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Test of the Goldstone-boson approximation with fermions
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The calculation of the leading electroweak corrections to physical transition matrix elements in powers of
MZ/v? can be greatly simplified in the limZ>M3,, M2 by the use of the Goldstone-boson approximation.
In this approximation, the vector bosoWé™ andZ are replaced by the associated scalar Goldstone bosons
w*, z which appear in the symmetry-breaking sector of the standard model in the limit of vanishing gauge
couplings. The approximation remains valid in the presence of the Yukawa interactions between the fermions
and the Higgs and Goldstone bosons provided the renormalization conditions are formulated so as to be
consistent with the standard model. As a concrete test of the approximation scheme, we calculate the dominant
radiative corrections to fermionic Higgs-boson decays at one loop including the virtual effects of a heavy top
quark. We apply the result to the decays—>tt_andH—>bb, and find that the results including fermions are
quite accurate numerically for Higgs-boson maddes>400 (350) GeV, respectively, even fioy =175 GeV.
We discuss the associated renormalization problem to all orders in an appendix to the paper.
[S0556-282197)00503-1

PACS numbgs): 12.15.Lk, 11.15.Bt, 14.80.Bn

I. INTRODUCTION which both the external and internal particles are Higgs
bosonsH or longitudinally polarized gauge bosokg and
The investigation of the physics of the Higgs sector ofz, [1,2,5-13, and have neglected corrections from internal
electroweak theory is one of the most important problems fofermion loops. An exception is the work of Barbiest al.
high-energy experiments in the near future. Radiativ_e correq13), who calculated them; corrections to the decays
tions to high-energy processes may become very |mportar2_>ﬂ+lu— andZ—bb to one loop. The existence of a heavy

in the process of distinguishing the standard mo&\) top quark leads to a large Yukawa coupliggin the SM. In

Higgs sector from other theoretical models. Moreover, th e case of a not-so-heavy Hiaas boson. one can expect the
effects of a Higgs boson on low-energy observables such ag y Higg ' P

the electrowealp parameter already need to be included inradiat?ve corrections Wh?Ch invo_lvgt_ to be comparal_)Ie i_n
comparing the theory to present precision measurementg?agn,'tUde to th2e cozrrecnons which .|nV(.)Ive the quartlg Higgs
However, the calculation of the complete higher-order corcOUPling A=M{/2v°. These contributions can again be
rections is a difficult task. It is therefore important if one cantaken into account in a simple way using the Goldstone-
calculate the most significant corrections relatively simplyboson approximation: In the limit of vanishing gauge cou-
within a well-defined approximation. In the case of a heavyplings, the fermions couple only to the Higgs boson and the
Higgs boson, such an approach is provided by theGoldstone bosons in the symmetry-breaking sector of the
Goldstone-boson approximatiq®BA). This is closely re- theory.
lated to the original Goldstone-boson equivalence theorem While the basis of the Goldstone-boson approximation is
[1,2], but deals with internal rather than external gaugeclear physically as resulting from the smooth limit of the SM
bosons. In particular, it can be shown through power-as the gauge couplings are taken to zero, its implementation
counting argument$3,4] that the leading correction to a starting from the scalar theory with fermions is not com-
physical process in powers Mﬁ/v2 can be obtained at any pletely straightforward. In particular, the requirement that it
order by replacing the vector bosons™ andZ of the SM by  reproduce the leading corrections in the SM severely restricts
the associated scalar Goldstone boseris z which appear the choice of renormalization scheme and the definitions of
in the symmetry-breaking sector of the theory in the limit of the couplings. We discuss this problem in detail in an appen-
vanishing gauge couplings. This replacement of vector byix to this paper, and present a framework valid to all orders
scalar bosons results in a substantial simplification of thén A andgs for vanishing gauge couplings, results which will
calculations. In the approach described here, we work wittpe useful in future calculations.
the reduced theory from the beginning. The Goldstone-boson approximation is known to be valid
Previous calculations based on the Goldstone-boson apermally for My, sufficiently large compared tdly,M7. An
proximation have mostly been concerned with processes ifnportant question, however, is how heavy the Higgs boson
must be before the GBA gives a quantitatively good approxi-
mation to the full electroweak theory. We study that question
*Electronic address: Idurand@wishep.physics.wisc.edu and illustrate our method here at the one-loop level using the

TElectronic address: kurtr@physik.tu-muenchen.de fermionic decay of the Higgs bosoH,— ff. We find for the
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observed top-quark mass,~175 GeV[14] that the GBA

result approximates the full electroweak correction to v =
I'(H—tt) very well for M;>400 GeV, but fails near the

threshold at 350 GeV where the effects of the gauge interac-

tions become important. The result fbf(H—bb) is also

quite good forM,>350 GeV, though the accuracy is re-

duced by a cancellation between the Yukawa and Higgs-

boson contributions. The gauge couplings give the dominant,

very small, corrections for lower values bfy, . d=i o,d* :(

L
oL

1
): ‘ﬁf,L:E(l—Ys)lﬁf, (2.9

Vaw*

h+iz

wWq+iw,
h+iz

: 2.9

h—iz
—Wq+iw,

h—iz
—\/fw)' (2.6

II. LAGRANGIAN AND RENORMALIZATION SCHEME The right-handed fields are €2), singlets, with

A. Framework

1 5

We will be concerned in later sections with the calcula- Yir=2 (1) 2.7
tion of the leading contributions to the decay rate of the ] ) ]
Higgs boson to fermiongd — ff, in the limit of large Higgs- 1 he expressions in Eq$2.2) and (2.3) include all pos-
boson and top-quark masses. These contributions can be c&iP!e SU2)1 X U(1)y-symmetric terms consistent with renor-
culated rather simply using the Goldstone-boson approximamal'zab'“ty of the Lagrangian. The counterterms necessary
tion [1,2,15,16,3 4 This approximation corresponds to effect the renormalization without breaking the symmetry
physically to the limit of vanishing gauge couplings, must have the same forms and can be introduced by inde-

9,9' >0, and the consequent decoupling of the tranvers@endent multiplicative rescalings of each term above. Thus,

gauge bosons from the remainder of the standard eledD the case of the Higgs Lagrangian, all possible symmetric

troweak model. The remnant theory is defined by the | gcounterterms are generated .by multiplying the kinetizc energy
grangianLgga=Ly+ Lg, Where £, is the Lagrangian for tezrm by2a factorZy , replacingh by X+ 8\, and u” by
the scalar fields in the Higgs- or symmetry-breaking sectoft” + ou”. Because tThe minimum in the Higgs potential is at
(the would-be Goldstone bosons of the full §Mnd £y is & Nonzero value ob ' for “>0, & has a nonzero expec-
the Lagrangian for the fermions which includes their t2tion valuev in the physical vacuum. We will display this
Yukawa interactions with the scalar fields. If the couplingsPY rewriting the fieldh ash=H+v and expanding around
and renormalizations are properly defined, the reducef® Physical vacuum in whict2[H|Q)=(Q|w|Q2)=0. The
theory is supposed to give a good approximation to the fulfénormalized Higgs Lagrangian then has the form
electroweak theory foMy sufficiently large compared to
M. The result in our case is an expansion for the dominant £,= 1 Zp(d W-d*w+d,HI*H)— F(N+6N)
contributions tol'(H—ff) in powers of the quartic Higgs s o ) 1 y 5
coupling A=MZ/20°=GegM?2/\2 and the top-quark X(WoHH+20H)* = 3 [(A+ 6N v*— pu®— 6u”]
Yukawa couplingg,= v2m,/v. Corrections associated with X (W2+H2+ 20H), 2.8
the transverse gauge bosons are suppressed by powers of the
small gauge couplingg,g’.

We will work entirely with the reduced theory using the
Lagrangian

where w is the SQ@3) vector (w;,w,,w3) of Goldstone
bosons withw;=z, and we have dropped an additive con-

stant.
£GBA=£ﬂ+£E+counterterms, (2.1) It is convenient for calculation to define a set of rescaled
or “bare” fields Hy, wy and the corresponding $2), dou-
Where blet ®, such that the kinetic terms i, have the customary
unit normalization,
LR=5(2,0) (9"®) = N(@TD)+5 p?D D, Ho=Z¥H, wo=Z2 w,d,=7%%, (2.9

(2.2

and to introduce a corresponding bare vacuum expectation

0 = — — 1 — valuev,, a bare coupling.y, and a parametefm3:
Le=iW 0V +igy gIthy gt 1p rOPp R Egt‘l’L‘blﬂt,R

vo="24%, (2.10
1 _
- Egb\lfl_q) (/lb,R—’— HcH+---. (23) \ S\
No=57| 1+ —], (2.11
z3 A

We have written only the top- and bottom-quark contribu-

tions toﬁg; the remaining fermionic contributions have the 5m§=Zg,1[,u2+ Su?—(N+ o\)v?]. (2.12
same form, with no right-handed contributions for the neu-

trinos. In these expressiony, , ®, and® are SU2), dou-  With these definitions, we obtain the form 6f; that we will
blets with normalizations defined by use:
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EH:%(aﬂWO.al’vWO-}- d,Hod*Ho) The fermion LagrangiarCg can be treated in a similar
fashion. There is a separate @& XU(1)y-symmetric
— INo(W3+H3+20oH()? counterterm for each term in E¢.3). These counterterms
can be absorbed in the definitions of a set of bare fields and
+ 2om3(wWa+H3+ 2v0H,). (2.13  couplings to bringCe into the form

R— 1
S0V Doy R~ %

V2

Le=1W0W0+i g0 byt i 2 nb o go¥ Doy ot H.C.

— — . — — 1 — [J— 1 —
=i yPby — (my+ dmy) Yy — i Ybyy— (My+ Smy) Yoy — Eg?w?How% Eg?w?vszw?— Eggwﬁwﬁ

I 55 —5 —5 — 5
- Egﬁwgﬁzwﬁw?w?ﬂwa Y.Lt O0UR, L Wo YR~ OB RWG Wil — G Wo Yo R, (214
|
where A=M2/2v2=G:M2/\2, (2.19
W=z, (219  where G is the Fermi constant obtained from the muon
decay rate using the standard electromagnetic radiative cor-
W r=ZiR¥ir, f=tb, (2.16  rections andv is the physical vacuum expectation value,
v=2"Y4G_ 12~ 246 GeV. This definition connects smoothly
s 59 with Goldstone limit as shown ifl9,20.
g?=z—1/§ 1+ E) : (2.1 With the specifications above, we find that the wave func-
(O]

tion renormalization constang, , Z,, andZ,,, which relate
the bare fieldsv, , zo, andH, to the physical fields through

The parametersn; and g; are defined to be the physical the relations

masses and Yukawa couplings of the quarks, whilg is

the mass or coupling counterterm: Wi = Zle/ZW,fhys, Zo= Z%/%physv Ho=2ZY2H ohys:
(2.20
v 5gf
mfZQny omy= Mg (2.18  are given to arbitrary order in terms of the self-energy func-
tions for the bare fields by
Note that there are separate renormalization constants for 1 d
Yn g @nd ¢y, g, and a single renormalization constant for the 7 =1- Fﬂa(pz) , (2.21
left-handed double¥, [17]. The factorZg;*2in g¥ has been w P p2=0
introduced for later convenience. 1 q
o 7 =1 d_szg(pz) , (2.22
B. Renormalization z p2=0
The determination of the renormalization constants is dis- 1 d
cussed in Appendix A. We use on-mass-shell renormaliza- —=1- _an(pZ) (2.23
tion with all quantities calculated in terms of the bare fields. Zy dp p2=M2

. . . ! H
The couplings and renormalizations are defined so that

Lcpa reproduces the results of the SM in the limit The single mass counterteram? in the Higgs Lagrangian,
M{>M§,. We emphasize here that this is not automatic: ItEq. (2.13, is given by

is essential that thev* and z fields be renormalized at a

momentum scal@? with |p?|<M? [16], and that the cou- sm3=T12(0)=T112(0). (2.24
plings be defined in terms of physical standard-model quan-

tities that have well-defined limits for vanishing gauge cou- In the absence of fermions, the self-energy functibifs
plings,g,9’ —0. In particular, since th&™ andz bosons are and 1'[2 would be equal for allp? because of the S@)
guaranteed to be massless by the Goldstone theld@mwe  symmetry of £,;. That symmetry is destroyed iiggs by
renormalize thav, andz, fields atp?=0, while the Higgs the fermions, e.g., top and bottom quarks witf# m,,. As a
field is renormalized ap?=M2 with M, the physical result, 110, and 12 differ away from the special point
Higgs-boson mass. The quartic couplingwill be defined p2?=0 [21], their derivatives consequently differ p£=0,
[19] to be givenexactlyby the relation and Z,#2Z,,. Furthermore,Z,#2, [20]. Since the wave
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function renormalization constamt, introduced earlier is f 7 7 P Iz P
sufficient, along with the other renormalization constants, to _<l: _<:Z .
absorb the divergences in the Higgs sector of the theory, h f p b f > bt
Z,, Z,, andZy can only differ fromZg by finite multipli-
cative factorZ;, Zi=2;Z4 . An argument of Barbierét al.
[13] based on the Ward identity for the charged weak current
determinesZq, and shows tha¥Z4=2,, and Z,=1 in the
limit g,g’—0. The same result can be extracted frgif]. - f Z4—f o
This identification corresponds physically to the observation _<\ f —;”” E — LS
that the Fermi constareg, and therefore the vacuum ex- —-f "
pectation valuev=Z(},1’2v0, is defined through charged- L L L
current processes, i.e., muon decay and superallowed nuclear 4 5 6

decays. These involve th&/ rather than thez or H o . I —
'gosons.yThe distinction is important: The results we will FIG.‘ 1 The six triangle diagrams contributing - ff at one

— loop within the framework of the Goldstone-boson approximation.

present for the decaji —ff in the Goldstone-boson ap- Thick lines correspond to the Higgs particle, dotted lines represent

proximation agree with the limit of the SM results for large e massiess Goldstone bosons, and solid lines with arrows refer to

My only with the choiceZy=2,,, though a finite theory fermions. The fermiorf’ is the SU2), partner off.
would be obtained using any of tl#&s.

The renormalization constants in the fermion sector argjently of the fermion masses, with the exact result obtained
determined by the fermion self-energy function by other author§22—25.

30=pIIY(p?) + py°TIA(p?) + mII(p?), (2.29

A. Form of the decay matrix element

related to the bare propagator by According to the discussion above, the matrix element for

) the decayH—ff is given by the expression
i
10 _ . _
IS¢ p—mi—3—om’ (2.29 — i My_17=ZH2U(p1— P2, M) (ZRPL+ ZPR)
0/—1/2 1/2
where we have suppressed the quark label. The renormaliza- XT3(ZrPr+ 2P (P2,my). (3D
tion to arbitrary order is rather intricate because of the separ o e Dy

rate right- and left-handed contributions to the physical ferm-bOson and the outgoing antifermion, respectively, E@ds

. . 0 . . . . .
lon fields and> '.Th's IS Q|scussed n Appendlx A At th? the truncated three-point vertex function calculated using the
one-loop level of interest in our applications, the results sim-

plify substantially and are consistent with the SM results O,rbare Lagrangian,
Bohm et al. [17]. In particular, we find that : 6

|
M=——g%+> Li+---, 3.2
Z, =1+1Y(m?) —TI3(m?) + 2m?I1Y (m?) + 2m?T1 " (m?), TR 2‘1 ' @2

2.2

(220 where the one-loop integrals; correspond to the triangle
Zr=1+1%Y(m?) +0%(m?) + 2mI1Y’ (m?)+2m?I12’' (m?),  diagrams in Fig. 1.

(2.28 The renormalization constagt, appears only through the
definition g%=275"%g:(1+ 8g¢/g;), Eq. (2.17. Since Z,,
#+Z,#Zy, it is essential to know which, if any, of th&’s
should be used foZ4 . As noted above, this can be estab-
lished using the Ward identity for the weak vector current
We note finally that physicah-point scattering amplitudes [13,16], with the resuliZq,= Z,, for our definition of the cou-
are given by the truncated Green’s functid?%calculated in plings and theZ’s. Using the definition og?, writing each
terms of the bare fields, multiplied by a factor 7 as 1+ 57, and expanding, we obtain the one-loop expres-
(Z§?Pr+Z2}?P.) and the appropriate spinor for each incom- sion for My, (7,
ing fermion line, and by a factorZ&?P, +Z?Pg) and a

and p, are the momenta of the incoming Higgs

69 om
o = = M)~ Tgm?). (229

conjugate spinor for each outgoing fermion line, where —iMy_ir=u(py—Pp2,M)
Pr=3(1+%°) and P =3(1—v°). These factors generalize _ 6
the usual factors oZ 2 for standard Dirac fields to the case x| — I—gf(l+ Lpoct Lior) + 2 L.
of chiral interactions. V2 I = T
ll. H—ff TO ONE LOOP: THEORY Xv(P2,My), (33
In the present section, we will sketch the calculation ofWhere the “bosonic” counterterm is
the one-loop corrections to the matrix element for the decay 2112 1
H— ff using the Goldstone-boson approximation and com- Lpom s —1 = = 02— = 6Zy+ - - - (3.4)
pare this approximate result, valid fof,>M,, indepen- Zy 2 2
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"y
Yenat
LS
LT\

Qlﬂ

FIG. 2. The one-loop tadpole diagrams which are canceled by
the counterternT to avoid a shift in the vacuum expectation value
of the Higgs field. The different lines have the same meaning as in

Fig. 1. A summation over all Goldstone boson and fermion loops is
implied.

“ay
o

-y
RALIN RSN
. e —

T

and the “fermionic” counterterm is

o 1 1 o
Lfer:(1+ %)(Z{QZ{)l/Z—l = Egz&ju §5sz+ ﬁ.,. .

f
(3.9

This grouping of terms has the advantage ﬂJQJs, 'while' _ FIG. 3. Higgs self-energy contributions at one loop. The differ-

dependent on the fermions through loop contributions, iS ingnt jines have the same meaning as in Fig. 1. A summation over all

dependent of the flavor of the final fermion pair. It thereforego|gstone boson and fermion loops is implied.

gives a universal correction to all decays—ff. The fermi-

onic counterterm, in contrast, depends explicitly on the fla- The contributionssZy ¢, and 8Z,, s, Which arise from

vor of the final pair. This distinction will be important later. fermionic loops have been calculated[B0]. Neglecting all
fermion masses except fam,, the fermionic contribution to

B. Bosonic counterterm Lpos IS

The bosonic counterterry,, defined in Eq.(3.4) is de- 1
termined by the derivatives of the self-energy functiﬂ& 552'“”_ §5Zw,fer
and Hﬂ in Egs. (2.21) and (2.23. Because the field renor-
malization constanZ,; differs fromZ,,=Z2Z4 only by a finite 1 mt2
renormalization, the bosonic countertelrg, is finite to all =WNC7
orders. The tadpole contributions to the self-energies shown
in Fig. 2 are canceled by the same counterté’mvoémg 5 s o 1
as cancels the apparent radiative changes in the physical —(1— ;)MHRG[t?Bo(M Mg Mo ]— 5|
vacuum expectation valug, and will be dropped. The re-
maining contributions to the boson self-energies are given to 3.9
one loop by the irreducible diagrams shown in Figs. 3 and 4.

The presence of fermion loops in these diagrams leads to lc=3 is the color factor. The standard scalar integral
breaking of the SC8) symmetry of the Higgs Lagrangian for Bo(p%m§,m?) and its derivativedBo(p?,mj,m?) [27,31]
unequal masses of the fermions in an(8)) doublet, with ~ are defined in Appendix B.

the result thafl12(p?)#11,,(p?) for p?+0, and hence that

ZZ¢ ZW . “"..
The boson-loop diagrams have been calculated by a hum- :'
ber of author§5-9,20,26,2]. With the notation ceana eene

—RgBo(M3,m?,m?)—By(0,0m?)]

LTS

&
Illll:h--‘llllll

5Zi = 5Zi,bos+ 5Zi,ferr (36)

the results are

A r\
5ZH,bOs:F(12_27T\/§)v (37) csuma ' PLELLE snmug YT

T ’..-“0
A . .
5ZW’bOS:—2( -1). (3.8 FIG. 4. The Goldstone-boson self-energies at one loop. The dif-
16m ferent lines have the same meaning as in Fig. 1. The diagrams on
the right need to be summed over the different Goldstone-boson and
These one-loop quantities are separately finite. At two loopSermion-loop contributions, respectively. In case of an externat
the Z's become singular[20,28,29, but the ratio z the fermion loop consists of &’ or ff pair, respectively, where
Z4 vos! Zw vos@nd hence its contribution to,,sremain finite. ' is the SU2), partner off.
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The explicit expression fok,,s depends on the ratio of z w
the Higgs-boson and top-quark masses. For Higgs-boson
masses above the top-quark production threshold at J J
My=2m;, we find that f I f
)N FIG. 5. The three diagrams contributing to the fermion self-
Lboszm(? — 77\/§> energies at one loop. The different lines have the same meaning as
in Fig. 1. The fermionf’ is the SU2), partner of the external
3 mt2 1 1+b fermion f.
+m2;2-[b 2+az In2a+1In T)}
taining either a virtual Higgs boson or a massless Goldstone
1 1 boson and the appropriate fermion linke,or f’, where f
—5~ ;], My>2m, (3.10  refers to the final fermion.

In contrast to the expressions for the bosonic self-
while. for smaller masses energies, the expressions for the fermion self-energies de-
’ ’ pend on the Dirac matrices and, in particular, gh This

N mtz ¥° dependence raises the possibility of problems with dimen-

—— $sin(p) sional regularization related to the definition of such quanti-

LbOS: 1%2 ( - \/_

167° v? |2 ties as Ty y#1. .. y#0 and the antisymmetric tensor
é 1 1 dimensions. However, as shown by Barbigtral.[13], naive
2a? —3+ === dimensional regularization with® and the remaining Dirac
?Jsig) 2 a matrices treated as anticommuting is equivalent in the
present context to the proper 't Hooft—Veltman schd8H
My<2m, (3.1 to at least two loops for physical quantities. We have there-
fore calculated the fermion self-energies and the triangle dia-
where grams using naive dimensional regularization.
The explicit evaluation of the expression in E®.13
a=My/2m,, b=y1- a2, requires the specification of the flavor of the final state ferm-
ion. The results forf=t and f=Db are given in Secs. IV A
p=arccogl—2a?), 0<p<m. (312  and IV B, respectively.
We will henceforth refer to the casedMy>2m; IV. H—ff TO ONE LOOP: APPLICATIONS

(My<2m,) as those of a “heavy'(“light” ) Higgs boson.

As noted earlier, the result far,,sdoes not depend onthe ~ The six one-loop vertex diagranhs, i =1-6, contribut-
final state of the decay. For a fixed value Mf,, it is the  ing to Eq.(3.5 are shown in Fig. 1. Using the Dirac equa-
same for all processeld—ff. As an useful example, we tions for the spinorsi(p; —p,my) andv(p2,my), extracting
note thaﬂ_bos already gives theompleteone-loopO(\) and @ factor—im; /v from the reduced expressions for the func-
O(g?) corrections to the dominant leptonic decay,tionsL;, and denoting the results ty, we can write Eq.
H— 7+ 7. The fermionic counterterm and the vertex correc-(3-3) as
tions for this and other leptonic decays do not receive further

corrections in these couplings. ) M
It is worth mentioning that there are no threshold singu- —1Mu_ff=—Ii Tu(pl_p21mf)v(p2amf)(1+AT)a
larities in Ly, The right-hand sides of Eq$3.10 and 4.1

(3.11) are equal foMy=2m;. In general, threshold singu-
larities occur only when the gauge couplings of the standard h th . trix el ti | | d th
model are included. We can consistently neglect the gaug\é’ ere the spinor matrix efement IS purely scalar an €
couplings when using the Goldstone-boson approximation. Guantity AT s defined as

C. Fermionic counterterm AT=Lpoet LigtLyis  Ly= E tl 4.2
The fermionic counterternh ., defined in Eq.(3.5 can =1
easily be reduced to the form
The correction to the decay width can then be written as
Lter= Re[l'[ (mf) 2mf[1'[ (mf)+1'[ (mf)]}

(313 T(H—ff)=Tg(H—ff)| 1+ A7
by using the renormalization conditions stated in E827), :FB(H_>ff_)[ 1+2 RAAT+O(A%,Ag?,0P)],
(2.28, and(2.29. The potential tadpole contributions to the
fermionic self-energies and their derivatives are exactly can- 4.3

celed by the counterterms. The remaining one-patrticle irre-
ducible diagrams are shown in Fig. 5. All involve loops con-where[32]
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3 A Hott

(4.4 In the mass regioM ;>2m;,, the only important fermi-
onic decay of the Higgs boson is the decay into a pair of top
quarks, with a branching ratio of approximately 1033].

- Sincem;>m,,, we can calculate the decay rate fdr—tt

is the Born result. The functiol;L; is rather complicated, ysing our general results foi—ff evaluated in the limit

and we will only give the results needed for the decaysm =0. Using the relation.=M?2/(2v?), we add the contri-

H—tt andH—bb. They are listed in the following sections. butions from the six triangular loops and obtain

ZMH

4m?
B(H*)ff) 8—2—

M,

2 4
1 4a 1), 6| ,
Ltri:_16ﬂ_2 7 a2_1 1+¥_¥ thO(Mvat!mtvmtrMH)+ 9_; thO(MH!mtIMH!Mvat)
) 1, 7 2 1 1+b
-m;Co(My,m;,0,0m) — =—-m;Cy(My,m;,0,0,0+| —6+ —|In2a—b| — 6+ — + —|| In2a+In——
2a a ac a 2
77\/_ i
a7 T2t b)}* 4.5
where
M1 2 4.6
a—z—rnt = gz ( . )

This result, based purely on the Lagrangian of the Higgs sector and the interaction of the Higgs and the Goldstone bosons with
the fermion sector, is in complete agreement with the corresponding’rgisgh by Kniehl[22], which was calculated using
the full electroweak Lagrangian, assumihgi>4mt2> M\ZN> mﬁ and neglecting terms that are not enhanced by an inverse
power of MS\,. That procedure is equivalent to the usual power-counting argumdptk taking the limitg,—0, with
0>/My=2/v. The agreement of the two results demonstrates the validity of the Goldstone-boson approximation to one loop
for H—tt.

To compare the decay matrix element in our approximate calculation with that obtained in the full electroweak calculation,
we still need explicit expressions for the counterteimgs; and L, for My>2m;. The expression fok . is given in Eq.
(3.10. Evaluating the general expression fgg, for My>2m, usingm,=0, we find that

2

m; 4 2 2 1 mtz 4 2
Lier= 15,2 57| (322" —36a°+ 4)In2a—8a’+ 77— —7 —b(32a*~20a’) 4.7

1+b
In2a+InT .

L¢er includes terms proportional ta*In2a, a*, a2ln2a, anda? which involve powers o ﬁ/mt2 and are enhanced for large
Higgs-boson masses. However, these apparent enhancement terms cancel exactly when we expand thweirntamtis/of
1/a2; that is, Ly, is actuallynot enhanced in powers dfl . This is a manifestation of the Veltman screening theofa4:
At one loop, an internal Higgs-boson line with a large mislssleads only to a logarithmic enhancement. Sihggis derived
from two-point functions with external fermion lines, no powerlike enhancement is possible.

Assembling the partial results according to E412), we find the complete one-loop result fa7 in the limit m;>m; for

f#t,
2 a2
a’-1

1
—M2Co(My,m,,0,0m,) — |v| 2Co(Myy, mt,000+2ﬂ-\/———2—(a —b)

1 [m
AT=———|—

1672\ v a

2 1 6
1+_2_?)M|2-|CO(MHvmtvmtamtvMH)+ g_g)MaCO(MHVmIIMHVMHamt)

+8 11+3
-t

—2a?

1+b
In(2a)+ In—

4 3 12
—32a*+12a%+ In(2a) +b| 32a*+4a°+ 10- 5+ 77
a’-1 a® a’-—

2o

4.9

The result given in Eq(4.5 should be compared with the quantityg/@m) 8,eax as defined by Kniehl.
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1.20

T tude than the full electroweak result fiM, =500 GeV (1
TeV). This is roughly the accuracy one would expect when
neglecting gauge contributions 107 of order a/ .

We find that theD(\) correction(long dashesrepresents
the dominant contribution to the GBA correction for all val-
ues ofMy larger than 2, i.e., above the decay threshold.
The one-loop Yukawa correctio@(gtz) vanishes at about
My =400 GeV. For larger values dfl, it is positive and
adds to theD(\) contribution. While it initially grows more
rapidly as a function oMy than theO(\) correction, the
Mﬁ behavior of the latter wins over the asymptotically loga-
rithmic growth of the Yukawa correction fof , greater than
about 600 GeV. The Yukawa contribution represents a de-

T creasing fraction of the total correction for higher masses,

0.95 400 600 800 1000 but is still significant numerically.
My (GeV) The very different behavior of the Goldstone-boson ap-
proximation and the full electroweak result at threshold is

FIG. 6. The one-loop correction factor to the decay width caused by a ,COUlomb singularity assoc,iatEd with the ex-
H—tt. The solid curve gives the result of the Goldstone-bosonchange of a virtual photon. Except for this QED effect, the
approximation consisting of the sum of t\) and O(g2) cor- GBA correction and the weak correct|or_1 are in qualitative
rections. Light fermion couplings are neglected. The result is comagreement ab=2m;: The GBA correction is about zero
pared with the full electroweak correction obtained22-24 and  at threshold, and the weak correction is of the order of 1%.
the GBA result without fermion corrections. To have a better test of the validity of the GBA for values of

My=~2m;,, we next consider the dec&— bb which is free
where we have replaced an overall fact(alzmt2 by Mﬁ in of the Coulomb singularity avl,,=2m.
the coefficients of th€, functions. This result is exact in the
context of the Goldstone-boson approximation except for the

m, = 175 GeV

N

Al
N oaob Ny

— EQT (m,=0)
--- full electroweak
o)

T(H-tT) /T (H~tT)

1.05

I
-
=}
L I B I

\
NN B\

1.00
tree level

. . . B. H—>b€
approximationm;=0, f#t. The correction to the decay
width is In the mass region of a “light” Higgs boson,
e e , Muy<2m;,, the dominant fermionic decay of the Higgs boson
I'(H—tt)=Tg(H—tt)[1+2 RAT+O(N \gf . g7)]. is the (much suppress@diecayH—bb. We can still treat

(4.9  this decay using the Goldstone-boson approximation, pro-
. 2 . vided thatM ; is large compared to the masses of Weand

.The fzuncgon'g\AHco |n2 Eq.(4.8 gre functions onl)_/ of the Z bosons, and can use the comparison of the results with
raztlo Mi/mg, ie., of a®. Expanding these functions for ihose of the full electroweak theory to test the limits of va-
a“>1, we find that all of the contrlzbutlons 7 which are |igity of the approximation for a “light” Higgs boson. For a
proportloqal to positive powers c&f cancel except for the “heavy” Higgs boson,M,,>2m;, the approximate result
last term in Eq(4.8). That term arises from the boson-loop anq the full electroweak result would be expected to agree to
contribution toLpes. The contributions from the fermion an accuracy similar to that in the previous section. However,
renormalization constants and the three-point functions arge dependence of the one-loop correctiomtesbb on m,

n?]t powelr enhanped, but grow ﬁnlyfas HX%IH(MH/M)', is different from that encountered in top-quark production
The purely bosonic correctlo_ns therefore give the domman(tmd therefore actually provides an independent check of the
contribution toA7 for large Higgs-boson mass, a result thatquality of the GBA for the case of a heavy Higgs boson.
remains true to all orders in perturbation theory. In particu- " \ya will again write the decay matrix element corrected to
lar, at one loop, one loop in the form

ME (1 m; M 3 m
| — _ - ln— - . . . b—-
AT 167202 713 2m3)+0 Malnmf +0 M2/ |’ _lMH—>bb:_|T (P1=P2,Mp)v(pP2,My)(1+AT),
25 2
Mi>mi (410 AT=Lpost LtertLyi- (4.1
and thefraction of the total correction associated with the _ _ _
top-quark Yukawa coupling decreases rapidly fbg>m,. ~ The Born result is proportional to the rati, /v. The one-
However, the actual correction associated vgthmay still  loop GBA corrections contributing td7 are proportional to
be significant. N, m¥/v?, mi/v?, and squares of lighter fermion masses.

In Fig. 6 we show the approximate correction to the decayEvaluating these contributions o7, we setm,=0 and also
width, I''T'g=1+2 ReA7, for H—tt in the limit my,=0 neglect other light fermions. In this limit,s, only receives
(solid curve. This result is compared with the full elec- contributions from the bottom-quark self-energy diagram
troweak correction(short dashes[35]. Away from the  which contains aw,t) loop, Fig. 5, and.y; reduces to a sum
threshold, the Goldstone-boson approximation is excellengver only two triangle graphd,; andLg in Fig. 1, with the
giving a result which is only 3.9%1.8% larger in magni- tree-level factor—imy/v extracted.
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The bosonic counterterr,ys is given by Eq.(3.10 or 1 mt2
(3.1, depending on the value &4, . The fermionic coun- Lter= 16,2 7[—250(0,0,%2)]- (4.12

tertermLy, and the triangle graphs,; depend on the flavor

of the final fermion pair and need to be reevaluated for
Higgs-boson decay into bottom quarks. We find fiay— 0

that

The triangle contribution is calculated from the expres-
sions forL5 and Lg using the Dirac equation and setting
mb=0:

1 mtz 2 1 2 2 2 2 1 2 2 2 2
Lii=1g2 57| 2Bo(0.0m)) +| 2= —|[Bo(ME,mf . m?)—Bo(0,0m?)] + 2~ 4In2a+ 7z MECo(M,0.mF ,m7.0)

J’_

2

1+

1. 2 2y, o
E MHCO(MH,O,O,Omt)+2' ™

(4.13

The divergences related to the integrg cancel in the sumMA7=Lyst+ Lt Lyi. In case of a “light” Higgs, the
complete one-loop electroweak radiative correction to the amplitude for the theedyb is now found to be

L mfs Y ainza—| -2 gsi 3223+1—¢+1MZCM20 0
6232|122 4n2a-| 2 $sin(¢) a 2| sing) T aa M o(Mg,0,m¢,m;,0)
1 2 2 2 2 13 \/— H
+2| 1+ 13| MACo(ME,0,00m¢) + 2% —-— 3| +2im|, My<2m, (4.19
and the heavy-Higgs-boson result is
1 m(5 5 1, )
AT:EZUT E—gg—4ln2a+b 2+52 In(2a)+|n T +4—a4MHC0(MH,O,mt,mt,O)
+2( 1+ 7 MZCo(M3,0,0,0m?) + 2a2 ?—w@ +im2-b| 1+ H M >2m,. (4.15
In Fig. 7 we show the approximate correction to the decay
width, I''Tg=1+2 ReA7, for H—bb in the limit m,=0
1RO T T T T ) (solid curveg, and compare it with the full electroweak cor-
L 1 rection (short dasheq35]. For large values oM, the ap-
[ my = 175 GeV ] proximation is very good, in agreement with our findings in
—~ 115 o the case oH—tt. The difference between the two correc-
la [ — EQT (m,=0) . tions is again of the magnitude of the expected gauge cor-
D [ 77 full electroweak ] rections. The dominant contribution overall is tBé\) cor-
o L —— oy P S . :
& uiorp ] rection (long dashes which grows more rapidly than the
& r - ] Yukawa correction foM  larger than about 700 GeV.
" r ] For a Higgs mass of about 400 GeV, the top-quark
o 1051 ] Yukawa correction cancels th®@(\) contribution, and the
é [ - ] one-loop radiative corrections are actually determined
= [ ] mainly by the gauge corrections. However, the magnitude of
1.00 f== v o= T X
T e\ tree level] the gauge correction is still small compared to the magnitude
[ \/ . of the Yukawa correction at this point, with an absolute
ool b v by by by ] value less than 1%. The Goldstone-boson approximation
’ 200 400 600 800 1000 breaks down forM less than about 200 GeV, where the
My (GeV) condition My>My,,M, is of questionable validity. The

gauge corrections are the dominant corrections in this region

FIG. 7. The one-loop correction factor to the decay widthand are larger in magnitude than both the Yukawa and the
H—bb. The solid curve gives to the result of the Goldstone-bosor@Q(X) corrections. In addition, the gauge correction displays
approximation, consisting of the sum of tk\) and theO(g?) ~ Coulomb singularities aMy=2M; and 2V, a feature
corrections. Light fermion couplings are neglected. The result igvhich is unique to gauge interactions and cannot be repro-
compared with the full electroweak correction obtained22-24  duced using Goldstone bosons and the ligyig’ =0. This
and the GBA result without fermion corrections. threshold region requires special treatment.
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Qualitatively, the GBA result approximates the full elec- GeV in the caseH—bb where the dominant contributions
troweak corrections rather well for Higgs masses larger thagancel, and near the decay thresholdHor tt where virtual
200 GeV. The full electroweak correction remains finite atphoton exchange produces a Coulomb singularity.
the threshold for top-quark production Mt =2m,, and the In the mass rangeM ;<M <2m,, the proces$ —bb
expected threshold kink is reproduced by the approximalgs the only significant fermionic decay. The one-loop radia-
calculation. We conclude that the Goldstone-boson approxijye corrections to this decay associated with the quartic
mation is a useful tool even in the case of a “light” Higgs Higgs-boson coupling, the top-quark Yukawa coupling, and
boson with a mass in the rangdlz <My <2my, with the  the transverse electroweak gauge couplings are all similar in
GBA correction tol'(H—bb) giving a good estimate of the magnitude, but with differing signs. In particular, a partial

full electroweak correction. cancellation of the Higgs and Yukawa contributions makes
the gauge correction equally important. The total correction
V. SUMMARY is very small, less than 2%. It seems plausible that the sum of

the magnitudesof Higgs and Yukawa contributions would

The equivalence theorem is known to be an excellent tOO@ive a good estimate for an upper bound on the magnitude of
for describing heavy-Higgs-boson physics in the case of prothe complete electroweak radiative correction for a variety of
cesses involving longitudinally polarized external gaugeelectroweak processes. In absence of cancellations between
bosonsW[ Z, and Higgs scalarfl,2]. The closely related the O(g?) and O(\) corrections, the approximate result is
Goldstone-boson approximation provides a similarly simpleexpected to be the dominant correction for Higgs-boson
method for calculating the dominant contributions of internalmasses larger thanM,. Threshold singularities arising
W=, Z, andH bosong3,4]. In either case, the vector bosons from the gauge sector cannot, of course, be reproduced using
of the SM are replaced by the corresponding scalar Goldthe Goldstone-boson approximation and require special treat-
stone bosons in the symmetry-breaking sector of the theorynent in any case.
and the gauge couplings are ignored. According to Veltman's screening theoref4], the

Most past applications of the GBA have neglected thep()\) corrections are the only one-loop corrections that grow
Yukawa couplings of the fermions. This is not necessary; noproportionally toM?. We find that this asymptotic growth
is it desirable. The top quark is quite massiMel]; 9 is  of the correction is dominant only for Higgs-boson masses
therefore large, and it is generally necessary to include tOParger than 600—700 GeV, assuming a top-quark mass of 175
quark effects in calculations of electroweak radiative correcg gy [14]. For smaller values oM,,, we find theO(th)

tions to_obtain accurate results. Because the _apprOXimatio%rrections to have the stronger dependencé/gn
underlying the Goldstone-boson method are independent of |, concjusion, we find that the calculation of radiative
the values o'f the Yukawa couplings, thg .method is e"’,‘Si%orrections using the GBA is greatly improved if the
extended to include fermions. However, it is necessary is (§,xawa interactions are included. The limit:=0, f=t al-
define the couplings and formulate the renormalization proyg,s for g relatively simple calculation of the dominant ra-
cedure in such a way that the reduced model is the limit Ofjiative corrections, yielding an excellent approximation of

the SM for vanishing gauge couplings, with all quantities e £ electroweak corrections for the heavy-Higgs-boson
defined in terms of SM parameters that are well behaved i ca  and order-of-magnitude estimates foM,2 M

the limit. <2

In this paper, we have extended the usual Goldstone-
boson approximation by systematically including the
Yukawa interactions and formulating a renormalization pro- ACKNOWLEDGMENTS
cedure which is consistent with the requirements of the ap- The authors would like to thank B. Kniehl for providing
proximation, gives the correct relations to physical observihe data for the full electroweak corrections shown in Figs. 6
ables in the limitg,g’—0, and is consistent with the power- gng 7. One of the authoré.R.) would like to thank A.
counting arguments applied to the full SKB,4. The  papelstein for useful conversations and the Deutsche Fors-
framework presented here permits quite simple calculationghyngsgemeinschaf®FG) for financial support under Con-
of the leading radiative corrections at arbitrary orders inyact No. Li519/2-1. The work of the other auth@rD.) was
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approximate results for radiative corrections to Higgs-sectoContract No. DE-FG02-95ER40896.
processes in the case of a “light” Higgs boson,
2M,<Myu<2m,, and excellent approximations for larger
Higgs-boson masses.

As a test, we calculated the one-loop corrections to fermi-
onic Higgs-boson decays using the Goldstone-boson ap- As emphasized above, it is necessary to express the cou-
proximation with fermions, and compared our results withplings in the reduced Lagrangiaiyg, in terms of physical
the results obtained from a full electroweak calculation.parameters of the standard model which have smooth limits
Since the Yukawa interactions are negligible except for thdor vanishing gauge couplings and to renormalize the theory
top-quark coupling, we only included contributions from the in such a way that the connection with the SM is maintained.
latter. We find that the Higgs coupling and the Yukawa Several different approaches have been used in the renormal-
couplingg; give the dominant corrections to the decay rateszation of the SM as discussed by I&u et al,, and it is not
for My>2m,. The much smaller contributions of the trans- especially straightforward to extract the limit of interest. We
verse gauge couplings are only significant very close to 40therefore give a systematic sketch of an appropriate all-

mt.

APPENDIX A: RENORMALIZATION IN THE
GOLDSTONE-BOSON APPROXIMATION
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orders renormalization procedure here. The renormalizatiodropped together, as discussed by Taj8¥#. We have used

in the Higgs sector has previously been discussed to arbitrahis simplification throughout the paper.

order by Maheret al. [20] using bare fields and by Ghincu-  The bare coupling\, can be determined by using the
lov and van der Bij to two loops in the physical-field— definition\ =M?%/2v? and Eq.(A3). The on-mass-shell con-

counterterm formulation28,29. Both groups neglected the (dition for the Higgs bosonl'(2)(M2)=0 [38], gives the re-
0

fermion contributions. The renormalization with fermions lation
has apparently only been considered to one loop in earlier

work [13].
MZ=2\quo+IIY(ME)— 6m3. (A7)
1. Fixing the renormalization of the Higgs Lagrangian Upon replacing vg by Zq,v2=Zq,Mﬁ|/2)\ and 5mg by
The physical quartic coupling of the Higgs boson hasII?(0) in this expression and solving far, we find that
been defined in Eq2.19, and the wave-function renormal-
ization constantZ,,, Z,, andZ, are defined in Eq(2.20.

el . N1 A Rl (M%) —T13(0
The determination of the bare coupling and theZ's pro- A=\ 1+ —|=5= _( — H( H; w(0) )
ceeds as follows. The real part of the two-point function or NZy Zo M
inverse propagatoF(?)(p?) for each of the particles must (A8)

vanish forp? equal to the square of the physical mass of that
particle, '®(m?)=0. The two-point functions calculated -
using the bare fields are easily seen to have the form "

Finally, the wave-function renormalization constants

, Z,, andZy;, which relate the bare fieldsg , z,, and

Ho to the physical fields, are determined by the condition

that the propagators for the physical fields have unit residue

T\(Nzo)(pz)Z p2—TI(p?) + om3, (A1)  atthe particle poles. The bare propagators do not, but instead
have residueg; given by
[2(p?)=p®~I3(p?) + 6mg, (A2) d -1
z =(—2r§2><p2> : (A9)
dp p2=m?

Ti(p?)=p?~IT{(p?) — 2\ gvo+om5,  (A3) _ _ |
a relation that leads directly to the results in E21.23).
where thell’s are the bare self-energy functions. Since there The single wave-function renormalization constahj
is only a single mass countertedm? in the Higgs Lagrang- Necessary to remove the divergences in the theory can be
ian, Eq. (2.13, the vanishing of the renormalized massesidentified using the Ward identities for the electroweak

m,, and m, required by the Goldstone theorem leads to thecharged current which underlie both the equivalence theorem
relations and the Goldstone-boson approximatiph6,13. For ex-

ample, in their derivation of the equivalence theorem, Bag-

5 0 0 ger and Schmidf16] use the Ward identity to show that the
omy=11,(0)=11;(0), (A4)  ratio

and determine§m(2). The self-energy fur{;té:[tions for the bare MS\/ Z&(,Z Jovo Z\l/\/lz Z(]I_’/z
w* andz fields must therefore be equal@t=0, an identity . =" = [1+0(g?

. . S S2= 511 g9] (A0
that holds to all orders in perturbation theory. In the follow- Mw Zy® Qv Zy° Zy

ing, we will replacesm3 by I12(0). o . . .
o . . is unity up to corrections of ordey® under conditions satis-
The condition that be the physical vacuum expectation fied by our renormalization scheme. Thi,=Z., in the

value requires the vanishing of the truncated one-point func: - , - . . i
tion for the Higgs field, Irlgltmg,g —0. Barbieriet al.[13] give a direct proof of this

qulg(o): - iTo+iUO5m(2):0, (A5) 2. Fixing the renormalization of the fermion Lagrangian

The bare self-energy functions and the bare propagator for

whereTy is the sum of all Higgs tadpole grapteee Fig. 2 e fermions are defined in Eqg2.25 and(2.26). Recalling
calculated using the bare fields. This gives the further relag,e  gefinition of  the propagator, iSg(x—y)=

tion 6my="To/v, and sosm, can be calculated either as a (QIT((x),¥(y))|Q), and the connection between the bare
self-energy or as a tadpole contribution. The resulting 'denénd physical fermion fields

tity
y=yrt i =(ZgPrtZ"Py°, (AL
0 —
Mw(0)="Tolvo (A8) e find that
provides a useful check on the calculati¢86]. The vanish- iSE(p)=(Z5Y2Pr+2Z7Y2P )iS2p) (25 V2P + 2] ¥2Py,)
ing of the one-point function, EqA5), implies that the tad- FIP ROTRTTL UISFPI R Lo (AFiZ)

pole diagrams and the tadpole counterterm in2dl3 can-
cel order by order in the perturbation expansion and can ber, calculating the inverse @& explicitly,
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iSe(p)= (B 3(Z_ '+ ZxH[1-TIY(p?)]— 3(Z ' - ZxHTIR(p?)}
+py 3(Z - ZRH[1-TTY(p?)]— 3(Z( '+ ZgHTIA(p?)}
+Z0 22" m+ sm+mITd(p?) D(PH[1-TY(p?) 12— TIRA P} — (m+sm+mIl?) . (A13)

The mass or coupling counterterdm=mé&g/g and the 1 0, 0, o
wave-function renormalization constartg andZ, are de- 7~ = 1= Iy(m) +1I;(m%)
termined by the condition that the physical propagator de-

scribe a freely propagating particle with a massand unit 1_113( m2)+H2(m2)
residue at the particle poleSe— 1/(p—m)=(p+m)/(p? —2m?I1g’ (m?) 1-T1%(m?) — 11%(m?)
—m?) for p—m. S¢ has a simple pole gi?=m? provided v A
that[39)] el (M) T () ~ TIR(m?)IIR" (m?)
1-TI9(m?) ~TI3(m?)
1+ 5—m=1+@:\/[1—Ho(mz)]Z—HOZ(mZ)—HO(mZ) (A17)
m g Y A S :
(Al4)  and
The coefficient ofpy® in Eq. (A13) must vanish ifS¢ is to izl_ng(mZ)_Hg(rﬁ)
be a normal massive propagator with equal right- and left- Zg
handed residues at the particle pole. This requires that
f : : o112 () \/1—H3<m2>—ni{(m2>
S 1-TY(m?)+ % (m?)

(Zr=Z)[1-TIY(M)]=(Zg+ Z)TIR(M?). (A15) . . . .
_2m2[1_HV(m2)]HV/(m2)_HA(mZ)HA,(mZ)
The coefficients op andm in the numerator will be equal if, 1-IIy(m?) — I x(m?) ’
in addition, (A18)

wherell’ (p?) =dII(p?)/dp?. These expressions hold to all
orders in perturbation theory, with one set for each quark. At
the one-loop level of interest here, they simplify substan-
i (A16) tially. The expanded results are given in E(&27), (2.28),
and(2.29, and agree with those of B et al.[17] obtained
in the SM.

Equations(AlS) and (A16) are homogeneous of degree Itis Straightforward, ﬁna”y, to establish the renormaliza-
one in theZ’s, and only determine the ratis/Z, . The two  tion factors WhiCh must be used for the extern_al fermions
equations may also be combined to obtain the pole conditioWhen scattering amplitudes are calculated using the bare
Eq. (A14). The magnitude of th&’s is determined by the fields. By using the standard reduction formtﬂé@], we can
final condition thatSg have unit residue at the pole. With the express the physical scattering amplitudes in terms of Fou-
ratios Zx/Z, determined as above for both the quarks in a’er transforms of vacuum gxpectatlon values of tlme-orde(ed
doublet, this final condition can only be enforced for one ofProducts of the physical fields. These vacuum expectation
the two quark propagators by adjusting the single remaining@lues appear multiplied by a factgé m) and a spinor for
renormalization constar, for the left-handed fieldsl, , each ingoing or outgoing fermion line. The physical fermion
Eq. (2.15. The second quark field requires an additionalfields ¢ and ¢ in the time-ordered products can be replaced
wave-function renormalization to reach the standard normalby the bare fieldsy® and #° using the definition in Eq.
ization. This extra renormalization constant is finite; the in-(A11). When the result is reexpressed in terms of the bare
finities in the wave-function renormalizations can be be abtruncated Green’s functiofi® the external factors are re-
sorbed entirel_y inZ, and the twoZgy’s, vyhich ge.ner.ate the placed bysg(p)(zgl/zpﬁZ[”ZPR)((J—m) and a spinor
only symmetric counterterms allowed in the kinetic part offor each ingoing fermion line, and by p(
Le, Eq.(2.14. Since our calculations are done entirely in —m)(z-Y2Po+27, V2P )S2(p) and a conjugate spinor for

terms of the bare fields, with th&'s appearing only in the  each outgoing line. However, it follows from EGA12) that
overall factors necessary for external particles, the choice of

definition for the originalz, is irrelevant, and we will give SUp)(ZR V2P + 27 VPR = (Z¥?Pr+ZY?P ) Se(p),
only the final renormalization constants. These are deter- (A19)
mined by setting the ratio of the coefficientjpin Eq. (A13)

to the derivative of the denominator equal to unity for (ZgY?Pr+Z, Y?P)S2(p)=Se(p)(Z¥%P +Z17%Pg).
p2=m2. Using Eqs.(A14)—(A16), we find that (A20)

3 (Zp+Z)[1-TTY(MP)]— 3 (Zg—Z)TIJ(M?)

g

=ZRZ7 1+ i 1Y(m?)
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As a result, using the normalization of the physical propaga- For the calculation of the one-loop self-energieDirdi-
tor at p=m, we find that the physical scattering amplitudesmensions we use

are given by the truncated Green’s functid?&calculated in

terms of the bare fields, multiplied by a factor Ag(m?) = (27TM)(4D)J 40 B1)
(z¥?Pr+27Y?P,) and the appropriate spinor for each incom- oo i w2 qqz—m(2)+i's’ :
ing fermion line, and by a factorZ&?P, +Z?Pg) and a
conjugate spinor for each outgoing fermion line.
2.2 2 (2mp) 2 D
APPENDIX B: LOOP INTEGRAL EXPRESSIONS Bo(p ’mo’ml): TJ d"q
1. Scalar integral expressions 1

Here we define the scalar integral expressions needed to
calculate the two- and three-point functiofiz7,31. The
more complicated vector and tensor loop integrals which (B2
arise from diagrams containing fermions can be reduced to
sums of scalar integrals by standard technid@8s41. We

MP—merie [(q+p)P—mitie]

will follow the definitions in[27]. The vertex corrections involve the integrals
(2mp) 4P 1
Co(pZ,p3,,m3,mi,m3)=—— de : . . (B3
oP1.P2:. M. M M) =2 T i@t p? M el p)? mrie]

The arbitrary energy scale is introduced to fix the energy discussed in detail if27]. The results given there agree with
dimensions of the functiond,, By, andC, independent of our calculation$30] except for a typographical error in Den-
the value ofD, and the infinitesimal quantitie’ defines the ner’'s expression for the functid@yg in his Eq.(C.37). In our
integration path in the complex plane. We note thahBo notation, the correct result f& is

et al.[17] defineA, with an overall minus sign, while Kniehl

[22,42 introduces a minus sign in the definition G, Coo= 2 [Bo((p1—P2)2m2,m2)+(ma—m2+p?)C,
These integrals can be evaluated in a straightforward
manner using Feynman parameters. Complete analytic re- +(m3—m3+ p3)C,+2m3C,]. (B6)

sults are given by Denné¢27], though it is useful to go back
to the Feynman representation of the integrals for certain

values ofpi2 and mi2 to avoid problems with infrared singu- APPENDIX C: TADPOLES AND SELF-ENERGY

larities. FUNCTIONS
The integralB, that appears in the fermion self-energy  The only neutral field that receives a shift in its vacuum
functions is given by expectation value because of tadpole contributions is the

Higgs field h; the z field does not. The andw fields have

couplings throughZy, Eq. (2.13, which require an even

number of fields to participate, and no purely bosonic tad-

pole graphs can be formed for theWith the addition of the

fermionic LagrangianCg, Eq.(2.14), thez can form a tad-
(B4) pole with a fermion loop, but the presence of a facorin

the z-fermion coupling and a trace over thematrices in-

The derivatives of the self-energy functions with respectolved yields a vanishing result. However, fermion loops

to p?, the square of the external momentum, are needed iBontribute to the Higgs tadpoles as shown in Fig. 2 since no
the calculation of the multiplicative wave-function renormal- '}’5 is involved in theH-fermion Coup"ng_ Tak|ng into ac-
ization constantsZ;. A, does not depend on the external count both the bosonic and fermionic contributions, the
momentum, and so does not contribute to e The de-  Higgs one-point functioritadpole functionis
rivatives

1
B1(p2,mj,m3) = 52 [ Ao(mg) — Ao(mf)

+(mi—m3—p?)By(p?,mg,m7)].

1 Z 4m?
d _ H 2 f f 2
JB;(M?,mg,m?)= —— B;(p?,mg,ms) . i=0,1, T= 162 = 2y AoME)T 22 N Ao(mp) |.
6p p2=M2
(B5) (Cy
are given, for example, by Denng27]. The graphs of the one-loop one-particle irreducible self-

The reduction of the tensor integrals which appear in theenergy contributions to the bosonic and fermionic fields are
fermion self-energy functions to sums of scalar integrals isshown in Figs. 3, 4, and 5. They can be evaluatef2@s3(
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1
II}(p%) = = T52[3MAG(MP) + 18\ ?0?Bo(p%, M M)

2.2 2 1 f m%
—6N22Bo(p2,0,0]+ WZ Ne—
X[4Ag(MF) — (2p®—8m?)By(p%,m? ,mf)],

(C2

1
I9(p%) = = 7p 2 [MAo(M) +4N70%Bo(p? ME,0)]

1 m?
- f_f
+ 1%22 Ne2

X[4Aq(m2) —2p2Bo(p2,mZ,m?)], (€3

1
M(p?) = = 7572 [Mo(ME) + 47\ *02Bo(p? MF;,0)]
fl 2.2 2 "2 N2
z NCF{Smfmf’BO(p ,mg,mg,)

(f,£9)

+2(mZ+m?,)[ — Ag(m?) — Ag(m?,)

1
16772

+(p?—mi—m,)Bo(pZmZ,m;)]},  (C4)
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1 m?
H?/,f(pz) = W 7|: - Bl( pzvm% ’ M%{) - Bl( pzvmﬁvo)

2
m¢,
-t

my

(CH

Bl( pzlmfr 10):| y

2 2
0 5 1 m;
I ¢(p ):_21677 22

f!
o By(p?,m2,,0), (C6)

f

1 m
N2(p?)= 1672 ;2‘( Bo(p%.mZ ,M3) —Bo(p?,m?,0)

3

(C7)

2
oM e 2 m2 0
HZ_ O(p 1mf’l) .
f

Thez andw self-energies only differ in the fermionic part, as
expected. It is easily shown using the explicit results given
for Ag andBy in Appendix B that they are equal at one loop
at p>=0 independently of the values of the massgsand
m;.. This equality does not extend to the derivatives of the
self-energy functions, and hence to ifis.
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