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We examine extensions of the standard model~SM!, basing our assumptions on what has already been
observed; we do not consider anything fundamentally different, such as grand unification or supersymmetry,
which is not directly suggested by the SM itself. We concentrate on the possibility of additional low mass
fermions~relative to the Planck mass! and search for combinations of representations which do not produce
any gauge anomalies. Generalizations of the SM weak hypercharge quantization rule are used to specify the
weak hypercharge, modulo 2, for any given representation of the non-Abelian part of the gauge group. Strong
experimental constraints are put on our models, by using the renormalization group equations to obtain upper
limits on fermion masses and to check that there is no U~1! Landau pole below the Planck scale. Our most
promising model contains a fourth generation of quarks without leptons and can soon be tested experimentally.
@S0556-2821~97!06803-3#

PACS number~s!: 12.60.Cn

I. INTRODUCTION

Over the years there have been numerous attempts at ex-
tending the standard model~SM!. Some of these models
have been proposed with the purpose of explaining some
particular feature of the SM. For example, grand unified
theories ~GUT’s! ‘‘explain’’ the convergence of coupling
constants at some energy as a manifestation of a single fun-
damental unified interaction. Other models such as super-
symmetry~SUSY! have been proposed for mainly aesthetic
reasons: SUSY introduces a symmetry between bosons and
fermions. But so far none of these attempts has been entirely
successful, although SUSY GUT’s are phenomenologically
consistent with the unification of the SM gauge coupling
constants and do not suffer from the technical gauge hierar-
chy problem.

Another approach to extending the SM is to look at the
SM itself and look for distinctive features which could be
generalized or assumed to hold in an extended theory. The
SM has been so successful that, within our experimental and
calculational accuracy, it has proved to be a perfect descrip-
tion of nature~except for the gravitational interaction!. So a
natural method of extending the SM is to look for fundamen-
tal features in the SM which could distinguish it from similar
and, without experimental evidence, equally plausible mod-
els. We propose that one such feature is charge quantization.
This can be expressed as
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wherey is the conventional weak hypercharge. The duality
has value 1 if the representation is an SU~2! doublet~2! and
0 if it is an SU~2! singlet ~1!. The triality has value 1 if the
representation is an SU~3! triplet ~3!, 0 if it is an SU~3!
singlet~1!, and21 if it is an SU~3! antitriplet (3). In general
we can defineN-ality to be the number ofN-plet represen-

tations of SU(N) which must be combined to give the rep-
resentation of SU(N). In particularN-ality has value 1 if a
representation is an SU(N) N-plet (N), 0 if it is an SU(N)
singlet ~1!, and21 if it is an SU(N) anti-N-plet (N̄). Note
that in SU~2! the2 representation is equivalent to the2 rep-
resentation. We expect that in an extension of the SM this
charge quantization relation or some generalization of it will
hold.

An obvious way of extending the SM is to extend the
gauge group. The standard model group~SMG! is @1,2#

SMG[S„U~2! ^U~3!…5U~1! ^SU~2! ^SU~3!/D̂3 , ~2!

where the discrete group

D̂3[$~ei2p/6,2I 2 ,e
i2p/3I 3!

n:nPZ6% ~3!

ensures the above quantization rule@ I N is the identity of
SU(N)#. We argue that the most obvious extension is to add
more groups to the sequence U(1)^SU(2)^SU(3) and to
use a different discrete group so that the quantization rule
above is generalized to involve all the group components.
One of the groups we consider is

G5[U~1! ^SU~2! ^SU~3! ^SU~5!/D̂5 , ~4!

where the discrete groupD̂5 is defined as

D̂5[$~ei2p/N5,2I 2 ,e
i2p/3I 3 ,e

i2pm5/5I 5!
n:nPZN5%, ~5!

whereN552*3*5 andm5 is an integer which is not a mul-
tiple of 5. This group gives a generalized quantization rule
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which is the simplest generalization of the SM charge quan-
tization rule. Further generalizations are obtained by extend-
ing the sequence U(1)̂SU(2)^SU(3) with a set of SU~N!
factors, where theN’s are greater than 3 and mutually prime.
The latter condition ensures that the generalized quantization
rule shares the property with the SM rule, Eq.~1!, that a
given allowed value ofy/2 implies a unique combination of
N-alities: ~duality, triality, . . . , Ni-ality, . . . !.

1

We will consider the fundamental scale to be the Planck
mass (MPlanck) and our models will be a full description of
physics without gravity below this scale. The assumptions
we make about our models essentially lead to the conclusion
that all new fermions with a mass significantly below
MPlanckmust have a mass below the TeV scale as explained
in Sec. III B. Therefore our models all describe low energy
physics~below the TeV scale! and have a desert up to the
Planck scale where new physics will occur. We do not
specify any details about the Planck scale physics since it is
largely irrelevant to low energy physics.

We shall describe the gauge groups considered in this
paper and the motivation for choosing such groups in Sec.
II A 1. We shall consider general types of gauge groups and
also give specific examples, concentrating on the groupG5
defined above. When we also impose the condition that all
fermions are in fundamental or singlet representations, as in
the SM, we are limited to the models which we shall con-
sider in this paper. After choosing the gauge group we want
to examine which low mass fermions~low relative to the
Planck scale! can exist in the model. We must check that the
model is then consistent, both theoretically and experimen-
tally.

The main theoretical constraint is that there are no anoma-
lies as described in Sec. II C. This greatly limits the choice
of fermions and their weak hypercharges in our models. In
the Appendix we show how the SM generation of mass-
protected fermions can be derived using our assumptions
about charge quantization, small representations, and
anomaly cancellation.

There is one important fact to keep in mind when propos-
ing any extended model which has extra non-Abelian gauge
groups such as SU(N). As we already know from the SM,
the SU~3! group acts as a technicolor group@3# and gives a
contribution to theW6 andZ0 masses. In the SM this con-
tribution is very small but when confining groups with
N.3 are considered we must carefully consider the effect
this will have. Since we are not wanting the complications of
extended technicolor in order to generate quark and lepton
masses, we assume that there is a Higgs doublet and that the
masses of the weak gauge bosons are generated by a combi-
nation of the Higgs sector of the theory and the technicolor
effects of the gauge groups. This happens in exactly the same
way as in the SM where QCD gives a small contribution to
theW6 andZ0 masses@3#.

For our models to be perturbatively valid, all Yukawa
couplings at the electroweak scale must be not much greater
than 1. However, we will sometimes take a somewhat higher
mass threshold for all the new fermions when checking to
see if a model could be perturbatively valid up to the Planck
scale. For example, we can calculate the running gauge cou-
pling constants, assuming that all the new fermions can be
included in the renormalization group equations~RGE’s! at
the TeV scale. Thus we can check to see if any gauge cou-
pling constant becomes infinite below the Planck scale@i.e.,
if there are any Landau poles, especially for the U(1) cou-
pling#. If the threshold was lower then the new fermions
would effect the coupling constants even more but this
would only be a small effect. Obviously we do not want the
coupling constants to become infinite or the theory will be
inconsistent. When we do this we find that there are few
self-consistent models allowed by our assumptions, in the
sense that for any particular gauge group only a few combi-
nations of fermions which cancel the anomalies do not cause
the U~1! gauge coupling to diverge.

We will show that in the model with gauge groupG5 we
can add new fermions with masses accessible to present or
planned future accelerators, in particular a fourth generation
of quarks without any new leptons. At present this model is
consistent and can be tested experimentally in the near fu-
ture. It can be viewed as the simplest alternative to the SM
which has the same characteristic properties as the SM itself.

In Sec. II we shall outline our requirements for a viable
model. We will discuss theoretical constraints such as
anomaly cancellation as well as aesthetic extrapolations from
the SM, including charge quantization as already mentioned.
In the Appendix we show how these ideas can be used to
derive the SM generation.

In Sec. III we shall discuss the experimental constraints
which arise from the consistency of the SM with experi-
ments. This includes the experimental limits on the mass of
the top quark and the masses of new, undetected fermions.

In Sec. IV we will discuss the simplification of the
anomaly constraints when we assume that all fermions get a
mass by the SM Higgs mechanism.

In Sec. V we shall show the difficulty of constructing a
model where all the new fermions are in 5-plet or anti-5-plet
representations of SU~5!. We shall show that such a solution
is not possible within the context of our model.

In Sec. VI we will see how the difficulties of Sec. V can
be overcome by also adding fermions which are SU~5! sin-
glets; in particular a fourth generation of quarks but no
fourth generation of leptons. We will also show how such a
solution can be formulated in a more general gauge group.

In Sec. VII we shall discuss the overall merits of such a
model and how easily it could be tested experimentally.

II. DISCUSSION OF FORMALISM OF MODELS
AND THEORETICAL CONSTRAINTS

First we shall discuss which models we will be consider-
ing as viable extensions of the SM and then we shall discuss
in detail the requirements for a potentially successful exten-
sion of the SM. We shall use some of these constraints when
constructing models and the rest to check the consistency of
our models.

1This corresponds to the global group, associated with the gener-
alized charge quantization rule, having a connected center@1#.
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A. Extrapolations from the SM

In this section we discuss aesthetic extrapolations from
the SM. These are features of the SM which have no obvious
explanation but in some way can be used to specify the
model almost uniquely. We try to pick out these features and
carry them over to or generalize them in our extended model.
This is a method of selecting a particular model and our view
is that this is the most logical method although the features
chosen may of course be subject to personal prejudice.

1. Extending the gauge group and charge quantization

As stated in Sec. I, an obvious way of extending the SM is
to extend the gauge group. The SMG is

SMG[U~1! ^SU~2! ^SU~3!/D̂3 , ~7!

where the discrete group

D̂3[$~ei2p/6,2I 2 ,e
i2p/3I 3!

n:nPZ6% ~8!

ensures the quantization rule, Eq.~1!. We believe that the
most obvious extension is to add more special unitary groups
to the sequence U(1)̂SU(2)^SU(3) and to use a different
discrete group so that the quantization rule above is general-
ized. In @1# it is argued that the group should be of the form

Gp[U~1! ^SU~2! ^SU~3! ^SU~5! ^ •••^SU~p!/D̂p ,
~9!

where the product is over all SU~q! where q is a prime
number less than or equal to the prime numberp. The dis-
crete groupD̂p is defined as

D̂p[$~ei2p/Np,2I 2 ,e
i2p/3I 3 ,e

i2pm5/5I 5 , . . . ,e
i2pmp /pI p!

n:nPZNp%, ~10!

where Np52* 3* 5* •••* p and mN is an integer which is not a multiple ofN. In fact we can obviously choose
0<mN<N21 sincemN is really only defined moduloN. We also have the freedom to choose that there are, for example, at
least as many SU~2! doublets which areN representations of SU(N) asN̄ representations since we can conjugate SU(N) and
setmN→2mN (modN). We will use this fact later to eliminate duplicate solutions where allN-plets and anti-N-plets have
been interchanged. This also allows us to fixm351.

This group gives a generalized quantization rule
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We will also consider the more general groups defined as

SMG2N1N2•••Nk
[U~1! ^SU~2! ^SU~N1! ^ •••^SU~Nk!/D2N1•••Nk

, ~12!

where

D2N1•••Nk
[$~ei2p/N̂,2I 2 ,e

i2pmN1
/N1I N1, . . . ,e

i2pmNk
/NkI Nk!

m:mPZN̂%. ~13!

Here N̂52*N1* •••*Nk and theNi are odd and mutually
prime ~we can obviously assume they are arranged in as-
cending order!. So the quantization rule is

y
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d1

mN1

N1
n11•••1

mNk

Nk
nk[0 ~mod 1!, ~14!

where we have definedd to be the duality andni to be the
Ni-ality of a representation. The groups SMG23N are the
minimal extensions of the SMG ([SMG23) which are in-
spired by the SMG, in the sense that each is also a cross
product of U(1) and a set of distinct special unitary groups
with a charge quantization rule involving all the direct fac-
tors and contains the SMG as a subgroup. The property of
the SMG that the value ofy/2 determines both the duality
and triality extrapolates to the principle thaty/2 should also
fix the N-ality, but then it is needed that 2, 3, andN are
mutually prime.

It has been suggested that a defining property of the SMG
is that it has few outer automorphisms relative to the rank of

the group@4,5#. This can be described by saying that it is
very skew. The intermingling of the various simple groups
SU~2!, SU(N1), . . . , SU(Nk) implied by the charge quan-
tization rule, Eq.~14!, helps to suppress the number of outer
automorphisms and ‘‘generalized automorphisms.’’ Thus a
group like SMG2N1N2•••Nk

would indeed be more skew than
groups without such intermingling. Alternatively we can de-
rive Eq. ~14! directly as a natural generalization of the SM
charge quantization rule, Eq.~1!.

Of course it is possible that the apparent charge quantiza-
tion rule in the SM is simply due to chance; i.e., the fermions
in the SM just happen to obey that particular rule. However,
we believe that the quantization rule is a fundamental feature
of the SM; so we argue that it is very difficult to see how
there cannot be a generalization of this rule in an extended
model, while still retaining the general features of the SM. In
fact the form of the generalized quantization rule is sug-
gested from the SM and there seems to be little choice in
selecting the rule since the SM rule appears to be the one
which involves all the direct factors equivalently. In fact the
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choice of the most complicated charge quantization rule in
some way defines the SMG. This is why we have divided out
the discrete groupsD̂p andD2N1•••Nk

.

2. Small representations

In the SM, for each SU(N) group, the fermion represen-
tations are eitherN-plet (N), anti-N-plet (N̄), or singlet~1!.
This can be described by saying that all the fermions lie in
fundamental representations of each SU(N) group to which
they couple. We pick this as a feature of the SM which we
shall extend to our models. We note here that this is in con-
trast to some other attempts to extend the SM. For example
in SUSY there are fermions in other representations~e.g.,
gauginos in adjoint representations!. Fundamental represen-
tations are also suggested in@6# since these make the Weyl
equation most stable when considering random dynamics.2

Another feature is that the weak hypercharge is in some
way minimized in the SM, subject of course to the con-
straints of anomaly cancellation and charge quantization, as
shown in the Appendix. So in our extended model we will
choose hypercharge values close to zero when this is pos-
sible. More precisely, we choose to minimize the sum of
weak hypercharges squared over all fermions. This will also
minimize the running of the U~1! gauge coupling constant
and so give each model the best chance of being consistent
up to the Planck scale, which we require as stated in Sec.
II A 3.

3. Higher energies: Desert hypothesis

The SM has been tested at energies up to a few hundred
GeV. There have been many theories proposed which would
be valid at energy scales ranging from 1 TeV up to the
Planck scale around 1016 TeV. Many of these theories have a
large range of energy where no new physics occurs. One
example is GUT’s where there is typically no new physics
from the SM energy scale up to the grand unification scale
around 1013 TeV. An alternative is that there is no new phys-
ics until the Planck scale where we can be almost certain that
quantum gravity will have a significant effect. We shall
adopt this view for our extended models. This means that
once we have set the mass scale for the fermions in the
extended model, we can calculate the running coupling con-
stants and check to see if there is a Landau pole below the
Planck scale, i.e., whether the U~1! gauge coupling becomes
infinite below the Planck scale. If there is a Landau pole then
we will conclude that such a model is not consistent.

B. Fermion representations and alternative groups

In this section we shall describe some alternative exten-
sions of the SM. We will consider groups similar to those we

are examining in this paper in the sense that they contain
only the SMG and additional special unitary group factors.
This obviously does not include models which unify the in-
dividual components of the SMG. Models which involve
SUSY will not be considered here since we are making the
assumption of fundamental or singlet representations for all
fermions. models with the non-SUSY. There have been
many such models and the additional symmetries are usually
used to explain coupling constant unification, the number of
families in the SM, or the fermion mass hierarchy in a fairly
natural way.

In the models described in Sec. II A 1 the SM fermions
cannot couple to any new gauge fields because of the charge
quantization rule. This is due to the fact that all values of
y/2 in the SM are multiples of16 and so the charge quanti-
zation rule, Eq.~14!, forces the SM fermions to be singlets of
all SU(N) groups whereN.3 are distinct primes.

However, the situation is more complicated if we allow
more than one SU(N) gauge group for any particularN.
Where we haveN52 or 3 there are two distinct cases. In the
first case the SM group SU(N) is an invariant subgroup of
the extended group. We then call the extra SU(N) groups a
horizontal symmetry. In the other case the SU(N) group in
the SMG is not an invariant subgroup and is generally a
diagonal subgroup of the extended group.

1. Invariant subgroup case: Horizontal symmetries

If we have one more SU~2! or SU~3! group then we can
have a horizontal symmetry~a non-Abelian symmetry which
places fermions from different generations in the same mul-
tiplet!. The idea of a gauged horizontal symmetry is not new
and has been used to try and explain the mass hierarchy of
the SM fermions @7#. However, an SU(N) group with
N.3 is not a possible horizontal symmetry without intro-
ducing many more fermions because there are only three
generations of SM fermions and the smallest nontrivial rep-
resentation of SU(N) is theN-plet. For example ifN55 we
would have an SU~5! horizontal symmetry and so we would
need at least five generations of SM fermions.

If the horizontal symmetry gauge group is SU~3!H then
we must place fermions from different generations in the
same triplet~or antitriplet!. It turns out that the only way to
do this, avoiding anomalies~see Sec. II C! and not introduc-
ing any new fermions, is to put all fermions in the same~or
conjugate! representation of SU~3!H as they are in the color
group SU~3!C of the SM; so that all three generations of
left-handed quarks are put in a triplet~or antitriplet! of
SU~3!H , etc. However, the SM fermions would not then
obey the charge quantization rule which might be expected,
similar to Eq.~14!:
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3
tH[0 ~mod 1!. ~15!

If the horizontal symmetry group is SU~2!H then we can
make some or all SM fermions triplets of SU~2!H but this is
not the smallest representation and so we do not favor this as
explained in Sec. II A 2. We could place some fermions in
doublets of SU~2!H . This could be done, without introduc-
ing any anomalies, by placing two generations of quarks in
the same doublet or taking two generations and placing the

2In fact, from this point of view, each representation of the full
gauge group should only be nonsinglet with respect to one non-
Abelian factor. This is not true for the left-handed quarks but is true
for all other fermions in the SM. However, the left-handed quarks
are required in order that there are no gauge anomalies. So we can
consider that the Weyl equation is as stable as possible if we only
have small representations.
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fermions in the same representation of SU~2!H as they are in
the SU~2! L group of the SM. Different doublets could con-
nect fermions from a different pair of generations. For ex-
ample left-handed quarks from the first and second genera-
tions could be in the same doublet, right-handed ‘‘up’’
quarks from the first and third generations could be in the
same doublet, and right-handed ‘‘down’’ quarks from the
second and third generations could be in the same doublet.
This would not give any anomalies though it is difficult to
see how this could be used to explain the fermion masses.
The main problem is that fermions in different generations
with very different masses are put in the same multiplet. This
means that the fermions would naturally get the same mass.
It is difficult to break the symmetry in such a way that the
masses of all the different fermions are split by realistic
amounts@7#.

We do not consider these possibilities in this paper be-
cause triplets of SU~2! are not fundamental representations
and the other possibilities, with gauge group SU~2!H or
SU~3!H , mean that the fermions could not obey the extended
charge quantization rule. Of course models involving hori-
zontal symmetries do not enforce such charge quantization
rules.

2. Noninvariant subgroup case: SMG as diagonal subgroup

In the case where, for example, the SU~3!C subgroup of
the SMG is not an invariant subgroup of the full gauge
group, the only possibility is that it is a diagonal~or antidi-
agonal! subgroup of SU~3! n. In this type of model different
generations can couple to different SU~2! and SU~3! gauge
groups in the full gauge group. There would then be symme-
try breaking to produce the SMG, in such a way that
SU~3!C could be said to be a diagonal subgroup of all the
SU~3! groups in the full group which exists at energies
higher than the symmetry breaking scale. In other words,
SU~3!C is then the subgroup in which all the SU~3! groups
undergo the same transformations. In this way it is trivial to
cancel all the anomalies, since each generation of quarks and
leptons cancel all anomalies separately and couple to a
U(1)^SU(2)^SU(3) subgroup of the full group in the
same way as they couple to the SMG. This is in contrast to
the invariant subgroup case, where the SM fermions had to
couple to the SMG and also to other subgroups of the full
gauge group. Also in the diagonal case, the dimension of
each representation is the same as in the SM, whereas, in the
invariant subgroup case, the dimensions were larger since
different SM representations were combined under the hori-
zontal symmetry.

This type of model has been proposed@8# as an alternative
to horizontal symmetries or grand unification. Examples in-
clude top-color models@9# and the antigrand unification
model @10#, where the group SMG3[SMG^SMG^SMG
has been used to successfully predict the values of the gauge
coupling constants. The antigrand unification model has also
been analyzed as a model to explain the hierarchy of SM
fermion masses@11#. Here the extended model with gauge
group SMG3^U(1) f has been fairly successful at reproduc-
ing the observed fermion masses in an order of magnitude
approximation~reproducing all SM fermion masses within a
factor of 2 or 3!. The extra U(1)f gauge symmetry is called
a flavor symmetry and is required to produce the observed

mass differences within the second and third generations,
e.g.,mb!mt .

We note that the fermions in some of these models obey
extended charge quantization rules which we would expect.
For example the fermions in the SMG3 model obey the
charge quantization rules,

yi
2

1
1

2
di1

1

3
t i[0 ~mod 1!, ~16!

where the three copies of the SMG are labeled byi51, 2,
and 3. With three separate charge quantization rules, this is
not truly a straightforward extrapolation of the SM charge
quantization rule. However it is similar in the sense that
these rules are required to produce the group SMG3 which
has as largex as the group SMG itself.3 The quantityx
measures how strongly intermingled the U~1! subgroups are
with the semi-simple part via the dividing discrete groups
@i.e., equivalently via the quantization rule~s!#. It happens
that groups of the form SMGn have the largest possible
value of this measurex5 ln(6)/4. The charge quantization
rules are chosen to maximizex for the group
SMG3

^U(1) f among all those with the same algebra al-
though this group does not have as large a value ofx as the

SMG. In fact x5 ln(63)/135 12
13ln(6)/4 for the group

SMG3
^U(1) f .

However, the symmetry breaking scale of the group
SMG3 is taken to be just below the Planck scale in the an-
tigrand unification model and in this paper we wish to study
the possibilities of new physics at much lower energies; en-
ergies of the same order of magnitude as the electroweak
scale rather than the Planck scale. This is still possible in
such a model but it then loses its ability to predict the gauge
coupling constants. Top-color models do introduce new dy-
namics at the TeV scale but in this paper we shall not con-
sider such models.

C. Anomalies

1. Gauge anomalies

In any chiral gauge theory, gauge anomalies can arise.
These anomalies lead to an inconsistent theory and so they
must not be present in a good theory. Each fermion repre-
sentation makes its contribution to each type of anomaly. We
say that there is an anomaly present if the total contribution
to an anomaly from all the fermion representations is non-
zero.

As explained in Sec. II A 1, the models considered in this
paper have gauge groups of the general form

3The quantity x is defined in @5# for any group G as
x(G)5 ln@q(G)#/r(G) wherer (G) is the rank of the groupG @really
the number of U~1! factors in the maximal Abelian subgroup#. Fur-
ther,q(G) is defined as the order of the factor group, obtained by
dividing the group of all Abelian charge combinations
(y1 ,y2 , . . . ,yr) allowed for any representations of the groupG, by
the group of those Abelian charge combinations allowed for repre-
sentations trivial under the semisimple part of the groupG.
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U~1! ^)
i
SU~Ni !/D. ~17!

The discrete groupD leads to charge quantization. We as-
sume all fermions to be inN, N̄, or singlet~1! representations
of each SU(N), as discussed in Sec. II A 2. We definen to
be theN-ality of a representation@n51 (21) for represen-
tation N (N̄) and n50 for singlet representation#. We can
also define the size,S, of each representation as the dimen-
sion of the representation@e.g., in the SM,S56 for the
(2,3)# representation of SU(2)̂SU(3) which is equivalent
to the fact that there are six left-handed quarks in each gen-
eration#.

For gauge anomalies we sum the contribution for all left-
handed fermions and subtract the sum over all right-handed
fermions. This is equivalent to summing over left-handed
fermions and left-handed antifermions. We have now intro-
duced all the necessary notation to write down general equa-
tions for all types of gauge anomalies.

The requirement that there are no anomalies present in a
theory is analogous to the triangle Feynman diagram in Fig.
1 with a fermion loop and three external gauge bosons~la-
beled byG, G8, andG9) having zero amplitude for all pos-
sible choices of gauge bosonsG, G8, andG9. The contribu-
tion from each fermion representation is calculated by
making particular choices for the fermions in the internal
loop. These contributions must then sum to give zero ampli-
tude if there is to be no anomaly.

If each ofG, G8, andG9 is an SU(N) gauge boson where
N>3 then each representation gives a relative contribution
of Sn35Sn ~sincen521, 0, or 1 in our models!. The total
contribution is therefore( iSini where i labels each left-
handed fermion~and antifermion! representation. We label
this type of anomaly@SU(N)#3 and require

(
i
Sini50. ~18!

Another type of anomaly corresponds to the diagram with
one U~1! gauge boson and two SU(N) gauge bosons where
N>2, labeled as@SU(N)#2U(1). Each representation gives
a relative contributionSn2y. Therefore we require

(
i
Si~ni !

2yi50. ~19!

The final type of gauge anomaly corresponds to the dia-
gram with all the gauge bosonsG, G8, andG9 being U~1!
gauge bosons. This is labeled as@U(1)#3 and each represen-
tation gives a relative contributionSy3. Therefore we require

(
i
Siyi

350. ~20!

2. Other anomalies

There is also a mixed gravitational and gauge anomaly
@12# which corresponds to one U~1! gauge boson and two
gravitons. We will label this as@Grav#2U(1). Each represen-
tation gives a relative contributionSyand so this leads to the
constraint

(
i
Siyi50. ~21!

Another possible anomaly is the Witten discrete SU~2!
anomaly@13#. This states that if the number of left-handed
SU~2! doublets is odd then the theory is inconsistent. As we
shall see later this anomaly does not give us any problems.

III. EXPERIMENTAL CONSTRAINTS

In this section we shall discuss the constraints on our
models which are due to experimental evidence. In particular
we are concerned with the possibilities for the existence of
more fermions and what restrictions can be imposed both
directly and indirectly on their mass. Some difficulty arises
since fermions may be confined and so not directly observ-
able. This means that direct experimental restrictions will
refer to the mass of particles which are combinations of these
fermions, like hadrons in the case for quarks.

A. Direct experimental constraints on fermion masses

First we shall discuss the constraints on fermion masses
due to the fact that so far no non-SM fermions have been
observed. We shall show that this rules out any extra mass-
less fermions and then give current limits on the masses of
different type of new fermions.

1. Massless fermions

Only three massless fermions have been observed and
they are the three massless neutrinos described in the SM
~even if the neutrinos do have a small mass we know that
there are only 3 with a mass less than1

2MZ). Any other mass-
less fermions, which had any significant coupling to the SM
fermions or gauge bosons, would have been observed if they
were not confined. When we assume that fermions belong
only to fundamental and singlet representations~as postu-
lated in Sec. II A 2!, the charge quantization rule in our mod-

FIG. 1. For the theory to be anomaly free, the amplitude of this
Feynman diagram must be zero for all choices of external gauge
bosons after summing over all possible fermions in the internal loop
~triangle!.
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els ensures that the only possible fermions which would not
be electrically charged would be neutrinos. A left-handed
neutrino without a right-handed neutrino would be massless
as in the SM. We already know that there are only three such
neutrinos and so we cannot consider this as a possibility for
new fermions. A right-handed neutrino would be completely
decoupled from the gauge group and so it could get a gauge
invariant Majorana mass. So we would expect that it would
have a mass;MPlanck and so it is excluded as a low mass
fermion in our models. Therefore any new massless fermions
in our models must be electrically charged and so must also
be confined by a new interaction well above the QCD scale,
on phenomenological grounds. neutrino cannot explanation

If there is a confined gauge group then we assume that
fermion condensates will be formed as in QCD. If a fermion
does not have a chiral partner with respect to some confined
groupH, the condensates formed will break the groupH. So
if we assume that there is no spontaneous gauge symmetry
breaking, other than that of the electroweak symmetry group,
no fermions can be chiral with respect toG where the full
gauge group is U(1)̂ SU(2)^G/D ~whereD is some dis-
crete group!. In our models the extra SU(N) gauge groups
are all confining ~with negative beta functions!, so that
G[H.

If the left- and right-handed fermions occur with
the same representations of the full gauge group
U(1)^SU(2)^G/D, then the fermions can form a Dirac
mass term in the Lagrangian. So they would be expected to
get a mass comparable to the fundamental scale, which we
take to be the Planck mass in our models. Such fermions
would not contribute to any anomalies and would not be
observable because of their high mass. We shall therefore
ignore them in our models. If a fermion cannot form such a
fundamental Dirac~or Majorana! mass term then we say it is
mass protected, since it would be fundamentally massless
and could only get a mass indirectly through some interac-
tion such as the Higgs mechanism. All the fermions consid-
ered in our models are mass protected by the electroweak
interactions.

We conclude that all new fermions in our models must get
their mass from the Higgs mechanism. Furthermore, they
must couple to the usual SM Higgs particle in the same way
as the SM fermions. In other words, the fermion condensates
must have the same quantum numbers as the SM Higgs bo-
son; otherwise their contributions to theW6 andZ0 masses,
via the usual technicolor@3# mechanism, would be analogous
to those from the vacuum expectation values of Higgs par-
ticles with nonstandard weak isospin and hypercharges. This
would lead to a significant deviation of ther parameter
(r[MW

2 /MZ
2cos2uW) from unity @14# in contradiction with

precision electroweak data.

2. Massive fermions

In the SM there are two different types of fermions,
quarks and leptons, which differ by the fact that quarks
couple to the SU~3! gauge fields and so are confined,
whereas leptons have no direct coupling to the SU~3! gauge
fields and are not confined. There are experimental limits on
the masses of any quarks and leptons which have not yet
been observed. If there are any more leptons then they must
have a mass greater than 45 GeV@15#. We shall assume that

there are no more leptons, since even the neutrino would
have to get a mass larger than this and it is difficult to see
how a neutrino could naturally be given a mass greater than
45 GeV but still much lower than the fundamental scale
~which is the Planck scale in our models!. This is because a
right-handed neutrino, as already discussed in Sec. III A 1,
would naturally get a Majorana mass and so the see-saw
mechanism@16# would leave the left-handed neutrino with a
very small mass. For this reason we cannot allow any more
generations of SM leptons. However the limits on the quark
masses are dependent on the type of quark and its decay
modes.

The top quark has recently been observed by the Collider
Detector at Fermilab~CDF! and D0 Collaborations@17#. The
mass is in the range 150–220 GeV. For the purpose of this
paper we take the limit on possible fourth generation quarks,
t8 andb8, to be

Mt8,Mb8.130 GeV

from the dilepton analyses of the CDF and D0 groups@18#
~less restrictive limits apply if other decay modes are domi-
nant!. Note that experimental limits are taken to apply to the
pole masses.

The above experimental limits do not apply to new fermi-
ons which are not singlets of the additional SU(N)
gauge groups. These fermions would be more difficult to
detect experimentally and would anyway be confined inside
‘‘hadrons’’ with a confinement scale~generically at the elec-
troweak scale! much higher than the QCD scale. We require
our models to remain perturbative in the desert from the TeV
scale to the Planck scale. So we can use the RGE’s to exam-
ine how the Yukawa couplings evolve from the Planck scale
down to the electroweak scale. In particular we study the
infrared quasi-fixed-point structure of the renormalization
group equations~RGE’s!. In the SM the fixed point values
provide upper limits on the mass of the top quark,Mt , and
the Higgs scalar,MH . Similarly in extended models we get
upper limits on the masses of the heaviest fermions, though
the precise values depend on the relative masses of these
fermions and also the unknown gauge coupling strength,
gN , of the SU(N) groups to which the fermions couple. Also
we must be careful to point out that the RGE’s describe the
running of the Yukawa couplings and, as we discuss in Sec.
III B, the actual masses will be less than naively expected,
due to the technicolorlike contribution from SU(N) to the
electroweak vacuum expectation value ~VEV!,
v5246 GeV. As we shall see, this will enable us to quite
accurately predict the masses of some of the fermions we
introduce in our model in Sec. VI, since we have theoretical
upper limits and experimental lower limits.

B. Technicolor contributions

Technicolor theories@3# have been proposed as an alter-
native to the Higgs mechanism to provide a mass for the
weak gauge bosons. This is based on the fact that QCD
would provide a~very small! mass for these bosons without
any Higgs scalars. Similarly any other confining SU(N)
gauge groups, with fermions which are nontrivial under
U(1)^SU(2), areexpected to form fermion condensates
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which would contribute to theW6 and Z0 masses. In our
models the charge quantization rule ensures that all fermions
are nontrivial under U~1!. Thus all SU(N) groups in our
models, which are coupled to fermions, will contribute to the
weak boson masses.

We stress that we are not proposing a technicolor model
as such, but simply taking into account the unavoidable ef-
fect that adding an SU(N) group has. We are assuming that
the Higgs sector of our models is the same as in the SM, i.e.,
one Higgs doublet, and that the fermion condensates have
the same quantum numbers as the Higgs doublet. Then the
VEV due to the Higgs field,̂fWS&, is related to the total
VEV, v, and the contribution from SU(N) due to fermion
condensates,FpN

, by the relation

^fWS&
21FpN

2 5v25~246 GeV!2, ~22!

which is exactly the same as in technicolor models with a
scalar@19#.

The fermion running massesmf are related to the Higgs
field VEV in the usual way:

mf5
yf

A2
^fWS&, ~23!

whereyf is the Yukawa coupling constant for the fermion
f (y is used for both Yukawa coupling and weak hyper-
charge but it should be obvious from the context which is
being referred to!. For quarks, the running mass is related to
the pole mass,M f , by

M f5S 11
4aS~M f !

3p Dmf~M f !, ~24!

whereaS(M f) is the QCD fine structure constant at the pole
mass. For quarks with a mass of orderMZ we can approxi-
mateaS(M f)'aS(MZ) to give the approximate formula:

M f'1.05mf~M f !. ~25!

This means that the pole mass of a heavy quark will be about
5% higher than the running mass. However, we will use Eq.
~24! when calculating the pole masses of the quarks.

Using the Yukawa coupling infrared quasi-fixed-point
value as an upper bound, we must avoid any significant sup-
pression of the top quark and possible fourth generation
quark masses due to the reduction of^fWS& below its SM
value. We usually imagine taking

FpN
<75 GeV ~26!

and thus

^fWS&.234 GeV. ~27!

In fact we shall quote limits on fermion pole masses based
on taking

^fWS&5234 GeV. ~28!

This gives the following relation for the pole mass of quark
f :

M f5S 11
4aS~M f !

3p D yf~M f !

A2
^fWS&. ~29!

In the approximationM f'MZ we get

M f'174yf~M f ! GeV. ~30!

Upper limits for fermion masses are obtained by using
quasi-fixed-point values for the Yukawa coupling constants,
yf , as determined from the RGE’s in viable models with a
desert above the TeV scale. These infrared fixed point
Yukawa couplings are of order unity. However for the pur-
poses of investigating the behavior of the gauge coupling
constants, and especially to demonstrate that the U~1! cou-
pling constant develops a Landau pole in our model without
new fermions~Sec. V!, we take a more generous single
threshold of ten times the electroweak scale;1.7 TeV for all
new fermions in that model. For our discussion in Sec. VI of
the model with a fourth generation of quarks we take the
more stringent lower threshold value ofMZ , in order to
demonstrate the absence of Landau poles in this case.

C. Precision electroweak data

Measurements of electroweak interactions are now accu-
rate enough to be sensitive to loop corrections to propagators
and vertex corrections. These effects are model dependent
and can be sensitive to the values of some parameters such as
fermion and Higgs masses. So far the SM seems to be con-
sistent with the precision electroweak measurements and ob-
viously any other viable model should also agree with the
data. We note, as discussed in@20#, the data impose two
important constraints on new fermion SU~2! doublets in our
models:

~1! The mass squared differences within any new fermion
SU~2! doublets must be small@!(100 GeV)2#, in order that
the predicted value of ther parameter should not deviate too
much from its experimental value close to unity;~2! the
number of new SU~2! doublets is severely restricted by the
measured value of theS parameter or its equivalent@21#.

IV. FERMION MASS AND ANOMALY CANCELLATION

In the SM fermions get a mass via the Higgs mechanism.
To do this in a general gauge group of the form

U~1! ^SU~2! ^G/D,

whereG is any Lie group andD is a discrete group, using
the SM Higgs particle, a left-handed fermion representation
(y,2,R) should occur together with the left-handed antifer-
mion representations (2@y11#,1,R̄) and (2@y21#,1,R̄).
We shall refer to this as the mass grouping$y,R% whereR is
an irreducible representation ofG. As explained in Sec.
III A 1 we assume that all fermions in our models, other than
the leptons which have already been observed, get a mass by
this mechanism. We shall now describe what consequences
this has for anomaly cancellation in our models, whereG is
a product of SU(Ni) groups withNi>3. We have previously
considered@22# the particular case whereG5SU(N) and the
special case of the SM@G5SU(3)# is discussed in the Ap-
pendix. This case ofG5SU(NC) ~without dividing out the
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discrete groupD) has also been discussed recently@23# in
the context of anomaly cancellation in theNC-extended SM.

We consider the grouping$y,R% for the gauge group

U~1! ^SU~2! ^ P iSU~Ni !,

where the irreducible representationR is made up of funda-
mental (Ni or N̄i) or singlet representations of each factor
SU(Ni). The contribution to each type of anomaly from this
grouping, $y,R%, is easily calculated, using the results of
Sec. II C, to be as follows:

@SU~Ni !#
3→2SRni1SR~2ni !1SR~2ni !

50,

@SU~Ni !#
2U~1!→2SRni

2y2SRni
2~y11!2SRni

2~y21!

50,

@Grav#2U~1!→2SRy1SR~2y21!1SR~2y11!

50,

@U~1!#3→2SRy
31SR~2y21!31SR~2y11!3

526SRy,

@SU~2!#2U~1!→2SRy.

Hereni is theNi-ality of the representationR andSR is its
dimension~size!.

So we can see that the above grouping which is necessary
to give a mass to the fermions also simplifies the anomaly
constraints. In particular, if we take all fermions to be
grouped in this way then we are only left with the single
constraint for the absence of the mixed gauge-gravitational
and gauge anomalies:

(
j
Sjyj50, ~31!

where j labels each grouping$yj ,Rj%.
There will also be no Witten anomaly, since we must

have an even number of SU~2! doublets to satisfy Eq.~31!.
This follows from the charge quantization rule, Eq.~14!, the
fact thatNi are all odd and the assumption of fundamental or
singlet representations for each SU(Ni) subgroup. Using the
charge quantization rule and defining

ej
dj

5(
i

mNi

Ni
~ni ! j , ~32!

we can write

yj
2

5cj1
1

2
1
ej
dj
, ~33!

wherecj ,dj , andej are integers anddj are odd. Therefore,
since Eq. ~31! can be written as ( jSj (yj /2)50,

we must have( jSj
1
2[0 (mod 1). In other words( jSj

[0 (mod 2), which means that there are an even number of
SU~2! doublets and so no Witten anomaly.

V. THE SMG235 MODEL WITHOUT NEW SM FERMIONS

Here we will examine the model based on the gauge
group SMG235[G5 defined in Eqs.~4! and~5!, since it is the
absolute minimal extension to the SM among all the possible
groups we have proposed in Sec. II A 1. In Sec. VI we will
consider models based on the groups SMG23N of Eqs. ~12!
and ~13!, including new SM fermions to highlight the gen-
eral features of all such extensions to the SM. However, we
will only analyze the consequences in detail for SMG235.

In this section we will discuss the two possibilities:~i!
that there are no new fermions beyond those of the SM and
~ii ! that there are new fermions which all couple to the SU~5!
gauge group. This latter possibility may seem to be tanta-
mount to adding a completely separate sector to the SM
rather than extending the SM, since the new fermions will be
confined under a new gauge group. However, it is really no
more a separate sector than the SM is three separate sectors
~one for each generation!, since these extra fermions will still
couple to the electroweak group due to the charge quantiza-
tion rule. We will discuss the other possibility, that there are
new fermions, some coupling to the SU~5! gauge group and
others not, in Sec. VI.

A. No new fermions

There is of course the possibility that there are no extra
fermions associated with this enlarged group. If this is so
then the only possible observations would be the detection of
SU~5! ‘‘glueballs.’’ In this case the SU~5! gauge group
would be decoupled from the SMG and so the only way to
observe the glueballs would be through their gravitational
interactions. They could have been produced in the very
early universe and the lightest state would be essentially
stable since they could only decay via the gravitational inter-
action. Therefore they would only be observable as dark
matter.

So this case is essentially uninteresting and will not be
considered further. Instead we turn to the possibility that
there exist more types of fermions than have been currently
observed and consider whether or not they can be incorpo-
rated into a consistent model.

B. New fermions coupling to SU„5…

Of course fermions all contribute to anomalies which
must be cancelled. The fermions in the SM cancel all anoma-
lies on their own; so the extra fermions must cancel all
anomalies amongst themselves.

As explained in Sec. IV the anomaly equations in our
models are greatly simplified when all the fermions are mas-
sive due to the SM Higgs mechanism. In fact they are re-
duced to just one equation,( iSiyi50. If we label each mass
grouping of fermion representations by the label$y,R%,
whereR is the representation of the group SU(3)^SU(5),
then Table I shows all six possible groupings,a to f , and
their relative contributions,Siyi , to the anomaly equation.
We use Eq.~6! with the definitionm[m5 to simplify the
notation, giving us the charge quantization rule,
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y

2
1
1

2
‘‘duality’’ 1

1

3
‘‘triality’’ 1

m

5
‘‘quintality’’

[0 ~mod 1!, ~34!

where the integerm is fixed in any given model.4 So we can
determiney/2 (mod 1) for any given representationR.

For a solution to the anomaly equation( iSiyi50, we
must obviously combine the fractionsm/5 so that the 5 is
cancelled in the denominator since allN’s are integers. We
must also have an even number of groupings so that the
1
2 ’s combine to give an integer. This automatically ensures
that there can be no Witten anomaly as explained in Sec. IV.
This can be done by using equal numbers of typea and type
b groupings. The two smallest solutions are in fact~i! one
typea grouping and one typeb grouping and~ii ! two group-
ings of typea and two of typeb. The smallest solution,~i!,
is not possible without giving the fermions a fundamental
Dirac mass, since the anomaly constraints require that
Na1Nb50 giving pairs of representations, (y,2,1,5) and
(2y,2,1,5), etc., which are not mass protected.

The smallest allowed solution with mass protected fermi-
ons is therefore solution~ii ! with two groupings of typea
and two of typeb. This solution is shown in detail in Table
II. All anomalies cancel provided( i51

4 Ni50. We can now
choose values of theNi .

The fermion contribution to the~first order! beta function
for the U~1! running gauge coupling constant is proportional
to (y2. We therefore want to choose values ofNi so as to
minimize (y2, in order that any U~1! Landau pole is at as
high an energy as possible. This gives us the best chance that
the solution of Table II will be perturbatively valid up to the

Planck scale and hence that our model will be self-
consistent. However, this condition of minimizing(y2 is
also suggested by the small representation structure of the
SM, as explained in Sec. II A 2. Keeping in mind that the
Ni are integers,( i51

4 Ni50, and that the particles must be
mass protected, we find that the minimum value of(y2 is
given by

N15N251, N350, N4522

or

N35N4521, N150, N252,

wherem52. These values ofNi give (y25203.2, for the
solution of Table II, which is much larger than the403 per
generation of the SM particles.

In Sec. III B we explained that it was reasonable to con-
sider that all new fermions could be included at a threshold
no higher than 1.7 TeV. This should provide an accurate
enough upper limit for the threshold for our purposes. There-
fore, since the fermions will have the least effect on the
running coupling constants if they are included at the highest
possible threshold, we will assume that all these extra fermi-
ons can be included with a simple threshold at 1.7 TeV. We
can now check whether or not this model has a Landau pole
below the Planck scale.

There are four fine structure constants which we shall
label bya1, a2, a3, anda5 corresponding to the four gauge
groups U~1!, SU~2!, SU~3!, and SU~5!, respectively. The fine
structure constants,a i , are related to the gauge coupling
constants,gi , by the relationa i5gi

2/4p. The equations gov-
erning the running coupling constants to first order in pertur-

4In fact we can limitm to be 1 or 2 since it is only defined modulo
5 and, by replacingm with 2m (mod 5) and all representations
of SU~5! with their conjugates, we are left with an equivalent
model.

TABLE I. Allowed mass groupings$y,R% of new fermions in
the SMG235model, using the charge quantization rule, Eq.~34!, and
fundamental representations of SU~5!. Their relative contributions
to the anomaly equation, Eq.~31!, are given in the final column. A
particular mass grouping of typet is given by choosing a particular
value of weak hypercharge, i.e., by choosing a particular value of
the integerNt .

Type R

y

2 1
10Sy

a 1,5
Na2

m

5
2
1
2

Na2
m

5
2
1
2

b 1,5
Nb1

m

5
1
1
2

Nb1
m

5
1
1
2

c 3,5
Nc2

m

5
1
1
6

3Nc2
3m
5

1
1
2

d 3,5
Nd1

m

5
1
1
6

3Nd1
3m
5

1
1
2

e 3,5
Ne2

m

5
2
1
6

3Ne2
3m
5

2
1
2

f 3,5
Nf1

m

5
2
1
6

3Nf1
3m
5

2
1
2

TABLE II. Smallest anomaly-free~subject to the constraint
N11N21N31N450) set of mass protected fermions which all
couple to SU~5!.

Representation under U(1) representation
SU(2)^SU(3)^SU(5) y

2

2,1,5
N12

m

5
2
1
2

1,1,5
2N11

m

5
1,1,5

2N11
m

5
11

2,1,5
N22

m

5
2
1
2

1,1,5
2N21

m

5
1,1,5

2N21
m

5
11

2,1,5
N31

m

5
1
1
2

1,1,5
2N32

m

5
21

1,1,5
2N32

m

5
2,1,5

N41
m

5
1
1
2

1,1,5
2N42

m

5
21
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bation theory@24# ~a good discussion of RGE’s in the SM is
given in @25#! can be integrated analytically to give

1

a1~m!
5

1

a1~m0!
2

1

12p
~Y21nH!lnS m

m0
D , ~35!

1

a2~m!
5

1

a2~m0!
1

1

12p
~4422n2 f2nH!lnS m

m0
D , ~36!

1

a3~m!
5

1

a3~m0!
1

1

12p
~6622n3 f !lnS m

m0
D , ~37!

1

a5~m!
5

1

a5~m0!
1

1

12p
~11022n5 f !lnS m

m0
D , ~38!

where we calculatea i(m) ~the running coupling constants at
the energy scalem.m0) in terms ofa i(m0). Y

2[(y2 is the
sum of the weak hypercharges squared for all fermions with
a mass belowm0 andnmf are the number of fermionm and
m̄ representations of SU(m) with mass belowm0. nH is the
number of Higgs doublets with mass belowm0. These equa-
tions assume that there are no fermions or Higgs scalars with
a mass betweenm0 andm. In order to calculate the value of
a i(m) when there are fermions or Higgs bosons with masses
betweenm0 andm we must do the calculation in steps, cal-
culating the value ofa i up to the mass of each particle. So
we use the experimental values of the fine structure constants
atMZ ~including the top quark and Higgs boson in the beta
functions at this scale! to calculate the coupling constants at
1.7 TeV, where we include the new fermions, and then run
the coupling constants up to the Planck scale. This is a crude
method since there would really be complicated threshold
effects as each fermion was included. However these effects
can reasonably be assumed to be small, relative to the
changes in the coupling constants caused by the running
from the electroweak scale to the Planck scale, and so we
will use this much simpler method. Second order RGE’s@26#
could be used but the improvement over the first order
RGE’s would not be significant when compared to the error
introduced by the naive assumptions made about threshold
effects.

From @15# we find

a1
21~MZ!598.0860.16, ~39!

a2
21~MZ!529.79460.048, ~40!

a3
21~MZ!58.5560.37. ~41!

We can now use the above equations to examine how the
coupling constants behave up to the Planck scale. Since there
is no experimental value fora5 at any energy scale we shall
assume thata5

21(MZ)52, so that the SU~5! interaction is
stronger than QCD atMZ and confines at the electroweak
scale. Figure 2 shows what happens for each group. For the
graphs, we normalize the U~1! gauge coupling as if the U~1!
group was embedded in a simple group. This essentially cor-
responds to a redefinition ofg1:

~g1
2!GUT[

5

3
~g1

2!SM, ~42!

~a1
21!GUT[

3

5
~a1

21!SM. ~43!

So henceforth we use the standard GUT normalization.
Equations~35! and ~39! now become

1

a1~m!
5

1

a1~m0!
2

1

20p
~Y21nH!lnS m

m0
D , ~44!

a1
21~MZ!558.8560.10. ~45!

As we can see from Fig. 2, 1/a1 becomes negative at
about 107 GeV which means that there is a Landau pole. So
we can conclude that this theory would be inconsistent, at
least as far as perturbation theory is concerned, without new
interactions below 107 GeV.

In fact we can show that there is no anomaly-free model,
having all new fermions coupling to SU~5!, with a desert
above the TeV scale, which does not have a Landau pole
below the Planck scale. The condition for no Landau pole
below the Planck scale is 1/a1(MPlanck).0. Therefore, Eq.
~44! can be rearranged to give

Y21nH,
20p

a1~m0!ln~MPlanck/m0!
. ~46!

Since, for the SM,YSM
2 540 andnH51,

Y21nH>41 ~47!

above the electroweak scale and so we can use Eqs.~44! and
~45! to calculate an upper limit for 1/a1(1.7 TeV):

1

a1~1.7 TeV!
<57. ~48!

FIG. 2. a21 from MZ to the Planck scale for each component
group in the SMG235 model without new SM fermions. There is
clearly a U(1) Landau pole atm;107 GeV and SU~2! also loses
asymptotic freedom.a5

21(MZ)52 has been chosen as a specific
example.
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We then useY25YSM
2 1Ynew

2 in Eq. ~46! with m051.7 TeV
and conclude that

Ynew
2 ,57.5, ~49!

assuming the new fermions can be included naively at a
threshold no higher than 1.7 TeV.

For each mass grouping$y,R%, with PR54SR fermions,
we can calculate the value ofY2:

Y25SR@2y21~y11!21~y21!2#5SR~4y212!. ~50!

Therefore, we have

Y2>2SR5
1

2
PR . ~51!

If there are several mass groupings,Y2> 1
2(PR[ 1

2P where
P is the total number of fermions. So if we definePnew to be
the number of non-SM fermions, we can conclude

Pnew<2Ynew
2 ,115. ~52!

So now we have shown that there must be less than 115
extra fermions. However, the smallest solutions, subject to
the constraints in this section, larger than two typea and two
type b representations are three typea and one typec rep-
resentations, etc., which contain 120 fermions and so must
cause a Landau pole below the Planck scale.5 Therefore there
are no possible anomaly-free models without a Landau pole,
where all the new fermions couple to the SU~5! gauge group.

We will now examine the case where we allow some new
SU~5! singlet fermions, as well as some fermions which
couple to SU~5!, in order to cancel the anomalies. We shall
show that it is possible to have more SM fermions in such a
model.

VI. THE SMG 235 MODEL WITH NEW SM FERMIONS

In this section we shall first examine sets of fermions
~which are generalizations of the SM quarks! in groups, de-
fined by Eqs.~12! and ~13!, similar to the SMG. We shall
then examine the particular case of the group SMG235 and
discuss the possibility of experimental evidence for and
against this self-consistent model.

A. Fermions in the groups SMG2M and SMG2MN

In Sec. VI A 1 we shall examine the group SMG2M . The
SMG is an example of this type of group whereM53. We
shall show that this general group allows anomaly-free sets
of fermions which consist of a generation of SM leptons and

a generation of SU(M ) ‘‘quarks’’ which are a simple gener-
alization of the SU~3! quarks in the SM.

We shall then show in Sec. VI A 2 that we can have
anomaly-free sets of fermions in the group SMG2MN without
any leptons. We shall then examine the particular case of the
group SMG235 which we shall discuss in detail.

1. Fermions in the group SMG2M

In the SM, each generation is formed by taking the two

mass groupings$ 1
3,3% and$21,1% @where the representations

3 and1 are of the group SU~3!# as explained in Sec. IV and
the Appendix. We will now consider a more general situa-
tion where we have the gauge group SMG2M defined in Sec.
II A 1 ~whereM.2 is a prime number! and the fermions are
in the groupings$y1 ,M% and $y2 ,1% @where the representa-
tionsM and1 are of the group SU(M )#.

From Sec. IV all the gauge anomalies will cancel if

My11y250. ~53!

Since we also have the charge quantization rule

y

2
1
1

2
‘‘duality’’ 1

mM

M
‘ ‘ M -ality’’ [0 ~mod 1! ~54!

we can write

y1
2

52
1

2
2
mM

M
1c1 , ~55!

y2
2

52
1

2
1c2 , ~56!

wherec1 and c2 are integers. We now have the condition
that for no anomalies to be present

2
M11

2
2mM1Mc11c250. ~57!

In the SM a lepton generation is formed~with the addition
of a right-handed neutrino which can be removed without
effecting any anomalies! when we havec250 as explained
in the Appendix. If we insert this value into the above equa-
tion then we find

c15
1

M SM11

2
1mM D . ~58!

This can always be solved by settingmM5(M21)/2. In fact
if M53 then this is simply one of the anomaly-free SM
quark-lepton generations.

However, this is not a good solution for an extension of
the SM ~which would be obtained by considering
SMG2M,SMG23M) since it contains an extra massless neu-
trino which has already been ruled out by experiment. It is
difficult to produce a neutrino with a mass so large that it
would not already have been detected, as explained in Sec.
III A 2. We could choose not to setc250 or 1 above, which
would force all the extra leptons to be massive@by leptons
we mean any fermions which are only coupled to the elec-
troweak subgroup, SU(2)̂U(1)#. This is because there

5Using second order RGE’s or a more complete analysis of
thresholds would obviously change the precise limit in Eq.~49!.
However, the charge quantization rule in our model means thaty
cannot be zero and so it is not possible to attain the limit of Eq.
~51!. In fact, the value ofYnew

2 will generally be much greater than
this limit. For example, three typea and one typec lead to

Ynew
2 > 1708

15 '114 which is much greater than the required maximum
given by Eq.~49!.
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would then be two SU~2! singlets which were charged~and
at least one would have an electric charge of two or more,
which is against our principle of small representations! and
so both could get a mass by the usual SM Higgs mechanism
since neither could get a Majorana mass. But even if we
assumed that these leptons had masses higher than experi-
mental limits this solution is not really favored by our pos-
tulate of small values of weak hypercharge discussed in Sec.
II A 2. So in order to find a satisfactory solution we shall
look at a similar general case.

2. Fermions in the group SMG2MN

Suppose we have the gauge group SMG2MN , where both
M andN.M>3 are mutually prime integers, which has the
charge quantization rule

y

2
1
1

2
‘‘duality’’ 1

mM

M
‘ ‘ M -ality’’ 1

mN

N
‘ ‘ N-ality’’ [0

~mod 1!. ~59!

Then with fermions in mass groupings$y1 ,(M ,1)% and
$y2 ,(1,N)% @where the representations (M ,1) and (1,N) are
of the group SU(M )^SU(N)# the condition for no anoma-
lies is

My11Ny250. ~60!

The charge quantization rule means that we can write

y1
2

52
1

2
2
mM

M
1c1 , ~61!

y2
2

52
1

2
2
mN

N
1c2 , ~62!

wherec1 andc2 are integers. We then find that the condition
for no anomalies becomes

2Nc25N1@2~mM1mN!1~122c1!M #. ~63!

Both N andM are odd and therefore there will always be a
solution, since we can choose (mM1mN)5M and 322c1 to
be an odd multiple ofN. In general there will also be other
solutions.

In particular, for the gauge groupG5[SMG235 we can
have a fourth generation of quarks without any extra leptons,
by choosingM53, N55,m351, andc151 above. Then

10c2551@2~11m5!23# ~64!

or equivalently

5c2521m5 . ~65!

So we have a solution withc251 andm553.
The representations of the left-handed fermions which

couple to the SU~5! subgroup are shown in Table III. This is
a generalization of the quarks in the SM, coupling to SU~5!
rather than SU~3!.

In fact we have a solution with a fourth generation of
quarks for the general group SMG23N , whereN is any odd
integer greater than but not divisible by 3, by choosing

c251 andmN5 1
2 (N11). This means that, if a fourth gen-

eration of quarks without leptons was detected, there would
be no immediate way of deducing the value ofN. Table IV
shows the properties of the left-handed fermions which
couple to the SU(N) subgroup. Note that this is a generali-
zation of the SM quarks, coupling to SU(N) with the specific

choice ofmN5 1
2 (N11). If we setN53 we would in fact

get a generation of quarks with the opposite chirality to those
in the SM. This is to be expected since we are using these
fermions to cancel the anomaly contribution of a four gen-
eration of SM quarks~with the usual chirality!.

This solution, with a fourth generation of quarks and the
fermions of Table III, for the gauge group SMG235 is analo-
gous to one SM quark-lepton generation in the gauge group
SMG, in the sense that it is the smallest anomaly-free set of
mass-protected fermions which couple nontrivially to all the
gauge fields. The SM quark-lepton generation is shown to be
the smallest such set of fermions for the SMG in the Appen-
dix. Note that although a generation of SM leptons and the
fermions conjugate to those in Table III is a smaller
anomaly-free set of fermions in the gauge group SMG235,
none of these fermions couples to the SU~3! subgroup.

As stated in Sec. III A 2, we take the limits on the masses
of a fourth generation of quarks to beMb8.130 GeV,

TABLE IV. Fermions coupling to SU(N) which would form an
anomaly-free set of fermions together with a fourth generation of
quarks.

Representation under U~1! representation Electric charge
SU(2)^SU(3)^SU(N) y

2
Q

2,1,N
2

1
2N S N21

2N

2
N11

2N

D
1,1,N̄

2
N21
2N

2
N21
2N

1,1,N̄ N11
2N

N11
2N

TABLE III. Left-handed fermions coupling to SU~5! in the mass

grouping$2
1
5 ,(1,5)%. The electric charges are in units of15 due to

the charge quantization rule.

Electric

Representation under U~1! representation charge

SU(2)^SU(3)^SU(5) y

2
Q

2,1,5 2
1
10 S 2

5

2
3
5

D
1,1,5̄ 2

4
10 2

2
5

1,1,5̄ 6
10

3
5
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Mt8.130 GeV and the top quark mass to beMt;170 GeV.
We can now use the RGE’s, first to show that these addi-
tional fermions do not cause any inconsistencies such as
gauge coupling constants becoming infinite below the Planck
scale, and then to estimate upper limits on the values of the
Yukawa couplings to the SM Higgs field of these fermions.
This will lead to upper limits on the masses, indicating that
the t8 andb8 quarks would be almost within reach of present
experiments.

B. No Landau poles

As in Sec. V we can investigate how the gauge coupling
constants vary with energy up to the Planck scale. Here we
set the thresholds for all the unknown fermions@fourth gen-
eration quarks and fermions coupling to SU~5!#, as well as
for the top quark and Higgs boson, toMZ . The absence of
Landau poles in this case will guarantee their absence if
some of the thresholds are set higher thanMZ . From experi-
mental limits we would expect that all these thresholds
should be greater thanMZ .

We use Eqs.~36!–~38! and~44! to run the gauge coupling
constants up to the Planck scale as shown in Fig. 3. Now we
see that with a fourth generation of quarks and the fermions
in Table III @i.e., far fewer fermions than the model in Sec.
V B where all the new fermions coupled to SU~5!# there are
no problems with Landau poles below the Planck scale. So
our SMG235 model with new SM fermions appears to be
consistent.

C. Upper limits for Yukawa couplings

Now we can choose initial values for the Yukawa cou-
plings at the Planck scale and use the RGE’s to see how they
evolve, as they are run down to the electroweak scale. As-
suming no mixing for the quarks and neglecting the masses

of all SM fermions except the top quark~a good approxima-
tion!, the RGE’s are, to one loop order in perturbation theory
@24#,

dyt
dt

5yt
1

16p2 S 32 yt21Y2~S!2G3uD , ~66!

dyt8
dt

5yt8
1

16p2 S 32 ~yt8
2

2yb8
2

!1Y2~S!2G3uD , ~67!

dyb8
dt

5yb8
1

16p2 S 32 ~yb8
2

2yt8
2

!1Y2~S!2G3dD , ~68!

dy5u
dt

5y5u
1

16p2 S 32 ~y5u
2 2y5d

2 !1Y2~S!2G5uD , ~69!

dy5d
dt

5y5d
1

16p2 S 32 ~y5d
2 2y5u

2 !1Y2~S!2G5dD , ~70!

where the SU~5! fermions have been labeled 5u and 5d as
generalizations of the naming of SU~3! quarks. The other
variables are defined as

Y2~S!55y5u
2 15y5d

2 13yt8
2

13yb8
2

13yt
2 , ~71!

G3u5
17

20
g1
21

9

4
g2
218g3

2 , ~72!

G3d5
1

4
g1
21

9

4
g2
218g3

2 , ~73!

G5u5
153

500
g1
21

9

4
g2
21

72

5
g5
2 , ~74!

G5d5
333

500
g1
21

9

4
g2
21

72

5
g5
2 . ~75!

HereY2(S) is really Tr(Y
†Y) whereY is the Yukawa matrix

for all the fermions.
We can choose values for the Yukawa couplings at the

Planck scale and then use the RGE’s to see what values the
Yukawa couplings will have at any other scale. We have
chosen the low energy scale to beMZ as shown in Fig. 4. We
observe quasifixed points similar to the case for the top
quark in the SM@27# and these will provide upper limits on
the fermion masses. However, the resulting Yukawa cou-
pling for any fermion atMZ depends on the Yukawa cou-
plings of the other fermions. Nonetheless there is an approxi-
mate infrared fixed point limit onY2(S) and so one Yukawa
coupling can be increased at the expense of the others. This
limit on Y2(S) is quite precise if there is only one strong
interaction at low energies, such as QCD in the SM.6 We
observe numerically thatY2(S)'7.560.3, provided the
Yukawa couplings of the three heavy quarks are greater than

6Detailed results for a general number of heavy SM generations
are derived in@28#.

FIG. 3. a21 from MZ to the Planck scale for each component
group in the SMG235 model with a fourth generation of quarks and
the fermions of Table III which couple to SU~5!. The initial value
for a5

21(MZ)52 was chosen so that it would be confine at the
electroweak scale. There are obviously no Landau poles so this
model is self-consistent.
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1 at the Planck scale and that the Yukawa couplings of the
fermions coupling to the SU~5! gauge group are less than the
Yukawa couplings of the heavy quarks at the Planck scale.

The values chosen for Fig. 4 have been chosen so that the
top quark pole massMt'170 GeV and the fourth genera-
tion quark pole masses are above the current experimental
limit of 130 GeV. AlsoMb8;Mt8 andM5u;M5d have been
chosen, so that there is only a small contribution to ther
parameter described in Sec. III C. We discuss the elec-
troweak radiative corrections in@20# and this SMG235model,
with its eight new doublets, is consistent with the experimen-
tal data at the 2–3 standard deviation level. However it is
clear that any model with significantly more SU~2! doublets
must disagree with the current experimental evidence. This
rules out the similar models with gauge group SMG23N
whereN is an odd integer greater than 5 and not divisible
by 3.

Table V gives the values of the Yukawa couplings at
MZ and the corresponding pole masses, using Eq.~29!, for
the quarks. For the fermions coupling to SU~5! we use the
equation relating the pole and running masses:

M f5S 11
12a5~M f !

5p Dmf~M f !. ~76!

Therefore these masses should be considered upper limits
on the masses of the fermions for this particular choice of
Yukawa couplings at the Planck scale. For other choices of
Yukawa couplings at the Planck scale we could, for example,
increase the mass of the fourth generation of quarks but this
would have to be compensated for by a reduction in the mass
of some of the other fermions.

These values for the masses are consistent with current
experimental limits but are not so high that the new fermions
could remain undetected for long. In fact the quark masses
may even be within the limits of current accelerators. It is
not clear whether the fermions coupling to SU~5! could be
observed, since they would obviously be confined by the
SU~5! gauge interaction which we take to confine at the elec-
troweak scale. So even if they have masses of about 100
GeV, they would be much more difficult to detect than
quarks with greater masses. For this reason we consider the
clearest evidence for this model would come from the detec-
tion of a fourth generation quark. The masses of some of the
new fermions could be increased, but not by much, since this
would mean a reduction in the mass of other fermions. This
means that this model is consistent and relatively easy to test.

For completeness we show the running ofl, the Higgs
quartic coupling. The equation for the running ofl is given
by @24#

dl

dt
5

1

16p2 F12l22S 95 g1219g2
2Dl

1
9

4 S 325g141 2

5
g1
2g2

21g2
4D14Y2~S!l24H~S!G ,

~77!

where we have defined

H~S!55y5u
4 15y5d

4 13yt8
4

13yb8
4

13yt
4 . ~78!

From Fig. 5 we obtainl(MZ)50.54. This graph leads to a

FIG. 4. An example of running Yukawa couplings for all fermi-
ons with a mass the same order of magnitude as the electroweak
scale. The values were chosen at the Planck scale and run down to
MZ so that all the fermions would have a mass allowed by current
experimental limits.

TABLE V. Infrared fixed point Yukawa couplings and corre-
sponding pole masses~for Fp575 GeV! for a particular choice of
Yukawa couplings at the Planck scale.

Fermion Yukawa coupling atMZ Pole mass~GeV!

yt 1.00 175
yt8 0.77 135
yb8 0.75 131
y5u 0.38 94
y5d 0.40 97

FIG. 5. Fixed point value ofl. This graph, along with the esti-
mated value of̂ fWS&5234 GeV, leads to an approximate Higgs
mass of 172 GeV.
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running Higgs boson mass of

MH~MH!5Al^fWS&'172 GeV. ~79!

The same low energy value ofl is obtained for any initial
choice ofl at the Planck scale since the Yukawa couplings
are at the fixed point. This means that the Higgs boson must
have this fixed point mass. If the Yukawa couplings were
slightly lower than their fixed point values we would obtain
a small range of allowable Higgs boson masses. However,
this range would always be somewhat below 172 GeV.

VII. CONCLUSIONS

We have discussed extensions of the SM having a similar
gauge group structure to the SM itself. In particular we have
been guided by the requirement of an anomaly-free theory,
with additional mass protected fermions satisfying a gener-
alized charge quantization rule. We were thereby lead to ex-
tend the SM cross product group, U(1)^SU(2)^SU(3), by
adding extra SU(N) direct factors, with theN’s greater than
3 and mutually prime. A generalized charge quantization
rule, involving each direct factor, was then obtained by di-
viding out an appropriate discrete group. Extending the SM
in this fairly obvious way produces the groups SMG23N ,
SMG23MN , etc. Another feature we take over from the SM is
the principle of using only small~fundamental or singlet!
fermion non-Abelian representations. For the Abelian repre-
sentations we take the condition that weak hypercharges
should be chosen to be close to zero. More precisely, we
minimize the sum of weak hypercharges squared over all the
fermions. As shown in the Appendix, this idea of small rep-
resentations~Abelian and non-Abelian! can be used together
with the charge quantization rule and anomaly cancellation
to uniquely define the SM generation of fermions.

The extra SU(N) groups introduced confine and form
fermion condensates having the same quantum numbers as
the SM Higgs doublet. It follows that the extra SU(N)
groups act as partial technicolor groups and must confine
near the electroweak scale. However, the SM Higgs field is
still responsible for all the fermion masses, albeit with a
somewhat reduced VEV.

We have studied in detail the conditions for anomaly can-
cellation in our minimal extension of the SM gauge group,

SMG235. It is not possible to construct an anomaly-free
model using new mass protected fermions which are all non-
singlet under SU~5!, without encountering a Landau pole in
the U~1! fine structure constant well below the Planck scale.
However it is possible to construct a consistent model with a
fourth generation of quarks but, instead of an extra genera-
tion of leptons, with a generation of the fermions coupling to
SU~5! as given in Table III.

A similar solution with a fourth generation of quarks and
a generation of SU(N) fermions as given in Table IV is
possible for the gauge group SMG23N . However, the number
of SU~2! doublets in the model increases withN and hence
their contribution to the electroweak radiative corrections be-
comes more important. The SMG235 model is just consistent
with the precision electroweak data but SMG23N models with
N.5 are probably ruled out@20#. Similarly the SMG23MN
models would be inconsistent with the precision electroweak
data.

The SMG235model with a fourth generation of quarks and
a generation of SU~5! fermions seems to be phenomenologi-
cally consistent. It requires the existence oft8 andb8 quarks
at or below the top quark mass scale; this is consistent with
current experimental limits but they could not remain unde-
tected for long. However it is unlikely that the SU~5! fermi-
ons could be observed with current accelerators; they would
be confined inside SU~5! ‘‘hadrons,’’ with a confinement
scale of order 200 GeV and would have a small production
cross section at present hadron colliders. Even if this model
does not turn out to be correct we hope that the derivation
might at least highlight some of the important features of the
SM and some of the unique qualities of the SM, which ap-
pears~admittedly almost by definition! as the smallest case
of our more general models.
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TABLE VI. The lightest SM generation.

Generation
Fermion
label

Representation of
SU(2)^SU(3)

Representation
of

U~1!
y

2
Electric charge

Q

Su
d
D
L

2,3 1
6 S 2

3

2
1
3

D
Quark ūL 1,3 2

2
3 2

2
3

d̄L 1,3
1
3

1
3

Lepton Sne
e
D
L

2,1 2
1
2 S 0

21D
ēL 1,1 1 1
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APPENDIX: DERIVING THE SM GENERATION

1. The SM generation

In the SM there are three generations of fermions which
are identical except for their masses. Each generation con-
sists of 15 Weyl fermions and can be divided into a lepton
generation and a quark generation. The quarks couple to the
SU~3! gauge group, whereas the leptons are SU~3! singlets
and so do not ‘‘feel’’ the strong force. The properties of
these fermions are shown in Table VI. The fermions are
labeled as in the first~lightest! generation.

The quark generation is formed by the representations
( 13,2,3)L , (2 4

3 ,1,3)L , and (23,1,3)L of the gauge group
U(1)^SU(2)^SU(3). This is precisely the mass grouping

$ 1
3,3% @where the representation3 is of the gauge group
SU~3!# described in Sec. IV. All the quarks get a mass by the
Higgs mechanism. The lepton generation is formed by the
representations (21,2,1)L and (2,1,1)L of the same gauge
group. However, this is not the same as the mass grouping
$21,1% because there is no right-handed neutrino@represen-
tation (0,1,1)L# in the SM. This means that the neutrino is
massless in the SM but the electron can still get a mass by
the Higgs mechanism. However, the lepton generation gives
the same contribution to all anomalies as the mass grouping
$21,1% would, since the right-handed neutrino would be to-
tally neutral~i.e., would not interact with any gauge fields!.

2. Derivation of the SM generation

In fact, we can derive the SM generation using the fol-
lowing assumptions@1#.

( i ) The SM gauge group. SMG[S„U(2)^U(3)…. This
includes the charge quantization rule Eq.~1!.

( i i ) Mass protection. This means that no fermions can
form a gauge invariant mass term except by the Higgs
mechanism. In particular we cannot have left- and right-
handed fermions with the same representation of the SMG.
Also we cannot have a right-handed neutrino since it can get
a Majorana mass.

( i i i ) Anomaly cancellation. In addition to the cancellation
of gauge anomalies, the Witten global SU~2! anomaly and
the mixed gauge and gravitational anomaly must also be ab-
sent.

( iv) Small representations. This means~cf. Sec. II A 2!
that all fermions are in either fundamental or singlet repre-
sentations of the SU~2! and SU~3! subgroups and the sum of
weak hypercharge squared for all fermions is as small as
possible.

So our aim is to minimize the value of( iSi(yi /2)
2 ~where

Si is the dimension of representationi with weak hyper-
chargeyi) for all possible choices of mass protected fermi-
ons in fundamental or singlet representations of SU~2! and
SU~3!, assuming the charge quantization rule, Eq.~1!, and
cancelling all relevant anomalies. We note that for one SM
generation@which satisfies assumptions~i! to ~iii !#

(
i
Si S yi2 D 2510

3
. ~A1!

and we show that there is no other mass protected solution of
the anomaly constraints with

(
i
Si S yi2 D 2< 10

3
. ~A2!

So we shall prove that one SM generation also satisfies as-
sumption~iv! and thus we will show that assumptions~i! to
~iv! define the SM generation. Note that in order to satisfy
assumption~iv! we must satisfy Eq.~A2!. So in the follow-
ing analysis we will implicitly assume Eq.~A2!. Table VII
shows all allowed representations and their contribution of
S(y/2)2.

In order to satisfy Eq. ~A2! we must choose
Na5Nb50, NcP$0,1%, NdP$21,0%, NeP$0,1%, and Nf
P$21,1%. ~We do not considerNf50 because this would be
a right-handed neutrino which would not contribute to any
anomalies and would be expected to get a Majorana mass of
the order of the Planck mass.! This means that we cannot
have mass protected fermions of typesa andb. So we can
choose, without loss of generality, that there are no fermions
of type b.7 So we get Table VIII, which shows all allowed
fermions and contributions to some anomalies.

For mass protection we cannot have any of the following
combinations; typesc1 andd1, typesc2 andd2, typese1 and
e2, or typesf 1 and f 2 ~all defined in Table VIII!. Also note
that all the types of representations in Table VIII contribute
to the mixed anomaly,( iSiyi . This means that we cannot
use only typef fermions to produce an anomaly-free set of
mass protected fermions. Therefore, if no fermions couple to
the SU~3! group, there is no way to cancel the
@SU(2)#2U(1) anomaly. So we can conclude that some fer-
mions must couple to SU(3).

Suppose there are no fermions of typea. Then the above
arguments mean that, to cancel the@SU(3)#3 anomaly, we
must have equal numbers of either typesc1 andd2 or types
c2 and d1. But then there is no way to cancel the
@SU(3)#2U(1) anomaly. So we have a contradiction, which
means that there must be at least one typea.

7Choosing no fermions of typea would lead to an equivalent
solution with opposite chirality.

TABLE VII. Contributions ofS(y/2)2 for all fundamental and
singlet representations of SU~2! and SU~3! for any value of weak
hypercharge which satisfies Eq.~1!. All N’s are integers andS is
the dimension of the non-Abelian representation.

Type
Representation of
SU(2)^SU(3)

y

2
SSy2D

2

a 2,3 Na1
1
6 6Na

212Na1
1
6

b 2,3 Nb2
1
6 6Nb

222Nb1
1
6

c 1,3 Nc2
1
3 3Nc

222Nc1
1
3

d 1,3 Nd1
1
3 3Nd

212Nd1
1
3

e 2,1 Ne2
1
2 2Ne

222Ne1
1
2

f 1,1 Nf Nf
2
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The @SU(2)#2U(1) anomaly must be cancelled by having
as many typee1 as typea. So there are no typee2 due to the
principle of mass protection. Again using the principle of
mass protection, the only way to cancel the@SU(3)#3 and
@SU(3)#2U(1) anomalies is by having the number of types
a, d1, andd2 the same. We can now cancel the@U(1)#3 and
mixed anomalies using Table IX.

So we see that the anomaly-free set of mass-protected
fermions which minimizes the sum of the weak hypercharges
squared is one of typea, d1, d2, e1, and f 2. This is one SM
quark-lepton generation.

3. Alternative derivations of the SM generation

There have been other attempts to derive the SM genera-
tion using various assumptions. Most notably Geng and Mar-
shak @29# have tried to derive the SM generation using the
constraints due to cancellation of anomalies. They also as-
sume mass protection but not the charge quantization rule,
Eq. ~1!. Instead of minimizing the sum of weak hypercharges
squared, they try to find the minimum number of fermions
required to satisfy these assumptions.

The smallest number of Weyl fermions found by Geng
and Marshak is 14. This solution consists of the following
representations of the gauge group U(1)^SU(2)^SU(3):
(0,2,3)L , (y,1,3)L , (2y,1,3)L , and (0,2,1)L . They rule out
this solution because the SU~2! doublet cannot acquire a
Dirac or Majorana mass, even with the spontaneous symme-
try breaking of the gauge group. However, we know from
the SM that the neutrino is massless and so there does not

appear to be any reason why massless fermions should be
excluded from such an analysis.~We could obviously use
phenomenological arguments but that would defeat the pur-
pose of trying to derive the SM generation.! They also object
to this solution because they feel it trivializes the cancella-
tion of the mixed gravitational and gauge anomaly. In what
sense the anomaly condition is trivial is not entirely clear,
since not all fermions have zero weak hypercharge; but also
why should it matter if a constraint is trivially satisfied? In
our derivation this solution does not occur because of the
charge quantization rule. So by enforcing the charge quanti-
zation rule, which we have taken as one of the defining prop-
erties of the SMG in Sec. II A 1, we can avoid this solution
without introducing dubious arguments about fermion
masses.

If we then also add the assumption that all subgroups
must have some fermion coupling to them, we can almost
derive the SM generation. The problem is that we can scale
all values of weak hypercharge for the SM fermions by a
factor of (6n11) wheren is any integer.8 The SM genera-
tion is obviously the solution with the values of hypercharge
closest to zero. We can express this by choosing to minimize
the sum of hypercharges squared for this solution. But since
we must introduce such an assumption why not use it from
the start? This then allows us to drop two of the above as-
sumptions: that all subgroups must have a fermion coupling
to them and that we should look for the smallest number of
Weyl fermions. We are then left with the four assumptions
used in Sec. 2 of this Appendix. This seems more reasonable
than introducing more assumptions with no justification.

8Without the charge quantization rule we could scale the weak
hypercharges by an arbitrary amount. Then we could not use the
procedure of minimizing the sum of hypercharges squared, since
this would obviously force all values to zero. There is then no way
to fix the scale other than by assuming the fermions get a mass by
the Higgs mechanism and fixing the scale to the weak hypercharge
of the Higgs boson. So the charge quantization rule effectively in-
troduces a scale for the weak hypercharge independent of any Higgs
bosons.

TABLE IX. Allowed combinations of fermions and their con-
tribution to the remaining anomalies.

Types G2U(1) @U(1)#3
SSy2D

2

a1d11d21e1 1112221521 1
361

1
92

8
92

1
4521 7

3

f 1 21 21 1

f 2 1 1 1

TABLE VIII. All allowed representations of fermions which could be used to satisfy Eq.~A2! and their
contributions to some anomalies.

Type
Representation of
SU(2)^SU(3)

y

2
SSy2D

2

@SU(3)#3 @SU(3)#2U(1) @SU(2)#2U(1)

a 2,3 1
6

1
6 2 1

3
1
2

c1 1,3 2
1
3

1
3 1 2

1
3 0

c2 1,3 2
3

4
3 1 2

3 0

d1 1,3
1
3

1
3 21 1

3 0

d2 1,3 2
2
3

4
3 21 2

2
3 0

e1 2,1 2
1
2

1
2 0 0 2

1
2

e2 2,1 1
2

1
2 0 0 1

2

f 1 1,1 21 1 0 0 0

f 2 1,1 1 1 0 0 0
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There have also been attempts to explain the charge quan-
tization observed in the SM in terms of anomaly cancella-
tion. A review is given in@30# and references therein. How-
ever, in our approach we are trying to understand the origin

of the non-Abelian representations of the fermions, not just
the values of weak hypercharge. In order to do this it appears
necessary to use rather than to derive the charge quantization
rule.
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