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QCD field correlations in high-energy scattering
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The two independent correlation functions describing nonperturbative properties of the QCD vacuum are
taken into account in the evaluation of the observables of soft high-energy hadron-hadron scattering. The
model of the stochastic vacuum provides the framework in which a simple and effective description of the
high-energypp andpp data can be given, leading to a determination of relevant parameters of nonperturbative
QCD and to a good description of the data. The ratio between the non-Abelian and the Abelian parts of the
field correlations is studied in terms only of high-energy data and the results are compared to lattice calcula-
tions. It is shown that a slow increase of the hadronic radii with the energy accounts for the energy dependence
of all observabled.S0556-282197)03101-9

PACS numbes): 12.38.Lg, 13.85.Dz, 13.85.Lg

I. INTRODUCTION high-energy data does not go beyond the information on their
sizes, the simplest and most trivial transverse wave function
Much effort has been made to describe the simple andiving all information required for the determination of the

universal features of high-energy hadronic scattering irobservables. We show that the energy dependence of the
terms of the fundamental theory of the strong interactionstotal cross section and of the forward slope parameter can
and it is now understood that many important features aréoth be accounted for by a slow variation of the radius as-
due to nonperturbative QCD effects. Among these attemptSsociated with the transverse wave function.
we are here concerned with the applicati¢h] of the model The treatment of soft hadron-hadron scattering, essen-
of the stochastic vacuum of nonperturbative QCD to hadrontially including the confinement properties of quantum chro-
hadron scattering. Soft processes, respectgwgn micro-  modynamics, cannot be made straightforwardly, requiring
scopically the quark and color confinement in the colliding yse of approximations and models. The model of the sto-
hadrons, is a domain where the nonperturbative aspects gfastic vacuum, originally conceived to treat nonperturbative
QCD can be explored and studied. This domain mixes thgfects in low-energy hadron physi¢s], was later applied
parameters describing properties of the QCD figtlon 1, expjain high-energy soft scatterifd]. The treatment is
condensate, correlation lengtith those describing the col- 5504 on the concept of loop-loop scattering, which allows a
orless hadrons. The effective dynamics providing the basi auge-independent formulation for the amplitudes. The

for the pheno.mgnologmal description of the data must hav oops, formed by the quark and antiquark lightlike paths in a
the characteristic features of the pomeron exchange rneCh‘F‘n'ovin hadron, have their contributions added incoherentl
nism of Regge phenomenolod@?]: vacuum quantum num- 9 ' Y,

bers exchanged between well determined and unchangé’ﬂth their sizes weighed by transverse hadronic wave func-

hadronic structures. This mechanism leads, for all hadronif©"S:
systems, to total cross-sections which increase with the en- !N the present work we present the results of a more com-
ergy [3] somewhat likes®%€% This behavior, which cannot plete calculation of the high-energy observahesal cross-

be realistic for much higher energies, gives an adequate arRfction and slope parametein which both Abelian and
simple description of the present data. non-Abelian contributions to the field correlator are taken
Several models relate the total high-energy cross sectiori§to account. The role of the parametermeasuring the -
to the hadronic radif4]. This is a characteristic feature also strength of the non-Abelian part, which was determined in
of the model of the stochastic vacuum which gives Speciﬁdattice calculations to be about 3/4, is studied and we observe
predictions for the size dependence of the high-energy otthat the range of values that suits the description of the high-
servables for different hadronic systerfs. These predic- €nergy data leads to a confirmation of the lattice results.
tions account for the observed ratios #p to pp (or pp) In the present analysis we take into account all available
total cross sections, which have been thought of as indicsdata on total cross sections and slope parameteppiand
tions supporting additive quark models, and also account foPP scattering , which consist mainly6,7] of CERN Inter-
the important flavor dependence of the observables. secting Storage Ring$SR) measurements at energies rang-
In the present work we deal with thEp andpp systems, ing from s=23 GeV to s=63 GeV, of the
describing the high-energy data in terms of nonperturbative/s=541-546 GeV measurements in CERN Super Proton
QCD parameters, and relating the energy dependence of tf&ynchrotron(SPS and in Fermilab, and of the/s=1800
observables with radius dependence. The knowledge of théeV information from the E-701 Fermilab experiment.
hadronic structures required for the description of the sofffThese data are shown in Table I. In addition to these, there is
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TABLE 1. Experimental high-energy data from CERN ISR, O'-prom=(21.70mb)50'0808a5 representative of the nonperturba-

CERN SPS, and Fermilab. tive contributions, instead of the full experimental values. At
the highest energie®41-1800 GeVit is believed that the

Vs o B_ 5 Ref. process is essentially nonperturbative. The relation between

(GeV) (mb) (Gev™) [6] the two observables is parametrized in the form

23.5 39.650.22 11.86:0.30 (@

30.6 40.1%+0.17 12.26:0.30 @ B=By+C(c")?, 1)
pp 45.0 41.7%0.16 12.86:0.20 (b)

52.8 4238015  12.8%0.14 (@ _ 3 5 5

62.3 4355031  13.02027  (d with B,=5.38 Gev'“, C=0.458 Gev*, A=0.75, and

30.4 4213057 12.76-0.50 @ with o given in m_b. This form is suggested by_ the results of

59 6 43.32-0 34 13.03 0.52 @ the calcule_ttlons with .the model of thelstochastlc vacyurm _
— ' ' ' ' ' where an interpretation for the meaning of the parameters is
PP 62.3 44.12-0.39 13.420.52 @ given in terms of QCD and hadronic quantities. This is ex-

22(15 2i'§$ 1'28 iggg g‘g; E;)) plained in detail in Sec. IV.

In the next section we recall the principles of the evalua-
1800 72.26:2.70 16.72:0.44 © tion of the observables of high-energy scattering in the
model of the stochastic vacuufpd]. In the sections that fol-
low we present our new calculations and results.

a measuremenfi8] of oT=65.3+2.3 mb at\/s=900 GeV
and there are the measurements ®f=80.6+-2.3 and

B=17.0+0.25 Ge\fz at the Collider Detector at Fermilab Il. NONPERTURBATIVE QCD

(CDF) [9] at\/s=1800 GeV which seem discrepant with the  AND THE MODEL OF THE STOCHASTIC VACUUM
E-701 experiment at the same energy. A measurement by IN SOFT HIGH-ENERGY SCATTERING

Burg et al. [10] at \'s=19 GeV seems to disagree with the

ISR data, presenting a too high value f8r=12.47-0.10 The nonperturbative vacuum expectation val(msh as

GeV~? (possibly because the measurements are taken @fuon condensatgshat were first introduced in calculations
rather large momentum transfers; for our purposes thesgf hadron spectroscopjll] were shown by Nacht-
should be smaller than the hadronic scale<df Ge\/) This mann [12] to have fundamental role in soft high_energy
point at ys=19 GeV was taken as the sole input in the scattering. The application of the model of the stochastic
previous calculatior{1]. vacuum to this problem follows his general analysis, adopt-
In Fig. 1 we plot the two observables” andB against ing however a different fundamental ingredient. Instead of
each other. At the ISR energies we usereducing the hadron-hadron amplitude to quark-quark scat-
tering amplitudes, the basic entities used are scattering am-
20 1 ; , ; plitudes for Wilson loops in Minkowski space-time. The
loops are formed by the trajectories of the quark and the
antiquark of the hadronic system, and this approach has the
important advantage that the amplitudes are gauge invariant.
The model of the stochastic vacuuff] is based on the
assumption that the low frequency contributions in the func-
tional integral can be taken into account by a simple stochas-
tic process with a converging cluster expans{ds3]. The
integration is specified by a simple correlator, which is de-
termined by two scales: the strength of the correldtbe
value of the gluon condensatand the correlation length.
This simple model leads to confinement in a non-Abelian
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FIG. 1. Relation between the two experimental quantities of the ;
pp andpp systems. The values ef' at energies up to 62.3 GeV q
q

shown in this figure are thap,,, values as given by the parametri-

zation of Donnachie and Landshoff, namelyop,y, o
=(21.70 mbs*%% \We also included the poirftl0] at 19 GeV FIG. 2. View in the transverse plane of the two loops that rep-

and the Fermilab CDF valuei9] at 1800 GeV. The values & for resent the paths of quark and antiquark in meson-meson scattering.
the pp system are shown with circles, while the valuespprare ~ The vectorsR, and R, represent components of the meson trans-
represented by squares. The solid line representglEqwith val- verse wave functions. The vectbris the impact parameter vector
ues forA, By, and C given in the figure. connecting the geometric center of the two hadrons.
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gauge theory, with a linear potential between static quarksv to pointx, must be constructed. This quantity follows the
which agrees with phenomenological determinatioh4. gauge transformation at the fixed reference puint

In order to guarantee gauge invariance, the model deals
with the correlator of the field strengths,,, rather than _ .
with the expectation values of gauge potentialg(x). In Fu(X, W)= U(W)F,,,(x;w)U (W), ©)
order to give a well-defined meaning to the correlator, which
is a bilocal object, the color content of all fields must be
parallel transported to a single reference pentThen the
parallel-transported field strength tensors

o) that the vacuum expectation value
(FLo(x,W)Fs,(y,w))a with respect to the low frequencies is
a gauge invariant quantity.
F L (GW) =~ 1 W)F,,(X) d(X,W), 2) With the approximation that the correlator is independent
# o of the reference pointv, depending only on the difference
where¢(x,w) is a non-Abelian Schwinger string from point z=x-—Yy, its most general forn{5] is given by

5CD
(G2, (X W)F2, (y W)= 1—2<92FF>[ K818 8,08, D(2120)

o

J
(250,p=2,0,0)

(Z 5VU_Z()'5V[J)+(9_ZV oCup

p

1
+t(1-x)3 Dl(ZZ/az)]- (4)

Jz,,

Herea is a characteristic correlation lengtfg?FF) is the = quark moving on a nearly parallel line. The meson must be a

gluon condensate color-singlet state under local gauge transformations, and to
construct such a colorless state we have to parallel transport
(g?F F>:(92F,EV(0)F,CW(O)>A, (5)  the color content from the quark to the antiquark. Since this

parallel-transport of the colors is made by a Schwinger
string, we obtain for the meson a rectangular Wilson loop
whose lightlike sides are formed by the quark and antiquark
paths, and whose front ends are the Schwinger strings. The

D(0)=D,(0)=1. (6) direction of the path of an antiquark is effectively the oppo-

site of that of a quark, so that the loop has a well-defined

Lattice studies[15] show that the ratia/(1— «) is rather  internal direction.

large (about 3, so thatD(z*/a®) gives the dominant contri-  The resulting loop-loop amplitude is then specified, not

bution. This dominance was the reason for the previgdis only by the impact parameter, but also by the transverse

neglect - of _the ~contributions from ~the — part ..o\ ector®, andR,. In the transverse plane the two
(1— x)D4(z%/a?), which are taken into consideration in the ) 1 2: SVETSe b
interacting loops are seen as shown in Fig. 2.

present work. he f onal i . . | . h
The correlator in Eq(4) is the starting point for the evalu- 1€ functional integration oveh is evaluated using the

ation of observables in soft high-energy scattering. In thénodel of the stochastic vacuum. Sir_1ce the correlator is given
analysis made by Nachtmarii2], the quark-quark scatter- in terms of the parallel-transported field tenggr,(x,w), the

ing amplitude for the interaction of the quarks with the gluonline integralsfA,dz* are transformed into surface integrals
field is evaluated using the eikonal approximation. If the en-Over the field tensor with the help of the non-Abelian Stokes
ergy of the quark is very high and the background field hagheorem. The integrations are then extended over open sur-
only a limited frequency range, the quark moves on an apfacesS; andS, having the loopd ; andL, as contours.
proximately straight lightlike line and the eikonal approxi- The exponential being expanded, the expectation value
mation can be applied. In the limit of high energies there iscan be calculated assuming factorization in a Gaussian pro-
helicity conservation and spin degrees of freedom can beess. In the expansion of the trace of the exponential at least
ignored. This quark-quark scattering amplitude is explicitlytwo terms are necessary, because 40, and the lowest
gauge dependent. However, we can make use of the fact thatder contribution to the loop-loop scattering amplitude is
in meson-meson scattering for each quark there is an antthen given by

C,D=1, ... ,8areolor indices, and the numerical factors in
Eq. (4) are chosen in such a way that

L 12 : : 1
J(b,Rlsz):_(_ig)A'(E) tr[TClTCZ]tr[TDlTD2]fslil_ll dz’”y‘(xi)fszj]_[l d=*i%(yjg

Cy ) Dy D, ;
X <F#1V1(X1 'W)F,LZVZ(XZ ’W)Fplvl(yl W) szgz(yz ,W))a+ higher correlators. (7
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The integration surfaces and details of the calculation have . 1 .

beeen described befofd]. The higher order terms are DM(—|&*)= m(ﬂn|§|)n_3

shown to be small as compared to the leading term, and can

be neglected. In this approximation the surface ordering be- .

comes irrelevant. The expectation values of the product of X (n=1)K;-3(pnlé))

four fields is evaluated using the factorization hypothesis

1 - .
(FC1FC2FP1FP2) = (FC1F C2)(FP1FP2) + (FC1F ) — 5 (pnl€DKn2(pal€D)|. (13

X (FC2FP2) + (FC1FD2)(FC2FPa),
whereK ,(x) is the modified Bessel functiom=4 , and

®

It is convenient to introduce the eikonal functign 3V7 I'(n—5/2)

P4 T(n=3) (14

2 p,u (rv
X(b Rl'Rz ~i9) f d> f d> The dependence of the final results on the particular choice

for n is not very marked, the reason being that all correlation
X(FS, (X W)F (Y, W))a. (9 functions are normalized to 1 at the origin, and decrease
. exponentially at large distances. It is enough that the chosen
Then the loop-loop amplitudé(b,R;,R;) is given to the  function falls monotonicaly and smoothly in the range of

lowest order in the correlator by physical influencéup to about 1 F, sgyand there cannot be
1 much difference in the results obtained using different rea-
JB.Ry R =— —{ v(b,R; R, 10 sonable analytical forms. The simpler choicenis 4, which
(b.Ry,R) 576[X( 1R2)] (19 in the Euclidean region leads to a good representation of the

lattice calculationg15]. We then have for the correlation
In order to extract as a factor the value of the gluon cont,nction

densate, it is useful to introduce a reduced eikonal function
and a reduced loop-loop scattering amplitude through 2 2 > > >
p-ioop g amp g D@(—|E2)=(pal ENIK1(pal &) — % (pal E)Ko(pal &1,
(BB Ry) (11) o
Z—X !RlvRZ 11
FF) with
and

_ R 1 . PAZ?- (16)
JLL’(erlaRZ)EWJLL’(biRlvRZ)

. . In the evaluation of théEuclidean Wilson loop in the
_ IX(b,Ry,Ry)T? model of the stochastic vacuum tBepart of the correlator
T T 144576 (12 leads[5] to the area law for a Wilson loop, and to a relation
involving the condensate(g?FF), the correlation lengtla
We have introduced the indicds,L’ to indicate the two and the string tensiop
loops.
To be applied to high-energy scattering, the model of the ) % oo
stochastic vacuum must be translated from Euclidean space- p= 144<9 FF)a’ f D(—u“)du*. 17
time, to the Minkowski continuum. The correlation functions
D(z%/a?) andD,(z%/a?) must fall off for negativez® values
(corresponding to Euclidean distangesnd must have well-
defined Fourier transforms in the Minkowski metric, since
these enter in the scattering amplitudes.
The loop-loop eikonal function is determined by the ge-
ometry of the two loops and by the form of the correlation 2 _ 81m
functi : , K(QFF)=5—= (18
unctions. In Eq.(4) there appear two independent arbitrary
scalar functionsP(z%/a?) and D,(z%/a?), which are sup-
posed to fall off at large distances with characteristic length&Ve thus say thdD represents que confining correlator, while
a, called correlation lengths. Lattice calculatiofib] show  Dj; is the nonconfiningand Abelian part.
however that the forms dd andD; in the Euclidean region After the limits are taken, which make the long sides of
at large distances are simildexponential decreases with the rectangular Wilson loops tend tox in the direction of
same rates with the contribution from the term with in  the colliding beams, the remaining variables in the inte-
the correlator being about three times larger than that frongrands are coordinates of points in the transverse plane. The
D,. We then adopt the same shafzsD, , and x=3/4. distanceg between such points enter in the final expressions
A convenient general fornjl] for the correlation func- for the eikonal functionsy as arguments of the two-
tion is dimensional inverse Fourier transform, which is given by

For the family of correlators written above the integration
can be performed analytically and for the case4 the re-
sult gives
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2Ko(pal&])

5 32 >
F= 187 =g (pal E)?

_(i_

P4|5| pe
o e
__ﬂAz[(P4|§|) Ks(psl €D, (19

>

3

Kl(P4|§|)l

whereA, is the two-dimensional Laplacian operator, ahd

is any two-dimensional vector of the transverse plane and
K3 is a modified Bessel function. This Laplacian form is

important in the calculation, as it allows lowering the order

of the integrations, through Gauss theorem.

lll. PROFILE FUNCTION
FOR HADRON-HADRON SCATTERING FIG. 3. Geometrical variables of the transverse plane, which

. I ) enter in the calculation of the eikonal function for meson-meson
We now introduce the notatioR(l,J), where the first scattering. The point€, and C, are the meson centers. In the

index (1=1,2) specifies the loop, and the second specifies . - )
the paﬁticular)qugrk or antiquark[])(z 1 or 2 in that Ioopf) integrationP, runs along the vecto®(2,1), changing the length
Figure 3 shows a projection on the transverse Scétterinz’ which is the argument of the characteristic correlator function. In
> . nalogous terms, point$#,, P,, and P, run alon . 1,1),
plane. The vectorQ(K,L) in the transverse plane connect - g < P . 2 g Q ) .
the reference poir€ (with coordinatesv) to the positions of Q(1,2), andQ(2,2). This explains the four terms that appear inside

. . the brackets multiplyingc in the expression for the loop-loop am-
the quarks and antiquarks of the loops 1 and 2. The quantltkflitude. The lengttz’ of the dot-dashed line is the argument of the

#(K,L) is the angle betwee@Q(1,K) andQ(2L). Bessel function arising from the nonconfining correldoy, there

In the evaluation of the eikonal functions are four such terms, appearing inside the brackets multiplying
x[b,R(1,1) R(2,1)] coming from the confining case a typi- (1—«).
cal resulting contribution is

fldafldg cosV (1,1) AV —aQ(1,2) — BQ(2,1)|%], dimensions and eliminate one further integration. The term

0 0 from the nonconfining correlator has a total derivative under
(200 the integration sign, and in this part one more integration can

where 75" is the above-mentioned two-dimensional Fourierbe immediately made.

transform of the correlator with=4. Taking advantage of We then write for the eikonal function of the loop-loop

the Laplacian form, we can apply Gauss’ theorem in twoamplitude

X(b,R(1,1),R(2,2)) = k[ — cosp(1,H1[Q(1,2),Q(2,1), (1,1 ]—cosp(2,21[Q(1,2),Q(2,2),14(2,2]
+c09/(1,21[Q(1,1),Q(2,2), #(1,2]+cosi(2,)1[Q(1,2,Q(2,), ¥(2,1]]
+ (1= [~ WQ(L,D,Q(2,D,%(1,D]-WQ(1,2,Q(2.2),4(2,2]+W[Q(1,1),Q(2,2),1(1,2]
+WQ(1,2,Q(2,D),#(2,D]1]. (22)

The quantitied which represent the non-Abelian contributions are given by integrations along the dashed lines of the figure:

32/3m\2 Q(2L) .
I[Q(l,K),Q(Z,L),tﬁ(K,L)]:@ S Q(l,K)fO [Q(1LK)*+x—2xQ(1K)cosi(K,L) K,

37
X ?\/Q(I,K)2+x2—2xQ(1,K)cos/;(K,L) dx

Q(1K)
+Q(2,L)JO [Q(2,L)%+x?>—2xQ(2,L)cosi(K,L)IK,

37
X ?\/Q(Z,L)Z—i- x>—2xQ(2,L)cosy(K,L)

dx] , (22

with Q(K,L)= |Q(K,L)|. The quantitieaV, which come from the nonconfining part of the correlator, are given by
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32 _3m 2 2 3R
W[Q(l,K),Q(Z,L),¢(K,L)]=QZF[Q(LK) +Q(2,L)°—2Q(1,K)Q(1,L)cosi(K,L)]

37
X Ks ?JQ(l,K)2+ Q(2L)°— 2Q(1,K)Q(2,L)cosﬁ(K,L)}. (23

From the eikonal functiony we contruct the loop-loop We then write the reduced profile function of the eikonal
amplitude, | (b,R;,R;) , whereR; andR, are shorthand amplitude

notation forR(1,1) andR(2,1), respectively. A ) i o
The hadron-hadron amplitude is constructed from the JHle(b,Sl,Sz):f d2R1J d’RpJ 1, (b,R1,Ry)

loop-loop amplitude using a simple quark model for the had-

rons. Since our amplitude is independent of the momentum Xy (R (R |2, (25)
of the quarkqas long as the energy is high enough to ensure

lightlike paths, the dependence of the wave functions on thenich is a dimensionless quantity.

longitudinal momenta of the quarks can be neglected, and we g, short, from now on we writd(b) or J(b/a) to rep-
thus only consider the transverse dependence, which is given

by the Fourier transform of the transverse wave function. Wé’eslintﬁéb’rsels’esznz Work the contributions of both the confinin
thus obtain the hadron-hadron scattering amplitude by P 9

) - - i and nonconfining correlators to the eikonal function and to

smearing over the values @ and R, in Eq. (10) with e ohservables in high-energy scattering are taken into ac-

transverse wave function(R). ccount. Aiming at theop andpp systems, we only consider
Taking into account the results of the previous analysis othe caseS;=S,=S. Figure 4 shows a comparison between

different hadronic systemfl], in the present calculation we the results for the profile functionib/a) corresponding to

only consider for the proton a diquark structure, where thes/a=2.4 in the cases of pure confining£1), pure non-

proton is described as a meson, in which the diquark replacesnfining (x=0), and mixed &= 3/4) correlators, in order

the antiquark. Thus these expressions apply equally well tgy exhibit their differences. The smaller contributions at the

meson-meson, meson-baryon, and baryon-baryon scatteringaysically more important values bfa obtained in the non-
For the hadron transverse wave function we make theonfining case justified its neglect in previous work.

ansatz of the simple Gaussian form We have studied analytically the profile functions for very

large values ob/a and found that the asymptotic behavior is

1 of the form

Yu(R) = V2l —exp(—RUIS}), (24)

H 37 b

A A;
J(b/a)—ex;{ - ?5

%'F—b/az"r‘...}, (26)

whereS, is a parameter for the hadron size.
whereA;,A,, ... arefunctions ofS/a.
For small and intermediate values lofa, J(b/a) can be
6 ' ' | ' written, in good approximatiori1], as a Gaussian exponen-
tial multiplied by a rational fraction onb{a)?. For the whole
AN ] range, a parametrization which can be made very faithful is

N e ~ D, of the form
ICD+(1—’C)D1

4" \ k=3/4 7]

Y S/a2.4 J(b/a)=J(0)

Ao )
—1+Co(b/a)zexr[—P(b/a) ]

A

N
i
_ +j21 1+Cj(b/a)Jex;{(Sw/S)(b/a)] » 2D

] where EJN:OAJ:L The parameter®, A;, C; depend on
S/a, and can be determined by fitting the ex@mimerically
obtained values ofJ(b/a). For practical purposelN<3.

The dimensionless hadron-hadron scattering amplitude in

the eikonal approach is given by

FIG. 4. Dimensionless profile functioni{b/a) for S/a=2.4 i 2 4122 22 FT T >
obtained in the cases of pure confining=<{1), pure nonconfining THle is[(gFF)a"]"a f d“bexp(iq b)‘]Hle(b’Sl’SZ)’

(x=0), and mixed =3/4) correlators. (28)
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where the impact parameter vectorand the hadron sizes ' ' '
S, andS, are in units of the correlation length) andq is the
momentum transfer projected on the transverse plane, in
units of 1A, so that the momentum transfer squared is
t=—|q|%a?. For convenience, in the expression above we
have explicitly factorized the dimensionless combination
(g°FF)a*. The normalization fofl; y, is such that the total
cross-section is obtained through the optical theorem by

B(t)/a?

T 1
g :glmTHle, (29)

and the differential cross section is given by

do®” 1 ) . I . I
gt 16 THH,l ™ (30) 0 0.1 0.2
a? |t|
To write convenient expressions for the observables, we
define the dimensionless moments of the profile functam FIG. 5.t dependence of the slope paramdi¢t) for the cases
before, withb in units of the correlation length) k=34, 1.
|k:f d26bkJ(b), k=0,1,2..., (31)  ronic structures and on the shapes and relative weigiats
rameter k) of the two correlation functions. It has been

shown [1] that for the casex=1 the two moments have
simple form as functions d¥a. To consider arbitrary values
- for x, we remark that the profile function and its moments
'(t):f d bJO(ba\/m)‘](b)' (32 are quadratic functions of, as they result from integrations
of the squares of a (symbollio combination
whereJO(ba\/|T|) is the zeroth-order Bessel function. Then «D+(1—«)D, . The profile functionJ(b/a) for an arbi-
. trary value of the weighk can be obtained once the profile
TH1H2=|s[<g2FF>a4]2a2| (t). fungtions have been getermined for three different vglues of
k. It is shown in the next section that the momehjS/a)
and |,(S/a) for arbitrary k (with O0<k=<1) can be repre-
sented by similarly simple expressions.
It is important that the high-energy observabtes and
o'=1¢[(g’FF)a*]?a?, (33) B require only the two low moments, and|, of the profile
functions. The curvature of the forward peak depends on

which depend only o%/a, and the Fourier-Bessel transform

SinceJ(b) is real, the total cross sectian’, the slope pa-
rameterB (slope att=0) and the differential elastic cross
section are given by

d/ do* 11, higher moments and on the long distance behavior of
_ _T 2.2 A2
B= dt(ln at )| T2i,% T B9 j(bra).
Thet dependence of the logarithmic slope of the differ-
and ential cross section is given by
do® 1
- 2r /2 44,4
a ~ 16, (D HgFRa’l"a”. (35 o) d (| do_e/) 2 di(t)
= — n = ,—_——
We have here defined dt dt It dt
1 a (=
11, =——f 27J(b)b?Jy(bay/|t))db. (36
k=51 0 T o 27000 Jithdb. (38

We observe that in the lowest order of the correlator ex-
pansion the slope parametrdoes not depend on the value  The form of B(t), which is exemplified in Fig. 5 for
of the gluon condensatg?FF) and, once the proton radius «=1 and 3/4, depends of the behavior of the profile function
S is known, may give a direct determination of the correla-for large values ob/a. The present form of the calculations
tion length. with the model of the stochastic vacuum, with its simplifying
The QCD strength and length scale have been factorizeschemes, and reasonable but arbitrary ansatz for the correla-
in the expressions for the observables, and the correlatiotion functions, should not be expected to give detailed de-
length appears as the natural unit of length for the geometriscription of quantities depending on the long range behavior
aspects of the interaction. These aspects are contained in tbéthe profile function. The experimental quantities for large
quantitieslo(S/a) andl,(S/a), which depend on the had- momentum transfers are sensitive to this behavior.
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TABLE II. Values of the parameters for EqR7) and(38), for 3 T I T I T
some selected values af
K ax 107 B 7 y S S B
1/2 0.6880 2474 2283 0.3906 2.016 0.815
3/4 0.6532 2791 2.030 0.3293 2.126 0.762
33/40 0.6409 2.895 1973 0.3190 2.161 0.746
1.0 0.6717 3.029 1859 0.3118 2.183 0.721 r y
IV. EXPERIMENTAL OBSERVABLES ! _M’i\
AND QCD PARAMETERS
= bd J
The curves fol = "/[{g?FF)2al’landK =B/a? can be x
parametrized as functions &'a with simple powers, with
good accuracy for & k<1. The convenient expressions are 0 ' ' ' ' '
0.25 0.5 0.75 1
S\# K
lo=al| = (37
a FIG. 7. Values ofy, y, and 6 and 6/ B as functions ofx.
and ohor(PP,PP) = (21.70 mb}®°%% (with s in GeV?) works
g0 well over a wide range of data aboyes="5 GeV, so that we
K=7+1y _) . (38) may use this expression to represent the pomeron contribu-
a tion at the energies where the non-Pomeron part is important

(the ISR energies At 541 and 1800 GeV we assume that
The parameters, 3,7,y,6 and the ratios/ g (which is of  pomeron exchange dominates the scattering process, and ig-
particular importance for the comparison with the dage  nore possible differences betwepp andpp systems. We
shown as functions ok in Figs. 6 and 7. Their numerical then take the data at these two highest energies as input, and
values for some selected valuessofire given in Table Il predict the values for the lowéISR) energies.

The parametrizations of the total cross section and of the The values of the slope parameter related to the Pomeron
slope paramete are very convenient for comparison of the exchange mechanism are not known, and must be predicted
results of the model of the stochastic vacuum with experiby a model. Our model makes specific predictions for the
ment. In order to have a wide range of data to extract reliableg|ation betweerar;om and Bp,,,, and we need good data to
information on QCD parameters, we concentrate on elastifest accurately these predictions. The differences
pp andpp scattering. The _data extending from the ISR ranges(pp) - B(pp) are 0.50, 0.16, and 0.45 GeV at 30.5,
(20-60 GeV to the Fermilab energy1800 GeV are pre- 527, and 62.3 GeV, respectively, with error bars typically
sented in Table | and in Fig. 1. +0.55 GeV 2 (see Table)t these differences do not show a

The nonperturbative calculation made with the model ofgecrease with the increasing energy, as expected from
the stochastic vacuum corresponds to the phenomenologicpbmeron dominance, but the error bars are too large, larger
Pomeron exchange of Regge phenomenolf@@]. Don-  than the quantities themselves. The situation is simpler with
nachie and Landshoff3] found that the parametrization the total cross sections, where at the same three energies the
differenceso " (pp) — o "(pp) are 2.02, 0.94, and 0.57 mb,
respectively, decreasing continously to zero, and with error
bars not larger than the values of the differences. Thus, in the
range of the ISR experiments, we see the cross sections con-
verging to the same Pomeron-exchange values, but not the
slopes.

In Fig. 1, besides the ISR and higher-energy data, we
show the point[10] corresponding toys=19 GeV with
Opom=34.92 mb andB=12.47+0.10 GeV 2. This point
has been usefll] as an input in a previous application of the
model of the stochastic vacuum to high-energy scattering,
1 . and we now see that it is not consistédtie to a too large
T ax10® ] value for B) with the ISR data, as shown in Fig. 1. This
. ‘ i consideration has influence in the numerical values that are
obtained for the QCD parameters. In Fig. 1 we show also the
| Fermilab CDF values at 1800 GeV, which must be consid-
0.95 05 0.75 ] ered asalternativeto the values obtained in the E-710 ex-

K periment, since they refer to the same energy; in the analysis
presented below we opt for the E-710 values, which fit more
FIG. 6. Values ofax 107 and 8 as functions ofi. naturally in our calculation.
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Once the forms of the correlation functions are fixed, the 05 . . T
parameters in the model that are fundamentally related to
QCD are the weigth, the gluon condensatg?FF), and
the correlation lengtta. The hadronic extension parameter 04 - N
Sy accounts for the energy dependence of the observables. In
this section we show how these quantities can be evaluated

using exclusively high-energy scattering data. ’E‘ 03 - 7

To obtain from Eqs(33), (34), (37), and(38) a relation = . i
between the observables' and B at a given energy, we ©

eliminate the radius, and write 02 - 7

, a2 y T\ 6/ i T

(B—na®)= (GZFF)a®) 278 7P| a2 (39 01 .

The form of Eq.(39) is the same as given by E@), with an | |

obvious correspondence of parameters. 0 ' ' '
To determine the parameters, we first remark that the ex- 0.25 0.5 . 0.75 1

ponentA = &/ 8 does not depend on QCD quantities and is

almost constantequal to about 3/in the region of values FIG. 8. The correlation length as a functionafThe values are

of x that are obtained in lattice calculations~3/4). This  determined using as input the data at 541 and 1800 GeV.

tells us that we cannot easily extract a unique valuecof

from high-energy scattering data only, but tells us also thatather unique prediction fok = &/ 8= 3/4 which is well sus-

the powerA in Eq. (1) must surely be very close to tained by the data as shown in Fig. 1.
To be specific, we borrow from lattice calculation the
6/p=A=3/4. (40) value k= 3/4, and then use as parameter values the numbers

o . .shown in Table Il. Taking into account the experimental er-
This is a fortunate result for our analysis, because then in . . ;
, : S ror bars in the input data at 541 and 1800 GeV, we obtain
practice we are left with only two free quantities in both
energy independent relatiorfi89) and(1). They can be de-
termined using as input the two clean experimental points for
o' and B at 541 and 1800 GeV given in Table I. We then
obtain (9°FF)a*=18.7+0.4, (g?FF)=2.7-0.1 Ge\!.
(42)

xk=3/4, a=0.32£0.01 fm,

Bo=7a%=5.38 GeV 2=0.210 fnf, C=0.458 GeV 2.
(41 With the valuex=33/40 obtained in more recent lattice

) , results[16] the central values change slightly to
Figure 1 shows the observables of soft high-energy scat-

tering, with the modification that for the total cross sections x=33/40, a=0.33 fm,
at the ISR energies we show the nonperturbative Pomeron-
exchange contributionrp,.{pp,pp) = (21.70 mb}®%%8in-
stead of the full experimental value. The valuesBafor the

pp system are shown with circles, while the values qr

are represented by squares. The solid line is (@}. with - . .
values forA, By, andC given above. We see that using the
541 and 1800 GeV data as input, the model gives a very
good prediction for the ISR data. It is interesting to observe
that the values oB for the pp system are closer to our
prediction for the nonperturbative slofibe solid ling com-
pared to thepp values, which are rather high.

Equation(39) gives the correspondence between the phe-
nomenological quantitieA, By, C and the parameters of the
model and of QCD. Since the model parameters are func-
tions of x only, we can also obtain the QCD parameters as
functions ofk. They are plotted in Figs. 8 and 9. The corre-
lation length is remarkably constant, while the gluon conden-
sate decreases asincreases.

Of course these results are subject to uncertainties. We .
have adopted an ansatz for the correlation function, which is 325 05 0.75 1
arbitrary (although numerically it could not be very differ- ' ’ P
end. There is some uncertainty also in the determination of
the parameters;, 8. .. representing the final results of the  FIG. 9. The gluon condensatg?FF) as a function ofc, deter-
numerical calculation. On the other hand, the model gives anined using as input the data at 541 and 1800 GeV.

(g°FF)a*=19.2, (g°FF)=2.6 Ge\f. (43

H

<g?FF> (GeV4)
w
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a0

v 0.5 | -
1+ — | solid line: §,=0.572+0.123 (log/s)*" (fm) |

F - dashed line: $,=0.671+0.057 log/s (fm)
O 1 | 1 | 1 0 Lo sl 1 I |
0.25 0.3 0.35 0.4 100 1000
a (fm) Vs (GeV)
FIG. 10. Constraints on the values @?*FF) and of the corre- FIG. 11. Energy dependence of the proton radius. The marked

lation lengtha. The solid line is the fit of our correlator to the lattice points are obtained from the total cross section datathe ISR
calculation[15] as given in Eq.(44). The dashed line plots Eq. energies the total cross-sections are represented by the Pomeron
(18), with p=0.16 Ge\?. The cross centered @=0.32 fm, exchange contributionsThe two representations for the radius de-
(g%FF)=2.7 GeV* shows the result of our calculation given in Eq. pendence are indistinguishable with the present data, but give quite
(42). different predictions for the cross-section values at the LHC ener-
gies.

The results of the pure SB) lattice gauge calculation by
Di Giacomo and Panagopould45| for the correlator the total cross sections, such as the Donnachie-
(ng(x,O)FEU(O,O))A have been fitted 1] with the same cor- Landshoff[3] form. In this case we obtain for the proton
relation function(15) used in the present work. The correla- radius
tion between the values ¢f>FF) anda that was then ob-

tained can be well represented by the empirical expressions 1 1 21.7 mp ¢ 0.0808)3
Sp(s)_am (<92FF>a4)2/ﬁ a2 S '
1.1122 ) 0.018 13 (45)
A=—ram, (9°FF)= 7@,

The energy dependence, given by a power 0.08G#/s is
(g°F F)a4=0.0172\/A_, (44)  very slow, and the values obtained fgy are in the region of

the proton electromagnetic radii$7], which s
with the lattice parameter\; in MeV, a in fm, and R,=0.862-0.012 fm. However, use of the Donnachie-
(g%FF) in GeV*. This correlation is displayed in Fig. 10, Landshoff parametrization for the total cross sections is not
where some chosen values &f are marked.A, usually appropriate at very high energies. Using E@S) and (37)
takes values in the ranget3L.5 MeV. The point represent- and directly the data at 541 and 1800 GeV, we obtain the
ing our results of Eq(42) is marked in the same figure. The values for the proton radius that are shown in Fig. 11, where
dashed line represents the relation between the gluon com-log scale is used foys. It is remarkable that we have an
densate, the correlation length and the string tension obtaineslmost linear dependence, which can be represented by
in the application of the model of the stochastic vacu[Bh

to hadron spectroscopy; for our form of correlator, this rela- Sy(s)=0.671+ 0.057Inys(fm), (46)
tion is given by Eq{(18). The curve drawn corresponds to a
string tensiorp=0.16 Ge\? . with \/s in GeV. With this form for the radius, which is

As can be seen from the figure, the constraints from thesshown in dashed line in Fig. 11, the cross sections evaluated
three independent sources of information are simultaneouslgt very high energies rise with a ternfis, and are smaller
satisfied, providing a consistent picture of soft high-energythan predicted by the power dependence of Donnachie and
pp andpp scattering. Thépure gaugegluon condensate is Landshoff. However, sincg3~2.8, they still violate the
well compatible with the expected value. The lattice parambound Irf\/s. This may be corrected using a poweBah-
eter A, and the string tensiop are also in their acceptable stead of 1 in the parametrization f@,(s), and we then
ranges. As we describe below, the resulting proton size pasbtain
rameterS, takes values quite close to the electromagnetic
radius [17]. S,(5)=0.572+0.123In\/s]% "4 fm). (47)

In our model the increase of the observables with the
energy is due to a slow energy dependence of the hadronithis form is shown in solid line in Fig. 11. Clearly it gives a
radii. An explicit relation is obtained if we bring into Eqs. good representation for the existing data. At 14 TeV, which
(33) and(37) a parametrization for the energy dependence ofs the expected energy in the future experiments, at the
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1000 |

dN/d|t] (104 events/GeV?)

do/d|t| (mb/GeV?)
)
o

(b) Pp: 546 GeV

|

100

de/d|t| (mb/GeV?)

1

(c) pp: 1800 GeV

50

FIG. 12. Elastic differential cross sections at high enerd&s
The solid lines represent the calculations with the model of the
stochastic vacuum described in the present work, without free pa-
rameters. The systematic deviations occurring|fprarger about
30x 102 Ge\? arise from the long range behavior of the profile

function J(b/a).

CERN Large Hadron CollidefLHC) we obtainS,(14 TeV)
=1.19 fm =1.38,R,=3.7a, and the model predictions for
the observables are"=92 mb andB=19.6 GeV 2. The
dashed line representing E¢6) leads at the same LHC
energy to 0'=97 mb andB=20.1 GeV 2, while the

[t] (10-3 GeV?)

100

curvature for the slopeB(t), which decreases alt| in-
creases, as shown in Fig. 5. The data however show an al-
most zero curvature of the peak, so that above some value of
[t| the model leads to too high values of the differential cross
section. This is illustrated in Fig. 12, where the experimental
data[6] at 541, 546, and 1800 GeV are shown, together with
the results of the model, without any free parametbe
gluon condensate, the correlation length and the hadronic
radius have been uniquely fixed by the inputsséfandB at
541 and 1800 Ge\V

Rather small changes in the form of the profile function
J(b) that enters in the expression for the scattering ampli-
tude, particularly changing the shapeJgb) at largeb [no-
tice that the curvature is determined by a high monigrih
Eq. (31)] are able to modify this behavior. This can be made
phenomenologically, introducing a form factpt8]. How-
ever, in the present work we wish to keep the fundamental
characteristics of the model, which is that of a pure QCD
based calculation, with a unique set of quantities governing
all systems at all energies.

V. CONCLUSIONS

We have extended the previous calculation of soft high-
energy scattering, now including the two tensor forms in the
correlator, and thus taking into account the two independent
correlation functions. We study the influence of the weight
parametern that measures the ratio between the two contri-
butions, giving the general results that allow the determina-
tion of the observable quantities and QCD parameters in
terms of this weight. We show that there are little changes in
the final results, whem varies in the ranges suggested by
lattice determinations.

We describe the most important data on total cross section
and slope parameter for thgp and pp systems, extended

T ' T
18 [~
16 [~
5]\ L
S 14 -
e
m
12 n
4 — — — — Regge, input: 541 GeV -
0~ 0 e Regge, input: 1800 GeV
L B=5.38+0.46 (07,,)0
8 | 1 | 1 |
40 60 80
ol (mb)

Donnachie-Landshoff formula leads to the still higher value

o'=101.5 mb.

FIG. 13. Relation between observables of high-energy scattering

The nonperturbative QCD contributions to soft high- optained in our calculations compared to the relation obtained from
energy scattering are expected to be dominant in the forwarg Regge amplitude according to Ed8). The dashed line uses as

direction, thus determining the total cross sectitmough

input for the Regge formula the's=541 GeV data and passes

the optical theorepand the forward slope parameter. The close to the CDF point at 1800 GeV. The dotted line uses as input
model, as it is presented in this paper, leads to a negativiae values of the E-701 experiment ¢= 1800 GeV.
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from \/s~20 to 1800 GeV, giving a unified and consistent be described if we go one further order in the contributions
description of these data in terms of fundamental quantitiedo the correlator. Also the factorization in E&), implied by
The nonperturbative QCD parameters determining the obthe assumption of a Gaussian process, is important in the
servables are the gluon condensate and the correlation lengthesent formulation of the model, and possibly has conse-
of the vacuum field fluctuations. The third quantity enteringquences for the phenomenological analysis.
the calculations is the transverse hadron size, which has a It is interesting to compare our results with Regge phe-
magnitude close to the electromagnetic radius, and whoseomenology. In Fig. 13 we plot the relation between the
variation accounts for the energy dependence of the obserebservables given by
ables.

The model allows a very convenient factorization be- T egge= 7€ 0188 B0, (48)
tween the QCD and hadronic sectors. Elimination of the had-
ron size parameter between the expressions for the two olgbtained from a Regge amplitude using the slope of the
servables at a given energy vyields a parameter-free arfdomeron trajectorya’(0)por=0.25 GeV 2. This relation
energy independent relation between the total cross sectidquires an input pairj , B, at a chosen energy. The dashed
and the slope of the elastic cross section which agrees vefine uses as input thgs=541 GeV datary=62.20 mb, and
well with experiment. Starting from two experimental ener-B,=15.52 GeV 2. It is interesting to observe the tendency
gies as input, this expression gives a prediction of the reef this line to pass close to the CDF experimental point,
maining data, and leads to a determination of the correlatiomstead of the E-710 point. The dotted line uses as input the
length and the gluon condensate from high-energy datgalues of the E-701 experiment afs=1800 GeV and
alone. The results obtained are in good agreement with thehows a deviation at 541 GeV. This is rather intriguing, as it
correlations between the two QCD parameters obtained iimplies that Eq(48) favors the CDF experimental results at
the lattice calculations and in the application of the stochastia 800 GeV.
vacuum model to hadronic spectroscopy.

In the expansion of the exponential with functional inte-
grations, the present calculation is restricted to the lowest
order nonvanishing contribution, which is quadratic in the Part of this work was done while one of the auth@d-)
gluonic correlator, and we may conclude from our resultswas visiting CERN, and he wishes to thank the Theory Di-
that this is justified for the evaluations of total cross sectiorvision for the hospitality. The authors are indebted to H. G.
and slope parameter. The resulting amplitude is purelyDosch for extensive and helpful discussions. Both authors
imaginary, and the parameter(the ratio of the real to the thank CNPq(Brazil) and FAPERJRio de Janeiro, Brazil
imaginary parts of the elastic scattering amplitudan only  for financial support.
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