the diagram with
one U1) gauge boson and two SNj gauge bosons where
N=2, labeled a§SU(N)]?U(1). Each representation gives
a relative contributior8rfy. Therefore we require

Ei Si(n;)2y;=0. (19)

The final type of gauge anomaly corresponds to the dia-
gram with all the gauge bosors, G', andG” being U1)
gauge bosons. This is labeled[a$1)]® and each represen-
tation gives a relative contributioBy?. Therefore we require

Ei Sy?=0. (20)

2. Other anomalies
FIG. 1. For the theory to be anomaly free, the amplitude of this

Feynman diagram must be zero for all choices of external gauge | Nere is also a mixed gravitational and gauge anomaly
bosons after summing over all possible fermions in the internal loop12] Which corresponds to one(l) gauge boson and two

(triangle. gravitons. We will label this agGrav]?U(1). Each represen-
tation gives a relative contributioBy and so this leads to the
constraint

U)ol sunN;)/D. 17)
| 2 Syi=0. (21

The discrete grou® leads to charge quantization. We as-
sume all fermions to be iN, N, or singlet(1) representations
of each SUN), as discussed in Sec. Il A 2. We defingo
be theN-ality of a representatiopn=1 (—1) for represen-
tation N (N) andn=0 for singlet representatignWe can
also define the size5, of each representation as the dimen-
sion of the representatiofe.g., in the SM,S=6 for the
(2,3)] representation of SU(Z)SU(3) which is equivalent In this section we shall discuss the constraints on our
to the fact that there are six left-handed quarks in each genmodels which are due to experimental evidence. In particular
eration. we are concerned with the possibilities for the existence of

For gauge anomalies we sum the contribution for all left-more fermions and what restrictions can be imposed both
handed fermions and subtract the sum over all right-handedirectly and indirectly on their mass. Some difficulty arises
fermions. This is equivalent to summing over left-handedsince fermions may be confined and so not directly observ-
fermions and left-handed antifermions. We have now intro-able. This means that direct experimental restrictions will
duced all the necessary notation to write down general equaefer to the mass of particles which are combinations of these
tions for all types of gauge anomalies. fermions, like hadrons in the case for quarks.

The requirement that there are no anomalies present in a
theory is analogous to the triangle Feynman diagram in Fig.

1 with a fermion loop and three external gauge bosdas . _ . .
beled byG, G, andG") having zero amplitude for all pos- First we shall discuss the constraints on fermion masses

sible choices of gauge bosofis G’, andG”. The contribu- due to the fact that so far no non-SM fermions have been
tion from each fermion representation is calculated byobserved: We shall ShOW. that this rul'es' out any extra mass-
making particular choices for the fermions in the internalle_Ss fermions and then give current limits on the masses of
loop. These contributions must then sum to give zero amplidifférent type of new fermions.
tude if there is to be no anomaly.

If each of G, G’, andG” is an SUN) gauge boson where
N=3 then each representation gives a relative contribution Only three massless fermions have been observed and
of SP=Sn(sincen=—1, 0, or 1 in our mode)s The total  they are the three massless neutrinos described in the SM
contribution is thereforez;Sn; wherei labels each left- (even if the neutrinos do have a small mass we know that
handed fermiontand antifermiol representation. We label there are only 3 with a mass less thi;). Any other mass-
this type of anomaly SU(N)]® and require less fermions, which had any significant coupling to the SM

fermions or gauge bosons, would have been observed if they
were not confined. When we assume that fermions belong
2 Sn;=0. (18) only to fundamental and singlet representatidas postu-
i lated in Sec. Il A 2, the charge quantization rule in our mod-

Another possible anomaly is the Witten discrete(3U
anomaly[13]. This states that if the number of left-handed
SU(2) doublets is odd then the theory is inconsistent. As we
shall see later this anomaly does not give us any problems.

IIl. EXPERIMENTAL CONSTRAINTS

A. Direct experimental constraints on fermion masses

1. Massless fermions
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els ensures that the only possible fermions which would nothere are no more leptons, since even the neutrino would
be electrically charged would be neutrinos. A left-handedhave to get a mass larger than this and it is difficult to see
neutrino without a right-handed neutrino would be masslestiow a neutrino could naturally be given a mass greater than
as in the SM. We already know that there are only three such5 GeV but still much lower than the fundamental scale
neutrinos and so we cannot consider this as a possibility fofwhich is the Planck scale in our model3his is because a
new fermions. A right-handed neutrino would be completelyright-handed neutrino, as already discussed in Sec. Il A1,
decoupled from the gauge group and so it could get a gaugeould naturally get a Majorana mass and so the see-saw
invariant Majorana mass. So we would expect that it wouldmechanisnj16] would leave the left-handed neutrino with a
have a mass-Mppecand so it is excluded as a low mass very small mass. For this reason we cannot allow any more
fermion in our models. Therefore any new massless fermiongenerations of SM leptons. However the limits on the quark
in our models must be electrically charged and so must alsmasses are dependent on the type of quark and its decay
be confined by a new interaction well above the QCD scalemodes.
on phenomenological grounds. neutrino cannot explanation The top quark has recently been observed by the Collider
If there is a confined gauge group then we assume thdDetector at FermilaCDF) and DO Collaborationfl7]. The
fermion condensates will be formed as in QCD. If a fermionmass is in the range 150—-220 GeV. For the purpose of this
does not have a chiral partner with respect to some confinepaper we take the limit on possible fourth generation quarks,
groupH, the condensates formed will break the grétipSo  t’ andb’, to be
if we assume that there is no spontaneous gauge symmetry
breaking, other than that of the electroweak symmetry group, M. ,M,, >130 GeV
no fermions can be chiral with respect ® where the full
gauge group is U(1® SU(2)® G/D (whereD is some dis-
crete group. In our models the extra SB) gauge groups
are all confining (with negative beta functions so that

G=H.
. . . pole masses.
If the left- and right-handed fermions occur with = tpe ghoye experimental limits do not apply to new fermi-
the same representations of _the full - gauge 9roURns  which are not singlets of the additional BU)(
U(1)®SU(2)®G/D, then the fermions can form a Dirac o5 g6 groups. These fermions would be more difficult to

mass term in the Lagglangiar;]. Sfo tgey WOUlld belexpehc_tehd Betect experimentally and would anyway be confined inside
gekt a mass ﬁomp;arake tot € fun amentrlal sca er']‘?’ ICN W& 5drons” with a confinement scal@enerically at the elec-

ta ek;o be the Pbanc mass In our IF“Ode SO'I Sucld erm'?)nﬁ*oweak scalemuch higher than the QCD scale. We require
would not contribute to any anomalies and would not beq,- nqdels to remain perturbative in the desert from the TeV
observable because of their high mass. We shall thereforgcale to the Planck scale. So we can use the RGE’s to exam-
ignore them in our models. If a fermion cannot form such &pq po\ the Yukawa couplings evolve from the Planck scale
fundamental Dlra(ﬁgr Maljorana mass term then we say it is down to the electroweak scale. In particular we study the
mass protected, since it would be fundamentally massles§srareq quasi-fixed-point structure of the renormalization

a_\nd could only get a mass indi_rectly through some inter"?“:group equationgRGE’s). In the SM the fixed point values
tion such as the Higgs mechanism. All the fermions consid- rovide upper limits on the mass of the top quavk,, and

ered in our models are mass protected by the electrowe e Higgs scalaMy, . Similarly in extended models we get

Interactions. . . upper limits on the masses of the heaviest fermions, though
We conclude that all new ferm|ons'|n our models must 9elpe precise values depend on the relative masses of these

their mass from the Higgs me_zchamsm_. FL_lrthermore, the¥ermions and also the unknown gauge coupling strength,

must couple to the usual SM Higgs particle in the same wa: of the SUN) groups to which the fermions couple. Also

as the SM fermions. In other words, the fermion condensat ’\(Ia,must be careful to point out that the RGE’s descr'ibe the

musft k;ﬁve t_he fﬁ”ﬁe q“?ﬂé“? nurpb&r;tas tggoSM Higgs bPl]nning of the Yukawa couplings and, as we discuss in Sec.
Son, otherwise their contributions 1o an MasSes, | B, the actual masses will be less than naively expected,

via the usual technicold8] mechanism, would be analogous due to the technicolorlike contribution from SNJY to the

t_o thosg from the vacuum expecta_tlon values of Higgs Palgiactroweak  vacuum expectation value (VEV),
ticles with nonstandard weak isospin and hypercharges. This

ld lead t anificant deviati ft i U=246 GeV. As we shall see, this will enable us to quite
wou 2ea 2 0 a sighiicant deviation o he parameter accurately predict the masses of some of the fermions we
(p=Mg/M35co€6,,) from unity [14] in contradiction with

v introduce in our model in Sec. VI, since we have theoretical
precision electroweak data. upper limits and experimental lower limits.

from the dilepton analyses of the CDF and DO gro{ip3]
(less restrictive limits apply if other decay modes are domi-
nany. Note that experimental limits are taken to apply to the

2. Massive fermions

In the SM there are two different types of fermions, B. Technicolor contributions

quarks and leptons, which differ by the fact that quarks Technicolor theorie$3] have been proposed as an alter-
couple to the S(B) gauge fields and so are confined, native to the Higgs mechanism to provide a mass for the
whereas leptons have no direct coupling to thg®lgauge weak gauge bosons. This is based on the fact that QCD
fields and are not confined. There are experimental limits omvould provide a(very smal) mass for these bosons without
the masses of any quarks and leptons which have not yetny Higgs scalars. Similarly any other confining $U)(
been observed. If there are any more leptons then they mugauge groups, with fermions which are nontrivial under
have a mass greater than 45 Geh3]. We shall assume that U(1)®SU(2), areexpected to form fermion condensates
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which would contribute to thav= and Z° masses. In our
models the charge quantization rule ensures that all fermions M=
are nontrivial under (@). Thus all SUN) groups in our
models, which are coupled to fermions, will contribute to the
weak boson masses.

We stress that we are nt_)t proposing a technlcqlor model M~174y;(M;) GeV. (30)
as such, but simply taking into account the unavoidable ef-
fect that adding an SUN) group has. We are assuming that  Upper limits for fermion masses are obtained by using
the Higgs sector of our models is the same as in the SM, i.equasi-fixed-point values for the Yukawa coupling constants,
one Higgs doublet, and that the fermion condensates havg, as determined from the RGE’s in viable models with a
the same quantum numbers as the Higgs doublet. Then thfesert above the TeV scale. These infrared fixed point
VEV due to the Higgs field{¢ys), is related to the total Yukawa couplings are of order unity. However for the pur-
VEV, v, and the contribution from SU) due to fermion poses of investigating the behavior of the gauge coupling

1+

(29

4ag(My) | yi(My)
37 ) \/E <¢WS>'

In the approximatiorM;~M, we get

condensateﬂ?wN, by the relation constants, and especially to demonstrate that tflg tbu-
pling constant develops a Landau pole in our model without
(Ppwe)?+ Ff,N=v2=(246 GeV?, (220  new fermions(Sec. \}, we take a more generous single

threshold of ten times the electroweak scalé.7 TeV for all
which is exactly the same as in technicolor models with anew fermions in that model. For our discussion in Sec. VI of

scalar{19]. the model with a fourth generation of quarks we take the
The fermion running masses; are related to the Higgs more stringent lower threshold value M,, in order to
field VEV in the usual way: demonstrate the absence of Landau poles in this case.
Yi C. Precision electroweak data
mi=-"=(dws) (23) . .
V2 Measurements of electroweak interactions are now accu-

) ) ~ rate enough to be sensitive to loop corrections to propagators
wherey; is the Yukawa coupling constant for the fermion anq vertex corrections. These effects are model dependent
f (y is used for both Yukawa coupling and weak hyper-ang can be sensitive to the values of some parameters such as
charge but it should be obvious from the context which istarmion and Higgs masses. So far the SM seems to be con-
being referred tb For quarks, the running mass is related tog;jstent with the precision electroweak measurements and ob-

the pole massM¢, by viously any other viable model should also agree with the
dars(M) _data. We note, as discussed ['QO]z the data impos_e two
M= 1+ S_f) my(My), (24)  important constraints on new fermion &) doublets in our
37 models:

) i (1) The mass squared differences within any new fermion
whereag(My) is the QCD fine structure constant at the POIeSU(Z) doublets must be smdlk (100 GeVY], in order that
mass. For quarks with a mass of ordéy, we can approXi-  the predicted value of the parameter should not deviate too
mateas(My)~ as(Mz) to give the approximate formula:  uch from its experimental value close to unit®) the

- number of new S(2) doublets is severely restricted by the
M;=~1.0m;(My). (29 easured value of th parameter or its equivalefi2l].

This means that the pole mass of a heavy quark will be about
5% higher than the running mass. However, we will use Eq. V. FERMION MASS AND ANOMALY CANCELLATION

(24 V\_/hen calculating the pol_e masses of the q_ua_lrks. : In the SM fermions get a mass via the Higgs mechanism.
Using the Yukawa coupling infrared quasi-fixed-point To do this in a general gauge group of the form
value as an upper bound, we must avoid any significant sup-

pression of the top quark and possible fourth generation U(1)®SU(2)®G/D,
quark masses due to the reduction(giys) below its SM
value. We usually imagine taking whereG is any Lie group and is a discrete group, using
the SM Higgs particle, a left-handed fermion representation
F.<75 GeV (260 (y,2,R) should occur together with the left-handed antifer-
mion representations<[y+1],1,R) and (-[y—1],1,R).
and thus We shall refer to this as the mass group{ygR} whereR is

an irreducible representation @. As explained in Sec.

Il A 1 we assume that all fermions in our models, other than

ahe leptons which have already been observed, get a mass by

this mechanism. We shall nhow describe what consequences

this has for anomaly cancellation in our models, whéres
(pws) =234 GeV. (28)  aproduct of SUK;) groups withN;=3. We have previously

considered22] the particular case whefe=SU(N) and the
This gives the following relation for the pole mass of quarkspecial case of the SMG=SU(3)] is discussed in the Ap-
f: pendix. This case o&6=SU(N¢) (without dividing out the

(Ppws)>234 GeV. (27

In fact we shall quote limits on fermion pole masses base
on taking
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discrete grouD) has also been discussed recefflg] in V. THE SMG 35 MODEL WITHOUT NEW SM FERMIONS
the context of anomaly cancellation in thi.-extended SM.

We consider the groupinfy,R} for the gauge group Here we will examine the model based on the gauge
group SMGgs= G5 defined in Eqs(4) and(5), since it is the
U(1)@SU2)e11;SUNy), absolute minimal extension to the SM among all the possible

groups we have proposed in Sec. Il A 1. In Sec. VI we will
consider models based on the groups SMGf Egs. (12)
and (13), including new SM fermions to highlight the gen-
eral features of all such extensions to the SM. However, we
will only analyze the consequences in detail for S

In this section we will discuss the two possibilitie$)
[SU(N;) 13— 2Sgn;+ Sr(—n;) + Sg(— 1)) that there are no new fermions beyond those of the SM and
(i) that there are new fermions which all couple to the(HU

where the irreducible representatiBnis made up of funda-
mental (\; or N;) or singlet representations of each factor
SU(N;). The contribution to each type of anomaly from this
grouping, {y,R}, is easily calculated, using the results of
Sec. Il C, to be as follows:

=0, gauge group. This latter possibility may seem to be tanta-
2 2 o 2 e 2 mount to adding a completely separate sector to the SM
[SUNi)IU(1)—28rniy = Seni(y +1) = Seni(y — 1) rather than extending the SM, since the new fermions will be
=0, confined under a new gauge group. However, it is really no
more a separate sector than the SM is three separate sectors
[Grav]?U(1)—2Sgy+ Sg(—y—1)+Sr(—y+1) (one for each generatigrsince these extra fermions will still
couple to the electroweak group due to the charge quantiza-
=0, tion rule. We will discuss the other possibility, that there are
new fermions, some coupling to the 8) gauge group and
[U(D)]*—28gy*+Sp(—y—1)°+Sr(—y+1)° others not, in Sec. VI.
= _GsRy!
[SU(Z)]ZU(l)—>ZSRy. A. No new fermions

Heren, is the N;-ality of the representatioR and Sg is its There is of course the possibility that there are no extra
dimension(size. fermions associated with this enlarged group. If this is so

to give a mass to the fermions also simplifies the anomaly?U(5) “glueballs.” In this case the SUb) gauge group
constraints. In particular, if we take all fermions to be Would be decoupled from the SMG and so the only way to

grouped in this way then we are only left with the single OPserve the glueballs would be through their gravitational

constraint for the absence of the mixed gauge-gravitationdnteractions. They could have been produced in the very
and gauge anomalies: early universe and the lightest state would be essentially

stable since they could only decay via the gravitational inter-
action. Therefore they would only be observable as dark

2 Sjy;j=0, (3D matter.
. So this case is essentially uninteresting and will not be
where] labels each groupinfy; ,R;}. considered further. Instead we turn to the possibility that

There will also be no Witten anomaly, since we mustthere exist more types of fermions than have been currently

have an even number of $2) doublets to satisfy Eq31).  observed and consider whether or not they can be incorpo-
This follows from the charge quantization rule, Efj4), the ~ rated into a consistent model.

fact thatN; are all odd and the assumption of fundamental or
singlet representations for each $Y) subgroup. Using the

o o B. New fermions coupling to SU5
charge quantization rule and defining Ping ©

m Of course fermions all contribute to anomalies which
€ _ E ﬁ(n-)» (32) must be cancelled. The fermions in the SM cancel all anoma-
d; N lies on their own; so the extra fermions must cancel all
anomalies amongst themselves.
we can write As explained in Sec. IV the anomaly equations in our
models are greatly simplified when all the fermions are mas-
iy EJF & (33  Sive due to the SM Higgs mechanism. In fact they are re-
i ' i i —
2 2 duced to just one equatiol,; Syy;=0. If we label each mass
) grouping of fermion representations by the lalglR},
wherec; ,d;, ande; are integers and, are odd. Therefore, \yhereR is the representation of the group SUESU(5),
since Eg. (31) can be written as 2Si(y;/2)=0, then Table | shows all six possible groupingsto f, and
we must haveX;S;3=0 (mod 1). In other words>;S;  their relative contributionsSyy;, to the anomaly equation.
=0 (mod 2), which means that there are an even number diVe use Eq.(6) with the definitionm=ms; to simplify the
SU(2) doublets and so no Witten anomaly. notation, giving us the charge quantization rule,



55 EXTENDING THE STANDARD MODEL USING CHARGE ... 1601

TABLE I. Allowed mass grouping$y,R} of new fermions in TABLE Il. Smallest anomaly-fregsubject to the constraint
the SMG3s model, using the charge quantization rule, B4), and  N;+N,+N3;+N,=0) set of mass protected fermions which all
fundamental representations of @ Their relative contributions couple to SU5).
to the anomaly equation, E¢B1), are given in the final column. A

particular mass grouping of tyfds given by choosing a particular Representation under U(1) representation
value of weak hypercharge, i.e., by choosing a particular value oEU(2)® SU(3)® SU(5) y
the integen\;. >
y 21,5 m 1
Type R 2 i5Sy B Ni—5—5
1,1,5 m
a 15 m 1 m 1 _ —Nit+ g
_ o NTEs Na"572 115 L
b 1,5 m 1 m 1 —Npt §+
Npt+5+5 Np+5+5 2,1,5 . 1
c 35 N m+1 3N 3m+1 - 2 5 mz
35 m m =
' 4z i m
; Ng+ 5+€15 3Ng+ 5 +% L15 ~Npt g+1
€ 35 _m- _°m 2 2,15 m
o Nem 575 3Ne— 53 N D2
f 35 m 1 3m 1 1,1,5 m
Nit 57§ Nt 53 “Nemg—1
1,1,5 m
— N3_ g
1 1 m 215 L
="duality” + Z“triality” + —“ uintalit 4752
272 y' + g nally d Y’ 115 m
Ny—g—1

=0 (mod 1), (34

where the integem is fixed in any given modé!.So we can

determiney/2 (mod 1) for any given representatiéh Planck scale and hence that our model will be self-
For a solution to the anomaly equati®)\Sy;=0, we  consistent. However, this condition of minimizirgy?

must obviously combine the fractioms/5 so that the 5 is  also suggested by the small representation structure of the

cancelled in the denominator since Blls are integers. We SM, as explained in Sec. Il A 2. Keeping in mind that the

must also have an even number of groupings so that thm; are mtegersz _.N;=0, and that the particles must be

1’s combine to give an integer. This automatically ensuresmass protected, we find that the minimum valueSof is
that there can be no Witten anomaly as explained in Sec. IVgiven by

This can be done by using equal numbers of tgnd type

b groupings. The two smallest solutions are in fégtone Ni=N>=1, N3=0, Ny=-2
typea grouping and one typlk grouping andii) two group-
ings of typea and two of typeb. The smallest solutionj),
is not possible without giving the fermions a fundamental N — _ _ _

Dirac mass, since the anomaly constraints require that Na=N,=-1, N.=0, N=2

Na+Np=0 giving pairs of representationsy,@,1,5) and  wherem=2. These values of; give Sy?>=203.2, for the

or

(—v,2,1,5), etc., which are not mass protected. solution of Table II, which is much larger than tHe per
The smallest allowed solution with mass protected fermi-generation of the SM particles.
ons is therefore solutiofii) with two groupings of typea In Sec. Ill B we explained that it was reasonable to con-

and two of typeb. This solution is shown in detail in Table sider that all new fermions could be included at a threshold
II. All anomalies cancel prowdea _,;N;=0. We can now no higher than 1.7 TeV. This should provide an accurate
choose values of th; . enough upper limit for the threshold for our purposes. There-
The fermion contribution to théfirst orde) beta function fore, since the fermions will have the least effect on the
for the U(1) running gauge coupling constant is proportional running coupling constants if they are included at the highest
to Eyz. We therefore want to choose valuesMfso as to  possible threshold, we will assume that all these extra fermi-
minimize 2y?, in order that any () Landau pole is at as ons can be included with a simple threshold at 1.7 TeV. We
high an energy as possible. This gives us the best chance thean now check whether or not this model has a Landau pole
the solution of Table Il will be perturbatively valid up to the below the Planck scale.
There are four fine structure constants which we shall
label by a4, a5, a3, andas corresponding to the four gauge

“In fact we can limitm to be 1 or 2 since it is only defined modulo groups U1), SU(2), SU3), and SU5), respectively. The fine
5 and, by replacingn with —m (mod 5) and all representations Structure constantsy;, are related to the gauge coupling
of SU(5) with their conjugates, we are left with an equivalent constantsg;, by the relationy; = g,/47r The equations gov-
model. erning the running coupling constants to first order in pertur-
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bation theory{24] (a good discussion of RGE's in the SM is

200 T T T T T T T T T T T T T T T T
given in[25]) can be integrated analytically to give L .
1 1 1 ) - T
=——————(Y?+n In(—), 35 - 1
() anlpme) T2r " TN ) G39 00 [~ _
! LI YR )|(“) (36) i ]
=———+ — (44— 2n5—ny)In| —|, - T
ax(p)  ax(pmo) 12w 2 o Mo - B b
I 0 — e
3
! + 1 662 )|(“) 37) i 1
= — — —_ n n JE— s - _
ag(p) as(pmo) 12w 3 o - )
! L1 t0-2ng (“) (39) e E
—_— =t ns¢)In| —|,
as(n) as(po) 127 " o i ]
where we calculate;(«) (the running coupling constants at i | | T
g 2_ 2 B _200 1 1 1 1 1 ] 1 1 1 1 1
the energy scalg> ug) in terms ofa;(ug). Yo=2y“ is the 0 5 10 15 20
sum of the weak hypercharges squared for all fermions with log 1o(1/GeV)
a mass belows, andnp, ¢ are the number of fermiom and
m representations of SW{) with mass belowu,. ny is the FIG. 2. «~* from M to the Planck scale for each component

number of Higgs doublets with mass belgw. These equa- group in the SMG,s model without new SM fermions. There is
tions assume that there are no fermions or Higgs scalars wittlearly a U(1) Landau pole ai~10" GeV and SW2) also loses

a mass between, and . In order to calculate the value of asymptotic freedomas *(M;)=2 has been chosen as a specific
«a;i(u) when there are fermions or Higgs bosons with massesxample.

betweenw, and . we must do the calculation in steps, cal-

culating the value ofy; up to the mass of each particle. So 71 .

we use the experimental values of the fine structure constants (@1 Jeur=g (@1 Jsm- (43

at M (including the top quark and Higgs boson in the beta

functions at this scajeto calculate the coupling constants at g henceforth we use the standard GUT normalization.
1.7 TeV, where we include the new fermions, and then rurEquations(35) and(39) now become

the coupling constants up to the Planck scale. This is a crude

method since there would really be complicated threshold 1 1
effects as each fermion was included. However these effects
can reasonably be assumed to be small, relative to the
changes in the coupling constants caused by the running
from the electroweak scale to the Planck scale, and so we
will use this much simpler method. Second order RGE§
could be used but the improvement over the first order
RGE'’s would not be significant when compared to the erro
introduced by the naive assumptions made about thresho

=——L(Y2+n )ln(ﬁ) (44)
ai(p)  ai(po) 20w . Mo/

a; '(M;)=58.85+0.10. (45)

As we can see from Fig. 2, &f becomes negative at
bout 16 GeV which means that there is a Landau pole. So
e can conclude that this theory would be inconsistent, at
east as far as perturbation theory is concerned, without new

eﬁi?gsﬁ.' [15] we find interactions below 10GeV.

In fact we can show that there is no anomaly-free model,

a; }(M)=98.08+0.16, (399  having all new fermions coupling to $8), with a desert
above the TeV scale, which does not have a Landau pole
a, Y(M,)=29.794+0.048, (400  below the Planck scale. The condition for no Landau pole

below the Planck scale is &{(Mpjancd >0. Therefore, Eq.

az; {(M5)=8.55+0.37. (41)  (44) can be rearranged to give
We can now use the above equations to examine how the Y24 < 201 (46)

coupling constants behave up to the Planck scale. Since there
is no experimental value farg at any energy scale we shall
assume that«gl(Mz)zz, so that the S(&) interaction is Since, for the SM,Y§M=40 andny=1,

stronger than QCD aM, and confines at the electroweak

scale. Figure 2 shows what happens for each group. For the Y2+ ny=41 (47
graphs, we normalize the(l) gauge coupling as if the (@)

group was embedded in a simple group. This essentially cobove the electroweak scale and so we can use(&dsand
responds to a redefinition of;: (45) to calculate an upper limit for &4 (1.7 TeV):

a1(10)IN(M pjaneid to) *

2 =5 2 42 L <57 48
(gl)GUT_g(gl)SMv (42 (1.7 Tev) " (48)
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We then user?=Y3,,+ Y2, in Eq. (46) with uo=1.7 TeV  a generation of SWNI) “quarks” which are a simple gener-
and conclude that alization of the SW3) quarks in the SM.
We shall then show in Sec. VIA2 that we can have
Y2,,<57.5, (49  anomaly-free sets of fermions in the group SM without

_ _ . . any leptons. We shall then examine the particular case of the
assuming the new fermions can be included naively at group SMGss which we shall discuss in detail.

threshold no higher than 1.7 TeV.
For each mass groupiny,R}, with Pg=4Sy fermions, 1. Fermions in the group SMGy,

we can calculate the value o In the SM, each generation is formed by taking the two

Y2=SH[2y%+ (y+1)%+ (y—1)?]=Sg(4y?+2). (50) mass grouping$s,3} and{— 1,1} [where the representations
3 and1 are of the group S(B)] as explained in Sec. IV and

Therefore, we have the Appendix. We will now consider a more general situa-
tion where we have the gauge group SpjGefined in Sec.
A1l (whereM>2 is a prime numberand the fermions are
in the groupinggy,,M} and{y,,1} [where the representa-
tionsM and 1 are of the group SW])].
If there are several mass groupiny€=3>Pr= 3P where From Sec. IV all the gauge anomalies will cancel if
P is the total number of fermions. So if we defiRg,,, to be
the number of non-SM fermions, we can conclude

1
YZZZSRZE PR' (51)

P,ou=<2Y2,,<115. (52) Since we also have the charge quantization rule

new

So now we have shown that there must be less than 115 X+ %“duality” + %

extra fermions. However, the smallest solutions, subject to

the constraints in this section, larger than two tgpend two

type b representations are three typeand one typec rep-

resentations, etc., which contain 120 fermions and so must Vi 1 my

cause a Landau pole below the Planck scalberefore there ==—z——+cCy, (55)

are no possible anomaly-free models without a Landau pole,

where all the new fermions couple to the GJgauge group.
We will now examine the case where we allow some new Ya_ = +c, (56)

SU(5) singlet fermions, as well as some fermions which 2 2 ’

couple to SUW5), in order to cancel the anomalies. We shall

show that it is possible to have more SM fermions in such §/herecy andc, are integers. We now have the condition
model. that for no anomalies to be present

M-ality”=0 (mod 1) (54

we can write

M+1

VI. THE SMG ,35 MODEL WITH NEW SM FERMIONS - T_mM+Mcl+ c,=0. (57

In this section we shall first examine sets of fermions
(which are generalizations of the SM quarks groups, de- In the SM a lepton generation is formédlith the addition
fined by Eqgs.(12) and (13), similar to the SMG. We shall of a right-handed neutrino which can be removed without
then examine the particular case of the group SM@nd  effecting any anomaligsvhen we haves,=0 as explained
discuss the possibility of experimental evidence for andn the Appendix. If we insert this value into the above equa-
against this self-consistent model. tion then we find

A. Fermions in the groups SMG,,, and SMG,\ Ci=—

——+tmy . (58

2
In Sec. VI A 1 we shall examine the group SMig. The

SMG is an example of this type of group wheve=3. We  This can always be solved by settimg,= (M —1)/2. In fact
shall show that this general group allows anomaly-free set§ M =3 then this is simply one of the anomaly-free SM
of fermions which consist of a generation of SM leptons andquark-lepton generations.
However, this is not a good solution for an extension of
the SM (which would be obtained by considering
SUsing second order RGE's or a more complete analysis oSMG,,,C SMG,3y) since it contains an extra massless neu-
thresholds would obviously change the precise limit in E49).  trino which has already been ruled out by experiment. It is
However, the charge quantization rule in our model meansythat difficult to produce a neutrino with a mass so large that it
cannot be zero and so it is not possible to attain the limit of Eqwould not already have been detected, as explained in Sec.
(51). In fact, the value onﬁeW will generally be much greater than ||| A 2. We could choose not to setb,=0 or 1 above, which
this limit. For example, three type@ and one typec lead to  would force all the extra leptons to be massfg leptons
Y2, =1%<114 which is much greater than the required maximumwe mean any fermions which are only coupled to the elec-
given by Eq.(49). troweak subgroup, SU(Z®)U(1)]. This is because there
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would then be two S(2) singlets which were chargdand TABLE lll. Left-handed fermions coupling to S8) in the mass
at least one would have an electric charge of two or moregrouping{— £,(1,5)}. The electric charges are in units dtiue to

which is against our principle of small representatjoasd the charge quantization rule.
so both could get a mass by the usual SM Higgs mechanism

since neither could get a Majorana mass. But even if we Electric
assutmlelq t'rt]attr;[hesel I?_ptons hid mﬁtss%es hlgdh%r than exp&fispresentation under () representation charge
mental limits this solution is not really favored by our pos-
. . SU(2)® SU(3)® SU(5

tulate of small values of weak hypercharge discussed in Sec. (2)2SUE)ESUEG) % Q
A 2. So in order to find a satisfactory solution we shall .
look at a similar general case. 215 — 1 ( 2 )

2. Fermions in the group SMGyy o -3

1,15 — lio _ %

Suppose we have the gauge group SMfe, where both
M andN>M =3 are mutually prime integers, which has the 1.1.5 10
charge quantization rule

|
glw

Mw,,
M

M, N-ality” =0 c,=1 andmy=3(N+1). This means that, if a fourth gen-

N eration of quarks without leptons was detected, there would
d 1. (59 be no immediate way of deducing the valueMf Table IV
(mod 3). shows the properties of the left-handed fermions which

Then with fermions in mass groupings;,(M,1)} and couple to the SU{) subgroup. Note that this is a generali-

{y,.(LN)} [where the representationd(1) and (L.N) are  Zation of the SM quarks, coupling to SNJ with the specific
of the group SUM)® SU(N)] the condition for no anoma- choice ofmy=3(N+1). If we setN=3 we would in fact
lies is get a generation of quarks with the opposite chirality to those
in the SM. This is to be expected since we are using these
My;+Ny,=0. (60)  fermions to cancel the anomaly contribution of a four gen-
eration of SM quarkgwith the usual chirality.

This solution, with a fourth generation of quarks and the
Vi 1 my fermions of Table lll, for the gauge group SM&zis analo-
==—z——+cCq, (61) gous to one SM quark-lepton generation in the gauge group
2 2 M SMG, in the sense that it is the smallest anomaly-free set of
mass-protected fermions which couple nontrivially to all the

y 1 . .
=+ E“duallty” + M -ality” +

2

The charge quantization rule means that we can write

Y2_ _ E_ My +Cy, (62) gauge fields. The SM quark-lepton generation is shown to be
2 2 N the smallest such set of fermions for the SMG in the Appen-
. ' ... _dix. Note that although a generation of SM leptons and the
¥vrr1?1reclnarrlgc"2 ar%mter?]ers. We then find that the condition ¢ ion¢ conjugate to those in Table Il is a smaller
Or NG anomalies becomes anomaly-free set of fermions in the gauge group SMG
2NCy=N+[2(my +my) +(1—2¢,)M]. (63  hone of these fermions couples to the(S)Jusubgroup.

As stated in Sec. lll A 2, we take the limits on the masses
Both N andM are odd and therefore there will always be aof a fourth generation of quarks to b, >130 GeV,
solution, since we can choosef, + my)=M and 3-2c; to
be an odd multiple oN. In general there will also be other  TABLE IV. Fermions coupling to SU{) which would form an
solutions. anomaly-free set of fermions together with a fourth generation of
In particular, for the gauge grou@s=SMG,35 we can  quarks.
have a fourth generation of quarks without any extra leptons;

by choosingM =3, N=5, m;=1, andc;=1 above. Then Representation under () representation  Electric charge
SU(2)® SU(3)® SU(N) y Q
10c,=5+[2(1+mg)—3] (64 5
or equivalently 21N _1 N-1
2N N
5C2:2+m5. (65) N+1
So we have a solution with,=1 andmgs=3. 2N
The representations of the left-handed fermions which
couple to the S(b) subgroup are shown in Table Ill. Thisis 1,1,N _N-1 ~N-1
a generalization of the quarks in the SM, coupling to(U 2N 2N
rather than S(B). —
In fact we have a solution with a fourth generation of LLN % %

quarks for the general group SM&, whereN is any odd
integer greater than but not divisible by 3, by choosing
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150 of all SM fermions except the top quafl good approxima-
L . tion), the RGE’s are, to one loop order in perturbation theory
i 1 [24],
: | il L 2iv,9-6 66
100 — ] dt yt16 yt+ 2( ) 3u|: ( )
[P ] dy“ 2)+Y,(S)—-G (67)
3 L SU(s) 1 =Yv 1672 yt, Yy ) +Y2(S) 3u s

. =Yb' 76,2 S~V +Yo(S)— G3d): (68)

dy5u
dt Y162

=8
o - Wy, L%
o2

(You—Y&q) +Ya(S)— Gsu) , (69

|||||||||||!|||||

0 5 10 15 20
logo(k/GeV) dysq 1 (3 ,
di " Ysi1g,2| 5 (Ysa T Ysu) tYa(S)~Gsa|, (70
FIG. 3. ™! from M, to the Planck scale for each component
group in the SMGss model with a fourth generation of quarks and where the S(b) fermions have been labelediGand & as

the fermions of Table Il which couple to 35» The initial value genera||zat|0ns of the nam|ng of w quarks The other
for a5 (Mz)=2 was chosen so that it would be confine at the ygriables are defined as

electroweak scale. There are obviously no Landau poles so this

model is self-consistent. YZ(S):5y§u+5y§d+3yt2’+3y§,+3yt2' (72)
M;,>130 GeV and the top quark mass toMe¢~ 170 GeV.

We can now use the RGE’s, first to show that these addi- G :1_792+ 292+ng (72)
tional fermions do not cause any inconsistencies such as 3T 0% 472 TS

gauge coupling constants becoming infinite below the Planck

scale, and then to estimate upper limits on the values of the 1, 9, )

Yukawa couplings to the SM Higgs field of these fermions. Gaa=791+ 792803, (73
This will lead to upper limits on the masses, indicating that

thet’ andb’ quarks would be almost within reach of present 153 9 72

experiments. G5u=ﬁ)gf+ Zg§+ ggg, (74)

B. No Landau poles
333

T2, T N2, T2

As in Sec. V we can investigate how the gauge coupling Ggq=
constants vary with energy up to the Planck scale. Here we
set the thresholds for all the unknown fermidfsurth gen-
eration quarks and fermions coupling to GlJ, as well as
for the top quark and Higgs boson, kb, . The absence of
Landau poles in this case will guarantee their absence ||g|
some of the thresholds are set higher théy. From experi-
mental limits we would expect that all these thresholds
should be greater tha¥l ;.

We use Eqgs(36)—(38) and(44) to run the gauge coupling

HereY,(S) is really Tr(Y'Y) whereY is the Yukawa matrix

for all the fermions.

We can choose values for the Yukawa couplings at the
anck scale and then use the RGE’s to see what values the
Yukawa couplings will have at any other scale. We have
Schosen the low energy scale tolde as shown in Fig. 4. We
observe quasifixed points similar to the case for the top

constants up to the Planck scale as shown in Fig. 3. Now w uark in the SM27] and these will provide upper limits on

see that with a fourth generation of quarks and the ferm|ons“?] fig:“grq n;:rsrﬁﬁ; :ﬂ(\)nwe;gr,e;hdi fﬁ%g?%ﬁ;ﬁ:’ioﬁu_
in Table Ill [i.e., far fewer fermions than the model in Sec. ping y z d€p

V B where all the new fermions coupled to @] there are plings of the other fermions. Nonetheless there is an approxi-

mate infrared fixed point limit ofY,(S) and so one Yukawa
no problems with Landau poles below the Planck scale. Sg

coupllng can be increased at the expense of the others. This
our SMGy35 model with new SM fermions appears to be

consistent !Imlt on Y,(S) is quite premse if there is only one strong
' interaction at low energies, such as QCD in the SMie
o _ observe numerically thaty,(S)~7.5+0.3, provided the
C. Upper limits for Yukawa couplings Yukawa couplings of the three heavy quarks are greater than
Now we can choose initial values for the Yukawa cou-
plings at the Planck scale and use the RGE’s to see how they
evolve, as they are run down to the electroweak scale. As-%Detailed results for a general number of heavy SM generations

suming no mixing for the quarks and neglecting the masseare derived i 28].
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FIG. 4. An example of running Yukawa couplings for all fermi-
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FIG. 5. Fixed point value ok. This graph, along with the esti-

ons with a mass the same order of magnitude as the electroweakated value of pws) =234 GeV, leads to an approximate Higgs

scale. The values were chosen at the Planck scale and run down
M so that all the fermions would have a mass allowed by curren
experimental limits.

1 at the Planck scale and that the Yukawa couplings of th

fermions coupling to the S@3) gauge group are less than the
Yukawa couplings of the heavy quarks at the Planck scale

top quark pole mas#,;~170 GeV and the fourth genera-

tion quark pole masses are above the current experimenta

limit of 130 GeV. AlsoM,~M andMg,~Mgz4 have been
chosen, so that there is only a small contribution to ghe
parameter described in Sec. IlIC. We discuss the ele
troweak radiative corrections [20] and this SMGss model,

#%ass of 172 GeV.
t

Therefore these masses should be considered upper limits
on the masses of the fermions for this particular choice of

Yukawa couplings at the Planck scale. For other choices of

Yukawa couplings at the Planck scale we could, for example,

The values chosen for Fig. 4 have been chosen so that tr%ncrease the mass of the fourth generation of quarks but this

Would have to be compensated for by a reduction in the mass
[ some of the other fermions.

These values for the masses are consistent with current
experimental limits but are not so high that the new fermions
could remain undetected for long. In fact the quark masses

0

Cr'nay even be within the limits of current accelerators. It is

not clear whether the fermions coupling to GUcould be

with its eight new doublets, is consistent with the EXperimen'observed, since they would obviously be confined by the

tal data at the 2—3 standard deviation level. However it i
clear that any model with significantly more &) doublets
must disagree with the current experimental evidence. Thi
rules out the similar models with gauge group SMG
whereN is an odd integer greater than 5 and not divisible
by 3.

Table V gives the values of the Yukawa couplings at
M~ and the corresponding pole masses, using(E9)., for
the quarks. For the fermions coupling to SYwe use the
equation relating the pole and running masses:

12a5(My)

S5 (76)

Mf:<1+ )mf(Mf)

TABLE V. Infrared fixed point Yukawa couplings and corre-
sponding pole masséfor F =75 Ge\) for a particular choice of
Yukawa couplings at the Planck scale.

Fermion Yukawa coupling at1, Pole masgGeV)
Ve 1.00 175
Yo 0.77 135
Vb 0.75 131
Vs, 0.38 94
Ysq 0.40 97

SSU(S) gauge interaction which we take to confine at the elec-

troweak scale. So even if they have masses of about 100
eV, they would be much more difficult to detect than
quarks with greater masses. For this reason we consider the
clearest evidence for this model would come from the detec-
tion of a fourth generation quark. The masses of some of the
new fermions could be increased, but not by much, since this
would mean a reduction in the mass of other fermions. This
means that this model is consistent and relatively easy to test.
For completeness we show the running\gfthe Higgs
quartic coupling. The equation for the running)ofs given

by [24]
N 1 9
g 2_[Z 2 2
n 16772[12)\ <5g1+9g2 N
+§ ig“+ Egzgz—kg“ +4Y,(S)N—4H(S)
4 25 1 5 192 2 2 ’
(77)
where we have defined
H(S)=5ye,+5yeq+ 3y, +3yp +3y¢ . (78)

From Fig. 5 we obtair\(M;)=0.54. This graph leads to a
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TABLE VI. The lightest SM generation.

Representation
of
Fermion Representation of U(1)X Electric charge
Generation label SU(2)® SU(3) 2 Q
u) 23 § 2
3
d L 4
3
Quark E 1,3 —2 —2
d, 1,3 3 3
Lepton (,,e) 2,1 ,% ( 0 )
e/, -1
‘e 1,1 1 1
running Higgs boson mass of SMG,35. It is not possible to construct an anomaly-free
'y . model using new mass protected fermions which are all non-
Mu(Mp) = VM ¢wg =172 GeV. (79) singlet under S(b), without encountering a Landau pole in

The same low energy value af is obtained for any initial the U(1) fine structure constant well below the Planck scale.

choice of\ at the Planck scale since the Yukawa Coup”ngSHowever it is possible to construc_t a consistent model with a
are at the fixed point. This means that the Higgs boson mudpurth generation of quarks but, instead of an extra genera-
have this fixed point mass. If the Yukawa couplings weretion of Ieptpns, Wlth a generation of the fermions coupling to
slightly lower than their fixed point values we would obtain SU(5) as given in Table III.
a small range of allowable Higgs boson masses. However, A similar solution with a fourth generation of quarks and
this range would always be somewhat below 172 GeV.  a generation of SU) fermions as given in Table IV is
possible for the gauge group SM&; . However, the number
VIl. CONCLUSIONS of SU(2) doublets in the model increases withand hence
_ . . __ their contribution to the electroweak radiative corrections be-
We have discussed extensions of the SM ha.Vlng a Slmllaéomes more important_ The SM@ model is just consistent
gauge group structure to the SM itself. In particular we haveyjith the precision electroweak data but SGmodels with
be_:en gui_d_ed by the requirement of an anomaly_-free theory>5 are probably ruled oui20]. Similarly the SMGayy
with additional mass protected fermions satisfying a genermodels would be inconsistent with the precision electroweak
alized charge quantization rule. We were thereby lead to exjata.
tend the SM cross product group, U@ HU(2)® SU(3), by The SMGy;s model with a fourth generation of quarks and
adding extra SUN) direct factors, with theN's greater than 3 generation of S(5) fermions seems to be phenomenologi-
3 and mutually prime. A generalized charge quantization:aly consistent. It requires the existencetoindb’ quarks
rule, involving each direct factor, was then obtained by di-at or below the top quark mass scale; this is consistent with
viding out an appropriate discrete group. Extending the SMyrrent experimental limits but they could not remain unde-
in this fairly obvious way produces the groups SBA@  tected for long. However it is unlikely that the ) fermi-
SMG,aun » etc. Another feature we take over from the SM is gns could be observed with current accelerators; they would
the principle of using only smalifundamental or singlgt pe confined inside S@8) “hadrons,” with a confinement
fermion non-Abelian representations. For the Abelian represeale of order 200 GeV and would have a small production
sentations we take the condition that weak hyperchargegross section at present hadron colliders. Even if this model
should be chosen to be close to zero. More precisely, Wgoes not turn out to be correct we hope that the derivation
minimize the sum of weak hypercharges squared over all thgight at least highlight some of the important features of the
fermions. As shown in the Appendix, this idea of small rep-gpm and some of the unique qualities of the SM, which ap-
resentationgAbelian and non-Abeliancan be used together pears(admittedly almost by definitionas the smallest case
with the charge quantization rule and anomaly cancellatiomyf our more general models.
to uniquely define the SM generation of fermions.
The extra SUK) groups introduced confine and form
fermion condensates having the same quantum numbers as ACKNOWLEDGMENTS
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APPENDIX: DERIVING THE SM GENERATION TABLE VII. Contributions of S(y/2)? for all fundamental and

singlet representations of $2) and SU3) for any value of weak

hypercharge which satisfies E(.). All N's are integers an® is
In the SM there are three generations of fermions whichhe dimension of the non-Abelian representation.

are identical except for their masses. Each generation con

sists of 15 Weyl fermions and can be divided into a lepton S(y)z

1. The SM generation

generation and a quark generation. The quarks couple to the Representation of
SU(3) gauge group, whereas the leptons arg3Uinglets  YPe SU(2)®SU(3)
and so do not “feel” the strong force. The properties of

2

N[ <

1 2 1
these fermions are shown in Table VI. The fermions ar 23 Nats  6Nat+2Nats
labeled as in the firsflightes) generation. b 2,3 Np— & 6NZ—2Ny+ 3

. The quark4 geperation iszforined by the representationg 1,3 No— & 3N2— 2N+
U(1)®SU(2)® SU(3). This is precisely the mass grouping X ) N
2,1 Ne—3 2NZ2—2N.+3

{3,3} [where the representatioB is of the gauge group ,

SU(3)] described in Sec. IV. All the quarks get a mass by thef 11 N N

Higgs mechanism. The lepton generation is formed by thé

representations{1,2,1), and (21,1), of the same gauge

group. However, this is not the same as the mass grouping

{—1,1} because there is no right-handed neutfirepresen- > Si(

tation (01,1), ] in the SM. This means that the neutrino is

massless in the SM but the electron can still get a mass by

the Higgs mechanism. However, the lepton generation give§o we shall prove that one SM generation also satisfies as-

the same contrlbutlon to all anomalies as the mass groupingymption(iv) and thus we will show that assumptiofis to

{— 1,1} would, since the right-handed neutrino would be to-(j) define the SM generation. Note that in order to satisfy

tally neutral(i.e., would not interact with any gauge fields assumptior(iv) we must satisfy Eq(A2). So in the follow-

ing analysis we will implicitly assume EqA2). Table VII

] i ) shows all allowed representations and their contribution of
In fact, we can derive the SM generation using the fOl'S(y/2)2.

lowing assumption$1]. _ In order to satisfy Eqg. (A2) we must choose

(i) The SM gauge groupSMG=S(U(2)®U(3)). This Na=N,=0, Noe{0,}, Nye{—1,0, Noe{0,1}, and N;

|ncILi1idei/lthe chrartgetiqua_lrjrt:izatrlr?n Lmetrllﬂ?ln fermion N e{—1,1}. (We do not consideN;=0 because this would be
(i) Mass p otection This means that no fermions can right-handed neutrino which would not contribute to any

form a gauge invariant mass term except by the Higgs

mechanism. In particular we cannot have left- and right_anomalles and would be expected to get a Majorana mass of

handed fermions with the same representation of the SM*:j;e order of the PIa(;u;k mfa$sTh|fs meansdtt?at we cannot
Also we cannot have a right-handed neutrino since it can gef2veé mass protected fermions of typesndb. So we can

a Majorana mass choose, without loss of generality, that there are no fermions
. 7 ¢
(iii ) Anomaly cancellationin addition to the cancellation Of typeb.” So we get Table VI, which shows all allowed
Of gauge anoma"es’ the W|tten g|0ba| &DJ anoma'y and ferm|0ns and Contl’lbutlons to some anoma“es.

the mixed gauge and gravitational anomaly must also be ab- For mass protection we cannot have any of the following
sent. combinations; types,; andd,, typesc, andd,, typese; and

(iv) Small representationsThis meangcf. Sec. Il A2 e,, or typesf, andf, (all defined in Table VII). Also note
that all fermions are in either fundamental or singlet reprethat all the types of representations in Table VIII contribute
sentations of the S(@) and SU3) subgroups and the sum of to the mixed anomalyy;S;y;. This means that we cannot
weak hypercharge squared for all fermions is as small agse only typef fermions to produce an anomaly-free set of
possible. mass protected fermions. Therefore, if no fermions couple to

So our aim is to minimize the value &fS;(y;/2)? (where  the SU3) group, there is no way to cancel the
S is the dimension of representationwith weak hyper- [SU(2)]2U(1) anomaly. So we can conclude that some fer-
chargey;) for all possible choices of mass protected fermi-mions must couple to S3).
ons in fundamental or singlet representations of{3land Suppose there are no fermions of tygeThen the above
SU(3), assuming the charge quantization rule, By, and  arguments mean that, to cancel {f&8U(3)]® anomaly, we
cancelling all relevant anomalies. We note that for one SMmust have equal numbers of either tymgsandd, or types

)2< 10
<3 (A2)

2. Derivation of the SM generation

generatiorfwhich satisfies assumptioit to (i )] c, and d;. But then there is no way to cancel the
[SU(3)]?U(1) anomaly. So we have a contradiction, which
yi\? 10 means that there must be at least one type
2siz) -3 (81

and we show that there is no other mass protected solution of’Choosing no fermions of typa would lead to an equivalent
the anomaly constraints with solution with opposite chirality.



55 EXTENDING THE STANDARD MODEL USING CHARGE ... 1609

TABLE VIII. All allowed representations of fermions which could be used to satisfy(Eg) and their
contributions to some anomalies.

Representation of

2

Type SU(2)®SU(3) % Sg) [SU(B)]®  [SU(3)PU(1)  [SU(2)]°U(1)
a 2,3 z 3 2 : i
¢, 13 -1 i 1 -1 0
c, 1,3 2 3 1 2 0
dy 13 3 3 -1 3 0
dz 13 -5 3 -1 -5 0
e 2,1 -1 i 0 0 -1
e, 2,1 1 3 0 0 3
f, 11 -1 1 0 0 0
f, 11 1 1 0 0 0

The[SU(2)]?U(1) anomaly must be cancelled by having appear to be any reason why massless fermions should be
as many types; as typea. So there are no type, due to the excluded from such an analysi@Ve could obviously use
principle of mass protection. Again using the principle of phenomenological arguments but that would defeat the pur-
mass protection, the only way to cancel ff8U(3)]* and  pose of trying to derive the SM generatipfihey also object
[SU(3)]2U(1) anomalies is by having the number of typesto this solution because they feel it trivializes the cancella-
a, d;, andd, the same. We can now cancel fi#(1)]* and  tion of the mixed gravitational and gauge anomaly. In what
mixed anomalies using Table IX. sense the anomaly condition is trivial is not entirely clear,

So we see that the anomaly-free set of mass-protectegince not all fermions have zero weak hypercharge; but also
fermions which minimizes the sum of the weak hyperchargegyhy should it matter if a constraint is trivially satisfied? In
squared is one of typa, d;, dy, €;, andf,. This is one SM  or gerivation this solution does not occur because of the
quark-lepton generation. charge quantization rule. So by enforcing the charge quanti-

zation rule, which we have taken as one of the defining prop-
erties of the SMG in Sec. Il A 1, we can avoid this solution
3. Alternative derivations of the SM generation without introducing dubious arguments about fermion

There have been other attempts to derive the SM gener&nasses.
tion using various assumptions. Most notably Geng and Mar- If we then also add the assumption that all subgroups
shak[29] have tried to derive the SM generation using themust have some fermion coupling to them, we can almost
constraints due to cancellation of anomalies. They also asderive the SM generation. The problem is that we can scale
sume mass protection but not the charge quantization rulell values of weak hypercharge for the SM fermions by a
Eq. (1). Instead of minimizing the sum of weak hyperchargesfactor of (6n+1) wheren is any integef. The SM genera-
squared, they try to find the minimum number of fermionstion is obviously the solution with the values of hypercharge
required to satisfy these assumptions. closest to zero. We can express this by choosing to minimize

The smallest number of Weyl fermions found by Gengthe sum of hypercharges squared for this solution. But since
and Marshak is 14. This solution consists of the followingwe must introduce such an assumption why not use it from
representations of the gauge group UgQU(2)® SU(3):  the start? This then allows us to drop two of the above as-
(02,3),, (v,1,3),, (-v,1,3),, and (02,1), . They rule out sumptions: that all subgroups must have a fermion coupling
this solution because the &) doublet cannot acquire a to them and that we should look for the smallest number of
Dirac or Majorana mass, even with the spontaneous symmé¥eyl fermions. We are then left with the four assumptions
try breaking of the gauge group. However, we know fromused in Sec. 2 of this Appendix. This seems more reasonable
the SM that the neutrino is massless and so there does nitan introducing more assumptions with no justification.

TABLE IX. Allowed combinations of fermions and their con-
tribution to the remaining anomalies. 8without the charge quantization rule we could scale the weak
hypercharges by an arbitrary amount. Then we could not use the
y\? procedure of minimizing the sum of hypercharges squared, since
S( ) this would obviously force all values to zero. There is then no way
to fix the scale other than by assuming the fermions get a mass by

Types G2U(1) [U)]®

atditdyte 1+1-2-1=-1 gt+gs—5-3=-1 i the Higgs mechanism and fixing the scale to the weak hypercharge
fi -1 -1 1 of the Higgs boson. So the charge quantization rule effectively in-
f, 1 1 1 troduces a scale for the weak hypercharge independent of any Higgs

bosons.
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There have also been attempts to explain the charge quanf the non-Abelian representations of the fermions, not just
tization observed in the SM in terms of anomaly cancella-the values of weak hypercharge. In order to do this it appears
tion. A review is given in30] and references therein. How- necessary to use rather than to derive the charge quantization
ever, in our approach we are trying to understand the origimule.
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