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We study isospin-breaking instanton corrections to the operator product expansion of the nucleon correlation
functions. After a comparison with quark model calculations based on the ’t Hooft interaction, we examine the
role of instantons in the corresponding QCD sum rules. Instanton contributions are found to be absent in the
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I. INTRODUCTION

Over the last years growing evidence for a significant role
of QCD instantons in hadron structure has been collected. It
originated first from models built on instanton vacuum phe-
nomenology@1,2# and recently received model-independent
support from cooled lattice studies@3#. Indeed, the latter
show that hadron correlation functions remain almost un-
changed if all but the instanton fields are filtered out of the
equilibrated lattice configurations.

Analytical studies of instanton contributions to the opera-
tor product expansion~OPE! and to QCD sum rules find a
reflection of this picture in the importance of explicit instan-
ton corrections in the pion@4# and nucleon@5# channels. The
corrections in the nucleon channel show a characteristic pat-
tern, which originates from the chirality of the quark zero
mode states in the instanton background: they are small in
the chirally even nucleon correlator and in the corresponding
sum rule, but significant in the chirally odd one. Indeed, the
chirally odd sum rule could hardly be stabilized without in-
stanton corrections, whereas the chirally even one is stable
and in agreement with phenomenology even if the instanton
contribution is neglected@6#.

An analogous pattern was found in two recent sum rule
calculations of the neutron-proton mass differencedMN
@7,8# without instanton corrections, which also show a sig-
nificant discrepancy between the results of the chirally even
and odd sum rules. Again, the former agrees well with phe-
nomenology (dMN.2 MeV!, whereas the latter yields a
value consistent with zero and thus puts the consistency of
the two sum rules into question.1 This analogy with the
nucleon mass sum rules prompted us to examine instanton
corrections to the isospin-violating nucleon sum rules, which
is the subject of the present paper.

A further, closely related sum rule calculation of isospin

violation in baryons without instanton corrections@9# takes a
somewhat different approach. The baryon mass splittings are
taken as input from experiment~after subtraction of the es-
timated electromagnetic contributions!, and the two relevant
isospin-breaking parameters—the quark mass difference
dm and the difference of up- and down-quark condensates
g—are estimated from the sum rules. This analysis seems to
find consistency between both sum rules, at least if the dif-
ferencedlN

2 between the neutron and proton pole strengths is
fitted, and thus seems incompatible with the conclusions of
Refs. @7,8#. The fit requires, however, an unusually small
value ofugu, about a quarter of the one estimated from chiral
perturbation theory, and an uncomfortably large continuum
contribution. We will come back to this issue below.

The study of isospin violations in QCD nucleon sum rules
can be based either on the nucleon correlator in an iospin-
violating scalar background field@8# or on the difference of
the neutron and proton correlators@7,9#. We will adopt the
latter approach. In Sec. II we calculate the leading, isospin-
violating instanton corrections to the nucleon correlator, and
in Sec. III we discuss their structure in more detail. Section
IV contains a comparison with quark model calculations
based on instanton-induced interactions. We point out, in
particular, that the neglect of the vacuum sector in many of
these models leads to severe limitations in their description
of isopin violation effects. On the basis of the instanton-
corrected nucleon correlators from Sec. II we then set up the
correponding QCD sum rule in Sec. V and analyze it quan-
titatively in Sec. VI. The final section contains a summary of
our results and some conclusions.

II. NUCLEON CORRELATORS

This section describes the evaluation of small-scale in-
stanton contributions to the nucleon correlators in the pres-
ence of isopin breaking. We begin with the correlation func-
tion in the proton channel, which is characterized by two
invariant amplitudes of opposite chirality:

Pp~q!5 i E d4xeiq•x^0uThp~x!h̄p~0!u0&

5q”Pq,p~q
2!1P1,p~q

2!. ~1!

1Attempts to reduce this discrepancy by adding a term attributed
to electromagnetic corrections to the OPE@7# would require a sub-
stantial corresponding refinement on the phenomenological side of
the sum rule, see Ref.@9#.
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The composite operatorhp is built from QCD fields and
serves as an interpolating field for the proton. Two such~in-
dependent! operators with minimal mass dimension~i.e.,
9/2! can be constructed. We adopt the standard choice of
Ioffe @6#:

hp~x!5eabc@ua
T~x!Cgmub~x!#g5g

mdc~x! ~2!

~the neutron current is obtained by interchanging up- and
down-quark fields!, which allows for a direct comparison
with the previous studies of isospin violation in nucleon sum
rules @7–9#.

The leading instanton contributions to the correlators can
be calculated in the semiclassical approximation, i.e., by
evaluating Eq.~1! in the background of the instanton field
and by taking the weighted average of the resulting expres-
sion over the quantum distribution of the instanton’s collec-
tive coordinates@5#. These contributions add nonperturbative
corrections to the Wilson coefficients of the conventional
OPE, with which they will be combined in Sec. V. Isospin
breaking originates in this framework from the mass differ-
ence of up and down quarks,

dm5md2mu , ~3!

and from the differences in the values of the corresponding
condensates,

g[
^0ud̄d2ūuu0&

^0uūuu0&
. ~4!

The isovector quark condensate, which determinesg, is
the dominant source of nonperturbative isospin violation in
the OPE of the correlators, since it originates from the
lowest-dimensional operators with a finite vacuum expecta-
tion value. The value ofg has been estimated in a variety of
approaches@9–16#, with results varying over almost an order
of magnitude,2131022<g<2231023. The sensitivity
of the baryon sum rule analysis tog can be used for an
additional estimate of its value@9#, which will be adapted to
the presence of instanton corrections in Sec. VI. For the
quark mass difference we use the more accurately known
standard valuedm53.3 MeV @10#.

The rationale behind the semiclassical treatment of instan-
ton contributions and the calculational strategy are analogous
to those in the isosymmetric case@5#, and we thus just sketch
the essential steps here. To leading order in the product of
quark masses and instanton size, instanton effects in the
nucleon correlators are associated with the quark zero modes
@17#

c0
6~x!5

r

p

16g5

~r 21r2!3/2
r/

r
U, ~5!

where the superscript6 corresponds to an~anti-! instanton
of sizer with center atx0. The spin-color matrixU satisfies
(sW 1tW )U50 andr5x2x0. The zero mode contributions en-
ter the calculation of the correlators through the leading term
in the spectral representation of the quark background field
propagator:

Sq
6~x,y!5

c0
6~x!c0

6†~y!

mq* ~r!
1O~rmq* !. ~6!

The flavor-dependent effective quark massmq* (r)
5mq22/3p2r2^q̄q& ~whereq stands for up or down quarks!
in the denominator is generated by interactions with long-
wavelength QCD vacuum fields@18#. Quark propagation in
the higher-lying continuum modes in the instanton back-
ground will be approximated as in@5# by the free quark
propagator.

Note that both the zero and continuum mode propagators
are flavor dependent. The zero mode part contains the effec-
tive quark mass, which depends on the current quark masses
and on the corresponding condensates. The current quark
masses enter, of course, also the continuum mode contribu-
tions.

With the quark background field propagator at hand, the
instanton contributions to the proton and neutron correlators
can now be evaluated. As a first, generic result we find that
the chirally even amplitudesPq for both proton and neutron
do not receive leading instanton corrections. This generalizes
the analogous observation in Ref.@5# to finite current quark
masses and condensate differences and is a consequence of
using Ioffe’s current. The isopin-breaking difference of the
Pq’s for neutron and proton, moreover, vanishes forall in-
terpolating fields, as we will show in the next section.

The chirally odd amplitudesP1, on the other hand, get
sizable instanton contributions, and their difference for pro-
ton and neutron remains finite. For the proton correlator, to
first order in the current quark masses and continued to Eu-
clidean space-time, we obtain

P1,p
inst~q2!52

16

p4E drr4
n~r!

m0*
2~r!

E d4xeiqx

3S 12z

Nc
^ūu&2

imu

p2x2D E d4x0

3
1

@~x2x0!
21r2#3@x0

21r2#3
, ~7!

whereNc is the number of quark colors. The isoscalar part of
the effective quark mass in the chiral limit is defined as

m0* (r)52 2
3p2r2^q̄q&0 with ^q̄q&0[(^ūu&1^d̄d&)/2 and

the dimensionless ratioz5(mu1md)/m0* .
The further evaluation of Eq.~7! requires an explicit ex-

pression for the instanton size distributionn(r) in the
vacuum. Instanton liquid vacuum models@19# and the analy-
sis of cooled lattice configurations@3# have produced a con-
sistent picture of this distribution. The sharply peaked, al-
most Gaussian shape ofn(r) found in Ref. @19# can be
sufficiently well approximated as@20#

n~r!5n̄d~r2 r̄ !, n̄.
1

2
fm24, r̄.

1

3
fm, ~8!

which neglects the small half width~.0.1 fm! of the distri-
bution. In Eq.~8! we introduced the average instanton size
r̄ and the instanton number densityn̄, which equals the den-
sity of anti-instantons.n̄ can be approximately related@21# to
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the isoscalar quark condensate by the self-consistency con-

dition n̄52 1
2m0* ( r̄)^q̄q&0, which quite closely reproduces

the phenomenological value given above and allows the
elimination of n̄ in favor of the quark condensate.

After performing the now trivial integration over instan-
ton sizes, we prepare the amplitude~7! for its use in the
corresponding sum rule by applying the standard Borel trans-
form @22#,

P~M2![ lim
n→`

1

n!
~Q2!n11S 2

d

dQ2D nP~Q2! ~9!

(Q252q2) with the squared Borel mass scaleM25Q2/n
kept fixed in the limit, and obtain

P1,p
inst~M2!52

3

4p2 F12z

Nc
^ūu&M4I 1~M

2r̄2!

2
1

16p2mur̄
4M10I 2~M

2r̄2!G , ~10!

in terms of the two dimensionless integrals

I 1~z
2!5E

z2/4

`

dx
x2

~x2z2/4!2
e2x2~x2z2/4!21

, ~11!

I 2~z
2!5E

0

`

dx1E
0

z22

dx2
x2
2~z222x2!

2

~x11x22z2x2
2!5

3expF2
1

4
~x11x22z2x2

2!21G . ~12!

The amplitude for the neutron follows from Eq.~10! by in-
terchanging up- and down-quark masses and condensates.
Equation ~10! generalizes the isospin-symmetric amplitude
of Ref. @5#, which is recovered in the chiral limit.

The two integrals~11! and~12! contain the instanton cor-
rections to the Borel-transformed Wilson coefficients of the
unit operator~in I 2) and of ^ūu& ~in I 1). Additional contri-
butions from quark modes with momenta below the renor-
malization scalem of the OPE should be excluded fromI 1
and I 2 in order to avoid double counting of the physics con-
tained in the condensates. Fortunately, the instanton back-
ground field induces only one soft contribution up to opera-
tors of dimension 6, corresponding to a four-quark
condensate inI 2. We will correct for this contribution in Sec.
V.

III. ISOPIN VIOLATION AND INSTANTONS

It is instructive to analyze the isospin properties and the
origin of isospin breaking in the instanton induced amplitude
~10! in more detail. This analysis will also lay the foundation
for our discussion in the next section, where we clarify some
crucial differences between our approach and quark model
calculations. These differences explain, in particular, the ab-
sence of instanton-induced contributions todMN in many
quark models, contrary to our findings in the correlator ap-
proach.

The gluonic sector and the quark-gluon vertex of QCD
are both flavor independent. The structure of the interaction

with the instanton background field is thus the same for up
and down quarks and the background field propagator~6! is
diagonal in isopin space. Its only flavor dependence enters
through the current quark masses and condensates inmq* .
This has characteristic consequences for the instanton-
induced interactions between quarks, which generate the cor-
relator amplitude~10! and can be extracted from the calcu-
lation in Sec. II:

^0uTqA,a,a~x1!q̄B,b,b~y1!qC,g,c~x2!q̄D,d,d~y2!u0&

5~dABdCD2dADdCB!E dr
n~r!

~mu* r!~md* r!
~2p2r3!2

3E d4x0C~r 1!C~u1!C~r 2!C~u2!

3(
L/R

^^~PL/RP̃ab!ab~PL/RP̃cd!gd&&SU~3!c
. ~13!

In this expression, capital Latin, Greek, and small Latin in-
dices refer to isospin, Dirac spin, and color, respectively. The
angular brackets indicate the average of the instanton’s color
orientation over the Haar measure of SU(3)c . The chiral
projection operators arePL/R5(16g5)/2, the distances from
the instanton center are denotedr i5A(xi2x0)

2 and
ui5A(yi2x0)

2, the nonlocality of the vertex is contained in
the functions

C~r !5S r 2

r 21r2D
3/2

, ~14!

and its color structure is given by the spin-color tensor

P̃ab,ab5dabS 1 0

0 0D
ab

2SW abS tW 0

0 0
D
ab

, ~15!

which makes the embedding into an SU~2! subgroup of
SU(3)c explicit and contains the characteristic spin-color
coupling. Lorentz and color covariance become manifest
only after averaging over the color group.

The nonlocal four-quark vertex~13! originates from the
quark zero modes in the instanton field and was first derived
by ’t Hooft @17# for mq*5mq . It has, separately for both
quark chiralities, a well-known determinantal flavor structure
and is thus SU(2)L3SU(2)R and, in particular, isospin
symmetric.2 Even if the flavor-dependent quark masses and
condensates enter the vertex explicitly, isospin violation thus
cannot originate solely from the instanton-induced interac-
tion. In the OPE, however, this vertex generates nonpertur-
bative contributions to the Wilson coefficients, which can
either themselves become isopin violating due to the finite
quark mass difference or multiply isopin violating operators.
Examples for both of these cases were found in Sec. II.

2In addition, it breaks the axial UA(1) symmetry, which is a re-
flection of the Adler-Bell-Jackiw anomaly and a celebrated instan-
ton effect@17#.
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At short distances, multi-instanton contributions to the
nucleon correlators are suppressed sincex/R̄!1. Additional
corrections, which originate from only one valence quark
propagating in a zero mode state and generate contributions
to the quark self-energy, are subleading inm* r̄ and not con-
sidered in this paper.

The structure of the instanton-induced four-point function
~13! explains some qualitative features of the correlator~10!.
The definite chirality of the quark legs, inherited from the
zero mode states, lets this vertex act only between quarks
which are coupled to spin 0 in the interpolating fields, and
the Dirac structure of the instanton contribution to the
nucleon correlator is thus determined by the remaining ‘‘va-
lence’’ quark line. Only the contribution to the Wilson coef-
ficient of the unit operator, in which this line is in a non-
zero-mode state ~approximated by the free quark
propagator!, can thus generate a chirally even amplitude. Ac-
cording to our discussion above, however, such contributions
are isospin conserving and this explains why the difference
of the chirally even amplitudes of the neutron and proton
correlators is not corrected by instantons for any choice of
the interpolating field. The instanton contributions to the
chirally even amplitudes of neutron and proton vanish indi-
vidually only for the Ioffe current, as already pointed out.

Another characteristic feature of the correlator~10! fol-
lows directly from the flavor structure of the ’t Hooft vertex.
Since only one quark pair of each flavor can take part in the
zero-mode induced interaction~13!, the valence quark in the
non-zero-mode state in the proton~neutron! correlator must
be an up~down! quark. This explains why we find only
contributions proportional to the up-quark mass and conden-
sate in Eq.~10!.

To summarize, instanton-induced interactions contribute
to isopin breaking in the operator product expansion of the
nucleon correlators~in the framework of our approxima-
tions! in two distinct ways: they correct the Wilson coeffi-
cient of the unit operator, which becomes isopin dependent
due to the difference of the current quark masses, and they
contribute to the coefficients of the isospin-violating opera-
tors ūu and d̄d. Both of these corrections affect only the
chirally odd amplitude of the correlators.

IV. COMPARISON WITH QUARK MODELS

Instanton-induced interactions have been included in sev-
eral quark model calculations of mass splittings in baryon
isomultiplets. It is useful to compare the results of such cal-
culations to those of our approach. To be specific, we will
base this comparison on studies in the MIT bag model
@23,24#, which deals with relativistic, light quarks and is in
this respect similar to the correlator approach. Most of our
conclusions, though, will apply to a wider range of quark
models.

Bag model calculations of hadron mass shifts because of
instantons@25# are based on a localized version of the
’t Hooft interaction, cast into the form of an effective La-
grangian. Indeed, the pointlike limit of the vertex~13! ~in
Minkowski space! is reproduced by the Lagrangian@18#

Linst52S 43p2r̄3D 2 n̄

~mu* r̄ !~md* r̄ !
(
L/R

H ~ ūRuL!~ d̄RdL!

1
3

32F ~ ūRlauL!~ d̄RladL!2
3

4
~ ūRlasmnuL!

3~ d̄Rlas
mndL!G J , ~16!

which is obtained from Eq.~13! by amputating the external
quark propagators, neglecting the nonlocality due to the fi-
nite instanton size, performing the average over the color
orientation of the instanton,3 specifying the instanton density
in the form ~8! and continuing back to Minkowski space-
time.

The shrinking of the instanton vertex to its pointlike limit
will probably not cause significant errors in bag model re-
sults for low-lying hadrons. This is because quarks in the bag
can separate up to the diameter 2R;2 fm, so that their in-
verse momenta in the ground state are considerably larger
than the average instanton size which characterizes the extent
of the vertex. Note, however, that the nucleon correlator in
QCD sum rule calculations is probed at an order of magni-
tude smaller distances, where the details of the short-distance
dynamics and thus the nonlocality of the vertex become im-
portant.

In addition to the structure of the instanton-induced quark
interaction, bag calculations share some other common fea-
tures with the nucleon correlators~1!, notably in the con-
struction of the nucleon states. The spin, color, and flavor
structure of the bag model@i.e., SU~6!# proton state,

up,↑&5
1

A18
eabc@~ua↓

1 db↑
1 2ua↑

1 db↓
1 !uc↑

1 #u0&. ~17!

@arrows indicate the value of the total spin projectionj 3 of
the quarks~in the bag ground state! and of the proton# and
the corresponding one for the neutron~which are obtained
from 2up& by interchanging up and down quarks! are essen-
tially identical to that of the interpolators~2!. This is, of
course, just a consequence of the fact that both are con-
structed to carry nucleon quantum numbers, which ensures
that they have identical properties under Lorentz, color, isos-
pin, and the standard discrete transformations.

Despite these similarities, bag model calculations do not
find any instanton contribution to the proton-neutron mass
difference4 @23,24#. The neutron and proton mass shifts in-
duced by Eq.~16! are evaluated in first order perturbation
theory between the SU~6! states. A straightforward calcula-
tion gives

3As long as this Lagrangian is evaluated only in color singlet
states, one could, of course, skip the color averaging and use the
neither Lorentz nor SU(3)c-invariant version instead, with identical
results.
4As long as one-zero-mode corrections~see above! are neglected.
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K pU2E d3xLinst~x!UpL
5S 43p2r̄3D 2 n̄

~mu* r̄ !~md* r̄ !
SNuNd

8p D 2

3E d3x$5 ~a1
22a2

2!~u!~a1
22a2

2!~d!

14 ~a1
21a2

2!~u!~a1
21a2

2!~d!120a1
~u!a2

~u!a1
~d!a2

~d!%

~18!

~the integrations extend over the bag volume! where the
ground state quark wave function in the bag is written as

c j 3
~q!5

Nq

A4p
S a1

~q!~r !

isW rWa2
~q!~r !

D x j 3
, ~19!

with a1
(q)5A(vq1mq)/vqj 0(kqr /R) and a2

(q)

5A(vq2mq)/vqj 1(kqr /R). @R is the bag radius,Nq a nor-
malization constant,x j 3

are the Pauli spinors, andvq , kq are
the energy and~dimensionless! momentum quantum num-
bers of the quark ground state.# The result for the neutron
matrix element can be immediately inferred from Eq.~18! by
exchanging up- and down-quark operators in the proton
states. SinceLinst is symmetric underu↔d, one can as well
exchangeu andd everywhere in the expression for the pro-
ton matrix element. Equation~18!, however, is manifestly
invariant under this exchange and, therefore, the difference
of the matrix elements indeed vanishes:

dMN,bag
inst 5 K pU E d3xLinstUpL 2 K nU E d3xLinstUnL 50.

~20!

This is in contrast with the result for the Borel-
transformed nucleon correlators:

P1,n
inst~M2!2P1,p

inst~M2!Þ0, ~21!

which can be translated via a QCD sum rule into a finite
instanton contribution to the mass difference~see below!.

Of course, the bag model containsad hocassumptions on
quark confinement, breaks chiral symmetry explicitly, and
differs also in other aspects from the model-independent cor-
relator approach. One would thus not expect the results to
agree quantitatively. It is at first surprising, however, to find
a qualitative difference, namely, the exact absence ofany
instanton-mediated mass shiftdMN,bag

inst . In view of the simi-
larity of the interactions~13! and~16! one is led to search for
the origin of this difference in the description of the nucleon
states. And indeed, here, the two approaches differ crucially.

A first difference is that the quarks in the bag matrix
elements are restricted to their ground states with total spin
j51/2 ~i.e., to l50 or 1), whereas the interpolators can cre-
ate quarks in all orbital angular momentum states. In fact, the
created pointlike wave packet has overlap with the whole
tower of excited states carrying nucleon quantum numbers,
including states in the many-particle continuum. Experience
from QCD sum rules@6# and from lattice data@26,27# shows,

however, that already at rather small distances a main con-
tribution to the nucleon correlator comes from the nucleon
ground state. This tendency is further enhanced by the Borel
transform, which exponentially suppresses contributions
from higher-lying states. One does therefore not expect these
states to contribute significantly to a finite value of the dif-
ference~21! in the fiducial Borel mass domain~see below!,
let alone to be its only cause.

Indeed, the crucial difference between the bag and corr-
elator results can rather be traced to the description of the
nucleon ground states themselves, and in particular to their
flavor content. While the SU~6! states~17! @as well as the
interpolating fields~2!# have good isospin, this isnot the case
for the stateshp,nu0& which are created by the interpolators
and studied in the correlator~1!.

Virtual ‘‘sea’’ quarks and other perturbative and nonper-
turbative vacuum fluctuations give these states a much richer
~and more realistic! flavor structure. They inherit, in particu-
lar, isospin-breaking components from the vacuum fields.
The short-distance part of this nontrivial flavor content is
captured both in the OPE and in the instanton corrections
and causes Eq.~21! to be finite. At very short distances it
originates from the quark mass differences, and at larger dis-
tances it enters predominantly through the difference be-
tween up- and down-quark condensates. The neglect of both
of these ingredients in the isospin structure of the bag wave
functions leads, on the other hand, to the symmetry of the
proton matrix element~18! under exchange of the two quark
flavors in the states~17! and thus to the absence of an
instanton-induced mass difference, Eq.~20!.

In Ref. @24# an attempt was made to include long-
wavelength vacuum fields into the bag interior. Long- and
short-distance physics inside the bag, however, cannot be
reliably separated. In particular, such a scale separation
~which is indispensable to control the interactions with the
vacuum fields! cannot be based on a short-distance expan-
sion, which would, in fact, badly diverge at distances of the
order of the bag radiusR;LQCD

21 . Higher order interactions
with the background fields~leading to contributions from
higher-dimensional condensates! are thus not suppressed,
and it is difficult to see how their neglect can be justified and
how double counting of quark physics can be avoided. In
addition, both the contributions of the interactions with the
long-wavelength background fields and with the instanton to
the matrix elements are calculated independently to leading
order and then added. Combined effects of instantons and the
other vacuum fields, as described by the OPE, are therefore
still lacking5 and Eq.~20! remains to hold.

The large-distance scales over which quarks can interact
are a generic bag model problem, since clearly, not all non-
perturbative physics can be absorbed into the boundary con-
ditions. For QCD sum rule calculations, on the other hand, a
reliable description of the correlation functions up to dis-
tances of about 0.2 fm is usually sufficient. At these rather
small distances the long-wavelength physics can still be con-

5Except for the factor (mu*md* )
21 in the instanton-induced inter-

action ~16!.
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trolled in a model-independent way by only a few generic
and physical parameters, the low-dimensional condensates.

Instanton physics supplies, in fact, yet another example
for the problems with treating quark interactions in the large
bag interior. The neglect of multi-instanton effects~beyond
the mean field level! is a basic assumption underlying the
interactions~13! and ~16!. This approximation can be justi-
fied in the correlator for distancesx!R̄, but hardly at the
scales set by the bag diameter. Instanton liquid simulations
@28# indeed confirm that multi-instanton effects become im-
portant at distances of the order of the average separation
between instantons,x>R̄.1 fm.

To conclude, quark and bag model calculations that re-
strict the evaluation of instanton-induced baryon mass shifts
to calculating the expectation value of the effective ’t Hooft
Lagrangian between SU~6! eigenstates miss important
sources of isospin asymmetry, in particular from isospin-
violating vacuum fields. This physics, which significantly af-
fects the estimates of mass splittings in baryon isomultiplets,
is, however, captured in the instanton-corrected OPE of the
nucleon correlators.

V. ISOPIN-VIOLATING NUCLEON SUM RULES

In this section we combine the instanton contributions to
the nucleon correlation functions with the conventional op-
erator product expansion@7# and set up the QCD sum rule
for the difference of the neutron and proton correlators.

Since the average instanton sizer̄ is smaller than the
inverse renormalization pointm21.0.4 fm of the OPE, the
major part of the instanton corrections will contribute to the
Wilson coefficients. These corrections can be directly added
to the standard OPE, since they originate from nonperturba-
tive physics which was not previously accounted for.

The integralI 2 in Eq. ~10!, however, contains in addition
to the instanton contribution to the Wilson coefficient of the
unit operator also a soft part, as pointed out in Sec. II. It
originates from the region in loop momentum space where
the hard external momentumQ2 is carried exclusively by the
quark line which is not participating in the zero-mode in-
duced interaction. No such contribution is contained inI 1,
since here the third quark line interacts with the quark con-
densate and thus does not carry momentum.

The soft part ofI 2 represents an instanton contribution to
the four-quark condensate. Fortunately, this is the only op-
erator up to dimension 6 which receives such a correction.
Indeed, a general theorem@29# severely limits the number of
condensates in the OPE of hadronic correlators which can be
induced by self-dual background fields.

In order to prevent double counting of long-wavelength
physics, the four-quark condensate terms in the OPE and the
instanton contributions have to be adapted before combining
them with the other OPE terms ofP1. As in Ref.@5#, we will
neglect the comparatively small OPE contribution to
^ūud̄d& and keep instead the contribution induced by the
’t Hooft vertex in the limit of vanishing external momenta. A
more accurate procedure, namely to subtract explicitly the
part of the instanton contribution which originates from mo-
menta below the renormalization scale, will be described
elsewhere@30#. Four-quark condensates of the type^ūuūu&
and ^d̄dd̄d&, on the other hand, do not receive single-

instanton contributions and remain unchanged.
After implementing the above modification, we can com-

bine the instanton part~10! with the OPE of the chirally odd
sum rule of Ref.@7#. Taking the difference of the neutron and
proton sum rules and transferring the continuum contribu-
tions to the left-hand~i.e., OPE! side, we obtain

M6dm

16p4 E2L
28/92

g

4p2 ^q̄q&0M
4E11

4

3
dm^q̄q&0

2

1
g

4p2 ^q̄q&M4I 1~z
2!2

3

64p4 dmr̄4M10I 2~z
2!L28/9

5F2lN
2
MN

2

M2 dMN2lN
2dMN2dlN

2MNGe2MN
2 /M2

2
1

4p2 ^q̄q&0s1e
2s1 /M

2
ds1 , ~22!

whereMN5(Mp1Mn)/2 and lN5(lp1ln)/2 denote the
isoscalar nucleon mass and coupling to the interpolating
field. ~We neglect the small gluon condensate contribution.!
The isospin-violating differences of the overlap and thresh-
old parameters aredlN

25ln
22lp

2 , ds15s1n2s1p , and the
factor L28/9, with L5 ln(M2/LQCD

2 )/ln(m2/LQCD
2 ) and

LQCD5150 MeV, accounts for the anomalous dimensions of
the composite operators and sets their renormalization point
to m5500 MeV.

The contributions from the continuum, starting at the ef-
fective thresholds1, are as usual combined with the leading
OPE term and described by the functions
E1[12e2s1 /M

2
(s1 /M

211) andE2[12e2s1 /M
2
(s1

2/2M4

1s1 /M
211) @6#. Their definitions are identical to those in

the individual sum rules. Note that additional terms in the
difference sum rules, proportional tods1 and dsq ~see be-
low!, originate from the continuum terms of the individual
sum rules. They do not correspond to the cut structure~i.e.,
to the leading OPE behavior! of the difference sum rule,
however, and are thus not needed to match the large-s be-
havior of the OPE.

With the standard definitionsa[24p2^q̄q&0, and
l̃N
2[32p4lN

2 , our sum rule equation~22! now assumes its
final form

eMN
2 /M2FM8dmE2L

28/91M6gaE11
4

3
dmM2a2

2M6gaI1~z
2!2

3

4
dmr̄4M12I 2~z

2!L28/9G
5l̃N

2MN
2dMN2S l̃N

2

2
dMN1

dl̃N
2

2
MNDM2

1as1M
2exp@2~s12MN

2 !/M2#ds1 . ~23!

The corresponding sum rule from theq” structure@7–9# is
unaffected by leading instanton corrections,
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eMN
2 /M2F2aM4dmE0L

24/92
4

3
M2ga2L4/9

1
m0
2

6
dmM2aL28/91

m0
2

3
ga2L22/27G

5l̃N
2MNdMN2

dl̃N
2

2
M21

1

4 S sq21b

2DM2

3exp@2~sq2MN
2 !/M2#L24/9dsq . ~24!

The two parametersb5^gs
2Gmn

a Ga
mn&50.5 GeV4 and

m0
2[^gsq̄s•Gq&/^q̄q&050.8 GeV2 are fixed at their stan-

dard values andE0[12e2sq /M
2
.

Above we have written both sum rules, Eqs.~23! and
~24!, in their most general form, which allows for indepen-
dent values of the isosymmetric continuum thresholdss1 and
sq . Below we will, however, follow the standard practice
and sets15sq[s0.

At this point it might be useful to recall the main assump-
tions and approximations which went into the OPE of these
sum rules and into the parametrization of their phenomeno-
logical sides. ~For more details see@18,9#.! The short-
distance expansion is carried out up to operators of dimen-
sion 6 and the perturbative part of the Wilson coefficients is
calculated to leading order in the strong couplingas . Less
systematic uncertainties arise from the not precisely known
values of the condensates and from the standard factorization
of the four-quark condensates.

As is common practice in sum rule calculations, the Wil-
son coefficients are calculated without explicit infrared cut-
off since at scales up to about 0.5–1 GeV nonperturbative
contributions from the condensates strongly dominate over
the perturbative ones. The explicit removal of the latter be-
comes, therefore, practically unnecessary@31#. For the same
reason, the condensates~and the quark masses! depend in the
above range rather weakly on the renormalization scale.
Even without explicitly specifying the infrared regularization
scheme of the Wilson coefficients, scale-dependent quanti-
ties are understood to be taken at am in the above range, and
we use specificallym50.5 GeV.

On the phenomenological side the main assumption is that
of local duality between the hadron and quark-gluon descrip-
tions of the continuum. It has been found to work well in
many sum rule studies and also in recent lattice simulations
of point-to-point correlators@26#. In our context it is put to a
more difficult test since we consider differences of two spec-
tral functions. Here even more than in the single nucleon
sum rules the exponential Borel suppression of continuum
contributions is important in order to increase the sensitivity
of the sum rules to the ground state contributions.

In the numerical evaluation of the sum rules the upper
limit of the Borel interval is determined such that contribu-
tions from the continuum do not exceed a given percentage
of the full OPE contribution. Otherwise the sum rules would
be relatively less sensitive to the pole contribution of interest
and a good fit quality would become a trivial consequence of
continuum domination~instead of being a consistency crite-
rion!, since the continuum is modeled after the leading OPE
behavior. Moderate continuum contributions are, therefore, a
necessary condition for reliable sum rules, and in the next
section we will check how these contributions are affected
by the instanton terms.

VI. QUANTITATIVE SUM RULE ANALYSIS

The quantitative analysis of isospin violation in the
nucleon sum rules aims at determining the isospin-breaking
parameters on the phenomenological side from the best fit to
the ‘‘theoretical’’ left-hand side. Taking all the other param-
eters from the standard, isosymmetric nucleon sum rules or
from experiment, it would still require a four-parameter fit to
determinedMN , dl̃N

2 , dsq , andds1 independently. Limita-
tions in the parametrization of the spectral densities and ap-
proximations on the theoretical side would, however, make
such a fit unstable both with and without instantons.

In order to reduce the number of fit parameters, one is
thus led to either fix the only phenomenologically known
one,dMN , at its experimental value@9# or to make assump-
tions relating at least two of the remaining isospin-breaking
parameters. The authors of Ref.@7#, for example, assume
dsq5ds1 in their analysis or, alternatively, neglect differ-
ences in the effective continuum of proton and neutron chan-
nels entirely, i.e.,dsq5ds150. Since such assumptions lack
theoretical foundation, the associated errors cannot be reli-
ably estimated or controlled. We thus prefer to follow the
approach of Ref.@9#, taking dMN

nonelm52.0560.30 MeV as
input from phenomenology. This value is derived from the
experimental mass differencedMN

expt51.29 MeV @32# by
subtracting the electromagnetic contributiondMN

elm

520.7660.30 MeV @33#.
For the isoscalar nucleon mass and quark condensate we

use the standard valuesMN5940 MeV and
^q̄q&052(225 MeV)3. The residuum of the isosymmetric
nucleon pole,l̃N

251.8 GeV6, and the isospin average of the
continuum threshold,s052.2 GeV2, are obtained from the
instanton-corrected nucleon mass sum rules@5# in the same
Borel window as the one used below.

The isospin-breaking parametersdl̃N
2 , ds1, and dsq are

then calculated by minimizing the difference between the
left- and right-hand sides of the sum rules~23! and ~24!
under the logarithmic measured of Ref. @6# in the Borel-
mass region 0.8 GeV2<M2<1.4 GeV2.

We performed this minimization for various values ofg
in the range2131022<g<2231023 discussed in Sec. II.
We find a better agreement between both sum rules towards
larger~and more conventional! values ofugu in this interval,

FIG. 1. Best fit of the RHS~continuous line! of the sum rules to
the the LHS of thePq ~dotted line! andP1 ~dashed line! sum rules.
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whereas the analogous study of@9#, which neglects instanton
contributions, prefers an unusually small value,
ugu5231023. For g52131022, in particular, our best fit
between left-hand side~LHS! and right-hand side~RHS! re-
sults in the parameter values

dl̃N
2522.131024 GeV6, ds1521.731022 GeV2,

dsq51.0331023 GeV2. ~25!

Figures 1–3 show different aspects of this fit. In order to
compare the fits of the optimizedPq andP1 sum rules, we
transfer all but the first two terms on the RHS of thePq sum
rule ~24! to the left and we rewrite theP1 sum rule ~23!
analogously, so that the same two terms,
l̃N
2MNdMN2(dl̃N

2 /2)M2, remain on its RHS. Figure 1 com-
pares this RHS~continuous line! with the modified LHS of
thePq ~dotted line! andP1 ~dashed line! sum rules.

In Fig. 2 we plot the resulting neutron-proton mass differ-
encedMN as a function ofM2, obtained by solving both
optimized sum rules fordMN(M

2). These curves show an
extended stability plateau, which confirms the satisfactory
agreement between the two sum rules. Indeed, this Borel-
mass independence of observables is the only intrinsic con-
sistency criterion for the sum rules.

In order to compare the relative size and behavior of the
OPE and instanton contributions to theP1 sum rule ~23!

~recall that thePq sum rule does not receive instanton cor-
rections!, we display both of them separately, as well as their
sum and the fit to the optimized RHS of Eq.~23!, in Fig. 3.
The instanton terms reach almost the magnitude of the per-
turbative and power terms and play clearly an important role
in determining the sum rule results. The usual practice to
neglect these contributions seems thus unjustified.

It is also instructive to compare our results of Figs. 1 and
2 with the analogous curves, but calculated without instanton
corrections. Recall that in this case the^ūud̄d& part of the
four-quark condensate has to be restored in Eq.~23!, which
changes the factor 4/3 in its Wilson coefficient to22/3. As
already noted, a smaller absolute value ofg is favored in this
case, and the curves in Figs. 4 and 5 were obtained by opti-
mizing the sum rules withg52231023. Up to small cor-
rections from the neglected eight-dimensional condensates,
they correspond to the ones6 analyzed in@9#.

From Fig. 4 it is also clear that rather different values of
the isospin-breaking parameters (dl̃N

251.431022 GeV6,
dsq57.031023 GeV2, ds151.231022 GeV2) are re-
quired to fit phenomenological and theoretical sides as long
as instanton contributions are neglected. The difference be-
tween the pole strength of neutron and proton, in particular,
becomes about two orders of magnitude larger and changes
sign.

More importantly, however, the small modulus ofg pre-
ferred by this fit has an unwelcome consequence. Closer in-
spection of the sum rules reveals that decreasing values of
ugu lead to increasing contributions from the continuum rela-
tive to the power corrections in the optimized sum rules.
Indeed, the parameter values used above correspond to a
continuum contribution of 90% in the chirally odd sum rule
~and about 37% in the chirally even sum rule!. This con-
tinuum domination casts serious doubts on the reliability of
the chirally odd sum rule, even if fit quality and stability
seem satisfactory~cf. Fig. 5!. In both instanton-corrected
sum rules, on the other hand, the continuum contributions
remain moderate~about 20%!.

6The sum rule of Ref.@9# contains an error in the coefficient of the
four-quark condensate which we have corrected.

FIG. 2. The neutron-proton mass difference as a function of the
Borel mass from the optimizedPq ~continuous line! and P1

~dashed line! sum rules.

FIG. 3. Instanton and OPE contributions to the LHS of theP1

sum rule. Their sum~dashed line! is fitted to the RHS~continuous
line!.

FIG. 4. Same as Fig. 1 for the sum rules optimized without
instanton contributions and withg52231023.
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It is interesting to note that another recent sum rule analy-
sis of g @34#, which is based on the mass splitting in theD
and D* isospin dublets, also finds a small value
ugu;2.531023, which is close to the result of Ref.@9#.
Since it is derived from an independent sum rule the discrep-
ancy with the result of chiral perturbation theory might have
a different origin in theD meson channel. This issue and the
role of instanton corrections in this channel deserve further
investigation, which will be the subject of a forthcoming
publication@35#.

VII. SUMMARY AND CONCLUSIONS

In this paper we study the role of instantons in the dynam-
ics of isospin violation, as it manifests itself in the short-
distance expansion of the nucleon correlation functions.
Isospin-breaking effects lead to differences between the neu-
tron and proton correlators, which can be translated via dis-
persion relations into isopin-violating vacuum and nucleon
parameters.

The isospin-breaking instanton corrections to the nucleon
correlators show several characteristic qualitative features.
As a consequence of using Ioffe’s interpolating field, instan-
ton contributions are absent in the chirally even amplitudes.
Moreover, the difference of these amplitudes for neutron and
proton is not affected by instanton corrections for any choice
of the interpolating field.

The chirally odd amplitude, on the other hand, receives
instanton contributions of almost the magnitude of the stan-
dard OPE terms, as in the isosymmetric case. They correct
the Wilson coefficients of the unit operator and of the quark
condensates. The difference between the neutron and proton
amplitudes is, in fact, mainly generated by the quark conden-
sate terms, i.e., by isopin-violating quark modes in the
vacuum.

This confirms the general expectation that isospin-
breaking effects in hadrons are physically subtle not only
because they are small, but in particular because they depend
sensitively on non-valence-quark physics. This is a challeng-
ing and little-tested regime for hadron models, which often
neglect vacuum effects altogether and thus miss important
sources of isospin asymmetry. Bag~and other quark! model
calculations which evaluate instanton-induced quark interac-
tions between SU~6! states with good isospin fail, for ex-

ample, to find instanton contributions to the neutron-proton
mass difference. The instanton-corrected OPE, on the other
hand, contains vacuum physics at short distances and thus
provides a more reliable and model-independent basis for the
study of isospin-breaking effects.

The link between the correlators and nucleon properties is
established by dispersion relations and takes the form of two
QCD sum rules for the difference of the neutron and proton
amplitudes. In adopting an approach for their quantitative
analysis one has to decide between several alternatives. Tak-
ing the RHS to be the difference of the conventional pole-
continuumAnsätze for the neutron and proton, it contains
four isospin-breaking parameters which cannot be deter-
mined independently from a stable fit, even if instanton cor-
rections are taken into account. In this situation one can ei-
ther assume relations between these parameters or one can
fix the only phenomenologically known one, the nucleon
mass difference, at its experimental value. We adopt the lat-
ter approach since it does not introduce additional assump-
tions with uncontrolled theoretical errors.

The resulting sum rules, including the instanton correc-
tions, are stable and receive only moderate (;20%) con-
tinuum contributions. This is a clear improvement over the
analogous analysis without the instanton terms, where the
continuum dominates. At the same time, the instanton con-
tributions reduce the difference between the nucleon pole
strengths and enhance the corresponding shift in the effective
continuum thresholds. Moreover, and perhaps most impor-
tantly, the optimization of the sum rules with direct instanton
effects favors larger and more standard values for the modu-
lus of the isovector quark condensate,ugu.1022, which are
close to those found in the chiral analysis.

We also tested an alternative approach towards the
sum rule analysis. In this case the differences between proton
and neutron continuum thresholds in both sum rules
were assumed to be equal and the neutron-proton mass dif-
ferencedMN was determined from the fit. Inclusion of the
instanton part allows a consistent fit of both sum rules, which
seems otherwise impossible. The value ofdMN is then, how-
ever, overestimated by about 80%. This puts the initial as-
sumption of an equal deviation of neutron and proton thresh-
olds from the isoscalar position into question. It also
supports our preference for the analysis method discussed
above, which does not requiread hocassumptions to relate
fit parameters.

We conclude that instanton corrections play a significant
role in the analysis of isospin breaking in nucleon sum
rules. They, for example, strongly affect the results for the
difference between the nucleon pole strengths and for the
shifts in the effective continuum thresholds. In addition, the
instanton corrections enhance the internal consistency of the
sum rules and predict a larger and more standard value for
the modulus of the quark condensate difference,ugu.(0.8–
1)31022.
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