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The two independent correlation functions describing nonperturbative properties of the QCD vacuum are
taken into account in the evaluation of the observables of soft high-energy hadron-hadron scattering. The
model of the stochastic vacuum provides the framework in which a simple and effective description of the
high-energypp andp̄p data can be given, leading to a determination of relevant parameters of nonperturbative
QCD and to a good description of the data. The ratio between the non-Abelian and the Abelian parts of the
field correlations is studied in terms only of high-energy data and the results are compared to lattice calcula-
tions. It is shown that a slow increase of the hadronic radii with the energy accounts for the energy dependence
of all observables.@S0556-2821~97!03101-9#

PACS number~s!: 12.38.Lg, 13.85.Dz, 13.85.Lg

I. INTRODUCTION

Much effort has been made to describe the simple and
universal features of high-energy hadronic scattering in
terms of the fundamental theory of the strong interactions,
and it is now understood that many important features are
due to nonperturbative QCD effects. Among these attempts,
we are here concerned with the application@1# of the model
of the stochastic vacuum of nonperturbative QCD to hadron-
hadron scattering. Soft processes, respecting~even micro-
scopically! the quark and color confinement in the colliding
hadrons, is a domain where the nonperturbative aspects of
QCD can be explored and studied. This domain mixes the
parameters describing properties of the QCD field~gluon
condensate, correlation length! with those describing the col-
orless hadrons. The effective dynamics providing the basis
for the phenomenological description of the data must have
the characteristic features of the pomeron exchange mecha-
nism of Regge phenomenology@2#: vacuum quantum num-
bers exchanged between well determined and unchanged
hadronic structures. This mechanism leads, for all hadronic
systems, to total cross-sections which increase with the en-
ergy @3# somewhat likes0.0808. This behavior, which cannot
be realistic for much higher energies, gives an adequate and
simple description of the present data.

Several models relate the total high-energy cross sections
to the hadronic radii@4#. This is a characteristic feature also
of the model of the stochastic vacuum which gives specific
predictions for the size dependence of the high-energy ob-
servables for different hadronic systems@1#. These predic-
tions account for the observed ratios ofpp to pp ~or p̄p)
total cross sections, which have been thought of as indica-
tions supporting additive quark models, and also account for
the important flavor dependence of the observables.

In the present work we deal with thepp and p̄p systems,
describing the high-energy data in terms of nonperturbative
QCD parameters, and relating the energy dependence of the
observables with radius dependence. The knowledge of the
hadronic structures required for the description of the soft

high-energy data does not go beyond the information on their
sizes, the simplest and most trivial transverse wave function
giving all information required for the determination of the
observables. We show that the energy dependence of the
total cross section and of the forward slope parameter can
both be accounted for by a slow variation of the radius as-
sociated with the transverse wave function.

The treatment of soft hadron-hadron scattering, essen-
tially including the confinement properties of quantum chro-
modynamics, cannot be made straightforwardly, requiring
use of approximations and models. The model of the sto-
chastic vacuum, originally conceived to treat nonperturbative
effects in low-energy hadron physics@5#, was later applied
to explain high-energy soft scattering@1#. The treatment is
based on the concept of loop-loop scattering, which allows a
gauge-independent formulation for the amplitudes. The
loops, formed by the quark and antiquark lightlike paths in a
moving hadron, have their contributions added incoherently,
with their sizes weighed by transverse hadronic wave func-
tions.

In the present work we present the results of a more com-
plete calculation of the high-energy observables~total cross-
section and slope parameter!, in which both Abelian and
non-Abelian contributions to the field correlator are taken
into account. The role of the parameterk measuring the
strength of the non-Abelian part, which was determined in
lattice calculations to be about 3/4, is studied and we observe
that the range of values that suits the description of the high-
energy data leads to a confirmation of the lattice results.

In the present analysis we take into account all available
data on total cross sections and slope parameters inpp and
p̄p scattering , which consist mainly@6,7# of CERN Inter-
secting Storage Rings~ISR! measurements at energies rang-
ing from As523 GeV to As563 GeV, of the
As55412546 GeV measurements in CERN Super Proton
Synchrotron~SPS! and in Fermilab, and of theAs51800
GeV information from the E-701 Fermilab experiment.
These data are shown in Table I. In addition to these, there is
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a measurement@8# of sT565.362.3 mb atAs5900 GeV
and there are the measurements ofsT580.662.3 and
B517.060.25 GeV22 at the Collider Detector at Fermilab
~CDF! @9# atAs51800 GeV which seem discrepant with the
E-701 experiment at the same energy. A measurement by
Burq et al. @10# at As519 GeV seems to disagree with the
ISR data, presenting a too high value forB512.4760.10
GeV22 ~possibly because the measurements are taken at
rather large momentum transfers; for our purposes these
should be smaller than the hadronic scale of'1 GeV!. This
point at As519 GeV was taken as the sole input in the
previous calculation@1#.

In Fig. 1 we plot the two observablessT andB against
each other. At the ISR energies we use

spom
T 5(21.70mb)s0.0808as representative of the nonperturba-

tive contributions, instead of the full experimental values. At
the highest energies~541–1800 GeV! it is believed that the
process is essentially nonperturbative. The relation between
the two observables is parametrized in the form

B5B01C~sT!D, ~1!

with B055.38 GeV22, C50.458 GeV22, D50.75, and
with sT given in mb. This form is suggested by the results of
the calculations with the model of the stochastic vacuum@1#,
where an interpretation for the meaning of the parameters is
given in terms of QCD and hadronic quantities. This is ex-
plained in detail in Sec. IV.

In the next section we recall the principles of the evalua-
tion of the observables of high-energy scattering in the
model of the stochastic vacuum@1#. In the sections that fol-
low we present our new calculations and results.

II. NONPERTURBATIVE QCD
AND THE MODEL OF THE STOCHASTIC VACUUM

IN SOFT HIGH-ENERGY SCATTERING

The nonperturbative vacuum expectation values~such as
gluon condensates! that were first introduced in calculations
of hadron spectroscopy@11# were shown by Nacht-
mann @12# to have fundamental role in soft high-energy
scattering. The application of the model of the stochastic
vacuum to this problem follows his general analysis, adopt-
ing however a different fundamental ingredient. Instead of
reducing the hadron-hadron amplitude to quark-quark scat-
tering amplitudes, the basic entities used are scattering am-
plitudes for Wilson loops in Minkowski space-time. The
loops are formed by the trajectories of the quark and the
antiquark of the hadronic system, and this approach has the
important advantage that the amplitudes are gauge invariant.

The model of the stochastic vacuum@5# is based on the
assumption that the low frequency contributions in the func-
tional integral can be taken into account by a simple stochas-
tic process with a converging cluster expansion@13#. The
integration is specified by a simple correlator, which is de-
termined by two scales: the strength of the correlator~the
value of the gluon condensate! and the correlation length.
This simple model leads to confinement in a non-Abelian

FIG. 2. View in the transverse plane of the two loops that rep-
resent the paths of quark and antiquark in meson-meson scattering.

The vectorsRW 1 andRW 2 represent components of the meson trans-

verse wave functions. The vectorbW is the impact parameter vector
connecting the geometric center of the two hadrons.

TABLE I. Experimental high-energy data from CERN ISR,
CERN SPS, and Fermilab.

As sT B Ref.
~GeV! ~mb! ~GeV22) @6#

23.5 39.6560.22 11.8060.30 ~a!
30.6 40.1160.17 12.2060.30 ~a!

pp 45.0 41.7960.16 12.8060.20 ~b!

52.8 42.3860.15 12.8760.14 ~a!
62.3 43.5560.31 13.0260.27 ~a!
30.4 42.1360.57 12.7060.50 ~a!
52.6 43.3260.34 13.0360.52 ~a!

p̄p 62.3 44.1260.39 13.4760.52 ~a!
541 62.2061.50 15.5260.07 ~c!
546 61.9061.50 15.2860.58 ~d!

1800 72.2062.70 16.7260.44 ~e!

FIG. 1. Relation between the two experimental quantities of the
pp and p̄p systems. The values ofsT at energies up to 62.3 GeV
shown in this figure are thesPom

T values as given by the parametri-
zation of Donnachie and Landshoff, namelysPom

T

5(21.70 mb)s0.0808. We also included the point@10# at 19 GeV
and the Fermilab CDF values@9# at 1800 GeV. The values ofB for
the pp system are shown with circles, while the values forp̄p are
represented by squares. The solid line represents Eq.~1!, with val-
ues forD, B0, and C given in the figure.
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gauge theory, with a linear potential between static quarks
which agrees with phenomenological determinations@14#.

In order to guarantee gauge invariance, the model deals
with the correlator of the field strengthsFmn , rather than
with the expectation values of gauge potentialsAm(x). In
order to give a well-defined meaning to the correlator, which
is a bilocal object, the color content of all fields must be
parallel transported to a single reference pointw. Then the
parallel-transported field strength tensors

Fmn~x;w!:5f21~x,w!Fmn~x!f~x,w!, ~2!

wheref(x,w) is a non-Abelian Schwinger string from point

w to point x, must be constructed. This quantity follows the
gauge transformation at the fixed reference pointw,

Fmn~x,w!→U~w!Fmn~x;w!U21~w!, ~3!

so that the vacuum expectation value
^Fmn(x,w)Fds(y,w)&A with respect to the low frequencies is
a gauge invariant quantity.

With the approximation that the correlator is independent
of the reference pointw, depending only on the difference
z5x2y, its most general form@5# is given by

^g2Fmn
C ~x,w!Frs

D ~y,w!&A5
dCD

8

1

12
^g2FF&H k~dmrdns2dmsdnr!D~z2/a2!

1~12k!
1

2 F ]

]zm
~zrdns2zsdnr!1

]

]zn
~zsdmr2zrdms!GD1~z

2/a2!J . ~4!

Herea is a characteristic correlation length,^g2FF& is the
gluon condensate

^g2FF&5^g2Fmn
C ~0!Fmn

C ~0!&A , ~5!

C,D51, . . . ,8 arecolor indices, and the numerical factors in
Eq. ~4! are chosen in such a way that

D~0!5D1~0!51. ~6!

Lattice studies@15# show that the ratiok/(12k) is rather
large ~about 3!, so thatD(z2/a2) gives the dominant contri-
bution. This dominance was the reason for the previous@1#
neglect of the contributions from the part
(12k)D1(z

2/a2), which are taken into consideration in the
present work.

The correlator in Eq.~4! is the starting point for the evalu-
ation of observables in soft high-energy scattering. In the
analysis made by Nachtmann@12#, the quark-quark scatter-
ing amplitude for the interaction of the quarks with the gluon
field is evaluated using the eikonal approximation. If the en-
ergy of the quark is very high and the background field has
only a limited frequency range, the quark moves on an ap-
proximately straight lightlike line and the eikonal approxi-
mation can be applied. In the limit of high energies there is
helicity conservation and spin degrees of freedom can be
ignored. This quark-quark scattering amplitude is explicitly
gauge dependent. However, we can make use of the fact that
in meson-meson scattering for each quark there is an anti-

quark moving on a nearly parallel line. The meson must be a
color-singlet state under local gauge transformations, and to
construct such a colorless state we have to parallel transport
the color content from the quark to the antiquark. Since this
parallel-transport of the colors is made by a Schwinger
string, we obtain for the meson a rectangular Wilson loop
whose lightlike sides are formed by the quark and antiquark
paths, and whose front ends are the Schwinger strings. The
direction of the path of an antiquark is effectively the oppo-
site of that of a quark, so that the loop has a well-defined
internal direction.

The resulting loop-loop amplitude is then specified, not
only by the impact parameter, but also by the transverse

extension vectorsRW 1 andRW 2. In the transverse plane the two
interacting loops are seen as shown in Fig. 2.

The functional integration overA is evaluated using the
model of the stochastic vacuum. Since the correlator is given
in terms of the parallel-transported field tensorFmn(x,w), the
line integrals*Amdz

m are transformed into surface integrals
over the field tensor with the help of the non-Abelian Stokes
theorem. The integrations are then extended over open sur-
facesS1 andS2 having the loopsL1 andL2 as contours.

The exponential being expanded, the expectation value
can be calculated assuming factorization in a Gaussian pro-
cess. In the expansion of the trace of the exponential at least
two terms are necessary, because trtA50, and the lowest
order contribution to the loop-loop scattering amplitude is
then given by

J~bW ,RW 1 ,RW 2!52~2 ig !4S 12! D
2

tr@tC1tC2#tr@tD1
tD2

#E
S1
)
i51

2

dSm in i~xi !E
S2
)
j51

2

dSr js j~yj !
1

9

3^Fm1n1

C1 ~x1 ,w!Fm2n2

C2 ~x2 ,w!Fr1s1

D1 ~y1 ,w!Fr2s2

D2 ~y2 ,w!&A1higher correlators. ~7!
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The integration surfaces and details of the calculation have
beeen described before@1#. The higher order terms are
shown to be small as compared to the leading term, and can
be neglected. In this approximation the surface ordering be-
comes irrelevant. The expectation values of the product of
four fields is evaluated using the factorization hypothesis

^FC1FC2FD1FD2&5^FC1FC2&^FD1FD2&1^FC1FD1&

3^FC2FD2&1^FC1FD2&^FC2FD1&.

~8!

It is convenient to introduce the eikonal functionx:

x~bW ,RW 1 ,RW 2!5~2 ig !2E
S1

dSrm~x!E
S2

dSsn~y!

3^Frm
C ~x,w!Fsn

C ~y,w!&A . ~9!

Then the loop-loop amplitudeJ(bW ,RW 1 ,RW 2) is given to the
lowest order in the correlator by

J~bW ,RW 1 ,RW 2!52
1

576
@x~bW ,RW 1 ,RW 2!#

2. ~10!

In order to extract as a factor the value of the gluon con-
densate, it is useful to introduce a reduced eikonal function
and a reduced loop-loop scattering amplitude through

x̃~bW ,RW 1 ,RW 2![
12

^g2FF&
x~bW ,RW 1 ,RW 2! ~11!

and

J̃LL8~b
W ,RW 1 ,RW 2![

1

@^g2FF&#2
JLL8~b

W ,RW 1 ,RW 2!

52
@ x̃~bW ,RW 1 ,RW 2!#

2

144•576
. ~12!

We have introduced the indicesL,L8 to indicate the two
loops.

To be applied to high-energy scattering, the model of the
stochastic vacuum must be translated from Euclidean space-
time, to the Minkowski continuum. The correlation functions
D(z2/a2) andD1(z

2/a2) must fall off for negativez2 values
~corresponding to Euclidean distances!, and must have well-
defined Fourier transforms in the Minkowski metric, since
these enter in the scattering amplitudes.

The loop-loop eikonal function is determined by the ge-
ometry of the two loops and by the form of the correlation
functions. In Eq.~4! there appear two independent arbitrary
scalar functions,D(z2/a2) and D1(z

2/a2), which are sup-
posed to fall off at large distances with characteristic lengths
a, called correlation lengths. Lattice calculations@15# show
however that the forms ofD andD1 in the Euclidean region
at large distances are similar~exponential decreases with
same rates!, with the contribution from the term withD in
the correlator being about three times larger than that from
D1. We then adopt the same shapesD[D1 , andk53/4.

A convenient general form@1# for the correlation func-
tion is

D ~n!~2ujW u2!5
1

2n23G~n23!
~rnujW u!n23

3F ~n21!Kn23~rnujW u!

2
1

2
~rnujW u!Kn22~rnujW u!G , ~13!

whereKn(x) is the modified Bessel function,n>4 , and

rn5
3Ap

4

G~n25/2!

G~n23!
. ~14!

The dependence of the final results on the particular choice
for n is not very marked, the reason being that all correlation
functions are normalized to 1 at the origin, and decrease
exponentially at large distances. It is enough that the chosen
function falls monotonicaly and smoothly in the range of
physical influence~up to about 1 F, say!, and there cannot be
much difference in the results obtained using different rea-
sonable analytical forms. The simpler choice isn54, which
in the Euclidean region leads to a good representation of the
lattice calculations@15#. We then have for the correlation
function

D ~4!~2ujW u2!5~r4ujW u!@K1~r4ujW u!2 1
4 ~r4ujW u!K0~r4ujW u!#,

~15!

with

r45
3p

8
. ~16!

In the evaluation of the~Euclidean! Wilson loop in the
model of the stochastic vacuum theD part of the correlator
leads @5# to the area law for a Wilson loop, and to a relation
involving the condensatek^g2FF&, the correlation lengtha
and the string tensionr

r5
kp

144
^g2FF&a2E

0

`

D~2u2!du2. ~17!

For the family of correlators written above the integration
can be performed analytically and for the casen54 the re-
sult gives

k^g2FF&5
81p

8a2
r. ~18!

We thus say thatD represents que confining correlator, while
D1 is the nonconfining~and Abelian! part.

After the limits are taken, which make the long sides of
the rectangular Wilson loops tend to6` in the direction of
the colliding beams, the remaining variables in the inte-
grands are coordinates of points in the transverse plane. The
distancesz between such points enter in the final expressions
for the eikonal functionsx as arguments of the two-
dimensional inverse Fourier transform, which is given by
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F2~4!~2ujW u2!5
32

9p
~r4ujW u!2F2K0~r4ujW u!

2S 4

r4ujW u
2r4UjWU DK1~r4ujW u!G

52
32

9p
D2@~r4ujW u!3K3~r4ujW u!#, ~19!

whereD2 is the two-dimensional Laplacian operator, andjW
is any two-dimensional vector of the transverse plane and
K3 is a modified Bessel function. This Laplacian form is
important in the calculation, as it allows lowering the order
of the integrations, through Gauss theorem.

III. PROFILE FUNCTION
FOR HADRON-HADRON SCATTERING

We now introduce the notationRW (I ,J), where the first
index (I51,2) specifies the loop, and the second specifies
the particular quark or antiquark (J51 or 2! in that loop.

Figure 3 shows a projection on the transverse scattering
plane. The vectorsQW (K,L) in the transverse plane connect
the reference pointC ~with coordinatesw) to the positions of
the quarks and antiquarks of the loops 1 and 2. The quantity
c(K,L) is the angle betweenQW (1,K) andQW (2,L).

In the evaluation of the eikonal functions
x@bW ,RW (1,1),RW (2,1)# coming from the confining case a typi-
cal resulting contribution is

E
0

1

daE
0

1

db cosC~1,1!F2~4!@2uaQW ~1,1!2bQW ~2,1!u2#,

~20!

whereF2(4) is the above-mentioned two-dimensional Fourier
transform of the correlator withn54. Taking advantage of
the Laplacian form, we can apply Gauss’ theorem in two

dimensions and eliminate one further integration. The term
from the nonconfining correlator has a total derivative under
the integration sign, and in this part one more integration can
be immediately made.

We then write for the eikonal function of the loop-loop
amplitude

x̃~bW ,RW ~1,1!,RW ~2,1!!5k@2cosc~1,1!I @Q~1,1!,Q~2,1!,c~1,1!#2cosc~2,2!I @Q~1,2!,Q~2,2!,c~2,2!#

1cosc~1,2!I @Q~1,1!,Q~2,2!,c~1,2!#1cosc~2,1!I @Q~1,2!,Q~2,1!,c~2,1!##

1~12k!@2W@Q~1,1!,Q~2,1!,c~1,1!#2W@Q~1,2!,Q~2,2!,c~2,2!#1W@Q~1,1!,Q~2,2!,c~1,2!#

1W@Q~1,2!,Q~2,1!,c~2,1!##. ~21!

The quantitiesI which represent the non-Abelian contributions are given by integrations along the dashed lines of the figure:

I @Q~1,K !,Q~2,L !,c~K,L !#5
32

9pS 3p

8 D 2HQ~1,K !E
0

Q~2,L !

@Q~1,K !21x222xQ~1,K !cosc~K,L !#K2

3F3p

8
AQ~1,K !21x222xQ~1,K !cosc~K,L !Gdx

1Q~2,L !E
0

Q~1,K !

@Q~2,L !21x222xQ~2,L !cosc~K,L !#K2

3F3p

8
AQ~2,L !21x222xQ~2,L !cosc~K,L !GdxJ , ~22!

with Q(K,L)5uQW (K,L)u. The quantitiesW, which come from the nonconfining part of the correlator, are given by

FIG. 3. Geometrical variables of the transverse plane, which
enter in the calculation of the eikonal function for meson-meson
scattering. The pointsC1 and C2 are the meson centers. In the

integrationP2 runs along the vectorQW (2,1), changing the length
z, which is the argument of the characteristic correlator function. In

analogous terms, pointsP1, P̄1, and P̄2 run along QW (1,1),

QW (1,2), andQW (2,2). This explains the four terms that appear inside
the brackets multiplyingk in the expression for the loop-loop am-
plitude. The lengthz8 of the dot-dashed line is the argument of the
Bessel function arising from the nonconfining correlatorD1; there
are four such terms, appearing inside the brackets multiplying
(12k).
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W@Q~1,K !,Q~2,L !,c~K,L !#5
32

9p
2
3p

8
@Q~1,K !21Q~2,L !222Q~1,K !Q~1,L !cosc~K,L !#3/2

3K3F3p

8
AQ~1,K !21Q~2,L !222Q~1,K !Q~2,L !cosc~K,L !G . ~23!

From the eikonal functionx̃ we contruct the loop-loop
amplitudeJ̃L1L2(b

W ,RW 1 ,RW 2) , whereRW 1 andRW 2 are shorthand

notation forRW (1,1) andRW (2,1), respectively.
The hadron-hadron amplitude is constructed from the

loop-loop amplitude using a simple quark model for the had-
rons. Since our amplitude is independent of the momentum
of the quarks~as long as the energy is high enough to ensure
lightlike paths!, the dependence of the wave functions on the
longitudinal momenta of the quarks can be neglected, and we
thus only consider the transverse dependence, which is given
by the Fourier transform of the transverse wave function. We
thus obtain the hadron-hadron scattering amplitude by
smearing over the values ofRW 1 and RW 2 in Eq. ~10! with
transverse wave functionsc(RW ).

Taking into account the results of the previous analysis of
different hadronic systems@1#, in the present calculation we
only consider for the proton a diquark structure, where the
proton is described as a meson, in which the diquark replaces
the antiquark. Thus these expressions apply equally well to
meson-meson, meson-baryon, and baryon-baryon scattering.

For the hadron transverse wave function we make the
ansatz of the simple Gaussian form

cH~R!5A2/p
1

SH
exp~2R2/SH

2 !, ~24!

whereSH is a parameter for the hadron size.

We then write the reduced profile function of the eikonal
amplitude

ĴH1H2
~bW ,S1 ,S2!5E d2RW 1E d2RW 2J̃L1L2~b

W ,RW 1 ,RW 2!

3uc1~RW 1!u2uc2~RW 2!u2, ~25!

which is a dimensionless quantity.
For short, from now on we writeJ(b) or J(b/a) to rep-

resentĴ(bW ,S1 ,S2).
In the present work the contributions of both the confining

and nonconfining correlators to the eikonal function and to
the observables in high-energy scattering are taken into ac-
ccount. Aiming at thepp and p̄p systems, we only consider
the caseS15S25S. Figure 4 shows a comparison between
the results for the profile functionsJ(b/a) corresponding to
S/a52.4 in the cases of pure confining (k51), pure non-
confining (k50), and mixed (k53/4) correlators, in order
to exhibit their differences. The smaller contributions at the
physically more important values ofb/a obtained in the non-
confining case justified its neglect in previous work.

We have studied analytically the profile functions for very
large values ofb/a and found that the asymptotic behavior is
of the form

J~b/a!5expS 2
3p

8

b

aD F A1

b/a
1

A2

b/a2
1 . . . G , ~26!

whereA1 ,A2 , . . . arefunctions ofS/a.
For small and intermediate values ofb/a, J(b/a) can be

written, in good approximation@1#, as a Gaussian exponen-
tial multiplied by a rational fraction on (b/a)2. For the whole
range, a parametrization which can be made very faithful is
of the form

J~b/a!5J~0!F A0

11C0~b/a!2
exp@2P~b/a!2#

1(
j51

N
Aj

11Cj~b/a! jexp@~3p/8!~b/a!#G , ~27!

where ( j50
N Aj51. The parametersP, Aj , Cj depend on

S/a, and can be determined by fitting the exact~numerically
obtained! values ofJ(b/a). For practical purposesN<3.

The dimensionless hadron-hadron scattering amplitude in
the eikonal approach is given by

TH1H2
5 is@^g2FF&a4#2a2E d2bWexp~ iqW •bW !ĴH1H2

~bW ,S1 ,S2!,

~28!

FIG. 4. Dimensionless profile functionsJ(b/a) for S/a52.4
obtained in the cases of pure confining (k51), pure nonconfining
(k50), and mixed (k53/4) correlators.
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where the impact parameter vectorbW and the hadron sizes
S1 andS2 are in units of the correlation lengtha, andqW is the
momentum transfer projected on the transverse plane, in
units of 1/a, so that the momentum transfer squared is
t52uqW u2/a2. For convenience, in the expression above we
have explicitly factorized the dimensionless combination
^g2FF&a4. The normalization forTH1H2

is such that the total
cross-section is obtained through the optical theorem by

sT5
1

s
ImTH1H2

, ~29!

and the differential cross section is given by

dsel

dt
5

1

16ps2
uTH1H2

u2. ~30!

To write convenient expressions for the observables, we
define the dimensionless moments of the profile function~as
before, withb in units of the correlation lengtha)

I k5E d2bWbkJ~b!, k50,1,2, . . . , ~31!

which depend only onS/a, and the Fourier-Bessel transform

I ~ t !5E d2bWJ0~baAutu!J~b!, ~32!

whereJ0(baAutu) is the zeroth-order Bessel function. Then

TH1H2
5 is@^g2FF&a4#2a2I ~ t !.

SinceJ(b) is real, the total cross sectionsT, the slope pa-
rameterB ~slope att50) and the differential elastic cross
section are given by

sT5I 0@^g
2FF&a4#2a2, ~33!

B5
d

dt S lndsel

dt D U
t50

5
1

2

I 2
I 0
a25Ka2, ~34!

and

dsel

dt
5

1

16p
I ~ t !2@^g2FF&a4#4a4. ~35!

We have here defined

K5
1

2

I 2
I 0
.

We observe that in the lowest order of the correlator ex-
pansion the slope parameterB does not depend on the value
of the gluon condensatêg2FF& and, once the proton radius
S is known, may give a direct determination of the correla-
tion length.

The QCD strength and length scale have been factorized
in the expressions for the observables, and the correlation
length appears as the natural unit of length for the geometric
aspects of the interaction. These aspects are contained in the
quantitiesI 0(S/a) and I 2(S/a), which depend on the had-

ronic structures and on the shapes and relative weights~pa-
rameterk) of the two correlation functions. It has been
shown @1# that for the casek51 the two moments have
simple form as functions ofS/a. To consider arbitrary values
for k, we remark that the profile function and its moments
are quadratic functions ofk, as they result from integrations
of the squares of a ~symbollic! combination
kD1(12k)D1 . The profile functionJ(b/a) for an arbi-
trary value of the weightk can be obtained once the profile
functions have been determined for three different values of
k. It is shown in the next section that the momentsI 0(S/a)
and I 2(S/a) for arbitrary k ~with 0<k<1) can be repre-
sented by similarly simple expressions.

It is important that the high-energy observablessT and
B require only the two low momentsI 0 andI 2 of the profile
functions. The curvature of the forward peak depends on
higher moments and on the long distance behavior of
J(b/a).

The t dependence of the logarithmic slope of the differ-
ential cross section is given by

B~ t !5
d

dt S lndsel

dt D5
2

I ~ t !

dI~ t !

dt

5
1

I ~ t !

a

Autu
E
0

`

2pJ~b!b2J1~baAutu!db. ~36!

The form of B(t), which is exemplified in Fig. 5 for
k51 and 3/4, depends of the behavior of the profile function
for large values ofb/a. The present form of the calculations
with the model of the stochastic vacuum, with its simplifying
schemes, and reasonable but arbitrary ansatz for the correla-
tion functions, should not be expected to give detailed de-
scription of quantities depending on the long range behavior
of the profile function. The experimental quantities for large
momentum transfers are sensitive to this behavior.

FIG. 5. t dependence of the slope parameterB(t) for the cases
k53/4, 1.
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IV. EXPERIMENTAL OBSERVABLES
AND QCD PARAMETERS

The curves forI 05sT/@^g2FF&2a10#andK5B/a2 can be
parametrized as functions ofS/a with simple powers, with
good accuracy for 0<k<1. The convenient expressions are

I 05aSSaD
b

~37!

and

K5h1gSSaD
d

. ~38!

The parametersa,b,h,g,d and the ratiod/b ~which is of
particular importance for the comparison with the data! are
shown as functions ofk in Figs. 6 and 7. Their numerical
values for some selected values ofk are given in Table II.

The parametrizations of the total cross section and of the
slope parameterB are very convenient for comparison of the
results of the model of the stochastic vacuum with experi-
ment. In order to have a wide range of data to extract reliable
information on QCD parameters, we concentrate on elastic
pp andpp̄ scattering. The data extending from the ISR range
~20–60 GeV! to the Fermilab energy~1800 GeV! are pre-
sented in Table I and in Fig. 1.

The nonperturbative calculation made with the model of
the stochastic vacuum corresponds to the phenomenological
Pomeron exchange of Regge phenomenology@2,3#. Don-
nachie and Landshoff@3# found that the parametrization

sPom
T (pp,p̄p)5(21.70 mb)s0.0808 ~with s in GeV2) works

well over a wide range of data aboveAs55 GeV, so that we
may use this expression to represent the pomeron contribu-
tion at the energies where the non-Pomeron part is important
~the ISR energies!. At 541 and 1800 GeV we assume that
Pomeron exchange dominates the scattering process, and ig-
nore possible differences betweenpp and p̄p systems. We
then take the data at these two highest energies as input, and
predict the values for the lower~ISR! energies.

The values of the slope parameter related to the Pomeron
exchange mechanism are not known, and must be predicted
by a model. Our model makes specific predictions for the
relation betweensPom

T and BPom, and we need good data to
test accurately these predictions. The differences
B(pp̄)2B(pp) are 0.50, 0.16, and 0.45 GeV22 at 30.5,
52.7, and 62.3 GeV, respectively, with error bars typically
60.55 GeV22 ~see Table I!; these differences do not show a
decrease with the increasing energy, as expected from
Pomeron dominance, but the error bars are too large, larger
than the quantities themselves. The situation is simpler with
the total cross sections, where at the same three energies the
differencessT( p̄p)2sT(pp) are 2.02, 0.94, and 0.57 mb,
respectively, decreasing continously to zero, and with error
bars not larger than the values of the differences. Thus, in the
range of the ISR experiments, we see the cross sections con-
verging to the same Pomeron-exchange values, but not the
slopes.

In Fig. 1, besides the ISR and higher-energy data, we
show the point@10# corresponding toAs519 GeV with
sPom
T 534.92 mb andB512.4760.10 GeV22. This point

has been used@1# as an input in a previous application of the
model of the stochastic vacuum to high-energy scattering,
and we now see that it is not consistent~due to a too large
value for B) with the ISR data, as shown in Fig. 1. This
consideration has influence in the numerical values that are
obtained for the QCD parameters. In Fig. 1 we show also the
Fermilab CDF values at 1800 GeV, which must be consid-
ered asalternative to the values obtained in the E-710 ex-
periment, since they refer to the same energy; in the analysis
presented below we opt for the E-710 values, which fit more
naturally in our calculation.FIG. 6. Values ofa3102 andb as functions ofk.

FIG. 7. Values ofh, g, andd andd/b as functions ofk.

TABLE II. Values of the parameters for Eqs.~37! and~38!, for
some selected values ofk.

k a3102 b h g d d/b

1/2 0.6880 2.474 2.283 0.3906 2.016 0.815
3/4 0.6532 2.791 2.030 0.3293 2.126 0.762
33/40 0.6409 2.895 1.973 0.3190 2.161 0.746
1.0 0.6717 3.029 1.859 0.3118 2.183 0.721
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Once the forms of the correlation functions are fixed, the
parameters in the model that are fundamentally related to
QCD are the weigthk, the gluon condensatêg2FF&, and
the correlation lengtha. The hadronic extension parameter
SH accounts for the energy dependence of the observables. In
this section we show how these quantities can be evaluated
using exclusively high-energy scattering data.

To obtain from Eqs.~33!, ~34!, ~37!, and ~38! a relation
between the observablessT and B at a given energy, we
eliminate the radius, and write

~B2ha2!5
a2

~^g2FF&a4!2d/b

g

ad/b S sT

a2 D
d/b

. ~39!

The form of Eq.~39! is the same as given by Eq.~1!, with an
obvious correspondence of parameters.

To determine the parameters, we first remark that the ex-
ponentD5d/b does not depend on QCD quantities and is
almost constant~equal to about 3/4! in the region of values
of k that are obtained in lattice calculations (k'3/4). This
tells us that we cannot easily extract a unique value ofk
from high-energy scattering data only, but tells us also that
the powerD in Eq. ~1! must surely be very close to

d/b5D53/4. ~40!

This is a fortunate result for our analysis, because then in
practice we are left with only two free quantities in both
energy independent relations~39! and ~1!. They can be de-
termined using as input the two clean experimental points for
sT and B at 541 and 1800 GeV given in Table I. We then
obtain

B05ha255.38 GeV2250.210 fm2, C50.458 GeV22.
~41!

Figure 1 shows the observables of soft high-energy scat-
tering, with the modification that for the total cross sections
at the ISR energies we show the nonperturbative Pomeron-
exchange contributionsPom

T (pp,p̄p)5(21.70 mb)s0.0808 in-
stead of the full experimental value. The values ofB for the
pp system are shown with circles, while the values forp̄p
are represented by squares. The solid line is Eq.~1!, with
values forD, B0, andC given above. We see that using the
541 and 1800 GeV data as input, the model gives a very
good prediction for the ISR data. It is interesting to observe
that the values ofB for the pp system are closer to our
prediction for the nonperturbative slope~the solid line! com-
pared to thep̄p values, which are rather high.

Equation~39! gives the correspondence between the phe-
nomenological quantitiesD, B0, C and the parameters of the
model and of QCD. Since the model parameters are func-
tions of k only, we can also obtain the QCD parameters as
functions ofk. They are plotted in Figs. 8 and 9. The corre-
lation length is remarkably constant, while the gluon conden-
sate decreases ask increases.

Of course these results are subject to uncertainties. We
have adopted an ansatz for the correlation function, which is
arbitrary ~although numerically it could not be very differ-
ent!. There is some uncertainty also in the determination of
the parametersa,b . . . representing the final results of the
numerical calculation. On the other hand, the model gives a

rather unique prediction forD5d/b53/4 which is well sus-
tained by the data as shown in Fig. 1.

To be specific, we borrow from lattice calculation the
valuek53/4, and then use as parameter values the numbers
shown in Table II. Taking into account the experimental er-
ror bars in the input data at 541 and 1800 GeV, we obtain

k53/4, a50.3260.01 fm,

^g2FF&a4518.760.4, ^g2FF&52.760.1 GeV4.
~42!

With the valuek533/40 obtained in more recent lattice
results @16# the central values change slightly to

k533/40, a50.33 fm,

^g2FF&a4519.2, ^g2FF&52.6 GeV4. ~43!

FIG. 8. The correlation length as a function ofk. The values are
determined using as input the data at 541 and 1800 GeV.

FIG. 9. The gluon condensate^g2FF& as a function ofk, deter-
mined using as input the data at 541 and 1800 GeV.
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The results of the pure SU~3! lattice gauge calculation by
Di Giacomo and Panagopoulos@15# for the correlator
^Fmn

C (x,0)Frs
D (0,0)&A have been fitted@1# with the same cor-

relation function~15! used in the present work. The correla-
tion between the values of^g2FF& anda that was then ob-
tained can be well represented by the empirical expressions

LL5
1.1122

a1.310
, ^g2FF&5

0.018 13

a4.656
,

^g2FF&a450.0172ALL, ~44!

with the lattice parameterLL in MeV, a in fm, and
^g2FF& in GeV4. This correlation is displayed in Fig. 10,
where some chosen values ofLL are marked.LL usually
takes values in the range 561.5 MeV. The point represent-
ing our results of Eq.~42! is marked in the same figure. The
dashed line represents the relation between the gluon con-
densate, the correlation length and the string tension obtained
in the application of the model of the stochastic vacuum@5#
to hadron spectroscopy; for our form of correlator, this rela-
tion is given by Eq.~18!. The curve drawn corresponds to a
string tensionr50.16 GeV2 .

As can be seen from the figure, the constraints from these
three independent sources of information are simultaneously
satisfied, providing a consistent picture of soft high-energy
pp and p̄p scattering. The~pure gauge! gluon condensate is
well compatible with the expected value. The lattice param-
eterLL and the string tensionr are also in their acceptable
ranges. As we describe below, the resulting proton size pa-
rameterSp takes values quite close to the electromagnetic
radius @17#.

In our model the increase of the observables with the
energy is due to a slow energy dependence of the hadronic
radii. An explicit relation is obtained if we bring into Eqs.
~33! and~37! a parametrization for the energy dependence of

the total cross sections, such as the Donnachie-
Landshoff @3# form. In this case we obtain for the proton
radius

Sp~s!5a
1

a1/b

1

~^g2FF&a4!2/b S 21.7 mb

a2 D 1/bs0.0808/b.
~45!

The energy dependence, given by a power 0.0808/b of s is
very slow, and the values obtained forSp are in the region of
the proton electromagnetic radius@17#, which is
Rp50.86260.012 fm. However, use of the Donnachie-
Landshoff parametrization for the total cross sections is not
appropriate at very high energies. Using Eqs.~33! and ~37!
and directly the data at 541 and 1800 GeV, we obtain the
values for the proton radius that are shown in Fig. 11, where
a log scale is used forAs. It is remarkable that we have an
almost linear dependence, which can be represented by

Sp~s!50.67110.057lnAs~ fm!, ~46!

with As in GeV. With this form for the radius, which is
shown in dashed line in Fig. 11, the cross sections evaluated
at very high energies rise with a term lnbAs, and are smaller
than predicted by the power dependence of Donnachie and
Landshoff. However, sinceb'2.8, they still violate the
bound ln2As. This may be corrected using a power 2/b in-
stead of 1 in the parametrization forSp(s), and we then
obtain

Sp~s!50.57210.123@ lnAs#0.72~ fm!. ~47!

This form is shown in solid line in Fig. 11. Clearly it gives a
good representation for the existing data. At 14 TeV, which
is the expected energy in the future experiments, at the

FIG. 10. Constraints on the values of^g2FF& and of the corre-
lation lengtha. The solid line is the fit of our correlator to the lattice
calculation @15# as given in Eq.~44!. The dashed line plots Eq.
~18!, with r50.16 GeV2. The cross centered ata50.32 fm,
^g2FF&52.7 GeV4 shows the result of our calculation given in Eq.
~42!.

FIG. 11. Energy dependence of the proton radius. The marked
points are obtained from the total cross section data~at the ISR
energies the total cross-sections are represented by the Pomeron
exchange contributions!. The two representations for the radius de-
pendence are indistinguishable with the present data, but give quite
different predictions for the cross-section values at the LHC ener-
gies.
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CERN Large Hadron Collider~LHC! we obtainSp(14 TeV!
51.19 fm51.38,Rp53.7a, and the model predictions for
the observables aresT592 mb andB519.6 GeV22. The
dashed line representing Eq.~46! leads at the same LHC
energy to sT597 mb and B520.1 GeV22, while the
Donnachie-Landshoff formula leads to the still higher value
sT5101.5 mb.

The nonperturbative QCD contributions to soft high-
energy scattering are expected to be dominant in the forward
direction, thus determining the total cross section~through
the optical theorem! and the forward slope parameter. The
model, as it is presented in this paper, leads to a negative

curvature for the slopeB(t), which decreases asutu in-
creases, as shown in Fig. 5. The data however show an al-
most zero curvature of the peak, so that above some value of
utu the model leads to too high values of the differential cross
section. This is illustrated in Fig. 12, where the experimental
data @6# at 541, 546, and 1800 GeV are shown, together with
the results of the model, without any free parameter~the
gluon condensate, the correlation length and the hadronic
radius have been uniquely fixed by the inputs ofsT andB at
541 and 1800 GeV!.

Rather small changes in the form of the profile function
J(b) that enters in the expression for the scattering ampli-
tude, particularly changing the shape ofJ(b) at largeb @no-
tice that the curvature is determined by a high momentI 4 in
Eq. ~31!# are able to modify this behavior. This can be made
phenomenologically, introducing a form factor@18#. How-
ever, in the present work we wish to keep the fundamental
characteristics of the model, which is that of a pure QCD
based calculation, with a unique set of quantities governing
all systems at all energies.

V. CONCLUSIONS

We have extended the previous calculation of soft high-
energy scattering, now including the two tensor forms in the
correlator, and thus taking into account the two independent
correlation functions. We study the influence of the weight
parameterk that measures the ratio between the two contri-
butions, giving the general results that allow the determina-
tion of the observable quantities and QCD parameters in
terms of this weight. We show that there are little changes in
the final results, whenk varies in the ranges suggested by
lattice determinations.

We describe the most important data on total cross section
and slope parameter for thepp and p̄p systems, extended

FIG. 12. Elastic differential cross sections at high energies@6#.
The solid lines represent the calculations with the model of the
stochastic vacuum described in the present work, without free pa-
rameters. The systematic deviations occurring forutu larger about
3031023 GeV2 arise from the long range behavior of the profile
function J(b/a).

FIG. 13. Relation between observables of high-energy scattering
obtained in our calculations compared to the relation obtained from
a Regge amplitude according to Eq.~48!. The dashed line uses as
input for the Regge formula theAs5541 GeV data and passes
close to the CDF point at 1800 GeV. The dotted line uses as input
the values of the E-701 experiment atAs51800 GeV.
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from As'20 to 1800 GeV, giving a unified and consistent
description of these data in terms of fundamental quantities.
The nonperturbative QCD parameters determining the ob-
servables are the gluon condensate and the correlation length
of the vacuum field fluctuations. The third quantity entering
the calculations is the transverse hadron size, which has a
magnitude close to the electromagnetic radius, and whose
variation accounts for the energy dependence of the observ-
ables.

The model allows a very convenient factorization be-
tween the QCD and hadronic sectors. Elimination of the had-
ron size parameter between the expressions for the two ob-
servables at a given energy yields a parameter-free and
energy independent relation between the total cross section
and the slope of the elastic cross section which agrees very
well with experiment. Starting from two experimental ener-
gies as input, this expression gives a prediction of the re-
maining data, and leads to a determination of the correlation
length and the gluon condensate from high-energy data
alone. The results obtained are in good agreement with the
correlations between the two QCD parameters obtained in
the lattice calculations and in the application of the stochastic
vacuum model to hadronic spectroscopy.

In the expansion of the exponential with functional inte-
grations, the present calculation is restricted to the lowest
order nonvanishing contribution, which is quadratic in the
gluonic correlator, and we may conclude from our results
that this is justified for the evaluations of total cross section
and slope parameter. The resulting amplitude is purely
imaginary, and ther parameter~the ratio of the real to the
imaginary parts of the elastic scattering amplitude! can only

be described if we go one further order in the contributions
to the correlator. Also the factorization in Eq.~8!, implied by
the assumption of a Gaussian process, is important in the
present formulation of the model, and possibly has conse-
quences for the phenomenological analysis.

It is interesting to compare our results with Regge phe-
nomenology. In Fig. 13 we plot the relation between the
observables given by

sRegge
T 5s0

Te0.1616~B2B0!, ~48!

obtained from a Regge amplitude using the slope of the
Pomeron trajectorya8(0)Pom50.25 GeV22. This relation
requires an input pairs0

T , B0 at a chosen energy. The dashed
line uses as input theAs5541 GeV datas0

T562.20 mb, and
B0515.52 GeV22. It is interesting to observe the tendency
of this line to pass close to the CDF experimental point,
instead of the E-710 point. The dotted line uses as input the
values of the E-701 experiment atAs51800 GeV and
shows a deviation at 541 GeV. This is rather intriguing, as it
implies that Eq.~48! favors the CDF experimental results at
1800 GeV.
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