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The calculation of the leading electroweak corrections to physical transition matrix elements in powers of
MH

2 /v2 can be greatly simplified in the limitMH
2 @MW

2 , MZ
2 by the use of the Goldstone-boson approximation.

In this approximation, the vector bosonsW6 andZ are replaced by the associated scalar Goldstone bosons
w6, z which appear in the symmetry-breaking sector of the standard model in the limit of vanishing gauge
couplings. The approximation remains valid in the presence of the Yukawa interactions between the fermions
and the Higgs and Goldstone bosons provided the renormalization conditions are formulated so as to be
consistent with the standard model. As a concrete test of the approximation scheme, we calculate the dominant
radiative corrections to fermionic Higgs-boson decays at one loop including the virtual effects of a heavy top
quark. We apply the result to the decaysH→t t̄ andH→bb̄, and find that the results including fermions are
quite accurate numerically for Higgs-boson massesMH.400 (350) GeV, respectively, even formt5175 GeV.
We discuss the associated renormalization problem to all orders in an appendix to the paper.
@S0556-2821~97!00503-1#

PACS number~s!: 12.15.Lk, 11.15.Bt, 14.80.Bn

I. INTRODUCTION

The investigation of the physics of the Higgs sector of
electroweak theory is one of the most important problems for
high-energy experiments in the near future. Radiative correc-
tions to high-energy processes may become very important
in the process of distinguishing the standard model~SM!
Higgs sector from other theoretical models. Moreover, the
effects of a Higgs boson on low-energy observables such as
the electroweakr parameter already need to be included in
comparing the theory to present precision measurements.
However, the calculation of the complete higher-order cor-
rections is a difficult task. It is therefore important if one can
calculate the most significant corrections relatively simply
within a well-defined approximation. In the case of a heavy
Higgs boson, such an approach is provided by the
Goldstone-boson approximation~GBA!. This is closely re-
lated to the original Goldstone-boson equivalence theorem
@1,2#, but deals with internal rather than external gauge
bosons. In particular, it can be shown through power-
counting arguments@3,4# that the leading correction to a
physical process in powers ofMH

2 /v2 can be obtained at any
order by replacing the vector bosonsW6 andZ of the SM by
the associated scalar Goldstone bosonsw6, z which appear
in the symmetry-breaking sector of the theory in the limit of
vanishing gauge couplings. This replacement of vector by
scalar bosons results in a substantial simplification of the
calculations. In the approach described here, we work with
the reduced theory from the beginning.

Previous calculations based on the Goldstone-boson ap-
proximation have mostly been concerned with processes in

which both the external and internal particles are Higgs
bosonsH or longitudinally polarized gauge bosonsWL and
ZL @1,2,5–12#, and have neglected corrections from internal
fermion loops. An exception is the work of Barbieriet al.
@13#, who calculated themt

4 corrections to the decays
Z→m1m2 andZ→bb̄ to one loop. The existence of a heavy
top quark leads to a large Yukawa couplinggt in the SM. In
the case of a not-so-heavy Higgs boson, one can expect the
radiative corrections which involvegt to be comparable in
magnitude to the corrections which involve the quartic Higgs
coupling l5MH

2 /2v2. These contributions can again be
taken into account in a simple way using the Goldstone-
boson approximation: In the limit of vanishing gauge cou-
plings, the fermions couple only to the Higgs boson and the
Goldstone bosons in the symmetry-breaking sector of the
theory.

While the basis of the Goldstone-boson approximation is
clear physically as resulting from the smooth limit of the SM
as the gauge couplings are taken to zero, its implementation
starting from the scalar theory with fermions is not com-
pletely straightforward. In particular, the requirement that it
reproduce the leading corrections in the SM severely restricts
the choice of renormalization scheme and the definitions of
the couplings. We discuss this problem in detail in an appen-
dix to this paper, and present a framework valid to all orders
in l andgf for vanishing gauge couplings, results which will
be useful in future calculations.

The Goldstone-boson approximation is known to be valid
formally forMH sufficiently large compared toMW ,MZ . An
important question, however, is how heavy the Higgs boson
must be before the GBA gives a quantitatively good approxi-
mation to the full electroweak theory. We study that question
and illustrate our method here at the one-loop level using the
fermionic decay of the Higgs boson,H→ f f̄ . We find for the
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observed top-quark massmt'175 GeV @14# that the GBA
result approximates the full electroweak correction to
G(H→t t̄) very well for MH.400 GeV, but fails near the
threshold at 350 GeV where the effects of the gauge interac-
tions become important. The result forG(H→bb̄) is also
quite good forMH.350 GeV, though the accuracy is re-
duced by a cancellation between the Yukawa and Higgs-
boson contributions. The gauge couplings give the dominant,
very small, corrections for lower values ofMH .

II. LAGRANGIAN AND RENORMALIZATION SCHEME

A. Framework

We will be concerned in later sections with the calcula-
tion of the leading contributions to the decay rate of the
Higgs boson to fermions,H→ f f̄ , in the limit of large Higgs-
boson and top-quark masses. These contributions can be cal-
culated rather simply using the Goldstone-boson approxima-
tion @1,2,15,16,3,4#. This approximation corresponds
physically to the limit of vanishing gauge couplings,
g,g8→0, and the consequent decoupling of the tranverse
gauge bosons from the remainder of the standard elec-
troweak model. The remnant theory is defined by the La-
grangianLGBA5LH1LF , whereLH is the Lagrangian for
the scalar fields in the Higgs- or symmetry-breaking sector
~the would-be Goldstone bosons of the full SM!, andLF is
the Lagrangian for the fermions which includes their
Yukawa interactions with the scalar fields. If the couplings
and renormalizations are properly defined, the reduced
theory is supposed to give a good approximation to the full
electroweak theory forMH sufficiently large compared to
MW . The result in our case is an expansion for the dominant
contributions toG(H→ f f̄ ) in powers of the quartic Higgs
coupling l5MH

2 /2v25GFMH
2 /A2 and the top-quark

Yukawa couplinggt5A2mt /v. Corrections associated with
the transverse gauge bosons are suppressed by powers of the
small gauge couplingsg,g8.

We will work entirely with the reduced theory using the
Lagrangian

LGBA5LH0 1LF01counterterms, ~2.1!

where

LH0 5 1
2 ~]mF!†~]mF!2 1

4 l~F†F!21 1
2 m2F†F,

~2.2!

LF05 i C̄L]”CL1 i c̄ t,R]c t,R1 i c̄b,R]”cb,R2
1

A2
gtC̄LF̃c t,R

2
1

A2
gbC̄LFcb,R1H.c.1•••. ~2.3!

We have written only the top- and bottom-quark contribu-
tions toLF0 ; the remaining fermionic contributions have the
same form, with no right-handed contributions for the neu-
trinos. In these expressions,CL , F, andF̃ are SU~2! L dou-
blets with normalizations defined by

CL5S c t,L

cb,L
D , c f ,L5

1

2
~12g5!c f , ~2.4!

F5Sw11 iw2

h1 iz D 5S A2w1

h1 iz
D , ~2.5!

F̃5 is2F*5S h2 iz

2w11 iw2
D 5S h2 iz

2A2w2D . ~2.6!

The right-handed fields are SU~2! L singlets, with

c f ,R5 1
2 ~11g5!c f . ~2.7!

The expressions in Eqs.~2.2! and ~2.3! include all pos-
sible SU~2! L3U~1!Y-symmetric terms consistent with renor-
malizability of the Lagrangian. The counterterms necessary
to effect the renormalization without breaking the symmetry
must have the same forms and can be introduced by inde-
pendent multiplicative rescalings of each term above. Thus,
in the case of the Higgs Lagrangian, all possible symmetric
counterterms are generated by multiplying the kinetic energy
term by a factorZF , replacingl by l1dl, and m2 by
m21dm2. Because the minimum in the Higgs potential is at
a nonzero value ofF†F for m2.0,F has a nonzero expec-
tation valuev in the physical vacuum. We will display this
by rewriting the fieldh ash5H1v and expanding around
the physical vacuum in whicĥVuHuV&5^VuwuV&50. The
renormalized Higgs Lagrangian then has the form

LH5 1
2 ZF~]mw•]

mw1]mH]mH !2 1
4 ~l1dl!

3~w21H212vH !22 1
2 @~l1dl!v22m22dm2#

3~w21H212vH !, ~2.8!

where w is the SO~3! vector (w1 ,w2 ,w3) of Goldstone
bosons withw35z, and we have dropped an additive con-
stant.

It is convenient for calculation to define a set of rescaled
or ‘‘bare’’ fields H0, w0 and the corresponding SU~2! L dou-
bletF0 such that the kinetic terms inLH have the customary
unit normalization,

H05ZF
1/2H, w05ZF

1/2 w,F05ZF
1/2F, ~2.9!

and to introduce a corresponding bare vacuum expectation
valuev0, a bare couplingl0, and a parameterdm0

2:

v05ZF
1/2v, ~2.10!

l05
l

ZF
2 S 11

dl

l D , ~2.11!

dm0
25ZF

21@m21dm22~l1dl!v2#. ~2.12!

With these definitions, we obtain the form ofLH that we will
use:
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LH5 1
2 ~]mw0•]

mw01]mH0]
mH0!

2 1
4l0~w0

21H0
212v0H0!

2

1 1
2dm0

2~w0
21H0

212v0H0!. ~2.13!

The fermion LagrangianLF can be treated in a similar
fashion. There is a separate SU~2! L3U~1!Y-symmetric
counterterm for each term in Eq.~2.3!. These counterterms
can be absorbed in the definitions of a set of bare fields and
couplings to bringLF into the form

LF5 i C̄L
0]”CL

01 i c̄ t,R
0 ]”c t,R

0 1 i c̄b,R
0 ]”cb,R

0 2
1

A2
gt
0C̄L

0F̃0c t,R
0 2

1

A2
gb
0C̄L

0F0cb,R
0 1H.c.

5 i c̄ t
0]”c t

02~mt1dmt!c̄ t
0c t

02 i c̄b
0]”cb

02~mb1dmb!c̄b
0cb

02
1

A2
gt
0c̄ t

0H0c t
01

i

A2
gt
0c̄ t

0g5z0c t
02

1

A2
gb
0c̄b

0H0cb
0

2
i

A2
gb
0c̄b

0g5z0cb
01gt

0c̄ t,R
0 w0

1cb,L
0 1gt

0c̄b,L
0 w0

2c t,R
0 2gb

0c̄b,R
0 w0

1c t,L
0 2gb

0c̄ t,L
0 w0

2cb,R
0 , ~2.14!

where

CL
05ZL

1/2CL , ~2.15!

c f ,R
0 5Zf ,R

1/2c f ,R , f5t,b, ~2.16!

gf
05

gf
ZF
1/2S 11

dgf
gf

D . ~2.17!

The parametersmf and gf are defined to be the physical
masses and Yukawa couplings of the quarks, whiledmf is
the mass or coupling counterterm:

mf5gf
v

A2
, dmf5mf

dgf
gf

. ~2.18!

Note that there are separate renormalization constants for
c t,R andcb,R , and a single renormalization constant for the
left-handed doubletCL @17#. The factorZF

21/2 in gf
0 has been

introduced for later convenience.

B. Renormalization

The determination of the renormalization constants is dis-
cussed in Appendix A. We use on-mass-shell renormaliza-
tion with all quantities calculated in terms of the bare fields.
The couplings and renormalizations are defined so that
LGBA reproduces the results of the SM in the limit
MH

2 @MW
2 . We emphasize here that this is not automatic: It

is essential that thew6 and z fields be renormalized at a
momentum scalep2 with up2u!MH

2 @16#, and that the cou-
plings be defined in terms of physical standard-model quan-
tities that have well-defined limits for vanishing gauge cou-
plings,g,g8→0. In particular, since thew6 andz bosons are
guaranteed to be massless by the Goldstone theorem@18#, we
renormalize thew0

6 andz0 fields atp
250, while the Higgs

field is renormalized atp25MH
2 with MH the physical

Higgs-boson mass. The quartic couplingl will be defined
@19# to be givenexactlyby the relation

l5MH
2 /2v25GFMH

2 /A2, ~2.19!

whereGF is the Fermi constant obtained from the muon
decay rate using the standard electromagnetic radiative cor-
rections andv is the physical vacuum expectation value,
v5221/4GF

21/2'246 GeV. This definition connects smoothly
with Goldstone limit as shown in@19,20#.

With the specifications above, we find that the wave func-
tion renormalization constantsZw , Zz , andZH , which relate
the bare fieldsw0

6 , z0, andH0 to the physical fields through
the relations

w0
65Zw

1/2wphys
6 , z05Zz

1/2zphys, H05ZH
1/2Hphys,

~2.20!

are given to arbitrary order in terms of the self-energy func-
tions for the bare fields by

1

Zw
512

d

dp2
Pw

0 ~p2!U
p250

, ~2.21!

1

Zz
512

d

dp2
Pz

0~p2!U
p250

, ~2.22!

1

ZH
512

d

dp2
PH

0 ~p2!U
p25M

H
2
. ~2.23!

The single mass countertermdm0
2 in the Higgs Lagrangian,

Eq. ~2.13!, is given by

dm0
25Pw

0 ~0!5Pz
0~0!. ~2.24!

In the absence of fermions, the self-energy functionsPw
0

and Pz
0 would be equal for allp2 because of the SO~3!

symmetry ofLH . That symmetry is destroyed inLGBA by
the fermions, e.g., top and bottom quarks withmtÞmb . As a
result, Pw

0 and Pz
0 differ away from the special point

p250 @21#, their derivatives consequently differ atp250,
and ZzÞZw . Furthermore,ZHÞZw @20#. Since the wave
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function renormalization constantZF introduced earlier is
sufficient, along with the other renormalization constants, to
absorb the divergences in the Higgs sector of the theory,
Zw , Zz , andZH can only differ fromZF by finite multipli-
cative factorsZ̃i , Zi5Z̃iZF . An argument of Barbieriet al.
@13# based on the Ward identity for the charged weak current
determinesZF and shows thatZF5Zw and Z̃w51 in the
limit g,g8→0. The same result can be extracted from@16#.
This identification corresponds physically to the observation
that the Fermi constantGF , and therefore the vacuum ex-
pectation valuev5ZF

21/2v0, is defined through charged-
current processes, i.e., muon decay and superallowed nuclear
b decays. These involve theW rather than theZ or H
bosons. The distinction is important: The results we will
present for the decayH→ f f̄ in the Goldstone-boson ap-
proximation agree with the limit of the SM results for large
MH only with the choiceZF5Zw , though a finite theory
would be obtained using any of theZ’s.

The renormalization constants in the fermion sector are
determined by the fermion self-energy function

S05p”PV
0~p2!1p”g5PA

0~p2!1mPS
0~p2!, ~2.25!

related to the bare propagator by

iSF
05

i

p”2mf2S f
02dm

, ~2.26!

where we have suppressed the quark label. The renormaliza-
tion to arbitrary order is rather intricate because of the sepa-
rate right- and left-handed contributions to the physical ferm-
ion fields andS0. This is discussed in Appendix A. At the
one-loop level of interest in our applications, the results sim-
plify substantially and are consistent with the SM results of
Böhm et al. @17#. In particular, we find that

ZL511PV
0~m2!2PA

0~m2!12m2PV
0 8~m2!12m2PS

0 8~m2!,
~2.27!

ZR511PV
0~m2!1PA

0~m2!12m2PV
0 8~m2!12m2PS

0 8~m2!,
~2.28!

dg

g
5

dm

m
52PV

0~m2!2PS
0~m2!. ~2.29!

We note finally that physicaln-point scattering amplitudes
are given by the truncated Green’s functionsGn

0 calculated in
terms of the bare fields, multiplied by a factor
(ZR

1/2PR1ZL
1/2PL) and the appropriate spinor for each incom-

ing fermion line, and by a factor (ZR
1/2PL1ZL

1/2PR) and a
conjugate spinor for each outgoing fermion line, where
PR5 1

2(11g5) andPL5 1
2(12g5). These factors generalize

the usual factors ofZ1/2 for standard Dirac fields to the case
of chiral interactions.

III. H˜f f̄ TO ONE LOOP: THEORY

In the present section, we will sketch the calculation of
the one-loop corrections to the matrix element for the decay
H→ f f̄ using the Goldstone-boson approximation and com-
pare this approximate result, valid forMH@MW indepen-

dently of the fermion masses, with the exact result obtained
by other authors@22–25#.

A. Form of the decay matrix element

According to the discussion above, the matrix element for
the decayH→ f f̄ is given by the expression

2 iMH→ f f̄ 5ZH
1/2ū~p12p2 ,mf !~ZR

1/2PL1ZL
1/2PR!

3G3
0~ZR

1/2PR1ZL
1/2PL!v~p2 ,mf !. ~3.1!

Here p1 and p2 are the momenta of the incoming Higgs
boson and the outgoing antifermion, respectively, andG3

0 is
the truncated three-point vertex function calculated using the
bare Lagrangian,

G3
052

i

A2
gf
01(

i51

6

Li1•••, ~3.2!

where the one-loop integralsLi correspond to the triangle
diagrams in Fig. 1.

The renormalization constantZF appears only through the
definition gf

05ZF
21/2gf(11dgf /gf), Eq. ~2.17!. Since Zw

ÞZzÞZH , it is essential to know which, if any, of theZi ’s
should be used forZF . As noted above, this can be estab-
lished using the Ward identity for the weak vector current
@13,16#, with the resultZF5Zw for our definition of the cou-
plings and theZ’s. Using the definition ofgf

0 , writing each
Z as 11dZ, and expanding, we obtain the one-loop expres-
sion forMH→ f f̄ ,

2 iMH→ f f̄ 5ū~p12p2 ,mf !

3F2
i

A2
gf~11Lbos1L fer!1 (

i5 1

6

Li G
3v~p2 ,mf !, ~3.3!

where the ‘‘bosonic’’ counterterm is

Lbos5
ZH
1/2

Zw
1/2215

1

2
dZH2

1

2
dZw1••• ~3.4!

FIG. 1. The six triangle diagrams contributing toH→ f f̄ at one
loop within the framework of the Goldstone-boson approximation.
Thick lines correspond to the Higgs particle, dotted lines represent
the massless Goldstone bosons, and solid lines with arrows refer to
fermions. The fermionf 8 is the SU~2!L partner off .
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and the ‘‘fermionic’’ counterterm is

L fer5S 11
dgf
gf

D ~ZR
f ZL

f !1/2215
1

2
dZR

f 1
1

2
dZL

f 1
dgf
gf

1•••.

~3.5!

This grouping of terms has the advantage thatLbos, while
dependent on the fermions through loop contributions, is in-
dependent of the flavor of the final fermion pair. It therefore
gives a universal correction to all decaysH→ f f̄ . The fermi-
onic counterterm, in contrast, depends explicitly on the fla-
vor of the final pair. This distinction will be important later.

B. Bosonic counterterm

The bosonic countertermLbos defined in Eq.~3.4! is de-
termined by the derivatives of the self-energy functionsPw

0

andPH
0 in Eqs. ~2.21! and ~2.23!. Because the field renor-

malization constantZH differs fromZw5ZF only by a finite
renormalization, the bosonic countertermLbos is finite to all
orders. The tadpole contributions to the self-energies shown
in Fig. 2 are canceled by the same countertermT05v0dm0

2

as cancels the apparent radiative changes in the physical
vacuum expectation valuev, and will be dropped. The re-
maining contributions to the boson self-energies are given to
one loop by the irreducible diagrams shown in Figs. 3 and 4.
The presence of fermion loops in these diagrams leads to a
breaking of the SO~3! symmetry of the Higgs Lagrangian for
unequal masses of the fermions in an SU~2! L doublet, with
the result thatPz

0(p2)ÞPw(p
2) for p2Þ0, and hence that

ZzÞZw .
The boson-loop diagrams have been calculated by a num-

ber of authors@5–9,20,26,27#. With the notation

dZi5dZi ,bos1dZi ,fer , ~3.6!

the results are

dZH,bos5
l

16p2 ~1222pA3!, ~3.7!

dZw,bos5
l

16p2 ~21!. ~3.8!

These one-loop quantities are separately finite. At two loops,
the Z’s become singular @20,28,29#, but the ratio
ZH,bos/Zw,bosand hence its contribution toLbos remain finite.

The contributionsdZH,fer and dZw,fer which arise from
fermionic loops have been calculated in@30#. Neglecting all
fermion masses except formt , the fermionic contribution to
Lbos is

1

2
dZH,fer2

1

2
dZw,fer

5
1

16p2NC

mt
2

v2 F2Re@B0~MH
2 ,mt

2 ,mt
2!2B0~0,0,mt

2!#

2S 12
1

a2DMH
2 Re@]B0~MH

2 ,mt
2 ,mt

2!#2
1

2G .
~3.9!

NC53 is the color factor. The standard scalar integral
B0(p

2,m0
2 ,m1

2) and its derivative]B0(p
2,m0

2 ,m1
2) @27,31#

are defined in Appendix B.

FIG. 2. The one-loop tadpole diagrams which are canceled by
the countertermT0 to avoid a shift in the vacuum expectation value
of the Higgs field. The different lines have the same meaning as in
Fig. 1. A summation over all Goldstone boson and fermion loops is
implied.

FIG. 3. Higgs self-energy contributions at one loop. The differ-
ent lines have the same meaning as in Fig. 1. A summation over all
Goldstone boson and fermion loops is implied.

FIG. 4. The Goldstone-boson self-energies at one loop. The dif-
ferent lines have the same meaning as in Fig. 1. The diagrams on
the right need to be summed over the different Goldstone-boson and
fermion-loop contributions, respectively. In case of an externalw or
z, the fermion loop consists of anf f 8 or f f pair, respectively, where
f 8 is the SU~2!L partner off .
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The explicit expression forLbos depends on the ratio of
the Higgs-boson and top-quark masses. For Higgs-boson
masses above the top-quark production threshold at
MH52mt , we find that

Lbos5
l

16p2 S 132 2pA3D
1

3

16p2

mt
2

v2 H bS 21
1

a2D F ln2a1 lnS 11b

2 D G
2
1

2
2

1

a2 J , MH.2mt , ~3.10!

while, for smaller masses,

Lbos5
l

16p2 S 132 2pA3D1
3

16p2

mt
2

v2 F 1

2a4
fsin~f!

2S 2a2231
1

a2D f

sin~f!
2
1

2
2

1

a2G ,
MH,2mt , ~3.11!

where

a5MH/2mt , b5A12a22,

f5arccos~122a2!, 0,f,p. ~3.12!

We will henceforth refer to the casesMH.2mt
(MH,2mt) as those of a ‘‘heavy’’~‘‘light’’ ! Higgs boson.

As noted earlier, the result forLbosdoes not depend on the
final state of the decay. For a fixed value ofMH , it is the
same for all processesH→ f f̄ . As an useful example, we
note thatLbosalready gives thecompleteone-loopO(l) and
O(gt

2) corrections to the dominant leptonic decay,
H→t1t2. The fermionic counterterm and the vertex correc-
tions for this and other leptonic decays do not receive further
corrections in these couplings.

It is worth mentioning that there are no threshold singu-
larities in Lbos. The right-hand sides of Eqs.~3.10! and
~3.11! are equal forMH52mt . In general, threshold singu-
larities occur only when the gauge couplings of the standard
model are included. We can consistently neglect the gauge
couplings when using the Goldstone-boson approximation.

C. Fermionic counterterm

The fermionic countertermL fer defined in Eq.~3.5! can
easily be reduced to the form

L fer5Re$PS, f
0 ~mf

2!22mf
2@PV, f

0 8 ~mf
2!1PS, f

0 8 ~mf
2!#%

~3.13!

by using the renormalization conditions stated in Eqs.~2.27!,
~2.28!, and~2.29!. The potential tadpole contributions to the
fermionic self-energies and their derivatives are exactly can-
celed by the counterterms. The remaining one-particle irre-
ducible diagrams are shown in Fig. 5. All involve loops con-

taining either a virtual Higgs boson or a massless Goldstone
boson and the appropriate fermion line,f or f 8, where f
refers to the final fermion.

In contrast to the expressions for the bosonic self-
energies, the expressions for the fermion self-energies de-
pend on the Dirac matrices and, in particular, ong5. This
g5 dependence raises the possibility of problems with dimen-
sional regularization related to the definition of such quanti-
ties as Trg5gm1

•••gmD and the antisymmetric tensor inD
dimensions. However, as shown by Barbieriet al. @13#, naive
dimensional regularization withg5 and the remaining Dirac
matrices treated as anticommuting is equivalent in the
present context to the proper ’t Hooft–Veltman scheme@31#
to at least two loops for physical quantities. We have there-
fore calculated the fermion self-energies and the triangle dia-
grams using naive dimensional regularization.

The explicit evaluation of the expression in Eq.~3.13!
requires the specification of the flavor of the final state ferm-
ion. The results forf5t and f5b are given in Secs. IV A
and IV B, respectively.

IV. H˜f f̄ TO ONE LOOP: APPLICATIONS

The six one-loop vertex diagramsLi , i51–6, contribut-
ing to Eq. ~3.5! are shown in Fig. 1. Using the Dirac equa-
tions for the spinorsū(p12p2 ,mf) andv(p2 ,mf), extracting
a factor2 imf /v from the reduced expressions for the func-
tions Li , and denoting the results byLĩ , we can write Eq.
~3.3! as

2 iMH→ f f̄ 52 i
mf

v
ū~p12p2 ,mf !v~p2 ,mf !~11DT !,

~4.1!

where the spinor matrix element is purely scalar and the
quantityDT is defined as

DT5Lbos1L fer1L tri , L tri5(
i51

6

Lĩ . ~4.2!

The correction to the decay width can then be written as

G~H→ f f̄ !5GB~H→ f f̄ !u 11DTu2

5GB~H→ f f̄ !@ 112 ReDT1O~l2,lgf
2 ,gf

4!#,

~4.3!

where@32#

FIG. 5. The three diagrams contributing to the fermion self-
energies at one loop. The different lines have the same meaning as
in Fig. 1. The fermionf 8 is the SU~2!L partner of the external
fermion f .
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GB~H→ f f̄ !5
Ncmf

2MH

8pv2 S 12
4mf

2

MH
2 D 3/2 ~4.4!

is the Born result. The function( i L̃ i is rather complicated,
and we will only give the results needed for the decays
H→t t̄ andH→bb̄. They are listed in the following sections.

A. H˜t t̄

In the mass regionMH.2mt , the only important fermi-
onic decay of the Higgs boson is the decay into a pair of top
quarks, with a branching ratio of approximately 10%@33#.
Sincemt@mb , we can calculate the decay rate forH→t t̄
using our general results forH→ f f̄ evaluated in the limit
mb50. Using the relationl5MH

2 /(2v2), we add the contri-
butions from the six triangular loops and obtain

L tri52
1

16p2 Smt

v D 2 4a4

a221 F S 11
2

a2
2

1

a4Dmt
2C0~MH ,mt ,mt ,mt ,MH!1S 92

6

a2Dmt
2C0~MH ,mt ,MH ,MH ,mt!

2mt
2C0~MH ,mt,0,0,mt!2

1

2a2
mt
2C0~MH ,mt,0,0,0!1S 261

7

a2D ln2a2bS 2 61
2

a2
1

1

a4D S ln2a1 ln
11b

2 D
1

pA3
2a2

2
ip

2a4
~a22b!G , ~4.5!

where

a5
MH

2mt
b5A12

1

a2
. ~4.6!

This result, based purely on the Lagrangian of the Higgs sector and the interaction of the Higgs and the Goldstone bosons with
the fermion sector, is in complete agreement with the corresponding result1 given by Kniehl@22#, which was calculated using
the full electroweak Lagrangian, assumingMH

2 .4mt
2@MW

2 @mb
2 and neglecting terms that are not enhanced by an inverse

power of MW
2 . That procedure is equivalent to the usual power-counting arguments@3,4#, taking the limit g2→0, with

g2 /MW52/v. The agreement of the two results demonstrates the validity of the Goldstone-boson approximation to one loop
for H→t t̄.

To compare the decay matrix element in our approximate calculation with that obtained in the full electroweak calculation,
we still need explicit expressions for the countertermsLbos andL fer for MH.2mt . The expression forLbos is given in Eq.
~3.10!. Evaluating the general expression forL fer for MH.2mt usingmb50, we find that

L fer5
1

16p2

mt
2

v2 F ~32a4236a214!ln2a28a217
1

16p2

mt
2

v2
2b~32a4220a2!S ln2a1 ln

11b

2 D G . ~4.7!

L fer includes terms proportional toa
4ln2a, a4, a2ln2a, anda2 which involve powers ofMH

2 /mt
2 and are enhanced for large

Higgs-boson masses. However, these apparent enhancement terms cancel exactly when we expand the quantityb in terms of
1/a2; that is,L fer is actuallynot enhanced in powers ofMH . This is a manifestation of the Veltman screening theorem@34#:
At one loop, an internal Higgs-boson line with a large massMH leads only to a logarithmic enhancement. SinceL fer is derived
from two-point functions with external fermion lines, no powerlike enhancement is possible.

Assembling the partial results according to Eq.~4.2!, we find the complete one-loop result forDT in the limit mt@mf for
fÞt,

DT52
1

16p2 Smt

v D 2H a2

a221 F S 11
2

a2
2

1

a4DMH
2C0~MH ,mt ,mt ,mt ,MH!1S 92

6

a2DMH
2C0~MH ,mt ,MH ,MH ,mt!

2MH
2C0~MH ,mt,0,0,mt!2

1

2a2
MH

2C0~MH ,mt,0,0,0!12pA32
2ip

a2
~a22b!G18a22

11

2
1

3

a2

1S 232a4112a21
4

a221D ln~2a!1bS 32a414a21 102
3

a2
1

12

a221D S ln~2a!1 ln
11b

2 D22a2S 132 2pA3D J ,
~4.8!

1The result given in Eq.~4.5! should be compared with the quantity (a/4p)dweak as defined by Kniehl.

55 1539TEST OF THE GOLDSTONE-BOSON APPROXIMATION . . .



where we have replaced an overall factor 4a2mt
2 by MH

2 in
the coefficients of theC0 functions. This result is exact in the
context of the Goldstone-boson approximation except for the
approximationmf50, fÞt. The correction to the decay
width is

G~H→t t̄ !5GB~H→t t̄ !@112 ReDT1O~l2,lgt
2 ,gt

4!#.
~4.9!

The functionsMH
2C0 in Eq. ~4.8! are functions only of the

ratio MH
2 /mt

2 , i.e., of a2. Expanding these functions for
a2@1, we find that all of the contributions toDT which are
proportional to positive powers ofa2 cancel except for the
last term in Eq.~4.8!. That term arises from the boson-loop
contribution to Lbos. The contributions from the fermion
renormalization constants and the three-point functions are
not power enhanced, but grow only as ln(2a)5ln(MH /mt).
The purely bosonic corrections therefore give the dominant
contribution toDT for large Higgs-boson mass, a result that
remains true to all orders in perturbation theory. In particu-
lar, at one loop,

DT;
MH

2

16p2v2 F14 ~1322pA3!1OS mt
2

MH
2 ln

MH
2

mt
2 D 1OS mt

2

MH
2 D G ,

MH
2 @mt

2 , ~4.10!

and thefraction of the total correction associated with the
top-quark Yukawa coupling decreases rapidly forMH@mt .
However, the actual correction associated withgt may still
be significant.

In Fig. 6 we show the approximate correction to the decay
width, G/GB5112 ReDT, for H→t t̄ in the limit mb50
~solid curve!. This result is compared with the full elec-
troweak correction~short dashes! @35#. Away from the
threshold, the Goldstone-boson approximation is excellent,
giving a result which is only 3.9%~1.8%! larger in magni-

tude than the full electroweak result forMH5500 GeV ~1
TeV!. This is roughly the accuracy one would expect when
neglecting gauge contributions toDT of ordera/p.

We find that theO(l) correction~long dashes! represents
the dominant contribution to the GBA correction for all val-
ues ofMH larger than 2mt , i.e., above the decay threshold.
The one-loop Yukawa correctionO(gt

2) vanishes at about
MH5400 GeV. For larger values ofMH , it is positive and
adds to theO(l) contribution. While it initially grows more
rapidly as a function ofMH than theO(l) correction, the
MH

2 behavior of the latter wins over the asymptotically loga-
rithmic growth of the Yukawa correction forMH greater than
about 600 GeV. The Yukawa contribution represents a de-
creasing fraction of the total correction for higher masses,
but is still significant numerically.

The very different behavior of the Goldstone-boson ap-
proximation and the full electroweak result at threshold is
caused by a Coulomb singularity associated with the ex-
change of a virtual photon. Except for this QED effect, the
GBA correction and the weak correction are in qualitative
agreement atMH52mt : The GBA correction is about zero
at threshold, and the weak correction is of the order of 1%.
To have a better test of the validity of the GBA for values of
MH'2mt , we next consider the decayH→bb̄ which is free
of the Coulomb singularity atMH52mt .

B. H˜bb̄

In the mass region of a ‘‘light’’ Higgs boson,
MH,2mt , the dominant fermionic decay of the Higgs boson
is the ~much suppressed! decayH→bb̄. We can still treat
this decay using the Goldstone-boson approximation, pro-
vided thatMH is large compared to the masses of theW and
Z bosons, and can use the comparison of the results with
those of the full electroweak theory to test the limits of va-
lidity of the approximation for a ‘‘light’’ Higgs boson. For a
‘‘heavy’’ Higgs boson,MH.2mt , the approximate result
and the full electroweak result would be expected to agree to
an accuracy similar to that in the previous section. However,
the dependence of the one-loop correction toH→bb̄ onmt
is different from that encountered in top-quark production
and therefore actually provides an independent check of the
quality of the GBA for the case of a heavy Higgs boson.

We will again write the decay matrix element corrected to
one loop in the form

2 iMH→b b̄52 i
mb

v
ū~p12p2 ,mb!v~p2 ,mb!~11DT !,

DT5Lbos1L fer1L tri . ~4.11!

The Born result is proportional to the ratiomb /v. The one-
loop GBA corrections contributing toDT are proportional to
l, mt

2/v2, mb
2/v2, and squares of lighter fermion masses.

Evaluating these contributions toDT, we setmb50 and also
neglect other light fermions. In this limit,L fer only receives
contributions from the bottom-quark self-energy diagram
which contains a (w,t) loop, Fig. 5, andL tri reduces to a sum
over only two triangle graphs,L3 andL6 in Fig. 1, with the
tree-level factor2 imb /v extracted.

FIG. 6. The one-loop correction factor to the decay width
H→t t̄. The solid curve gives the result of the Goldstone-boson
approximation consisting of the sum of theO(l) andO(gt

2) cor-
rections. Light fermion couplings are neglected. The result is com-
pared with the full electroweak correction obtained in@22–24# and
the GBA result without fermion corrections.
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The bosonic countertermLbos is given by Eq.~3.10! or
~3.11!, depending on the value ofMH . The fermionic coun-
tertermL fer and the triangle graphsL tri depend on the flavor
of the final fermion pair and need to be reevaluated for
Higgs-boson decay into bottom quarks. We find formb→0
that

L fer5
1

16p2

mt
2

v2
@22B0~0,0,mt

2!#. ~4.12!

The triangle contribution is calculated from the expres-
sions for L3 and L6 using the Dirac equation and setting
mb50:

L tri5
1

16p2

mt
2

v2 F2B0~0,0,mt
2!1S 22

1

a2D @B0~MH
2 ,mt

2 ,mt
2!2B0~0,0,mt

2!#1224ln2a1
1

4a4
MH

2C0~MH
2 ,0,mt

2 ,mt
2,0!

12S 11
1

4a2DMH
2C0~MH

2 ,0,0,0,mt
2!12ip G . ~4.13!

The divergences related to the integralsB0 cancel in the sumDT5Lbos1L fer1L tri . In case of a ‘‘light’’ Higgs, the
complete one-loop electroweak radiative correction to the amplitude for the decayH→bb̄ is now found to be

DT5
1

16p2

mt
2

v2 F522
4

a2
24ln2a2S 1a2 2

2

a4Dfsin~f!23S 2a2231
1

a2D f

sin~f!
1

1

4a4
MH

2C0~MH
2 ,0,mt ,mt,0!

12S 11
1

4a2DMH
2C0~MH

2 ,0,0,0,mt
2!12a2S 132 2pA3D12ipG , MH,2mt , ~4.14!

and the heavy-Higgs-boson result is

DT5
1

16p2

mt
2

v2 H 522
4

a2
24ln2a1bS 21

5

a2D F ln~2a!1 lnS 11b

2 D G1
1

4a4
MH

2C0~MH
2 ,0,mt ,mt,0!

12S 11
1

4a2DMH
2C0~MH

2 ,0,0,0,mt
2!12a2S 132 2pA3D1 ipF22bS 11

1

a2D G J , MH.2mt . ~4.15!

In Fig. 7 we show the approximate correction to the decay
width, G/GB5112 ReDT, for H→bb̄ in the limit mb50
~solid curve!, and compare it with the full electroweak cor-
rection ~short dashes! @35#. For large values ofMH , the ap-
proximation is very good, in agreement with our findings in
the case ofH→t t̄. The difference between the two correc-
tions is again of the magnitude of the expected gauge cor-
rections. The dominant contribution overall is theO(l) cor-
rection ~long dashes!, which grows more rapidly than the
Yukawa correction forMH larger than about 700 GeV.

For a Higgs mass of about 400 GeV, the top-quark
Yukawa correction cancels theO(l) contribution, and the
one-loop radiative corrections are actually determined
mainly by the gauge corrections. However, the magnitude of
the gauge correction is still small compared to the magnitude
of the Yukawa correction at this point, with an absolute
value less than 1%. The Goldstone-boson approximation
breaks down forMH less than about 200 GeV, where the
condition MH@MW ,MZ is of questionable validity. The
gauge corrections are the dominant corrections in this region
and are larger in magnitude than both the Yukawa and the
O(l) corrections. In addition, the gauge correction displays
Coulomb singularities atMH52MZ and 2MW , a feature
which is unique to gauge interactions and cannot be repro-
duced using Goldstone bosons and the limitg,g850. This
threshold region requires special treatment.

FIG. 7. The one-loop correction factor to the decay width
H→bb̄. The solid curve gives to the result of the Goldstone-boson
approximation, consisting of the sum of theO(l) and theO(gt

2)
corrections. Light fermion couplings are neglected. The result is
compared with the full electroweak correction obtained in@22–24#
and the GBA result without fermion corrections.

55 1541TEST OF THE GOLDSTONE-BOSON APPROXIMATION . . .



Qualitatively, the GBA result approximates the full elec-
troweak corrections rather well for Higgs masses larger than
200 GeV. The full electroweak correction remains finite at
the threshold for top-quark production atMH52mt , and the
expected threshold kink is reproduced by the approximate
calculation. We conclude that the Goldstone-boson approxi-
mation is a useful tool even in the case of a ‘‘light’’ Higgs
boson with a mass in the range 2MZ,MH,2mt , with the
GBA correction toG(H→bb̄) giving a good estimate of the
full electroweak correction.

V. SUMMARY

The equivalence theorem is known to be an excellent tool
for describing heavy-Higgs-boson physics in the case of pro-
cesses involving longitudinally polarized external gauge
bosonsWL

6 ZL and Higgs scalars@1,2#. The closely related
Goldstone-boson approximation provides a similarly simple
method for calculating the dominant contributions of internal
W6, Z, andH bosons@3,4#. In either case, the vector bosons
of the SM are replaced by the corresponding scalar Gold-
stone bosons in the symmetry-breaking sector of the theory,
and the gauge couplings are ignored.

Most past applications of the GBA have neglected the
Yukawa couplings of the fermions. This is not necessary; nor
is it desirable. The top quark is quite massive@14#; gt is
therefore large, and it is generally necessary to include top-
quark effects in calculations of electroweak radiative correc-
tions to obtain accurate results. Because the approximations
underlying the Goldstone-boson method are independent of
the values of the Yukawa couplings, the method is easily
extended to include fermions. However, it is necessary is to
define the couplings and formulate the renormalization pro-
cedure in such a way that the reduced model is the limit of
the SM for vanishing gauge couplings, with all quantities
defined in terms of SM parameters that are well behaved in
the limit.

In this paper, we have extended the usual Goldstone-
boson approximation by systematically including the
Yukawa interactions and formulating a renormalization pro-
cedure which is consistent with the requirements of the ap-
proximation, gives the correct relations to physical observ-
ables in the limitg,g8→0, and is consistent with the power-
counting arguments applied to the full SM@3,4#. The
framework presented here permits quite simple calculations
of the leading radiative corrections at arbitrary orders in
l5MH

2 /2v2 andgt5A2mt /v. One can hope to obtain good
approximate results for radiative corrections to Higgs-sector
processes in the case of a ‘‘light’’ Higgs boson,
2MZ,MH,2mt , and excellent approximations for larger
Higgs-boson masses.

As a test, we calculated the one-loop corrections to fermi-
onic Higgs-boson decays using the Goldstone-boson ap-
proximation with fermions, and compared our results with
the results obtained from a full electroweak calculation.
Since the Yukawa interactions are negligible except for the
top-quark coupling, we only included contributions from the
latter. We find that the Higgs couplingl and the Yukawa
couplinggt give the dominant corrections to the decay rates
for MH.2mt . The much smaller contributions of the trans-
verse gauge couplings are only significant very close to 400

GeV in the caseH→bb̄ where the dominant contributions
cancel, and near the decay threshold forH→t t̄ where virtual
photon exchange produces a Coulomb singularity.

In the mass range 2MZ,MH,2mt , the processH→bb̄
is the only significant fermionic decay. The one-loop radia-
tive corrections to this decay associated with the quartic
Higgs-boson coupling, the top-quark Yukawa coupling, and
the transverse electroweak gauge couplings are all similar in
magnitude, but with differing signs. In particular, a partial
cancellation of the Higgs and Yukawa contributions makes
the gauge correction equally important. The total correction
is very small, less than 2%. It seems plausible that the sum of
the magnitudesof Higgs and Yukawa contributions would
give a good estimate for an upper bound on the magnitude of
the complete electroweak radiative correction for a variety of
electroweak processes. In absence of cancellations between
the O(gt

2) andO(l) corrections, the approximate result is
expected to be the dominant correction for Higgs-boson
masses larger than 2MZ . Threshold singularities arising
from the gauge sector cannot, of course, be reproduced using
the Goldstone-boson approximation and require special treat-
ment in any case.

According to Veltman’s screening theorem@34#, the
O(l) corrections are the only one-loop corrections that grow
proportionally toMH

2 . We find that this asymptotic growth
of the correction is dominant only for Higgs-boson masses
larger than 600–700 GeV, assuming a top-quark mass of 175
GeV @14#. For smaller values ofMH , we find theO(gt

2)
corrections to have the stronger dependence onMH .

In conclusion, we find that the calculation of radiative
corrections using the GBA is greatly improved if the
Yukawa interactions are included. The limitmf50, f”5t al-
lows for a relatively simple calculation of the dominant ra-
diative corrections, yielding an excellent approximation of
the full electroweak corrections for the heavy-Higgs-boson
case and order-of-magnitude estimates for 2MZ,MH
,2mt .
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APPENDIX A: RENORMALIZATION IN THE
GOLDSTONE-BOSON APPROXIMATION

As emphasized above, it is necessary to express the cou-
plings in the reduced LagrangianLGBA in terms of physical
parameters of the standard model which have smooth limits
for vanishing gauge couplings and to renormalize the theory
in such a way that the connection with the SM is maintained.
Several different approaches have been used in the renormal-
ization of the SM as discussed by Bo¨hm et al., and it is not
especially straightforward to extract the limit of interest. We
therefore give a systematic sketch of an appropriate all-
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orders renormalization procedure here. The renormalization
in the Higgs sector has previously been discussed to arbitrary
order by Maheret al. @20# using bare fields and by Ghincu-
lov and van der Bij to two loops in the physical-field–
counterterm formulation@28,29#. Both groups neglected the
fermion contributions. The renormalization with fermions
has apparently only been considered to one loop in earlier
work @13#.

1. Fixing the renormalization of the Higgs Lagrangian

The physical quartic coupling of the Higgs boson has
been defined in Eq.~2.19!, and the wave-function renormal-
ization constantsZw , Zz , andZH are defined in Eq.~2.20!.
The determination of the bare couplingl0 and theZ’s pro-
ceeds as follows. The real part of the two-point function or
inverse propagatorG (2)(p2) for each of the particles must
vanish forp2 equal to the square of the physical mass of that
particle, G (2)(m2)50. The two-point functions calculated
using the bare fields are easily seen to have the form

Gw0
~2!~p2!5p22Pw

0 ~p2!1dm0
2 , ~A1!

Gz0
~2!~p2!5p22Pz

0~p2!1dm0
2 , ~A2!

GH0

~2!~p2!5p22PH
0 ~p2!22l0v0

21dm0
2 , ~A3!

where theP ’s are the bare self-energy functions. Since there
is only a single mass countertermdm0

2 in the Higgs Lagrang-
ian, Eq. ~2.13!, the vanishing of the renormalized masses
mw andmz required by the Goldstone theorem leads to the
relations

dm0
25Pw

0 ~0!5Pz
0~0!, ~A4!

and determinesdm0
2 . The self-energy functions for the bare

w6 andz fields must therefore be equal atp250, an identity
that holds to all orders in perturbation theory. In the follow-
ing, we will replacedm0

2 by Pw
0 (0).

The condition thatv be the physical vacuum expectation
value requires the vanishing of the truncated one-point func-
tion for the Higgs field,

GH0

~1!~0!52 iT01 iv0dm0
250, ~A5!

whereT0 is the sum of all Higgs tadpole graphs~see Fig. 2!
calculated using the bare fields. This gives the further rela-
tion dm0

25T0 /v0, and sodm0
2 can be calculated either as a

self-energy or as a tadpole contribution. The resulting iden-
tity

Pw
0 ~0!5T0 /v0 ~A6!

provides a useful check on the calculations@36#. The vanish-
ing of the one-point function, Eq.~A5!, implies that the tad-
pole diagrams and the tadpole counterterm in Eq.~2.13! can-
cel order by order in the perturbation expansion and can be

dropped together, as discussed by Taylor@37#. We have used
this simplification throughout the paper.

The bare couplingl0 can be determined by using the
definitionl5MH

2 /2v2 and Eq.~A3!. The on-mass-shell con-
dition for the Higgs boson,GH0

(2)(MH
2 )50 @38#, gives the re-

lation

MH
2 52l0v01PH

0 ~MH
2 !2dm0

2 . ~A7!

Upon replacing v0
2 by ZFv

25ZFMH
2 /2l and dm0

2 by
Pw

0 (0) in this expression and solving forl0, we find that

l05lS 11
dl

l D 1

ZF
2 5

l

ZF
S 12

RePH
0 ~MH

2 !2Pw
0 ~0!

MH
2 D .

~A8!

Finally, the wave-function renormalization constants
Zw , Zz , andZH , which relate the bare fieldsw0

6 , z0, and
H0 to the physical fields, are determined by the condition
that the propagators for the physical fields have unit residue
at the particle poles. The bare propagators do not, but instead
have residuesZi given by

Zi5S d

dp2
G i

~2!~p2!U
p25m

i
2D 21

, ~A9!

a relation that leads directly to the results in Eq.~2.23!.
The single wave-function renormalization constantZF

necessary to remove the divergences in the theory can be
identified using the Ward identities for the electroweak
charged current which underlie both the equivalence theorem
and the Goldstone-boson approximation@16,13#. For ex-
ample, in their derivation of the equivalence theorem, Bag-
ger and Schmidt@16# use the Ward identity to show that the
ratio

MW
0

MW

ZW
1/2

Zw
1/25

g0v0
gv

ZW
1/2

Zw
1/25

ZF
1/2

Zw
1/2@11O~g2!# ~A10!

is unity up to corrections of orderg2 under conditions satis-
fied by our renormalization scheme. Thus,ZF5Zw in the
limit g,g8→0. Barbieriet al. @13# give a direct proof of this
result.

2. Fixing the renormalization of the fermion Lagrangian

The bare self-energy functions and the bare propagator for
the fermions are defined in Eqs.~2.25! and~2.26!. Recalling
the definition of the propagator, iSF(x2y)5
^VuT„c(x),c̄(y)…uV&, and the connection between the bare
and physical fermion fields,

c5cR1cL5~ZR
21/2PR1ZL

21/2PL!c0, ~A11!

we find that

iSF~p!5~ZR
21/2PR1ZL

21/2PL!iSF
0~p!~ZR

21/2PL1ZL
21/2PR!

~A12!

or, calculating the inverse ofSF
0 explicitly,
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iSF~p!5„p” $ 1
2 ~ZL

211ZR
21!@12PV

0~p2!#2 1
2 ~ZL

212ZR
21!PA

0~p2!%

1p”g5$ 1
2 ~ZL

212ZR
21!@12PV

0~p2!#2 1
2 ~ZL

211ZR
21!PA

0~p2!%

1ZL
21/2ZR

21/2@m1dm1mPS
0~p2!#…„p2$@12PV

0~p2!#22PA
0 2~p2!%2~m1dm1mPS

0!2…21. ~A13!

The mass or coupling countertermdm5mdg/g and the
wave-function renormalization constantsZR andZL are de-
termined by the condition that the physical propagator de-
scribe a freely propagating particle with a massm and unit
residue at the particle pole,SF→1/(p”2m)5(p”1m)/(p2

2m2) for p”→m. SF has a simple pole atp25m2 provided
that @39#

11
dm

m
511

dg

g
5A@12PV

0~m2!#22PA
0 2~m2!2PS

0~m2!.

~A14!

The coefficient ofp”g5 in Eq. ~A13! must vanish ifSF is to
be a normal massive propagator with equal right- and left-
handed residues at the particle pole. This requires that

~ZR2ZL!@12PV
0~m2!#5~ZR1ZL!PA

0~m2!. ~A15!

The coefficients ofp” andm in the numerator will be equal if,
in addition,

1
2 ~ZR1ZL!@12PV

0~m2!#2 1
2 ~ZR2ZL!PA

0~m2!

5ZR
1/2ZL

1/2F11
dg

g
1PS

0~m2!G . ~A16!

Equations~A15! and ~A16! are homogeneous of degree
one in theZ’s, and only determine the ratioZR /ZL . The two
equations may also be combined to obtain the pole condition
Eq. ~A14!. The magnitude of theZ’s is determined by the
final condition thatSF have unit residue at the pole. With the
ratiosZR /ZL determined as above for both the quarks in a
doublet, this final condition can only be enforced for one of
the two quark propagators by adjusting the single remaining
renormalization constantZL for the left-handed fieldsCL ,
Eq. ~2.15!. The second quark field requires an additional
wave-function renormalization to reach the standard normal-
ization. This extra renormalization constant is finite; the in-
finities in the wave-function renormalizations can be be ab-
sorbed entirely inZL and the twoZR’s, which generate the
only symmetric counterterms allowed in the kinetic part of
LF , Eq. ~2.14!. Since our calculations are done entirely in
terms of the bare fields, with theZ’s appearing only in the
overall factors necessary for external particles, the choice of
definition for the originalZL is irrelevant, and we will give
only the final renormalization constants. These are deter-
mined by setting the ratio of the coefficient ofp” in Eq. ~A13!
to the derivative of the denominator equal to unity for
p25m2. Using Eqs.~A14!–~A16!, we find that

1

ZL
512PV

0~m2!1PA
0~m2!

22m2PS
0 8~m2!A12PV

0~m2!1PA
0~m2!

12PV
0~m2!2PA

0~m2!

22m2
@12PV

0~m2!#PV
0 8~m2!2PA

0~m2!PA
0 8~m2!

12PV
0~m2!2PA

0~m2!

~A17!

and

1

ZR
512PV

0~m2!2PA
0~m2!

22m2PS
0 8~m2!A12PV

0~m2!2PA
0~m2!

12PV
0~m2!1PA

0~m2!

22m2
@12PV

0~m2!#PV
0 8~m2!2PA

0~m2!PA
0 8~m2!

12PV
0~m2!2PA

0~m2!
,

~A18!

whereP8(p2)5dP(p2)/dp2. These expressions hold to all
orders in perturbation theory, with one set for each quark. At
the one-loop level of interest here, they simplify substan-
tially. The expanded results are given in Eqs.~2.27!, ~2.28!,
and~2.29!, and agree with those of Bo¨hmet al. @17# obtained
in the SM.

It is straightforward, finally, to establish the renormaliza-
tion factors which must be used for the external fermions
when scattering amplitudes are calculated using the bare
fields. By using the standard reduction formulas@40#, we can
express the physical scattering amplitudes in terms of Fou-
rier transforms of vacuum expectation values of time-ordered
products of the physical fields. These vacuum expectation
values appear multiplied by a factor (p”2m) and a spinor for
each ingoing or outgoing fermion line. The physical fermion
fieldsc and c̄ in the time-ordered products can be replaced
by the bare fieldsc0 and c̄0 using the definition in Eq.
~A11!. When the result is reexpressed in terms of the bare
truncated Green’s functionGn

0 the external factors are re-
placed bySF

0(p)(ZR
21/2PL1ZL

21/2PR)(p”2m) and a spinor
for each ingoing fermion line, and by (p”
2m)(ZR

21/2PR1ZL
21/2PL)SF

0(p) and a conjugate spinor for
each outgoing line. However, it follows from Eq.~A12! that

SF
0~p!~ZR

21/2PL1ZL
21/2PR!5~ZR

1/2PR1ZL
1/2PL!SF~p!,

~A19!

~ZR
21/2PR1ZL

21/2PL!SF
0~p!5SF~p!~ZR

1/2PL1ZL
1/2PR!.

~A20!
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As a result, using the normalization of the physical propaga-
tor at p”5m, we find that the physical scattering amplitudes
are given by the truncated Green’s functionsGn

0 calculated in
terms of the bare fields, multiplied by a factor
(ZR

1/2PR1ZL
1/2PL) and the appropriate spinor for each incom-

ing fermion line, and by a factor (ZR
1/2PL1ZL

1/2PR) and a
conjugate spinor for each outgoing fermion line.

APPENDIX B: LOOP INTEGRAL EXPRESSIONS

1. Scalar integral expressions

Here we define the scalar integral expressions needed to
calculate the two- and three-point functions@27,31#. The
more complicated vector and tensor loop integrals which
arise from diagrams containing fermions can be reduced to
sums of scalar integrals by standard techniques@27,41#. We
will follow the definitions in @27#.

For the calculation of the one-loop self-energies inD di-
mensions we use

A0~m0
2!5

~2pm!~42D !

ip2 E dDq
1

q22m0
21 i e8

, ~B1!

B0~p
2,m0

2 ,m1
2!5

~2pm!~42D !

ip2 E dDq

3
1

@q22m0
21 i e8#@~q1p!22m1

21 i e8#
.

~B2!

The vertex corrections involve the integrals

C0~p1
2 ,p2

2 ,,m0
2 ,m1

2 ,m2
2!5

~2pm!~42D !

ip2 E dDq
1

@q22m0
21 i e8#@~q1p1!

22m1
21 i e8#@~q1p2!

22m2
21 i e8#

. ~B3!

The arbitrary energy scalem is introduced to fix the energy
dimensions of the functionsA0, B0, andC0 independent of
the value ofD, and the infinitesimal quantityi e8 defines the
integration path in the complex plane. We note that Bo¨hm
et al. @17# defineA0 with an overall minus sign, while Kniehl
@22,42# introduces a minus sign in the definition ofC0.

These integrals can be evaluated in a straightforward
manner using Feynman parameters. Complete analytic re-
sults are given by Denner@27#, though it is useful to go back
to the Feynman representation of the integrals for certain
values ofpi

2 andmi
2 to avoid problems with infrared singu-

larities.
The integralB1 that appears in the fermion self-energy

functions is given by

B1~p
2,m0

2 ,m1
2!5

1

2p2
@A0~m0

2!2A0~m1
2!

1~m1
22m0

22p2!B0~p
2,m0

2 ,m1
2!#.

~B4!

The derivatives of the self-energy functions with respect
to p2, the square of the external momentum, are needed in
the calculation of the multiplicative wave-function renormal-
ization constantsZi . A0 does not depend on the external
momentum, and so does not contribute to theZ’s. The de-
rivatives

]Bi~M
2,m0

2 ,m1
2![

]

]p2
Bi~p

2,m0
2 ,m1

2!U
p25M2

, i50,1,

~B5!

are given, for example, by Denner@27#.
The reduction of the tensor integrals which appear in the

fermion self-energy functions to sums of scalar integrals is

discussed in detail in@27#. The results given there agree with
our calculations@30# except for a typographical error in Den-
ner’s expression for the functionC00 in his Eq.~C.37!. In our
notation, the correct result forC00 is

C005
1
4 @B0„~p12p2!

2,m2
2 ,m1

2
…1~m0

22m1
21p1

2!C1

1~m0
22m2

21p2
2!C212m0

2C0#. ~B6!

APPENDIX C: TADPOLES AND SELF-ENERGY
FUNCTIONS

The only neutral field that receives a shift in its vacuum
expectation value because of tadpole contributions is the
Higgs fieldh; the z field does not. Thez andw fields have
couplings throughLH , Eq. ~2.13!, which require an even
number of fields to participate, and no purely bosonic tad-
pole graphs can be formed for thez. With the addition of the
fermionic LagrangianLF , Eq. ~2.14!, the z can form a tad-
pole with a fermion loop, but the presence of a factorg5 in
the z-fermion coupling and a trace over theg matrices in-
volved yields a vanishing result. However, fermion loops
contribute to the Higgs tadpoles as shown in Fig. 2 since no
g5 is involved in theH-fermion coupling. Taking into ac-
count both the bosonic and fermionic contributions, the
Higgs one-point function~tadpole function! is

T5
1

16p2 S 2
3MH

2

2v
A0~MH

2 !1(
f
NC
f
4mf

2

v
A0~mf

2! D .
~C1!

The graphs of the one-loop one-particle irreducible self-
energy contributions to the bosonic and fermionic fields are
shown in Figs. 3, 4, and 5. They can be evaluated as@27,30#
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PH
0 ~p2!52

1

16p2 @3lA0~MH
2 !118l2v2B0~p

2,MH
2 ,MH

2 !

26l2v2B0~p
2,0,0!#1

1

16p2(
f
NC
f
mf
2

v2

3@4A0~mf
2!2~2p228mf

2!B0~p
2,mf

2 ,mf
2!#,

~C2!

Pz
0~p2!52

1

16p2 @lA0~MH
2 !14l2v2B0~p

2,MH
2 ,0!#

1
1

16p2(
f
NC
f
mf
2

v2

3@4A0~mf
2!22p2B0~p

2,mf
2 ,mf

2!#, ~C3!

Pw
0 ~p2!52

1

16p2 @lA0~MH
2 !14l2v2B0~p

2,MH
2 ,0!#

2
1

16p2 (
~ f , f 8!

NC
f 1

v2
$8mf

2mf 8
2 B0~p

2,mf
2 ,mf 8

2
!

12~mf
21mf 8

2
!@2A0~mf

2!2A0~mf 8
2

!

1~p22mf
22mf 8

2
!B0~p

2,mf
2 ,mf 8

2
!#%, ~C4!

PV, f
0 ~p2!5

1

16p2

mf
2

v2 F2B1~p
2,mf

2 ,MH
2 !2B1~p

2,mf
2,0!

2S 11
mf 8
2

mf
2 DB1~p

2,mf 8
2 ,0!G , ~C5!

PA, f
0 ~p2!5

1

16p2

mf
2

v2 S 211
mf 8
2

mf
2 DB1~p

2,mf 8
2 ,0!, ~C6!

PS, f
0 ~p2!5

1

16p2

mf
2

v2 S B0~p
2,mf

2 ,MH
2 !2B0~p

2,mf
2,0!

22
mf 8
2

mf
2 B0~p

2,mf 8
2 ,0!D . ~C7!

Thez andw self-energies only differ in the fermionic part, as
expected. It is easily shown using the explicit results given
for A0 andB0 in Appendix B that they are equal at one loop
at p250 independently of the values of the massesmf and
mf 8. This equality does not extend to the derivatives of the
self-energy functions, and hence to theZ’s.
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