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Factorial moments of continuous order are studied by using Monte Carlo events and experimental data. A
maximum likelihood method is proposed and dynamical fluctuations are studied in normalized pseudorapidity
space for 400 GeV/c pp collisions. Multifractal dimensionsD(q) and multifractal spectrumf (a) are pre-
sented. Monte Carlo simulation indicates that the statistical fluctuations are filtered out. The values ofD(q) are
consistent with the previous ones obtained by the ordinary method of scaled factorial moment. The observed
hierarchyD(0).D(1).D(2) provides evidence of multifractal behavior for multiparticle production of 400
GeV/c pp collisions. The multifractal spectrumf (a) can be well reproduced by the random cascadea model.
@S0556-2821~97!05403-9#

PACS number~s!: 13.85.Hd, 12.40.Ee, 25.75.Dw

I. INTRODUCTION

To investigate intermittent behavior of high-energy mul-
tiparticle production, one may calculate the moments of the
multiplicity distribution and study their dependence on bin
size in pseudorapidity space. The multiplicity distribution
originates from two parts, the dynamic fluctuation and the
statistical one. In high-energy hadronic collisions, the multi-
plicity is usually small, especially when the bin size is small.
Consequently, the statistical fluctuation might be large and
dominate the fluctuation of the multiplicity distribution. In
order to extract a genuine dynamic fluctuation and to elimi-
nate the statistical one, Bialas and Peschanski suggested to
use the scaled factorial moments@1#

Fq5
^n~n21!•••~n2q11!&

^n&q
, ~1!

where the angular brackets denote an average weighted by
the multiplicity distributionPn , and the orderq is an integer
number greater than or equal to 2. They showed that the
Fq gives a nonbiased estimation of the moments of dynamic
fluctuation, and intermittency can be expressed as a power-
law increase ofFq with decreasing bin size. The introduction
of Fq greatly stimulated the study of intermittency and inter-
mittency was observed in many experiments@2#. Some me-
chanics of self-similar multifractal structure were introduced
to explain the experimental results. To acquire higher sensi-
tivity, some correlation integral methods have been used in
the calculation ofFq @3,4#.

It can be seen from Eq.~1! that only events withn>q can
contribute toFq . So Fq can reveal a spark signal ofn>q
and cannot reveal a dip signal ofn50, while in some cases,
such as in nuclear collisions, abnormal dips are of the same
importance to the study of dynamical fluctuations as abnor-

mal sparks. So it is necessary to studyFq for q,1. Further-
more, in multifractal analysis, the calculation of the multi-
fractal spectrum requiresq to be continuous in order to allow
differentiation with respect toq, the calculation of fractal
dimension and information dimension requiringq to be 0
and 1. All of the above requires that the range ofq be ex-
tended.

To obtain moments of arbitrary order, Hwa suggested to
useG moments several years ago@5#. It was later modified
to achieve better power-law behavior@6#. Many experimental
results onG moments have been reported@7–14#. But G
moments cannot filter out statistical fluctuation asF mo-
ments do. Only a biased estimation is obtained and a statis-
tical component is attached to the moment of genuine dy-
namical fluctuation. The statistical component cannot be
eliminated by increasing the number of events. It can only be
subtracted by hand@15#, i.e., by comparing the result of ex-
perimental data with the result of Monte Carlo~MC! events
which have the same multiplicity distribution but no correla-
tion. So the method is not elegant, and the errors of the
results are usually large. Some other methods, e.g., the mo-
ments proposed by Takagi@16#, have also been tried. But
they still cannot give out a nonbiased estimation for the mo-
ments of dynamical fluctuations@14#. For this reason, Hwa
recently proposed a new method@17# to obtain factorial mo-
ments of continuous order with statistical fluctuations filtered
out. It not only gives a nonbiased estimation for the moments
of dynamical fluctuations, but also is defined in continuous
order.

In this paper, some efforts are made to apply Hwa’s new
method of ‘‘factorial moment of continuous order’’ to real
data. The paper is arranged as follows. In Sec. II, Hwa’s new
method is briefly reviewed. In Sec. III, Hwa’s method is
tested and applied to Monte Carlo events. Some problems
are presented. In Sec. IV, a maximum likelihood method is
proposed to solve the problems, and some results of the
maximum likelihood method are presented for Monte Carlo
samples. In Sec. V, the variant factorial moment of continu-
ous order is applied to the experimental data to study the
multifractal behavior. Some results are compared with that
obtained by the ordinary scaled factorial moment. In the last
section, Sec. VI, a brief review of this paper is given.
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II. FACTORIAL MOMENT OF CONTINUOUS ORDER

The multiplicity distributionPn can be represented as@17#

Pn5E
0

`

dt
tn

n!
e2tD~ t !, ~2!

whereD(t) represents the dynamic fluctuation and the Pois-
son factor (tn/n!)e2t describes the statistical component.
Denote the numerator of Eq.~1! by f q : i.e.,

f q5 (
n5q

`
n!

~n2q!!
Pn , ~3!

whereq is a positive integer. Substituting Eq.~2! into Eq.~3!
and performing the summation overn, one obtains

f q5E
0

`

dt tqD~ t !. ~4!

It is exactly theqth moment of the dynamic fluctuation
D(t). Since f 15^n&, one has

Fq5 f q / f 1
q . ~5!

However, for continuous orderq, Eq. ~3! cannot be ap-
plied. So other methods are needed. In@17#, it is suggested to
expandPn in a series of negative binomial distributions
~NBDs!:

Pn5(
j50

N

ajPn
NB~kj ,xj !, ~6!

where n50,1, . . . ,N (N is the maximum observed multi-
plicity!, and

Pn
NB~kj ,xj !5

G~n1kj !

G~n11!G~kj !
S kj
kj1xj

D kj S xj
kj1xj

D n. ~7!

Using Eqs.~2! and ~6! and the relation

Pn
NB~kj ,xj !5E

0

`

dt
tn

n!
e2tDNB~ t, j !, ~8!

where

DNB~ t, j !5S kjxj D
kj tkj21

G~kj !
e2kj t/xj , ~9!

one gets

D~ t !5(
j50

N

ajD
NB~ t, j !. ~10!

Substituting Eq.~10! into Eq. ~4! and integrating overt, one
finds

f ~q!5(
j50

N

aj f
NB~q, j !, ~11!

where

fNB~q, j !5S xjkj D
qG~q1kj !

G~kj !
. ~12!

To determine the value ofaj , one should assign@17#
N11 pairs ofxj andkj ( j50,1, . . . ,N):

xj5x~11D j !,

kj5k~11D j !, ~13!

where

x5^n&5 (
n50

N

nPn ,

k5~F221!21, F25^n~n21!&/x2,

D j5DS 2
1

2
1

j

ND ,
j50,1, . . . ,N. ~14!

Then calculatePn
NB( j ) according to Eq.~7!, and solve the

N11 linear algebraic equations~6! for aj . Therefore,
F(q) can be obtained by Eqs.~11! and ~5!.

According to@17#, a suitable value forD is 0.5, and the
value ofk could be set to 104 for Poissonian distribution, for
which F251.

III. APPLICATION OF HWA’s METHOD

A. Application to the analytical Poissonian distribution

To have a test of Hwa’s method, we first apply Hwa’s
method to the analytical Poissonian distribution

Pn
~0!5e2^n&^n&n/n!. ~15!

Pn is calculated analytically according to Eq.~15! with
^n&51, n50,1, . . . ,N, N510. Then we solve a set of
N11 algebraic equations~6! to obtain the expansion coeffi-
cient aj . At last, the factorial moments of continuous order
F(q) are calculated by Eqs.~5! and ~11!. In the calculation,
MATHEMATICA is adopted to ensure numerical accuracy. The

FIG. 1. F(q)’s obtained by Hwa’s original method forPn
(0)

calculated by Eq.~15! with ^n&51 ~solid line! and forPn’s of the
three Monte Carlo samples which include 105 events~dot-dashed
line!, 106 events~dotted line!, and 107 events~dashed line!, respec-
tively.
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results ofF(q) are shown in Fig. 1 with a solid line. It can be
seen thatF(q) has a constant value of 1. For Poissonian
multiplicity distribution, which has only pure statistical fluc-
tuations, the obtained ‘‘F(q)51’’ means that the statistical
fluctuations are filtered out.

B. Application to Monte Carlo samples
of the Poissonian distribution

In a practical experiment, the access to an accurate value
of Pn would require measurement of an infinite number of
events. But in a real experiment, we can only measure a
finite number of events. So eachPn is measured with a sta-
tistical error, which may dominate at largen, where the
event numberNn is small (;1). The statistical error would
be a noise to the calculation. In order to see the effect of the
statistical noise, we apply Hwa’s method to Monte Carlo
samples of the Poissonian multiplicity distribution. The mul-
tiplicities of events are randomly generated according to the
Poissonian distribution. Three samples are generated which
include 105, 106, and 107 Monte Carlo events, respectively
(^n&51). The results ofF(q) calculated by Hwa’s method
for the three samples are shown in Fig. 1 with a dot-dashed
line, dotted line, and dashed line, respectively. TheF(q)’s
deviated from 1 obviously and the deviations cannot be re-
duced only by increasing the event number. It is because the
expansion~6! penetrates all the experimental pointsPn pre-
cisely. So large statistical noises are included in the expan-
sion coefficientaj . Furthermore, in the calculation, the de-
terminant of the matrix composed by thePn

N(kj ,xj )’s of Eq.
~6! is almost zero, and so the matrix is ill conditioned and the
noise is multiplied greatly. A very largeaj with alternating
signs may appear and cause great instability for the result of
F(q). Theaj ’s of the 10

5-event sample are listed in Table I.

C. Effect of statistical noise

A simple way to reduce the effect of statistical noise is by
cuttingPn of largen which has large noise. The dashed line
in Fig. 2 is the result of the previous 105-event sample with
N set to 6. The deviation ofF(q) from 1 is smaller than that

of the original one (N58, dot-dashed line in Fig. 2!. But in
such a way, some important information is lost and there is
still obvious deviation.

On the other hand, for largên&, the effect of statistical
noise will be much greater. A sample of 105 Monte Carlo
events is generated according to the Poissonian multiplicity
distribution with ^n&56. The event numberNn , the expan-
sion coefficientaj , and the calculated result ofF(q) are
listed in Table II. It can be seen that theF(q) of this sample
is totally covered by statistical noise.

So we develop Hwa’s method in order to apply it to real
experimental data.

IV. VARIANT METHOD

A. Maximum likelihood method

Considering that the negative binomial distribution can fit
the experimental multiplicity distribution well, we can
choose lessaj to fit the experimental data: i.e.,

P̃n5(
j50

J

ãjPn
NB~kj ,xj !, ~16!

where

xj5x~11D j !,

kj5k~11D j !,

D j5DS 2
1

2
1

j

JD ,
j50,1, . . . ,J. ~17!

The fit is performed with N11 points Pn
(Pn5Nn /Nev). Considering that the event numberNn at
largen is very small, the fit should be performed by using
the maximum likelihood method. Theã j ’s are chosen so that
the following likelihood functionL reaches its maximum:

L5
Nev!

Pn50
N Nn!

)
n50

N

~Ñn!
Nn, ~18!

whereÑn5NevP̃n , Nev being the total number of events.
From Eq.~16!, one can obtain

TABLE I. Results of a Monte Carlo sample (105 events! for the
Poissonian distribution witĥn&51. Nn

(0) is the calculated value
according to Eq.~15!. Nn(MC) is counted out from the Monte
Carlo sample.Ñn is the value used to fit theNn(MC) by the maxi-
mum likelihood method.aj is the coefficient to expandNn(MC) by
Eq. ~6!. ã j is the coefficient used for the maximum likelihood
method.

n Nn
(0) Nn(MC) Ñn j a j ã j

0 36787.9 36571 36659.0 026.03109670753105 20.0436
1 36787.9 37130 36887.5 1 5.11077121923106 1.0867
2 18394.0 18274 18456.9 221.89430230203107 20.0431
3 6131.3 6120 6125.1 3 4.01111962013107

4 1532.8 1558 1516.5 425.30703998443107

5 306.6 293 298.7 5 4.49272607863107

6 51.1 41 48.7 622.37651200273107

7 7.3 12 6.8 7 7.18169703123106

8 0.9 1 0.8 8 29.49271675123105

FIG. 2. F(q) obtained by different method~see text! for the
previous Monte Carlo sample which includes 105 events of the
Poissonian distribution witĥn&51.
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(
j50

J

ãj51. ~19!

It should be fulfilled in the whole process of finding the
proper values ofã j . At first, we set allã j ’s to 1/J and assign
a steph51/(2J). Then, we change eachã j in turn by step
h to acquire the maximum likelihood. The change could be
positive or negative. If a change is made for oneã j , an extra
factor 1/(11h) or 1/(12h) should be multiplied to each
ãi ~including ã j ) in order to satisfy Eq.~19!. When the best
values ofã j are obtained at steph, we reduce the step and
find better values forã j . The last step used in our calculation
is 0.0001.

B. Application of the maximum likelihood method
to a Monte Carlo sample of the Poissonian distribution

The maximum likelihood method is applied to the previ-
ous 105-event Monte Carlo sample of the Poissonian distri-
bution with ^n&51. The results ofF̃(q) are shown in Fig. 2
with a dotted line. It can be seen thatF̃(q)'1. So the mea-
surement errors are well constrained.

Because the fit of the maximum likelihood method is per-
formed toN11 points Pn , the maximum number of the
coefficientã j is N11, i.e.,J<N. WhenJ5N, it will come
back to the original Hwa’s method. WhenJ50, it is equiva-
lent to fitting Pn with only one negative binomial distribu-
tion. Generally, the value ofJ used for the fit is chosen
according to the practical multiplicity distributionPn . The
dotted line in Fig. 2 is the result ofJ52. The fitted value
Ñn and the fitting coefficientã j are listed in Table I. It can be
seen thatÑn is consistent withNn in their statistical errors.

C. Application to the Pn
„2… distribution

We also calculatedF(q) for the distribution@17#

Pn
~2!5~n11!0.5e2n/z, ~20!

wherez is a normalization factor. Unlike the Poissonian dis-
tribution, not only are there statistical fluctuations, but there
are also dynamical fluctuations in thePn

(2) distribution.
At first, we generate a sample of 105 Monte Carlo events,

the multiplicities of which are generated according to the
Pn
(2) distribution. Then we calculate the multiplicity distribu-

tion Pn for this sample and calculateã j and F̃(q) by the
maximum likelihood method. The event numberNn and the
fitted valueÑn are listed in Table III. It can be seen from the

TABLE II. Results of a Monte Carlo sample (105 events! for the Poissonian distribution witĥn&56.

n Nn
(0) Nn(MC) j a j q F(q)

0 247.9 245 0 29.718179950590872246875831013 25 2.76543109

1 1487.3 1513 1 2.081363570572897191783231015 24 22.70873107

2 4461.8 4477 2 22.103447536900247649971231016 23 1.90123105

3 8923.5 8658 3 1.332896927731320444682031017 22 26.86613102

4 13385.3 13439 4 25.934983832915738672270931017 21 21.4049
5 16062.3 16106 5 1.972043839191784469153031018 0 22.3309
6 16062.3 16226 6 25.067742340718995793786931018 1 1.0000
7 13767.7 13798 7 1.029883587536565504429431019 2 20.3326
8 10325.8 10382 8 21.677960750845623234210731019 3 0.1025
9 6883.8 6901 9 2.208235276302470686628531019 4 23.029431022

10 4130.3 4098 10 22.353001614724704637131531019 5 8.639431023

11 2252.9 2204 11 2.025322921900260396992231019 6 22.382631023

12 1126.4 1097 12 21.397774855140723406239931019 7 6.357231024

13 519.9 523 13 7.630144583210541165912731018 8 21.641231024

14 222.8 203 14 23.222056385296606506539431018 9 4.100331025

15 89.1 95 15 1.015639386044228053128231018 10 29.915131026

16 33.4 31 16 22.250430341016880338984431017

17 11.8 2 17 3.127992813892777477373131016

18 3.9 2 18 22.052642634266924964533031015

TABLE III. Results of a Monte Carlo sample (105 events! for
thePn

(2) distribution.

n Nn
(2) Nn(MC) Ñn q F(q)

0 52016.2 52231 52206.9 21.0 7.776531018

1 27061.9 26955 27047.2 20.8 2.171731015

2 12193.0 12137 12103.6 20.6 1.542231013

3 5179.5 5230 5124.6 20.4 3.147531011

4 2130.3 2043 2107.2 20.2 9.11173109

5 858.5 850 850.9 0.0 0.9978
6 341.1 343 339.3 0.2 28.56233107

7 134.2 132 134.1 1.0 1.0000
8 52.3 51 52.7 1.2 5.19673104

9 20.3 14 20.6 2.0 0.7846
10 7.8 10 8.0 3.0 218.959
11 3.0 2 3.1 4.0 2477.21
12 1.2 1 1.2 5.0 29.86283103

13 0.4 1 0.5 6.0 21.94383105
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table that the maximum likelihood method can well fit the
distribution which has dynamical fluctuations. The results of
F̃(q) are shown in Fig. 3 with solid circles. We have also
applied the original Hwa’s method to this Monte Carlo
sample and the results ofF(q) are listed in Table III. It can
be seen that theF(q) is totally covered by statistical noise. It
might suggest that the application of the original Hwa’s
method might require that the distributionPn be analytically
calculated out, e.g., by Eq.~20!.

The application of Hwa’s method toPn analytically cal-
culated by Eq.~20! is done withN5 10, 15, and 20. The
results ofF(q) are shown in Fig. 3 with a solid line, dashed
line, and dotted line, respectively. It can be seen that the
results of Hwa’s method for analyticalPn

(2) are consistent
with the results of the maximum likelihood method for a
Monte Carlo sample in the rangeq.0, while in the range
q,0, there are deviations and the deviation is much greater
for large N. This might be because the original Hwa’s
method requires expansion~6! to penetrate all theN11
pointsPn

(2) analytically calculated out by Eq.~20!. But ex-
pansion~6! is not the truePn

(2) distribution. And the differ-
ence between them may be amplified due to the ill-
conditioned character of the matrix composed by the
Pn
NB(kj ,xj ) of Eq. ~6!. The amplitude would be much greater

for largerN. So a very largeaj with alternating signs may
appear and cause the deviation ofF(q). In fact,
P10
(2);1024, and is very small. SoF(q) of N510 may reveal

the main character ofPn
(2) better than that ofN515, 20 as a

result of which the amplitude is decreased for smallerN.

V. EXPERIMENTAL RESULTS

Using the LEBC films offered by the CERN NA27 Col-
laboration, we measured the pseudorapidity distribution of
charged particles produced in 400 GeV/c pp collisions. A
sample of 3740 events is obtained. Details of the measure-

ment are described elsewhere@18–20#.

A. Experimental results of factorial moments
of continuous order

In this paper, the following normalized pseudorapidity
@21# is adopted:

X~h!5
*hmin

h r~h8!dh8

*hmin

hmaxr~h8!dh8
, ~21!

where @hmin ,hmax# is chosen@22,2#, and X is uniformly
distributed in@0,1#. The dynamical fluctuation of the multi-
plicity distribution in decreasing the bin size is studied by
calculating the factorial moments of continuous order. At
one bin size, theX space is divided intoM bins of equal size
d and the calculation is done in each bin independently. At
first, the multiplicity distributionPn,m of binm is calculated
for the experimental data. Second,Pn,m

NB (kj ,m ,xj ,m) is calcu-
lated according to Eq.~7! and ã j ,m is determined by the
maximum likelihood method according to Eqs.~18! and~16!
(J54 for M<4 andJ52 for M.4). Then,f̃ m(q) is calcu-
lated for binm according to Eq.~11!. At last, an average is
made over each bin:

F̃~q,d!5
1

M (
m51

M
f̃m~q!

@ f̃ m~1!#q
. ~22!

Therefore, the factorial momentF̃(q,d) of continuous order
q at bin sized is obtained. Some information about the qual-
ity of the fits can be found in Table IV. The results of
F̃(q,d) are shown in Fig. 4~solid circle!. To see the effect of
parameter number, we perform the calculation in the same
way but with a smallerJ (J52 for M<4 and J50 for
M.4). The results are shown in Fig. 4 as open circles. It
can be seen that the two results are consistent within their
statistical errors forM.4. It means that the multiplicity dis-
tribution Pn of this experiment can be well described by a
negative binomial distribution.

In order to see the statistical contribution toF̃(q,d), we
generate a sample of Monte Carlo events. Compared to the
experimental data, the sample of Monte Carlo events has the
same multiplicity distribution inX space but no correlations.
For each eventi of ni particles, we distribute these particles
randomly throughX space in a uniform distribution. A total
of 100Nev Monte Carlo events is generated. The results of
F̃(q,d) for these Monte Carlo events are also shown in Fig.
4 with dashed lines. It can be seen that if there is only a
statistical fluctuation, the momentsF̃(q,d) of continuous or-
ders remain constant whend is decreased. Hence the inter-

FIG. 3. F(q) obtained by Hwa’s original method forPn
(2) cal-

culated by Eq.~20! with N510 ~solid line!, N515 ~dashed line!,
N520 ~dotted line!, andF̃(q) obtained by the maximum likelihood
method for a Monte Carlo sample (105 events! generated according
to Pn

(2) distribution ~solid circles!.

TABLE IV. A typical result of Pn and P̃n in one bin at
M520.

n 0 1 2 3 4 5

NevPn 2609 881 188 52 9 1

NevP̃n 2611.39 868.62 207.03 42.91 8.23 1.50

55 1261APPLYING FACTORIAL MOMENTS OF CONTINUOUS . . .



mittency exponentsf(q) ~see below! are equal to zero. This
suggests that the statistical fluctuations are filtered out for
experimental data.

B. Simulation with the random cascadea model

To describe the intermittent behavior, we made a Monte
Carlo simulation with the random cascadea model@1,22#. In
the simulation, the multiplicities are generated according to
the experimental multiplicity distribution. Having generated
the multiplicity n for one Monte Carlo event,n particles are
distributed in theX space through a cascading process ac-
cording to the random cascadinga model. In one step of the
cascading process, each bin obtained in the previous step is

divided intol sub-bins, and the probability of finding a par-
ticle in one previous bin is multiplied byl factorsW(a j )

/l

(1<a j<l) so as to obtain the probability of finding a par-
ticle in thel sub-bins, whereW(a j )

’s are random variables

generated for thel sub-bins. They fulfill the normalized
equation(a j51

l Wa j
51. So, at stepn, X space is divided into

ln bins. We denote each bin with a set of parameters
$a1 , . . . ,an%. The probability that one particle is distributed
in bin $a1 , . . . ,an% is

p$a1 , . . . ,an%5
1

ln W~an!W~an21!•••W~a2!W~a1! .

~23!

The probability is the same for then particles of one event.
So particle density fluctuates. In the Monte Carlo simulation,
we chosel52, n516,W1511ar, andW2512ar, where
a50.275, andr is a random number uniformly distributed in
range@21,1#. A sample of 100Nev Monte Carlo events is
generated. The results ofF(q) for this sample are shown in
Fig. 4 with dotted lines. They give out approximately the
same slopes as the experimental results do at smalld.

C. Experimental study for multifractal dimensions

Whend→0, we obtain the intermittency exponentf(q)
by fitting F̃(q,d) with the formula~for M.4)

F̃~q,d!}d2f~q!. ~24!

From f(q) we can calculate the multifractal spectrum
f (a) and multifractal dimensionD(q) using the relations

t~q!5q212f~q!,

a5dt~q!/dq,

f ~a!5qa2t~q!,

D~q!5t~q!/~q21!. ~25!

D(q) versusq is shown in Fig. 5. It can be seen that
D(0)51 for the experimental data. Atq50, it can be ob-
tained from Eqs.~4!, ~5!, and~24! thatf(0) should be zero,
even though there is dynamic fluctuation, and consequently,

FIG. 4. lnF̃(q,d) versus ln(1/d). The solid circles represent the
experimental results obtained by the maximum likelihood method
with J54 for M<4 andJ52 for M.4. The solid lines are the
results of fitting theF̃(q,d)’s ~for M.4) with Eq. ~24!. The open
circles represent the experimental results obtained by the maximum
likelihood method withJ52 for M<4 andJ50 for M.4. The
dashed lines show results for the Monte Carlo events which have no
correlation inX space. The dotted lines show results for the Monte
Carlo events which are generated according to thea model.

FIG. 5. Multifractal dimensionD(q) versusq. The dashed line
represents the results for Monte Carlo events which have no corre-
lation in X space. The dotted line represents the results for Monte
Carlo events generated according to thea model.
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D(0) should be 1. The results of the Monte Carlo samples
with particles randomly distributed inX space are shown in
Fig. 5 with a dashed line. It can be seen thatD(q)51 at each
q for the MC data. It can be seen from Eqs.~25! that, if there
is no dynamic fluctuation@f(q)50#, D(q) should be 1 for
all q. The dotted line in Fig. 5 is the Monte Carlo results of
the random cascadea model. It approximately reproduces
the behavior ofD(q) for experimental data. The decrease of
D(q) with increasingq for experimental data suggests that
there is multifractal behavior in multiparticle productions.

Several values ofD(q) at integerq are listed in Table V
in comparison with that obtained by the ordinary scaled fac-
torial momentFq @19# and that obtained by the modifiedG
moment@14#. It can be seen from Table V that the results of
D(q) of the present method are well consistent with that of
the ordinary method of scaled factorial moments. So the
present method is a successful one in filtering out statistical
fluctuations as the scaled factorial moments do. The results
of D(q) are also consistent with that of the modified
G-moment method, the change ofD(q) versusq of the
present method being smoother than that of the modified
G-moment method. It means that the present method has
successfully extended the orderq to the continuous range.

D. Experimental results of multifractal spectrum

The spectrumf (a) is shown in Fig. 6~open circles!. It is
concave downward with a maximum atq50,
f „a(0)…5D(0)51. The straight linef (a)5a is tangent to
the f (a) curve atq51. The solid point represents the results
of the Monte Carlo sample with particles randomly distrib-
uted inX space, which essentially condense to a single point.

The deviation of the spectrum from parabolic shape might
be related to the NBD form multiplicity distribution. The
solid curve in Fig. 6 is the Monte Carlo results of the random
cascadea model the multiplicities of which are generated
according to the experimental multiplicity distribution. It can
be seen that the random cascadea model could reproduce
the deviation of the spectrum from parabolic shape. Further-
more, we have also made a simulation according to the ran-

dom cascadinga model the multiplicities of which are gen-
erated according to the Poissonian distribution, the obtained
spectrum having a parabolic shape~not shown!.

VI. CONCLUSION

In summary, we have studied the factorial moments of
continuous order by using Monte Carlo events and experi-
mental data. A maximum likelihood method is proposed in
order to apply the factorial moments of continuous order to
real data. And the maximum likelihood method is used in the
study of dynamical fluctuations in decreasing intervals of
normalized pseudorapidity space for 400 GeV/c pp colli-
sions. Monte Carlo simulations indicate that the statistical
fluctuations are filtered out. The results of multifractal di-
mensionsD(q) are consistent with the ones obtained by the
ordinary scaled factorial moment. So the present method is a
successful one in extendingq to a continuous range and
filtering out statistical fluctuations. The observed hierarchy
D(0).D(1).D(2) provides evidence of multifractal be-
havior for multiparticle production. The multifractal spec-
trum f (a) can be well reproduced by the random cascade
a model.
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