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Mesonic form factors and the Isgur-Wise function on the light front
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Within the light-front framework, form factors fdP—P and P—V transitions(P denotes a pseudoscalar
meson,V a vector mesgndue to the valence-quark configuration are calculated directly in the entire physical
range of momentum transfer. The behavior of the form factors in the infinite quark mass limit are examined to
see if the requirements of heavy-quark symmetry are satisfied. We find that the Bauer-Stech-Wirbel-type
light-front wave function fails to give a correct normalization for the Isgur-Wise function at zero recoil in
P—V transition. Some of the— V form factors are found to depend on the recoiling direction of the daughter
mesons relative to their parents. Thus the inclusion of the nonvalence contribution arising from quark-pair
creation is mandatory in order to ensure that the physical form factors are independent of the recoiling
direction. The main feature of the nonvalence contribution is discu§Se856-282197)06503-X

PACS numbeds): 12.39.Hg, 14.40.Nd

[. INTRODUCTION tions in the infinite momentum frame. Moreover, hadron spin
can also be correctly constructed using the so-called Melosh

The hadronic matrix element of wedk— P transition(P . . : )
i ) rotation. The kinematic subgroup of the light-front formal-
denotes a pseudoscalar mesisrdescribed by two form fac- . . : .
. ) : ism has the maximum number of interaction-free generators
tors, whereas in general it requires four form factors to pa-: ; : .
: . " including the boost operator which describes the center-of-
rametrize the weak matrix element f&—V transition (V

. mass motion of the bound stateor a review of the light-
denotes a vector mespnHeavy quark symmetry predicts front dynamics and light-front QCD, sé6]).

t_ha_t all the mesonic form factors_ in the |_nf|n|te quark mass’ " o light-front quark model has been applied in the past
lirmit Mg are related 10 a sm_gle universal Isgur-Wise study the heavy-to-heavy and heavy-to-light weak decay
function [1]. The symmetry-breaking i, corrections can ¢4 factors[6—9]. However, the weak form factors were
be studied in a systematic f_ramework, namely, the_hea"léalculated only fog?<0, whereas physical decays occur in
quark effgctlve theprjzfor areview, se?)). The Isgur—Wlse. the timelike region 8<g?<(M;—M;)?, with M, ; being the
function is normalized to unity at zero recoil, but otherwisejnitial and final meson masses. Hence extra assumptions are
remains unknown. Phenomenologically, the hadronic formheeded to extrapolate the form factors to cover the entire
factors can be evaluated in various models among which thgange of momentum transfer. [10] an ansatz for the?
quark model is a popular one. However, since usual quarkdependence was made to extrapolate the form factors in the
model wave functions best resemble meson states in the regpacelike region to the timelike region. Based on the disper-
frame or where the meson velocities are small, hence thsion formulation, form factors a>>0 were obtained ifi11]
form factors calculated in the nonrelativistic quark model orby performing an analytic continuation from the spacetike
the MIT bag model are trustworthy only when the recoil region. Finally, the weak form factors fd&*— P transition
momentum of the daughter meson relative to the parent mewere calculated if12—14 for the first time for the entire
son is small. range ofg?, so that additional extrapolation assumptions are
As the recoil momentum increasésorresponding to a no longer required. This is based on the observdti&hthat
decreasingy®), we have to start considering relativistic ef- in the frame where the momentum transfer is purely longi-
fects seriously. In particular, at the maximum recoil pointtudinal, i.e.,q, =0, g?>=q*q~ covers the entire range of
q?=0 where the final meson could be highly relativistic, momentum transfer. The price one has to pay is that, besides
there is no reason to expect that the nonrelativistic quarkhe conventional valence-quark contribution, one must also
model is still applicable. A consistent treatment of the rela-consider the nonvalence configurati¢or the so-calledZ
tivistic effects of the quark motion and spin in a bound stategraph arising from quark-pair creation from the vacudsee
is a main issue of the relativistic quark model. To our knowl-Fig. 1). The nonvalence contribution vanishesjif =0, but
edge, the light-front quark modE8,4] is the only relativistic  is supposed to be important for heavy-to-light transition near
guark model in which a consistent and fully relativistic treat-zero recoil[6,10,15,18. Unfortunately, a reliable way of es-
ment of quark spins and the center-of-mass motion can bemating theZ-graph contribution is still lacking.
carried out. This model has many advantages. For example, In the present paper we calculate the-V form factors
the light-front wave function is manifestly Lorentz invariant directly at timelike momentum transfers for the first time.
as it is expressed in terms of the momentum fraction variWe then study the mesonic form factors in the infinite quark
ables(in * +” components in analog to the parton distribu- mass limit to check if the light-front model calculations re-
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FIG. 1. The Feynman triangle diagram and the corresponding
light-front subdiagrams. Diagrarte) corresponds to the valence- — it t
quark configuration and diagrafh) to the nonvalence configura- |q(p1,7\1)q(p2,)\g))—b)\l(pl)d)\z(pz)|0>, 2.3

tion.

{bx(p").bi(P)}={d\ (p").d\(P)}
spect heavy quark symmetry. We are able to compute the o
Isgur-Wise function exactly since the nonvalence contribu- =2(2m)35%(p' D) Sy -
tion vanishes in the heavy-quark limit. It turns out that not all
light-front wave functions give a correct normalization for In terms of the light-front relative momentum variables
the Isgur-Wise function at zero recoil iR—V decay. In  (x,k,) defined by
other words, the requirement of heavy quark symmetry can

be utilized to rule out certain phenomenological wave func- Py =XPT, ps=xP", Xqit+x,=1,
tions. (2.4)
Another issue we would like to address in this work has to P =XP, +K, , P =xP, —k,,

do with the reference frame dependence of form factors. For

a giveng?, one can choose whether the recoiling daughtegne momentum-space wave-functig®® can be expressed

meson moves in the positive or negatglirection relative  4¢

to the parent meson, which we call thet” and “ —" ref-

erence frame, respectively. For some form factor®inV

transition, namelyA,, A4, V, valence-quark and nonvalence

contributions are separately dependent on the choice of the

“ 47 or* —" frame, but their sum should not be. This dem- where ¢(x,k,) describes the momentum distribution of the

onstrates the fact that it is mandatory to take into account theonstituents in the bound state, aﬁ@fiz constructs a state

?onvalence conf|gurat|on_ in order to have_ phy5|cal_ predicos qefinite spin 6,S,) out of light-front helicity (\;,\)

ions for form factors. This issue will be discussed in moreeigenstates. Explicitly

detail in Secs. IID and IV C. '
This paper is organized as follows. In Sec. Il, the basic

theoretical form'a}hsm is given and form factqrs fBr—P Rfiz(x’kﬂ: E <7\1|R‘rM(1_X,kL ,my)|s;)

and P—V transitions are derived. Section Ill is devoted to 81,52

the discussion of the Isgur-Wise function. Numerical results

VOB P2 A1 N2) =RYT (XKD (XK, (25

T 1o 1
are presented and discussed in Sec. IV, and finally a sum- X (N2 Ry (%, — ki ,my)[$5)(35135,/SS),
mary is given in Sec. V. 2.6
Il. FRAMEWORK where|s;) are the usual Pauli spinor, ait}, is the Melosh

. o ) ) transformation operator:
We will describe in this section the light-front approach

for the calculation of the weak mesonic form factors for N
m;+X;Mg+icg -k, Xni

pseudoscalar-to-pseudoscalar and pseudoscalar-to-vector R K N 2
. . . . M(Xl L 1m|) 2 2 ( 7)
transitions. The hadronic matrix elements will be evaluated \/(mi+xiMo) +k?
at timelike momentum transfers, namely the physically ac-
cessible kinematic regions9g°< 7. with i=(0,0,1), a unit vector in the direction, and
A meson bound state consisting of a quayk and an
antiquark g, with total momentumP and spinS can be , m+k?  mi+k?
written as Mg= (2.8
X1 X2
IM(P,S,S,))= j {d3p, HdBp,}2(2m)383(P—P1—P2) In practice it is more convenient to use the covariant form for
SS .
sz [6]:
X > WPy, P22 —
S RLY) P P2 —

S& _
X|01(P1,M1)G2(P2,12)), 2.1 R 00K V2M, HPLADT(P2A2) (29

wherep; andp, are the on-mass-shell light-front momenta, where
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Mo=M2—(m;—m,)2, XMy m3+k?
0 o~ (mg—my) Mo=e e, k= o 2% 2.17
2 2xMq
I'=y5 (pseudoscalag=0), (2.10
5 (py—ps) and
€-(P17P2
= — 4+ - =
r (S Mg+ m;+m, (vectorS=1), dkz_ €16, (2.18
with dx X(1—x)Mg
A 2 N > . is the Jacobian of transformation fronx,k,) to K. This
e(=1D)= P e, (£1)-P,0,(£1)], wave function has been also used in many other studies of
hadronic transitions. In particular, with appropriate param-
g (x1)= 1(1,ii)/\/§, eters, it describes satisfactorily the pion elastic form factor
up toQ%~10 Ge\? [4]. A variant of the Gaussian-type wave
. 1 —M§+ Pf . function is
e#(0)=— | —5+—P",P,|. (2.19
Mg P )
Iv'O
Note that the longitudinal polarization four-vectet“(0) d(x,k,)=Nydk,/dx ex — 5.2/ (2.19

given above is not exactly the same as that of the vector

meson([cf. Eq. (2.47]. We normalize the meson state as  yith M, given by Eq.(2.8). This amplitude is equivalent to
Vo o ¢(X,k, )¢ when the constituent quark masses are equal but
(M(P',S',S))[M(P,S,S,)) becomes different otherwise. Nevertheless, we will not pur-
sue this wave function further because it does not have an

=2(2m)°P* 5(P' = P)Sysdy;s, (212 jppropriate heavy-quark-limit behavitsee Sec. Il
Obviously, the Isgur-Wise function for heavy meson tran-
so that sitions depends on the heavy meson wave funciiéx,k )
dx Pk, chosen. It turns out that in contrast to the Gaussian-type
j S5 7 sk )[P=1. (2.13  wave function, the BSW wave function fails to give a correct
2(2m) normalization for the Isgur-Wise function at zero recoil in

In principle, the momentum distribution amplitude Y transition.

¢(x,k,) can be obtained by solving the light-front QCD

bound state equatiof5,17]. However, before such first- A. Decay constants

principles solutions are available, we would have to be con-  The decay constant of a pseudoscalar médanqs,) de-
tented with phenomenological amplitudes. One example thg{ned by(0|A#|P)=if pp* can be evaluated using the light-

has been often used in the literature for heavy mesons is thgynt wave function given by Eq€2.1) and (2.5):
so-called Bauer-Stech-WirbéBSW) amplitude[18], which

for a meson of masM is given by — . 3 3 3
(OfGzy" y50ulP) = [ 1071} {€%p12(2m)5(P—py— o

—K2
d(X.Kp)psw=NVX(1—x) ex;{ ZLZ) X ¢P(x,kl)R§(1’A2(x,ki)

X(0[a2y" y501]0102)- (2.20

. (214

2
xexp{ ~ 542 (X—Xg)?

SinceMX(1—x) = A2+ K2, itis straightforward to show
where A is a normalization constanx is the longitudinal that
momentum fraction carried by the light antiquark,

Xo=[2—(m2—m3)/2M?], and w is a parameter of order V3 [ dx ok,
o= |
2

A
Aocp- o3 Pe(X k) =—=, (2.2])
QCD 3 7P L) T2 L2
Another example is the Gaussian-type wave function 2(2m) AT+ ki

dk, K2 where
(XK =N\ 45 &P — 532/ (2.15

where N=4(mlo?¥* andk, of the internal momenturk

A=mx+my(1—x). (2.22

2 _ . Note that the factov3 in Eq. (2.21) arises from the color
=(k, ,k,) is defined through factor implicit in the meson wave function.

Likewise, the vector-meson decay constant defined by
el_ kZ e2+ kZ

X= ’ X= ’
e,+e; e, t+e,

2.1
(2.19 (O|VH|V)=fy Mye* (2.23

with &= Vm?+k2. We then have is found to be
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_ V3 [ dx Pk, dy(x.k))
fv—4ﬁ J’

M,
— — 2 ro=—"[v1-v,xV(v1-v5)°—1], 2.3
227 e My X(1=x)Mg+mm, + Ml[ 17025 V(vy-vp)°—1] (2.3D)

B [m2+k?® mi+k? wherev - v, is related tog? by
+K2+ - —(1-2x)MZ| |,
2my | 1—x X 2 2
B Mi+M5—q 23
(2.249 Ul'vz—Tle (2.32
where The +(—) signs in Eg.(2.31) correspond to the daughter
meson recoiling in the positiveegative z-direction relative
B=xm;—(1-x)m,, Wy=My+m;+m,. (2.25 tothe parent mesoftall them the “+” and * —" reference

frame, respectively At zero recoil (q>=q2_,) and maxi-

. _ mum recoil @?=0), r. are given b
When the decay constant is known, it can be used to con- q )T ¢ Y

strain the parameters of the light-front wave function. M

2
r+(qr2nax):r—(qﬁ1ax): M_’
B. Form factors for P—P transition 1

With the light-front wave functions given above, we will M, 2
first calculate the form factors fd?— P transitions given by r.(0)=1, r_(0)= (M_) . (2.33
1

(PolVHP1)=f,(a?)(P1+Py)*+f_(g?)(P1—Py)¥, .
(2.269  The form factorsf . (g°) of course should be independent of
e the reference frame chosen for the moving direction of the
whereV#=q,y*q, . For later purposes, it is also convenient daughter meson. For a giveyf, suppose we obtain
to parametrize this matrix element in different forms:

(Po|VT|P)|, = +=2P+H(r ),
(P2l VHIP1)= VMMl (q7) (v1+v2)" Dle=r, =2PTH(r.

+h_(g®)(v,—vy)*], (PoIVFIP)|—r =2P7H(r_). (2.34
Mi-M3
=F(q?)| P4+ Pg—Tqﬂ It follows from Eq. (2.27) that
MZ—M3 oo (L=r H(r )= (1=r )H(r_)
+Fo(q%) —F (2.27 f (g?)= — ,
with v;=P;/M;, and 1+r_)H(ro)—(1+r )H(r_
e f(q)-- ) (:)_i LU P
q° s
Fi(@)=F,(a?), Fo(a)=Ff(a)+—7— f_(d?).
HaD=t @ ol@ =1+ (a9 Mi—M3 (@) It is easily seen thatt. (q?) are independent of the choice of

(228  “+”or*“ —” frame, as it should be.
o As noted earlier, in a frame witty* >0, there are actually
In the heavy-quark limitM ; ,—c, heavy-quark symmetry two distinct contributions to the hadronic matrix element

requires thaf2] [6,10,15,18: valence(partoni9 contribution calculated with
) ) relativistic light-front bound-state wave functions, and non-
h.(g9)=E&(v1-v2), h(q9)=0, (229 yvalence(nonpartoni¢ contribution(or the so-calle@ graph

arising from quark-antiquark pair creation from the vacuum.
In the following, we shall first provide some details for cal-
culating the valence contribution, and then come back to the
nonvalence subprocess in Sec. IID. Fer=(q,q) and
P,=(0,9), the relevant quark momentum variables are

whereé(v-v,) is the universal Isgur-Wise function normal-
ized to unity at the point of equal velocitie§(1)=1. The
form factorsF, andF are related to the transition amplitude
with the exchange of a vect¢t ) and a scalaf0") boson in
the t-channel, respectively.

As explained in the Introduction, we shall work in the
frame whereq, =0 so thatg?=q*q~ will cover the whole
timelike regiong®=0. Definer=P /P (itis denoted byR L L
in [12]), then P =(1-X)Py +k, , Pgi=xPy—k,

pi=(1-x)P;, pg=xP;,

MZ +_ ! + '+ _ Lrp+t
qz:(l—r)(Mi—TZ). (2.30 P =(1-x")P;, pg =x'Py,

Consequently, for a giveq?, there are two solutions far. P2 =(1-x")Py +k{, Pg=x'P -k, (239
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wherex (x') is the momentum fraction carried by the spec-
tator antiquarkq in the initial (final) state. The spectator

model requires that

P =Pq>  Pgi=PqL- (2.37

Taking a Lorentz frame wheré’ll P2L
havingg, =0 andki—kl. Then we readily obtain

0 amounts to

1563

(PIVIPY= X J’{d3pﬂ‘¢z(x KX k)

SRR

XROO;F(X ko )u(pz2,N2) Yy u(py,Ny)

xRAl—A(x,ki). (2.39

Substituting the covariant form given in E.9) into Eq.
(2.38 yields

P,V*|P —\/ﬁfw*’k) .) -
< 2 1>_ 2(2,”_)3 ¢2(X [T d)l(xl 1 ZMOZMOJ_\/W

XTH ys(Pa+my)y " (P1+my) ys(bg—

mg) . (2.39

After some manipulation, the trace term in the above expres- As stated before, in the literature these form factors are

sion is reduced to

Trl ys(Po+my) ¥ (P1+my) ys(pg— mg) ]

4 2 o+
X (A A +kD)Py (2.40

where

Ar=mx+mgtl—x), Ay=mx' +mgtl—x"),

(2.41

and use of Eq(2.36 has been made. Since

|\7|01\/X(1—X)M02\/X’(1—X’)=M§+|<NA§+|<E(' )
2.4

we find from Eqs.(2.34), (2.38), (2.40, and(2.42 that
r d?k
M= [ (0| gy 5 KD B0k

A A+ K2

>< 1
\/Azl-l- kl2 \/.A22+ kl2

(2.43

with X’ =x/r. The form factors . (q%) can then be obtained

from Eq. (2.35.

<V(PV!8)|‘]M|P(P1)>

e ape PUPIV(0?) = [(MP+ My)e,Ai(q?) —

customarily evaluated in the frame whefé=P —P; =0.
This leads ta>= —q2 =<0, implying a spacelike momentum
transfer. The advantage of the conditighi=0 is that form
factors only receive valence contributiofsee Sec. Il .
However, there are two drawbacks in this approach: First,
form factors in the physical timelike region cannot be ob-
tained without making additiona}?® extrapolation assump-
tions. Second, no information can be obtained for the form
factor f_(g?) sinceP; =P [see Eq(2.26)]. At the maxi-
mum recoilq?=0, the form factorf , (0) is evaluated to be
[6,9]

1 d2k
f+(o>=f0dxf s POk i(xk.)

A1 A+ K2

X , (2.449
VAL KEVA K

with A; and.A, given by Eq.(2.41) except thaix’ =x here.
Therefore, the results of Eq&.35 and(2.43 atq?=0 are
in agreement with Eq(2.44).

C. Form factors for P—V transition

Form factors forP—V transition are defined as

(P1+Py) Az(q )

Mp+My Mp +M
P 2 2
_2Mv 7 0, (A3(q9) —Ag(g9)) |, (2.49
whereJ =V ,—A,, A3(0)=A(0),
Mp+My, Mp—My
2 y__°~ v 2
As(Q9) = —u (@)= —5n, Aela), (2.49



1564 HAI-YANG CHENG, CHI-YEE CHEUNG, AND CHIEN-WEN HWANG 55

and

1

V

28, -P — M2+ P2 .
L—VL %1'3\4; !PVL (247)
v

Py

8”(i1)=( 10:§¢): 8’“(0)—

are, respectively, the transverse and longitudinal polarization vectors of the vector meson. The formAfaetods\, are
related to 1 intermediate stated, to 0" states, and/ to 1~ states. Thé®—V matrix element can also be parametrized in
different ways:

(VI3,IP)=i9(0%)e 4yape "PYPL+ (9 e, + (s- Py)[as(0?)(Py+Py) ,+a-(4°)(P1—Py),]
= MM {iG(02) €,pape "0 WP+ TGP, + (2 0)[EL (@) (0 +0") ,+E_ (0D (v —0v") ]}, (2.48

wherev=P;/Mp andv’=P,/M,,. They are useful for later We begin witha. (q2). Sincee*(+1)=0 [cf. Eq.(2.47],
discussions. The form factoes. , f, andg are related td/, it follows from Eq. (2.48 that
Ag1o3Via

—(V(Py)|A*|P(Py))=(e-P Py +Py
g(qz): 2 V(qz), f(qz):—(MP—i—MV)Al(qz), < ( V)| | ( l)> (8 l)[a+( 1+ V)
Mp+ My +a_(P{—P})]

1 -
a+(q2)=mAz(q2), (2.49 = F—l)(§l~PL)[a+(1+r)
2My, +a_(1-r)]P;, 25
a-(97)= 7 [Aa(@) = Ag(eP)] (P (252
2My [Mp+ My withr=P{/P{ andP, =P, =P, . As will be shown be-
=— | ——— A(q?) low, the above matrix element calculated at the quark level
21 2™ ! ’ q
q v has the form
— i (@)~ Ao(0?) .
(VIA*|PY=2&,-P, (1-1)I(r)P; . (2.53
Also,
_ (9?) Substituting this into Eq2.52 and solving the equations for
9(0®>)=VMpMyg(g?), f(g?)= N r=r, andr=r_ yields
PiViv
(2.50
e M2 a. (q0)= Fe(I=r )I(ry)—r_(1—=ry)Ii(r-)
a +a_ = a,+a_), + - _ '
+(q ) (q ) \/W( + ) I’Jr r_
a.(q°)—a- (%)= \MpMy(a, —a.). : (LT ) )—r (1+r)I(r.)
a_ = ’
In the heavy-quark limiMp, M, — o, heavy-quark symme- (@ ry—r-
try demands thaft2] (2.59

arra- S a.-a-=g=¢lv-v’), in analog to Eq(2.35 for f.(g?). In order to illustrate sev-

f=—(1+v-v")év-v'). (2.51)  eral subtle points in the derivation df(r), we will go
through the calculation in a bit more detail. First of all, it is
The calculation of thé®>—V form factors is more subtle straightforward to show that, fd?=(q,q) andV=(q,q),

than the P—P case. If we choose a frame where

P, =Py, =0 as before, we will have -P,;=0 for trans-

verse polarization. As a result, form factas in Eq. (2.48 . dx &’k —2x’

cannot be separately determined. Therefore, we will let (VIA |P>:f 2(2m)3 JAZ+KE A2+ K2

P,, =Py, #0 at the outset, and set them to zero only after POV L

the form factors are extracted. With the transverse polariza- X ¥ (x' k) dp(x,k,)(a+b), (2.59

tion e*(*+1), form factorsa. (q2) andg(qg?) can be individu-

ally determined. Then using the longitudinal polarization

¢*(0), we are able to fix the remaining form factbig?). where Ap=A;, A,=A, [see Eq(2.4]], and
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a=my(&-paPgte-PaPs)+My(&-p1pg—2a-PgPy) Kl =k, + (X' =x)P_, (2.60
+mgle-pop; +é- P1P2), where we have used Eq®.36 and(2.37). Consequently,
g (pr— ~ N _TF L2 ~ 2\(112 12\ ...
b=’ %ZVV PD.(mymgp; —mamgp; — mam,p- Sulk?) = Gy(k?) +(dby [dKE) (k= KE) +
— 7 2 - .
+p1-pw5—p1-pzp§—+pz~pqﬂof), (2.5 =u(kD[1+20 (X" =x)k - P +-- ](,2 61
with e#=g#(+1) given by Eq.(2.47) and Wy=Mg,+m, '
+myg-. By virtue of Eq.(2.36 we find that with
a=(1-r)(1—-2x)Ap(8, -P, )Py +--+ , 1 [d¢
( ( JAp(€, - PPy VEH_(_;/_ (2.62
2 ¢V dkl
b=—2(1—r) 2PN o 5 prs 2.5
- ( r) WV (SL. L) 1 ] ( . 7) Slnce
with L 1 , R
d?k, (&, -k, )(k, -P =—Jd2kk g -P)),
By=—myx’ + (1—x')mg- (2.59 J (e -k)(k Py 2 1 ki(e,-Py)

(2.63

it is evident that the linear termeg( -K,) in Eq. (2.57) will

rcombine with the linear terrriZ(L . I5l) in Eq. (2.61) to make
a contribution to(V|A™|P). We wish to stress that this ad-
ditional contribution from®,, was first noticed and obtained

The ellipses in Eq(2.57) denote contributions from terms
proportional toérlzL in Eg. (2.56. Naively, these terms

linear in IZl are not expected to make contributions afte
integrating over@. But this is not the case. Consider the

term by O’Donnell and XU 7,9] and was neglected in the work of
) Jaus[6,10].
— XKD 109 . e s
V_W (2.59 y t ? same token, in the expression frthe (fi'})
VoL term in - (p,—pg) can also combine with thek(-P,)
- + . . . .
and note thak/ is different fromk, due to a nonvanishing €M in (M;mgp; +---) to yield a contribution proportional
P, : to £, - P, after integration ovek, . The final result is

[ Pk X B k) e(xik,) , , ,
I(r)z—fodxf 2(2;)3 JJ\%H{M@H{ {(1—2x ) Ap+[(1—2X") Ap— Ay1Oy(x’ k, K

P (2.64

(ApBy+ k) (1+0y(x" k k) + 5 K2
Wy !

with X" =x/r. In deriving Eq.(2.64 we have first integrated out andk| . We can of course alter the order of integration by
first integrating ovex andk, and obtain

2 * ' Kk K
= [ [ ot X e )

— — ’ _ ® 2
2(271.)3 \/A%‘l‘ki\/A\Z/‘l‘ki {AV [(1 2X )AP AV]P(X!kL)kL

(2.69

(ApBy+K2)®p(x,k K2 + § K2 ]
+2 ,
Wy

wherex=x'r, and we have used the notatikn instead ofk| as it is a dummy variable. The resi(#.65 will be utilized in
Sec. Il to show that light-front model calculations fulfill the heavy-quark-symmetry require(@est.
At q?=0, we haver , =1 andr_=(M/Mp)2. It follows from Eqgs.(2.54 and(2.64 that
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d?k, XY (%K) Pp(x,k,)
2(2m)° A2+ K2 AL+ K2

1
A2(0)=(MP+MV)3+(O)=_(MP+MV)|(r=1)=jo dXJ (Mp+My)

(ApBy+K3)(1+Oy(x,k )k?)+ § K2
Wy

X1 (1—2X) Ap+[(1—2x) Ap— Ay 1Oy (x,k, Yk — (2.66

This is in agreement with Eq30) of [9], but disagrees with (VIATIP)r0)=r . (0)= ~[f(0)+(M2—M32)a, (0)]P; /My
the result obtained by Jali§]. *
Having fixeda. (g°), we are ready to calculatiq?) in =2A,(0)P7, (2.72
Eq. (2.48. From Eq.(2.49 it is clear that oncef(q?) is
determined, so are the form factofs(g®) and Ao(d%). 5o that
Since the “+” component ofe* is needed to extradt(q?),
we consider the longitudinal polarizatieft(0) of the vector 1
mesonV and take a frame where, =0. Hence Ag(0)= > J(0)],=1, (2.73

r r M
—(VIAT|P)=1(g?) e P+ 27y (MZ V) where use has been made of E&49. Then it is not diffi-
v r cult to show from Eqs(2.69 and(2.70 that

X[a (1+r)+a_(1-r)]P; . (2.67

[ dx Pk,
Let (VIA*[PY=J(q®)P{, then AO(O)_J 2(2m)°
f(qz)__l(Mz__\zf (oL (Lir)ta (1or] ApAy+(1—2x)k? +2(my +my)xk2 /Wy,
2\ 7P 2 ) VAZ+IZ AT +KE
My (2.74
- J(@?). (2.68
which agrees with Eq(27) of [9] obtained in theq"=0
result for f(g°) does respect the heavy-quark-symmetry re-
2 Pk ot quirement.
I(P) = —rfrdxf d’k, . X'y (XK ) dp(xky) Thus far we have imposed the conditign=0 to extract
22m)°  JAZ+KPAZ+KP the form factorsa.. (g% andf(qg®). For the vector form fac-
tor g(g?) or V(g?), it proves more convenient to first let
X(c+d), (2.69 g, #0 and then set it to zero after the vector form factor is
ith obtained. The “+” component of the vector current matrix
wit element for transverse polarization reads
x' m,Mmg- . o . _
C:_M_o\/ (1_X/);M(2JVAP+ 2 a Ap <V|V+|P>:|gs+vaﬂsypvpf:Igs#rfxy[_s q*PY
m +(P1=Py) &"PY=Pye*g’ = (x=y)],
2 2 |
+Kk7{ mg+ 7—mq”, (2.79
1 1 m2-+ k2 whereP, =P, , Py, =P, —q, . Atthe quark level, we have
ms
d= (ApBy+K2)| —(1-2X )M+ ——+
Mo X0 o T [ ¢V<x K)o k)
X
o me ki} 270 202m)°  JABHIE A+
x' '
| B PP
and[cf. Eq. (2.9)] Wy © s ap PEPIPY
2 2 2 2 . -~
vz _MerkD | Mgtk 279 2. 0py8 “(MipEPE—mopypd+mapZp]) |
ov 1—x' X' . .

(2.7
To check the above results, we note that,fo(0)=1 [see
Eqg. (2.33], The transverse momentum variables are
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u=1=x)P ki, pa=(1=-x)P, —q, +k, tions proportional tos , _,ye ~(q*p’—g’p*), which is re-
lated to the first term of E¢2.79 at the hadron level. It is
pgL=XxP, —k, . (2.77)  €asy to check that the transverse componerifst) and

R £Y(+) will not generate the same structure. Repeating the
It suffices to set“=¢" (=) in Eq. (2.76 to get contribu-  similar derivation as before, we obtain

2V(9?) f J d’k, 2X’¢\’§(X’,ki)¢p(X.ki){ 1
)= Ap+(Ap— Ay)Oy(X' kK2 + — | rk?+(1—r
g(q ) M +MV 2(277)3 \/Alz:,+ki\/,4\2/+ki P ( P V) V( J_) 3l WV 1 ( )
X| 2xMgpk,— —— | + (1= 1)@ y(x',k, )k? (2x*M3,— x'ZMSV—mé,—kf) } (2.79
with k, being defined in Eq(2.17). Forr(0)=r_,(0)=1, Eq.(2.78 leads to
1 d?k, (MP+MV)X¢§(X,1KL)¢P(XakL)( ? )
V0=deJ Ap+ +xm —my) Oy(x,k )K? |, 2.7
( ) 2(277)3 \/Alz:,‘f'ki\/A\z/"‘kf P ( 1 2) V( ) ( 9)
|
which agrees with9]. . r dx
Therefore, we have calculated the form factd(s)?), My =0102 f X(1—x)(1—x")
9(9?), anda..(g?) in the timelikeq? region within the light- 0
front framework. Form factor¥(q°) andA,; {g?) can then d2k, N
be determined via Eq2.49.} xf ,
4249. 202m)° (M-MZ)(M3—M3;)

(2.81

D. Nonvalence contribution

1 dx
M ==00:|
Thus far we have concentrated on the valence-quark con- r

tribution to the form factors. As stated in the Introduction, d2k NG
there also exist contributions which are generated from the X f L 7 —> 5 2b ~ ,
quark-antiquark excitation or higher Fock-states in the had- 2(2m)” (M1—Mg)(q° =M1 (r/1-r)

ronic bound states. This addition&lgraph contribution van- h ' d th K i
ishes in the frame where the momentum transfer is purelyv erex’ =Xir, g, andg, are the quark-meson coupiing con-

transverse i.eq* =0, but survives otherwise stants at different vertice$4,; andM, are the masses of the
The general feature of the nonvalence configuration car'{“t'al andNTlnaI (rjnefsond resgecg\;elm Old(M 62) is the same
be recognized by considering the quark triangle diagisee M3p (M3y) defined in Eq(2.7D), an
Fig. 1. In terms of the “+"” component of momenta, the
Feynman triangle diagram in the light-front framework con- Mfzz
sists of two subprocesses: one corresponds to the valence-
quark approximation for the meson wave functions, and the I - + -
other to the contribution of quark-pair creation from the a =4[p1 (MyMg+p2-pg) + Py (MMg+ Py - Pg)
vacuum. That is, through the mechanism of quark-antiquark +
- . ! . + —Pp1- .
pair creation, the “spectator” quark in the second subpro- P (MaM, =Py P21, (2.82
cess is fragmented into a meson plus an outgoing quark. A+ o ) o )
detailed study of the quark triangle diagram P tran- AN =4Lp1 (= 7Mama+Py-p2) Pz (= 7Mamy +Py-py)
sition gives(generalization td®—V transition is straightfor- + Pf(mlmz— P1- P21,
ward) [13]

mi+k? ms+k?
1-x r—x

(1-r),

— . N N with »=(m;—mg)/M;. Since M, receives contributions
(Pald2y" da|P1) =Mz + My, (280 from the kinematic region @x<r or 0<k*<PJ (see Fig.
1), it corresponds to the valence-quark configuration. As for
My, only the regiorr <x<1 orP; <k*<P7 is relevant,
and it corresponds to the nonvalence contribution. It is
straightforward to check that, apart from a sign difference,
N, is precisely the trace term given in E@.40. This im-

! the frame where ™ =0, only three of thee—V form factors, ~ plies that the previous calculation fé— P form factors in
namelyf, g, anda, orV, A;, andA, are determined. Howevet, the Hamiltonian light-front approach is identical to the Feyn-
can be fixed ag?=0 using the relatiom,(0)=A3(0) and Eq. man triangle graph under the valence-quark approximation.
(2.46. Obviously, making the substitutions

with
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\/591 1 B1(x,K,) these form factors even fdB— D™ transition, unless the
- T T nonvalence contributions are also calculated. Nevertheless,
X(1=X) M1=Moy  AT+k] corrections due to the nonvalence configuration are expected
to be marginal for heavy-to-heavy form factors evaluated in
V2g, 1 Pa(X"k.) ) the “+” frame wherer=r_ , but become more significant
X' (1—x") M%—M(%ZH JAZ+ K2 283 i the “—” frame (r=r_). The argument goes as follows:
we know that the nonvalence contribution vanishes'it=0.
in M will reproduce the resuktP,[q,y"q,|P,)=2P7H  Now g” is never zero in the “" frame, whereas in the
[see Eqs(2.34 and (2.43)]. “+” frame q" =0 whenr , =1 [see Eq(2.33]. That means
Unlike the valence-quark contribution, only the wave the valence-quark contribution in thet* frame is exactat
function ¢, (x,k, ) of the initial meson enters into the expres- the g>=0 point. As will be shown in Sec. IV B, the valence
sion of M ; ¢,(x’,k,) is not applicable for the nonvalence contributions atg?=0 in the “—" frame are generally
graph because the light-front momentir of the spectator  smaller than those in the+" frame; the difference should
quark is larger than the momentuf; of the daughter me- pe accounted for by the nonvalence configuration. These

son(see Fig. 1 This makes the task of calculating the effect points will be elucidated in more detail in Sec. IV B.
of the Z graph considerably more difficult. Nevertheless,

some qualitative features @t can still be comprehended.
First of all, as noted earlier, the contribution from nonva-
lence configurations vanishes in a frame whgfe= Oqoa;
r=1. However, this frame is suitable only for spaceli
Second, it is easy to show that ; — 0 in the limit of heavy IHZSec. Il we have Compute(; the—p 2form factors
quark symmetryn,— =, because it takes an infinite amount f(a°) ade?V form factorsV(q®), Ao, Aq“) for the en-
of energy to create a heavy quark-antiquark pair. This has thi® Physicalg” region using the light-front wave functions.
important implication that we do not have to worry about thelt i very important to check if the light-front model predic-
pair-creation subprocess when calculating the Isgur-Wis&ons are in accord with the requirements of heavy-quark
function. Beyond the heavy-quark limit, it is commonly ar- Symmetry, namely Eqs2.29 and(2.5J1). In other words, as
gued that the nonvalence contribution leads to a small corg—, we would like to see if there exists a universal
rection in heavy-to-heavy transition but becomes more imisgur-Wise function which governs all heavy-to-heavy me-
portant for heavy-to-light decay45,10,13. For example, a sonic form factors in the light-front quark model.
B* -pole contribution is usually believed to be the dominant To our knowledge, the Isgur-Wise function has not been
nonvalence effect ilB— 7 transition, especially wheg? is  calculated directly forg®=0 within the framework of the
near the zero-recoil poin22]. Some estimates based on the light-front quark model, though it has been considered in
B*-pole contribution with the help of chiral perturbation [9,19,11. The analysis of9] is based on the observation
theory indicate that for large values qf, theZ graph pro-  [20] that the knowledge oP— P or P—V form factors at
vides the dominant contribution 8— 7r form factors(for a g%=0 (or at any point ofy?) suffices to determine the Isgur-
recent estimate, s¢é2]). Wise function in the whole kinematic region. However, this
In this paper we will demonstrate that even for heavy-t0-rgjies on the assumptions that the model calculations of form
heavy transition, the importance of the nonvalence contribus,.tors obey heavy-quark symmetry and that the universal
tion depends on the recoiling dlrecyon of2 the daughter Me%0rm factor is only a function of -v’. The Isgur-Wise func-
son. As shown in Eq(2.3D), for a giveng” there are two tion is derived in[19] from spacelikeelastic form factors of

possible reference frames characterized hy(q®) and S . . .
r_(g?), corresponding to whether one chooses the velocit);]ea\/y mesonSwhile it is obtained irf11] by performing an

of the final meson to be in the positive or negathdirection analytic continuation from the regiag*<0 to timelike mo

relative to the initial meson. Of course, the form factors arementum transfers. In contrast, we do not impose heavy-quark

independent of the choice of thet* or “ —" frame. This symmetry from the outset, so that we can check ex_pIicitIy if
means that the combinatiokt ; + M in Eq. (2.80 should the Wgak decay f_orm factprs of heavy_ mesons can indeed be
be independent of the choice of(g?)=r,(q? or dgscrlbed by a.smgl_e universal functl'on whe@—mo..We'
r(g?)=r_(g?). From Eq.(2.8) we see that the depen- Will calculate this universal function directly at the timelike
dence of./\/l;r or Mg appears both in the integrand and in momentum tranSfer tOI see |f it i-S independent of neaVy QI_Jark
the integration limit. As a consequence{; andM, sepa- Masses and th_e|r ratio. It is important to note th_at,_ since
rately are in general *”-frame dependent. In other words, heavy quark-pair creation is forbidden in thg,—ce limit,

the valence-quark and nonvalence contributions to mesoni®€ Z-graph is no longer a problem in the reference frame
form factors are in general dependent on the recoiling direcwhereq”=0. Therefore, within the light-front quark model,
tion of the final meson, but their sum should_not be. For theVe are able to compute the Isgur-Wise functiaxactlyfor
form factorsf.(g?) in P—P decay anda.(g?) in P—Vv  timelike g®.

transition, we have “demanded” that the valence contribu-

tion itself be frame independefgee Eqs(2.34), (2.35, and

(2.54]. For form factorsA,, Ay, andV in P—V decay,  2This is based on the argument that, for the elastic form factor,
explicit calculations in Sec. IV B show that the valence con-g?= —(y -y’ —1)/(2M). Thus the spacelike elastic form factor is

tributions forr=r, andr=r _ are indeed differenfsee Fig. related to the Isgur-Wise function at timelike momentum transfers
6). Thus in principle we cannot make firm predictions for (v-v’=1).

lll. THE ISGUR-WISE FUNCTION
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To proceed, we first investigate the heavy-quark-limit be-

havior of the wave function. In the infinite quark mass limit
mg— %, the light-front wave function has the scaling behav-
ior [17]

qSQE(x,kL)—n/m_QCD(mQx,kl), (3.0

where the factorymg or YM (M being the mass of the
heavy mesoncomes from the particular normalization we
have assumed for the physical state in Egsl2 and(2.13.

The reason why the light-front heavy-meson wave function

should have such an asymptotic form is as follows. Sinise
the longitudinal momentum fraction carried by the light an-
tiquark, the meson wave function should be sharply peake
nearx~Aqcp/Mg . It is thus clear that only terms of the
form “mgx” survive in the wave function asng—o; that

is, Mex is independent ofmg in the mg— oo limit. For the
BSW wave function2.14), we find that

o -

where X=mgX, and the normalization conditio(2.13 be-
comes

X2

2

k?
2 20?

20?

| %

(3.2

DXk, gsw= J3_2< %) exp( -

w d?k,
Jl) dXI m |(I>(X,ki)|2=1. (33)

For the Gaussian-type wave functi¢h 15, we obtain

>,

- 3/4 k2
CD(X,kL)G=4? exp —

20?

) Jak,/dX. (3.9

From Eq.(2.17) it is clear thatk,=[X—(mZ+k?)/X]/2 in
the heavy-quark limit. Therefore,

3/4
v
5| e
w
><exp< B [X/2—(mZ+K?)/2X]?

2
2w?
1 2, 1.2 2
XN+ (M2+K2)/2X2,

k?

¢(X,kl)e=4( P

|

However, sinceM ,— mg+0(mgX), it is clear that the wave
function (2.19), which is a variant of the Gaussian type, does

(3.9

not have the desired asymptotic form in the heavy-quark

limit. Hence we will not discuss it further.

A. P—P transition in heavy-quark limit

With the light-front wave function® (X,k,) constructed
in the mg—oe limit, the P—P transition functionH(r)
(2.43 in the limit of heavy-quark symmetryi.e., my,
m,— ) becomes
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- d2k
H(r)=\/M2/M1JO dxf mcb(x',kg
AX)AX")+k?
XD (X,k,) COAX) +k (3.6

VAR (X)+ K2 AZ(X) + K2

where X=m;x, X'=myx’, and A(X)=X+mg. Note that
the quantitiesX, X', mg, andk, appearing in the integrand
are all of orderAqcp. Denotez=v ; /v { =(M4/My)r, then
[see Eq.(2.31)]

ZI=vl~vzi\(vl'vz)2—1. (37)
gbviously, z,z =1 and X'/X=1/z. Let H(r.)

\/MZ/Mlﬁ(zt), so that Eq(2.34 can be rewritten as

(Po[VF|Py)=2VM;M;H(2)v; .

By a simple change of integration variable, one can readily
show that

(3.8

H(z)=zH(1/2). (3.9

To check the validity of the heavy-quark-symmetry rela-
tion (2.29, we note thah. (q°) are related tdH(z) via

[H(z)=zH(1/2)],

) 1%z
hi(q ): 1_22

(3.10

in analog to Eq(2.35 for f. (g?). By virtue of Eq.(3.9), the
heavy-quark symmetryHQY) relationh_(q?) =0 given in
Eqg. (2.29 is indeed satisfied, and the Isgur-Wise function is
given by

2H(2)

§vyrvg)=—7— (3.11)

Evidently, the Isgur-Wise function is independent of the
heavy quark masses, , m, and their ratio, but it depends on
the light spectator quark mass. The right-hand $RIdS) of

Eq. (3.17) is invariant under the exchange- 1/z, implying
that the Isgur-Wise functiod(v,-v,) is independent of the
choice of the recoiling direction of the daughter meson, as it
should be. At zero recoilz=1), the expression foH(1)
becomes identical to the normalization conditig8.3).
HenceH(1)=1, and the Isgur-Wise function obeys the cor-
rect normalization conditiog(1)=1. We would like to stress
again that, unlike the previous work8,11] whereé(v-v')

is actually evaluated foB—D transition and for spacelike
values ofg?, here the Isgur-Wise function is obtained in the
infinite quark mass limit and calculated directly fqf=0.
Within the specific model we have taken, our result is exact.
In the limit of heavy-quark symmetry, form factofs;
andF are related to the Isgur-Wise function via

2M;M

Eo1v2)= =1 Fal@?)

2

_ 2yM;1M, Fo(a?)

© My+My [1-0%/(My+Mp)?]

(3.12
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Hence theg? dependence of; is different from that ofF in accord with Eq.(2.5)).

by an additional pole factor. Using the result3.16 and (3.17) for form factorsa. ,
we are ready to prove the remaining HQS relationffar?).
B. P—V transition in heavy-quark limit It follows from Egs.(2.49, (2.68 and(2.69, and(2.70 that
There are four HQS relations given in E(.51) for _ f(q?) 1 X2—X'2
P—V form factors. We shall first focus oa.. (or a.). As f(q?) = =—_ -
m,;, m,—%, we can show that VMpM, 2 XX
Oy(x",k )—=0O(X" k), Op(xk )—0(XK,), f dX Pk, d(X',k )P(X,k,) [x My )
c
(313 22m)° [R2+ICJATIE | M
with ®,, being defined in Eq(2.61). The P—V transition (3.20

amplitudel (r) [see Eqs(2.64) and(2.65] reduces to
where terms proportional to W, vanish in the limit of
heavy-quark symmetry. We find form E.70 that

() =T(2)= - —— dedzkl [X' A(X)
m;my 2(27T)3 x' M HQ limit N
\Y

+X(X=X)O(X' k KIIF(X)F(X") m, C—>—27(ApAv+kf), (3.21)
1 jdx,dsz hence
—— [XA(X")
Jmym, ) 2(2m)° ~ 1 X2—X'2 X’ X
2\ ! ’
X(X=XDOXKOKRIFOOF(X), (314  @)T gy v T {1t srfe(vu),

(3.22
where f(X)=®(X,k,)/JA2(X)+kZ, X'=X/z, and all .
terms proportional to W, have_been neglected in the Where use of Eq.(3.1) has been made. Then, using

heavy-quark limit. It is evident tha{z) satisfies the relation X'/X=1/z and Eq.(3.7), we are led to the desired HQS
relation given in Eq(2.51):

1(2)=1(1/z). (3.1 _
f(g)=—(1+v-v")é&v-v"), 3.23
Therefore, from Eq(2.54),
provided thatZ(v-v')=&(v-v').
L 2M2 ror 1z —r.r_1(z.) Is the function{(v-v") given by Eq.(3.18 identical to
a,ta_= =0, the Isgur-Wise functioré(v-v’)? While £1)=1 is always
vMpMy FemT- valid irrespective of the details of the light-front amplitude

(3.16 used, the normalization of(v-v') at zero recoil is non-
trivial. In fact, we find thatZ(1) depends on the choice of the
light-front model wave function. We find numericallgee
Sec. IV A) that the HQS requiremer(1)=1 is fulfilled by

and

—r (z)+r_1(z)

A, —a_=2JyMpMy the Gaussian-type wave functidg.15), but not so by the
Fe—r- BSW-type wave functiori2.14). In other words, the normal-
= 2 \MaMVI(2). (3.17) ization of the Isgur-Wise function at zero recoil P—V

transition puts a severe restriction on the phenomenological
light-front wave functions. Since we are not able to solve the
light-front QCD bound-state equation to obtain the momen-
tum distribution amplitudeb(x,k, ), we see that heavy-quark
- 2 / symmetry is helpful in discriminating between different phe-
g(v.vf)zzf dxf d ki3 X ’kg)q)(x’ki) _ nomenological amplitudes. As will be shown in Sec. IV A,
0 2(2m)% \ A2(X)+ K2 AZ(X") +K? {(v-v") is numerically equal te¢(v-v') if the Gaussian-
type wave function is used.
’ ’ ’ ’ 2
XA + X (X=X O (X" kKT (318 The P—V form factors in the heavy-quark limit are all
related to the Isgur-Wise function via

Comparing this with Eq(2.5)) yields the Isgur-Wise func-
tion

with X'/X=1/z. It remains to show that(v-v’) is indeed

the same as the Isgur-Wise functiéfv -v') found inP—P 2 /MMy 2 /MaMu
transition(3.11). We will address this issue later in Sec. IV. Lv-v)= M—PIVIV V(g?) = M—PMV Ao(q?)
After showing the HQS relation.16 and(3.17) for form ptMy pTMy
factorsa. , we turn to the vector form factor. One can easily 2 /MoMu
show from Eq.(2.78 that, indeed, = WPM\\// A,(q?)
HQ limit 2
— , 2/MpM A
3= WMpMyg(02) —— — 2 MaMl(2)=¢(v-0"), _ 2MpMy ) (3.24

(3.19 ~ Mp+My [1-0%(Mp+My)?]
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TABLE I. Parametersn, (in units of GeVj and w in the Gaussian-type and BSW-type wave functions
fitted to the decay constants given by Egs1) and (4.2).

Wave function

mu’d W (.Up ms Wk Wi * mC wp Wp* mb wpg wpx
Gaussian 025 033 030 040 038 031 16 046 047 48 055 0.55
BSW 025 030 029 040 034 030 16 046 046 48 058 0.57

That meand/, A,, A, all have the samg® dependence and Recent theoretical estimates and experimental analyses favor

they differ from A, by an additional pole factor.

IV. NUMERICAL RESULTS AND DISCUSSIONS

To examine numerically the form factors derived in the
last section, we need to specify the parameters appearing
the phenomenological light-front wave functions. We shall
use the decay constants to constrain the quark mgssnd
the scale parametes. The decay constants of light pseudo-
scalar and vector mesons &re

f,=132 MeV, fx=160 MeV,

p?’<1. The slope parametef is subject to constraints from
Bjorken and Voloshin sum rule@or a review, sed2]). A
tight bound is derived to be 0s5?<0.8[21]. QCD sum-rule
results range from 0.70 to 1.0Q1]. It thus appears that our
slope parametefd.3) is too large. This may be attributed to
tHe fact that the Gaussian-type amplitude does not have
enough amount of high-momentum components at large
It has been shown ifiL9] that the one-gluon-exchange inter-
action can generate high-momentum components in the me-
son wave function and reduce the valuepbfsignificantly.
Although ¢ is independent of heavy quark masses, it is

interesting to see if it can be fitted to a simple pole behavior

for a specific transition, e.gB—D:

f,=216 MeV, fyx=210 MeV. 4.1

The decay constants of heavy mesons are unknown experi-
mentally, so we have to rely on model calculations and lat-
tice results. To be specific, we take

£(0)

(1-0°/M 39" “9

&aqd)=

where v-v'=(M3+M3—0%)/(2MzgMp). We find that
£(g?) is fitted very well over the entirg°=0 region with a
dipole behaviofone cannot tell the difference between fitted
and calculated curvesvith

f5=200 MeV, fgz=185 MeV,

fpx=250 MeV, fg«=205 MeV,
(4.2)

where the estimates fdp« andfg« are relatively more un- (4.5
certain. The parameters, and w in the Gaussian-type and

BSW-type wave functions fitted to the decay constants vigngeed, this pole mass is close to the mass 6.34 GeV of the
Egs. (2.2)) and (2.24) are listed in Table I. Note that the 1+ yector meson with l§c) content.

quark masses given in Table | are fixed to the commonly e most interesting and striking results are shown in Fig.
used values, and the other fitted values are by no meangsg, the functionl(v-v') [see Eq(3.18] for P—V transi-
unique. Presumably, other hadronic properties, for examplg,, obtained by taking the heavy-quark limit of the form
the light-meson elastic form factor measured at a wide rangg;cior A,(q?) or V(g?). For the Gaussian-type wave func-

of momentum transfer, would be helpful in fixing the light- tion, we find thaZ(1)=1 at zero recoil, and that numerically
front parameters.

a=2,

M poie=6.65 GeV.

1.00

A. Results for the Isgur-Wise function 095 [N ' ' ' ' ' ]
Before proceeding to numerically evaluate the>P and 0.90 F \\ Gaussian ]
P—V form factors, it is important to check the Isgur-Wise 085 | N ——- BSW
function to ensure that model calculations do respect heavy- 0.80 | N —rT V) i
quark symmetry in the infinite quark mass limit. With the 0.75 F AN \\-\ ]
Gaussian-type(3.4) and BSW-type(3.2) wave functions  §(vv) g70 | \\\ Sl ]
given in the limit of heavy-quark symmetry, the Isgur-Wise 065 | \\ T~ ]
function é(v-v') for P— P transition calculated from Egs. 0.60 [ TS ]
(3.1 and (3.10 is shown in Fig. 2 usingvp= wg=0.55. 055 F \\\\-
We see that the Isgur-Wise function obtained from Gaussian- 050 [ ]
type and BSW wave functions is very similar. The slope of 045 [ ]
&(v-v') at the zero-recoil point is 0.40 . s s s s
1.0 1.1 1.2 13 1.4 15 1.6
vV’

p’=—¢'(1)=1.24. 4.3

FIG. 2. The Isgur-Wise functiog(v-v') for P—P transition
calculated using Gaussian-tygeolid line) and BSW-type(dashed
3The decay constartt, is obtained from the measured decay rate line) light-front wave functions. For comparison, a curve far -/’
of p’—eTe”, while fx« is determined fromr—K* v, is also shown.
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1.00 y T T T T 14 ' ' ' ' '
0.95 | - 13 -
0.90 ; Gaussian
0.85 P\ ——- BSW ] 12 ]
0.80 | \\ - 14 i
0.75 | \\\ 4

Cvv) g70 | ANy ] 1.0 ]

~
0.65 | Y - 09 i
0.60 | S~ 4
~
055 | \\\\ J 0.8 4
050 T~ ] 0.7 .
045 4
0.40 1 1 I I '] 0'6 1 A ' L L
1.0 1.1 12 13 1.4 15 16 0.0 20 4.0 6.0 8.0 10.0 12.0
vV q° (GeV?)
FIG. 3. The Isgur-Wise functiog(v-v') for P—V transition FIG. 4. Form factorsF;(q%)=f_(q?) and Fy(q?) for B—D
calculated using Gaussian-tyfeolid line and BSW-type(dashed transition arising from the valence-quark configuration. Dashed
line) light-front wave functions. curves are fits td-; in a dipole form withM ;,,=6.59 GeV and to

Fgo in a monopole form witiVl 5,e=7.90 GeV.
L(v-v') is identical to&(v-v').* In contrast, the curve com-
puted using the BSW amplitude deviates consistently fro
&(v-v'); in particular,{(1)=0.87 at zero recoil. That means,
for reasons not clear to us, the overlapping of the BSW Wav%\éa

functions forP—V transition at zero recoil is not complete can be fitted b
y a dipole approximation in the entire timelike

in the heavy-quark limit. This in turn implies that the light- q° region with a pole masf 20ie=6.59 GeV, consistent with
front amplitude®gsy iS inconsistent with heavy-quark sym- the pole mass 6.65 GeY fitted to the Isgur-Wise funcficin
metry for P—V transition. . . q. (4.5)], while FBD(qZ) at low g2 (0=q2<6 Ge\P) ex-

We note that the presence of theterm in Eq.(3.18 is hlblts a monopole dependence Wilhy,=7.90 GeV. This
crucial in obtaining the numerical equivalence &ib-v")  monopole behavior foF §° at low g is consistent with Eq.
and &(v-v ) for Gau33|an Wave function. Hence the form (3.1

eak transition computed using Eq&.28, (2.35, and
2.43 are shown in Fig. 4we have neglected the nonva-
nce contributions At q?=0, we obtain
BD(0)=FBP(0)=0.70. From Fig. 4 we see th&t?°(qg?)

factorsV(g), A1(a%), Ax(g°) obtained previously ifi6,10] The q? dependence of the form factdr, (q?) for the
are incomplete since th® terms are not taken into account transitionsB— 7, B—K, D—a, andD—K are shown in
there. Fig. 5. Since nonvalence contributions are expected to be
important for heavy-to- Ilght form factors, especially for
B. P—P form factors B—  transition, a comparison with data at largeé would

. . . . not be meaningful until these effects are includétbwever,
Since the BSW wave function fails to give a correct nor-

malization at zero recoil for the Isgur-Wise function in
P—V transition, the ensuing calculations are all carried out
using the Gaussian-type wave function. Tdqfedependence
of the form factorsF,(q%) =f, (g% andFy(q?) for B—D

5In [11] form factors atg?<0 are reformulated as a double dis-
persion integral representation, which allows one to perform an
analytic continuation to time-like momentum transfer. The Landau
singularity there corresponds to our valence-quark contribution,
while the non-Landau singularity to the non-valence configuration.
4Since numericallyt(v-v') is equal to&(v-v’) up to six digits  However, the contribution of the Landau singularity in this ap-
for the Gaussian-type amplitude, we believe that this equivalence iproach vanishes at the “quark zero recoil” poifsee Fig. 14 of
exact, although botlwarLE andMATHEMATICA fail to give an ana- [11] for D—K transition), a phenomenon not seen in our direct

lytic result for Eq.(3.18). light-front calculations.

1.6 ——r———T—T— 2.2

15 | . 20 1

14 1 1.8 1

13 ] 1.6 b

1.2 1 , 1; ! FIG. 5. The form factor
1.1 16@ Lot ] f. (9% for B—m, B—K, D—,
1.0 . 0s L ] and D—K transitions arising
0.9 . 0.6 ] from the valence-quark configura-
0.8 1 0.4 ] tion.

0.7 1 0.2 ]

0.6 L . L L L L . 0.0 L L . L .

00 05 1.0 15 20 25 30 385 4.0 00 50 100 150 200 250 30.

2 2

q q
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1.40 ' . . , y . r r . .
1.20 .
FIG. 6. Form factor$/(q2), Ag(a?), A1(g?),
1.00 b andA,(g?) for B—D* transition. Solid lines are
the valence contributions evaluated in the-™
0.80 1 frame wherer (q?) =r .. (q), and dashed lines in
the “—" frame wherer(g?)=r_(qg?). The con-
060 1 tribution to the form facto, is independent of
. . ) , . . , , . . . the choice of the " or * —" frame.
0400 20 40 60 80 100 00 20 40 60 80 100 120
q q
. ) . . H [THERT] _ _ 2
as explained earlier, the nonvalence configuration does nd@ the “—" frame wherer(0)=r_(0)=(Mpx /Mp)“ [see

contribute at theg?=0 point. The numerical results for the Ed-(2.33]. As discussed in Sec. Il D, no firm predictions for
form factors atg?=0 are V, Ag, A; can be made unless tiegraph contributions are

included so that they are independent of the™ frames.

f87(0)=0.26, f2X(0)=0.34, Although we do not have a reliable estimate for fgraph

o oK contribution, we know that it is more important for ther _
f37(0)=0.64, f1%(0)=0.75. (4.6)  curve than the=r, one. This is because form factors at

We see that while the predictd®*(0) is in nice agreement q?=0 do not receive the nonvalence contribution. in the
with experiment,f BK(O)expt=0-75i0-03 [23], f°7(0) and " frame becauser  (0)=1. Therefore, Eq£4.n gives
the ratioR=f 27(0)/f °X(0)=0.87 are too small compared the complete results f@— D* form factors aiy°=0. Con-

to the measured valug®=1.29+0.21+0.11[24] and 1.01  Sequently, the difference between H¢.7) and Eq.(4.8)
+0.20+0.07 [25]. It has been pointed out if26] that the =~ Must be equal to the nonvalence contribution in the™
unexpected large decay rates of Cabibbo-suppressed decigme, namely,

D*— " 7% and doubly-suppressed decBy—K* 7~ ob- JBD* ABD*
\% 0)=0.16, A 0)=0.15,
served experimentally imply a sizable @)}breaking effect. © o ()
This effect can be explained in the factorization approach Z?D*(o)zo_og, K?D*(o)zo_ (4.9

only if f27(0)>f2X(0) or R>1. We find that explanation o .
of the observed ratidR remains an unsolved issue in the This implies that for heavy-to-heavy transition, form factors
light-front quark model. calculated from the valence-quark configuration alone and

Not shown in Fig. 5 is the heavy-to-light form factor evaluated in the %" frame should be reliable in a broad
f_(q?), which is expected to satisfy the heavy-quark-kinematic region and become most trustworthy in the close
s;/mmétry relation a? near zero recoi[22]: (f, +f_)B7 vicinity of maximum recoil. A generic feature of thgraph

~1/ymg and (f. +f_)°"~1/Jmg. Our light-front calcula- effect is illustrated in Fig. 7 by considering the form factor

+ _ . * . * . .
tion shows that in generd|_(q2)~—f+(q2) is a good ap- AgD . A_ssu_mlng that the fU”AgD has a dlpole behavior
proximation forB(D)—  transitions even when? is not ~ shown in Fig. 7 with a pole mas¥l ,.=6.73 GeV (dash-
close toqg2,,, but it is only a rough approximation for

B(D)—K transitions. 14 T T r T T
12} B->D* ‘/-’ y
C. P—V form factors A,
The g® dependence of the form factov§g?), Ag; £9°) r -
for B—D* transition is depicted in Fig. 6. We see that the 08f " e .
valence-quark contribution 9, A, andA; depends onthe [ .-
choice of the *+"” or * —" reference frame, corresponding 06 p-- 1
to r(q?)=r. (g% or r(g®)=r_(g?. In general, the form 04 b ]

factor in the “+” frame is larger than that in the +”

. . . non-valence
frame, but they become identical at zero recoil where R R T 1
r(92,.)="_ (%) =Mpx /Mg [see Egs.2.3)—(2.33]. At 00 . . 0
maximum recoilg®=0, we find 60 20 40 60 80 100 120
* * 2
VBP*(0)=0.78, ASP"(0)=0.73, q
A?D*(O)=0.68, AgD*(O)=0.61, @.7) FIG. 7. Ar;;l*lustratlon of the nonvalence cqntrlbutllggn to the
form factor Ag- , whose general feature applies kf and
in the “+" frame wherer(0)=r,(0)=1, and VEP" as well. Valence-quark contributionsAG°" evaluated in the
BD* BD “ 4+ frame (solid line) and in the “—" frame (dashed lingare the
V=7 (0)=0.62, Ay~ (0)=0.58, same as in Fig. 6. The corresponding nonvalence contributions are

BD* BD* extracted in respective frames by assuming that theﬁ@m* has a
A;~ (0)=0.59, A;" (0)=0.61, (4.8 dipole behavior withM,.=6.73 GeV(dash-dotted ling
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1.4 T T T T T T

FIG. 8. Same as Fig. 6 except f@&—K*
transition.

dotted curvg, the difference between the “full curve” and have been extracted by CLEQ7] from an analysis of an-
the valence contribution should give the nonvalence contrigular distribution inB—D* v decays with the results
bution. It is clear that th&-graph effect in the =" frame 2
(dashed curveis sizeable in the entire kinematic region, R1(Gmay) =1.1820.30+0.12,
whereas it is important in the+" frame (solid curve only
wheng? is close to the zero-recoil point.

For a broad range af?, we find thatA5®", AS®", VBP"  Equation(3.24) implies that, irrespective of the valuesaf,
can be fitted to a dipole form am&f®” to a monopole form, Ri(q%) =Ry(g?) =1 in the heavy-quark limit. Our light-front
in accord with the HQS relations given in E§.24. Experi-  calculations yieldv®®" (q2,,)=1.14,A"" (q?,)=0.83, and

R,(93,,0=0.71+0.22+0.07. (4.1

mentally, two form-factor ratios defined by A?D*(qﬁqay)=0.96, hence  Ry(q2.0=1.11 and
9 VED* (g2 R,(0%2,0=0.92, in agreement with experiment. The predic-
Rl(q2)=[1— q , _ q , tions of HQET are similar[2]: R;=1.3+0.1 and
(Mg+Mp+)“] ABD*(g2) R,=0.8+0.2.
As shown in Figs. 8-11, we have also computed dhe
92 AZBD*(qZ) dependence of the form factors Br—K*, B—p, D—K*,
Rz(qz)z[l— T (4.10 andD — p decays. The numerical results of the form factors
(Mg+Mp«)7) ABP" (g?) atq®=0 are(in the “+” frame):

B—K*: ABX'(0)=0.32, APK(0)=0.26, ABX"(0)=0.23, VBX*(0)=0.35,
D—K*: AXX"(0)=0.71, APK"(0)=0.62, ADK"(0)=0.46, VPK*(0)=0.87,
(4.12

B—p: ABP(0)=0.28, AP(0)=0.20, A5’(0)=0.18, V®*(0)=0.30,

D—p: A§P(0)=0.63, ADP(0)=0.51, AD(0)=0.34, VP?(0)=0.78.

14 T T T T T T T T

i FIG. 9. Same as Fig. 6 except fBr—p tran-
sition.

0.0 L L L L L 2 2
0.0 5.0 10.0 15.0 20.00.0 5.0 10.0 15.0 20.0

2 2

q q
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1.00
0.90

0.80

. FIG. 10. Same as Fig. 6 except for—K*
transition.

0.70
0.60

0.50

0.40 L \ ) L L L ' 2
0.0 0.2 0.4 0.6 0.8 0.0 0.2 04 0.6 0.8 1.0

Experimentally, onlyD —K* form factors have been mea-  As for theq? dependence of heavy-to-light form factors,
sured with the resultg23] we see from Figs. 8—11 that, except %6, they all increase
with g2, thoughA, is flatter thamA,, A,, andV. As we have
argued before, the valence-quark contribution evaluated in
the “+" frame should be reliable wheg? is close to maxi-
mum recoil. For smalf?, we have a dipole behavior fdy,,
ADK*(0)=0.40+0.08, (413 A, V (except forv® andV®K") and a monopole behavior
for A;; that is, Ay, A,, andV increase withg® faster than

. . . A,. The form factorV for B—p andB—K* in the “+”
obtained by assuming a pole behavior for tffedependence. frame does not have a dipole behavior at smglimainly

7 f .
VOVII#] 2;%‘222?2;f0r thed —~K* form factors are consistent becazuse of the. large destructive contributions from the
Form factoré for Bsp and D—sp transitions at QVkL/W\, terms in Eq(2.78. As a resul.t, the form factd_v
2.0 bredicted in vario pa oachélaect'ce - Ulatons, N B—p andB—K* decays evaluated in the+" frame is
9 predi In various approa Ice SIMUIations, —gmalier than that in the " frame. The g? dependence of
QCD sum rule, quark mOdel' light-front quarlg mod_el, the P—V form factors have also been studied in the QCD-
and hea_vy quark effective theor)_/ together with Chlralsum—rule approach with some contradicting results. For ex-
perturbation theoryare summarized in Table Il. We have to ample, whileA B” is found to decrease fromf=0 to g?=15

await further experimental studies in order to test variou : ;
models. TheB— K andB—K* transitions arise from flavor- S(SBGee\f |irr11Eg]é%e?;edescﬁsifggg), ;%Cr:i; Lﬁ)h e_rllﬁ;nesrsjcr):_lrzlréot
changing neutral currents induced by QCD Corre.CtionSresults of[3£3] show that the foﬁn factoer ,. A,,V all have

It has been found r((ai:;antly t_hat there are two expenmentaé dipole form whileA; has a monopole form, in accord with
?ata_ fo:t B_)J/i/’Kb \l’IVh'Ch car;not %e a(C:icousnted our observation. The same conclusion is also reachéf]in
or simultaneously by all commonly used modgks]. based on the scaling behavior of heavy-to-light form factors

Henc?*)n is important to have 2a reyable_ estimate of thein the mg—oc limit. A recent lattice study of the axial form
B—K form factors at g°=mj, in order to

o 1 factors A§?, A®? and A5’ [32] is consistent with they?
:ﬁ)snt ;?5e\3’al'd'ty of the factorization approach. Our CaICUIa'behavior we have obtained in the light-front quark model.

VPK*(0)=1.0+0.2, APX"(0)=0.55+0.03,

F3¥(m%,)=0.66, V< (m3,)=0.42,

AZF (m2,) =063, AP (mZ,)=037, V. SUMMARY
ASK*(mgl )=0.43 (4.14) The heavy-to-heavy and heavy-to-light form factors in
v P— P andP—V transitions are studied in the present paper.
from valence-quark configuration. In the light-front relativistic quark model, the decay form
1.10 T T T T T T T T T T T T
1.00 5
0.90 -
0.80 E
0.70 - .
FIG. 11. Same as Fig. 6 except fr—p
0.60 transition.
0.50 -
0.40 J
0.30
0.0
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TABLE II. Form factors forB—p andD— p transitions afg?=0 in various models.

Reference ABr(0) A5r(0) VE(0) AP?(0) AB?(0) vPr(0)
Lattice BES[28] 0.65"1224 0.59731+28 1.07+0.49+0.35
LMMS [29] 0.45+0.04 0.02-0.26 0.78-0.12
ELC [30] 0.22+0.05 0.49-0.22 0.370.11
APE [31] 0.24+0.12 0.27-0.80 0.53-0.31
UKQCD [32] 0.2777%3 0.28"2+¢
GSS[33] 0.1675722 0.72°33+10 0.6173312 0.59"7*8 0.83755"%2 131752718
Sum Slobodenyuk34] 0.96+0.15 1.210.18 1.270.12
rule Ball [35] 0.5+0.1 0.4-0.2 0.6+0.2 0.5-0.2 0.4-0.1 1.0+0.2
ABS [36] 0.24+0.04 0.28-0.06
Narison[37] 0.38+0.04 0.45-0.05 0.45-0.05
YH [38] 0.07+0.01 0.16-0.01 0.19-0.01 0.34-0.08 0.57-0.08 0.98-0.11
QM ISGW [39] 0.05 0.02 0.27
BSW [18] 0.28 0.28 0.33 0.78 0.92 1.23
Stech[40] 0.30 0.33 0.35
FGM [41] 0.26+0.03 0.31-0.03 0.29-0.03
IV [42] 0.50 0.51 0.70 0.55 0.45 1.08
LFQM This work 0.20 0.18 0.30 0.51 0.34 0.78
OXT [9] 0.21 0.18 0.32
Jaus[10] 0.26 0.24 0.35 0.58 0.42 0.93
Melikhov [11] 0.17-0.26 0.16-0.24 0.22-0.34
HQET CDDGFN[43] 0.21 0.20 1.04 0.55 0.28 1.01
+ChPT CDDGFN[44] 0.28 0.19 0.50

factors are evaluated in a frame whefe=0 andqg, =0, so M0e=6.65 GeV forB—D transition. However, the pre-
that it covers the entire physical range of momentum transfedicted slope parameter=1.24 is probably too large. This
and no extrapolation assumption from?=0 or from may be ascribed to the fact that the Gaussian-type wave
0°=0q2 . is required. In previous works using"=0, one function does not have enough high-momentum components
can only calculate form factors gf=0; moreover, the form at largek, . o
factorsf_(g?) in P—P decay anda_(g?) in P—V decay (4) The valence-quark and nonvalence contributions to
cannot be studied. For the first time, we have calculated thform factors are in general dependent on the recoiling direc-
P—V form factors directly at timelike momentum transfers, tion of the daughter meson relative to the parent meson, but
The main results of this paper are as follows. their sum should not be. Although we do not have a reliable

(1) We have investigated the behavior of heavy-to-heawf 0 R |2l RO i or e O e B e
form factors in the heavy-quark limit and found that the re'valence-quark configurati,on evaluated in the-™ frame
8 e o ot ShOU b flbl I e Knematc rgion.and hy be-
by the light-front quark model provided that the universal come most trustworthy in the vicinity of maximum recoil.

. ; , o (5) The form factorsF;, Ay, Ay, V (except forv®” and
function {(v-v") obtained fromP—V decay is identical to /8K ) all exhibit a dipole behavior, whilg, andA, show a

the Isgur-Wise functio(v-v') in P—P decay. monopole behavior in the close vicinity of maximum recoil
(2) Contrary to the Isgur-Wise function iR—P decay,  for heavy-to-light transition, and in a broader kinematic re-

the normalization of(v-v") at zero recoil depends on the gion for heavy-to-heavy decays. TherefoFg,, Ay, A,, V
light-front wave function used. We found that the BSW am-increase withg? faster tharF o andA; .

plitude correctly givesé(1)=1, but £(1)=0.87. Therefore,
this type of wave function cannot descriBe~V decays in a
manner consistent with heavy-quark symmetry.

(3) Using the Gaussian-type amplitude, the Isgur-Wise
function {(v-v') has a correct normalization at zero recoil  This work was supported in part by the National Science
and is identical tof(v-v') numerically up to six digits. It Council of ROC under Contract Nos. NSC85-2112-M-001-
can be fitted very well with a dipole dependence with010 and NSC85-2112-M-001-023.
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