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Applying factorial moments of continuous order to experimental data of 400 GeW pp collisions
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Factorial moments of continuous order are studied by using Monte Carlo events and experimental data. A
maximum likelihood method is proposed and dynamical fluctuations are studied in normalized pseudorapidity
space for 400 GeV/ pp collisions. Multifractal dimension®(q) and multifractal spectrunfi(«) are pre-
sented. Monte Carlo simulation indicates that the statistical fluctuations are filtered out. The v&hig} afe
consistent with the previous ones obtained by the ordinary method of scaled factorial moment. The observed
hierarchyD (0)>D(1)>D(2) provides evidence of multifractal behavior for multiparticle production of 400
GeVic pp collisions. The multifractal spectrurfi{«) can be well reproduced by the random cascadeodel.
[S0556-282(197)05403-9

PACS numbgs): 13.85.Hd, 12.40.Ee, 25.75.Dw

[. INTRODUCTION mal sparks. So it is necessary to stuglyfor q<<1. Further-
more, in multifractal analysis, the calculation of the multi-
To investigate intermittent behavior of high-energy mul-fractal spectrum requiregsto be continuous in order to allow
tiparticle production, one may calculate the moments of thdlifferentiation with respect ta@, the calculation of fractal
multiplicity distribution and study their dependence on bindimension and information dimension requiriagto be 0O
size in pseudorapidity space. The multiplicity distributionand 1. All of the above requires that the rangegabe ex-
originates from two parts, the dynamic fluctuation and theténded. .
statistical one. In high-energy hadronic collisions, the multi- 10 obtain moments of arbitrary order, Hwa suggested to
plicity is usually small, especially when the bin size is small, US€G moments several years affs]. It was later modified
Consequently, the statistical fluctuation might be large andC achieve better power-law behav|@i. Many experimental

dominate the fluctuation of the multiplicity distribution. In results onG moments have bgeq report@iﬂ—m]. But G
. moments cannot filter out statistical fluctuation Rsmo-

order to extract a genuine dynamic fluctuation and to elimi- ; A ; :
nate the statistical one, Bialas and Peschanski suggested JENtS do- Only a biased estimation is obtained and a statis-
use the scaled factorial momeit§ tlcal_component_ls attached to t_he moment of genuine dy-
namical fluctuation. The statistical component cannot be
eliminated by increasing the number of events. It can only be
(n(n—=1)---(n—g+1)) subtracted by hanfll5], i.e., by comparing the result of ex-
a= (nya ' @) perimental data with the result of Monte CarflC) events
which have the same multiplicity distribution but no correla-

) tion. So the method is not elegant, and the errors of the
where the angular brackets denote an average weighted bysyits are usually large. Some other methods, e.g., the mo-

the multiplicity distributionP,,, and the ordeq is an integer ments proposed by Takafl6], have also been tried. But
number greater than or equal to 2. They showed that thehey still cannot give out a nonbiased estimation for the mo-
Fq gives a nonbiased estimation of the moments of dynamignents of dynamical fluctuatiorf44]. For this reason, Hwa
fluctuation, and intermittency can be expressed as a powefecently proposed a new methpl7] to obtain factorial mo-
law increase of; with decreasing bin size. The introduction ments of continuous order with statistical fluctuations filtered
of F greatly stimulated the study of intermittency and inter-out. It not only gives a nonbiased estimation for the moments
mittency was observed in many experimef2§ Some me-  of dynamical fluctuations, but also is defined in continuous
chanics of self-similar multifractal structure were introducedorder.
to explain the experimental results. To acquire higher sensi- |n this paper, some efforts are made to apply Hwa’s new
tivity, some correlation integral methods have been used ifnethod of “factorial moment of continuous order” to real
the calculation of [3,4]. data. The paper is arranged as follows. In Sec. I, Hwa’s new
It can be seen from Eql) that only events with=q can  method is briefly reviewed. In Sec. Ill, Hwa's method is
contribute toF,. SoF, can reveal a spark signal o=q  tested and applied to Monte Carlo events. Some problems
and cannot reveal a dip signal o0, while in some cases, are presented. In Sec. IV, a maximum likelihood method is
such as in nuclear collisions, abnormal dips are of the samgroposed to solve the problems, and some results of the
importance to the study of dynamical fluctuations as abnormaximum likelihood method are presented for Monte Carlo
samples. In Sec. V, the variant factorial moment of continu-
ous order is applied to the experimental data to study the
*Present address: Department of Mechanics and Electronicgnultifractal behavior. Some results are compared with that
Hefei Institute of Economics and Technology, Hefei, 230052,0btained by the ordinary scaled factorial moment. In the last
China. section, Sec. VI, a brief review of this paper is given.
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Il. FACTORIAL MOMENT OF CONTINUOUS ORDER
The multiplicity distributionP,, can be represented Ek7]

0 tn B
P,= fo dtme D(1), 2

whereD(t) represents the dynamic fluctuation and the Pois-
son factor {"/n!)e"! describes the statistical component.
Denote the numerator of E@l) by f,: i.e.,

o0

2 &)

g (n—q)! Q)'
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FIG. 1. F(q)'s obtained by Hwa’'s original method fop(”

calculated by Eq(15) with (n)=1 (solid line) and forP,’s of the

whereq is a positive integer. Substituting E@) into Eq.(3)
and performing the summation over one obtains

fq= J:dttqD(t). (4)

It is exactly theqth moment of the dynamic fluctuation
D(t). Sincef,=(n), one has

Fq=1fq/f1. (5)
However, for continuous ordeg, Eq. (3) cannot be ap-

plied. So other methods are needed.1d], it is suggested to

expand P, in a series of negative binomial distributions

(NBDs):

P4

2 (6)

PNB k ])7

wheren=0,1,... N (N is the maximum observed multi-
plicity), and
I'(n+k)) / ko VK[ x \D
NB(l, . \— i i i
Pk )= F DT ke (krx) - 7

three Monte Carlo samples which include®18vents(dot-dashed
line), 1¢° events(dotted ling, and 18 events(dashed ling respec-

tively.
xi\ T (q+k;)
NBiy iy=| | 21 "7
To determine the value o&;, one should assighl7]
N+1 pairs ofx; andk; (j=0,1,...,N):
X;=xX(1+4y),
where
N
x=(n)=2, nP,,
n=0
k=(F,—1)7, F,=(n(n—1))/%x?,
A —A( 1+ j
A T2 )
j=0,1,... N. (14)

Using Eqgs.(2) and(6) and the relation

oo tn
PRB(k; ,xj)=J0 dtme_tDNB(t,j). (8

where
k tk -1
D=|5] Fey ©
one gets
N
D(t)= >, a;D"B(t,j). (10)
i=o

Substituting Eq(10) into Eq. (4) and integrating ovet, one
finds

N

f(q)=§o a,f%(q,]), (12)

where

Then calculateP)®(j) according to Eq(7), and solve the
N+1 linear algebraic equation6) for a;. Therefore,

F(q) can be obtained by Eq§l1) and(5).
According to[17], a suitable value foA is 0.5, and the
value ofk could be set to 10for Poissonian distribution, for

which F,=1

I1l. APPLICATION OF HWA's METHOD
A. Application to the analytical Poissonian distribution

To have a test of Hwa's method, we first apply Hwa's
method to the analytical Poissonian distribution

PO=e=(M(n)"/n!. (15)

P, is calculated analytically according to EqL5 with
(n)=1, n=0,1,... N, N=10. Then we solve a set of
N+ 1 algebraic equation) to obtain the expansion coeffi-
cienta, . At last, the factorial moments of continuous order
F(q) are calculated by Eq$5) and(11). In the calculation,
MATHEMATICA is adopted to ensure numerical accuracy. The
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TABLE I. Results of a Monte Carlo sample (Levents for the 2

Poissonian distribution witfny=1. N{? is the calculated value )
according to Eqg.(15). N,(MC) is counted out from the Monte 1 f e
Carlo sample—Nvn is the value used to fit thd,(MC) by the maxi- / \'\\
mum Iikejhood methoda; is the coefficient to expand,(MC) by 5 of ,,"' \\‘
Eq. (6). a; is the coefficient used for the maximum likelihood frig 4k / 4
method. ]

= ~ 2f | .,
n N® N(MC) N, i a; 3 |
0 36787.9 36571 36659.0 0-6.031096707%10° —0.0436 -3-2 0 2 4 6
1 36787.9 37130 36887.5 1 5.1107712%9®° 1.0867 q
2 18394.0 18274 18456.9 2-1.894302302810° —0.0431
3 61313 6120 6125.1 3 4.01111962010 FIG. 2. F(q) obtained by different methogsee text for the
4 1532.8 1558 1516.5 4—5.307039984% 10’ previous Monte Carlo sample which includes® 1&vents of the
5 306.6 293 2987 5 4.49272607860 Poissonian distribution witkny=1.

.
g 571'31 E 285'37 s_i'igigéiggﬁg of the original one (_\I=8, dot—dashed Ijne ?n Fig.)2But in _
: : o & such a way, some important information is lost and there is

8 09 L 08 8-949271675121 still obvious deviation.

On the other hand, for largén), the effect of statistical
N . . noise will be much greater. A sample of *1Monte Carlo
;E;iur:tsthoggz((q))a;zsh;\'ggr'gt';ﬁ' \1/;;{:? ‘gfsil'dlzlgr;ebgigzgnbignevents is generated according to the Poissonian multiplicity
multiplicit d?stribution which has onl uré statistical fluc- distribution with(n)=6. The event numbeN,, the expan-
tuati(fns i/he obtained’F‘( )=1" meazs%hat the statistical sion coefficienta; , and the calculated result 6i(q) are

' )= listed in Table Il. It can be seen that tR€q) of this sample

fluctuations are filtered out. is totally covered by statistical noise.
So we develop Hwa’s method in order to apply it to real
B. Application to Monte Carlo samples experimental data.

of the Poissonian distribution

In a practical experiment, the access to an accurate value IV. VARIANT METHOD
of P,, would _require measurement of an infinite number of A. Maximum likelihood method
events. But in a real experiment, we can only measure a o . ) o .
finite number of events. So eaéh, is measured with a sta- Considering that the negative binomial distribution can fit
tistical error, which may dominate at large where the the experlmenta_l multlpI|C|ty dlstrlbutlon. well, we can
event numbeN,, is small (~1). The statistical error would Cchoose lesg; to fit the experimental data: i.e.,
be a noise to the calculation. In order to see the effect of the J
statistical noise, we apply ng’; method. to_Monte Carlo EnZE aijB(kj X)), (16)
samples of the Poissonian multiplicity distribution. The mul- j=0
tiplicities of events are randomly generated according to the
Poissonian distribution. Three samples are generated whicihere

include 16, 1¢°, and 16 Monte Carlo events, respectively x =x(1+A)

((n)=1). The results of(q) calculated by Hwa's method I U

for the three samples are shown in Fig. 1 with a dot-dashed ki=k(1+A))

line, dotted line, and dashed line, respectively. Fg)’s ! 7

deviated from 1 obviously and the deviations cannot be re- 1

duced only by increasing the event number. It is because the AJ:A( - §+ 3/

expansion(6) penetrates all the experimental poifts pre-

cisely. So large statistical noises are included in the expan- i—01 3 17
sion coefficienta; . Furthermore, in the calculation, the de- =85

terminant of the matrix composed by tR&(k; ,x;)’s of Eq. The fit is performed with N+1 points P,

(6) is almost zero, and so the matrix is ill conditioned and thE(pnan/Nev)_ Considering that the event numbbk, at
noise is multiplied greatly. A very larga; with alternating  |argen is very small, the fit should be performed by using
signs may appear and cause great instability for the result ghe maximum likelihood method. TF®'’s are chosen so that
F(0). Theay's of the 1G-event sample are listed in Table I. the following likelihood functionL reaches its maximum:

C. Effect of statistical noise Ne/! N
: SR L=—m 1] (Np™, (18)
A simple way to reduce the effect of statistical noise is by IT _oNp'a=o
cutting P,, of largen which has large noise. The dashed line ~ _
in Fig. 2 is the result of the previous 3@vent sample with whereN,=N/P,, N, being the total number of events.

N set to 6. The deviation dF(q) from 1 is smaller than that From Eg.(16), one can obtain
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TABLE Il. Results of a Monte Carlo sample (1@vents for the Poissonian distribution witfn)=6.

n N{D Np(MC) | a q F(a)
0 247.9 245 0 —9.71817995059087224687840° -5 2.7654¢ 10°
1 1487.3 1513 1 2.0813635705728971917830'° -4 —2.7087x 107
2 4461.8 4477 2  —2.10344753690024764997¢40'°¢ -3 1.901 10°
3 8923.5 8658 3 1.3328969277313204446820'7 -2 —6.8661x 107
4 13385.3 13439 4  —5.93498383291573867227040" -1 —1.4049
5 16062.3 16106 5 1.9720438391917844691580° 0 —2.3309
6 16062.3 16226 6 —5.06774234071899579378840'8 1 1.0000
7 13767.7 13798 7 1.029883587536565504429@"° 2 —0.3326
8 10325.8 10382 8 —1.677960750845623234219710° 3 0.1025
9 6883.8 6901 9 2.2082352763024706866285'° 4 —3.0294x 102
10 4130.3 4098 10 —2.35300161472470463713%30° 5 8.6394< 103
11 2252.9 2204 11 2.0253229219002603969920'° 6 —2.3826x 102
12 1126.4 1097 12 —1.39777485514072340623990° 7 6.357% 104
13 519.9 523 13 7.6301445832105411659120'8 8 —1.6412x1074
14 222.8 203 14 —3.22205638529660650653240° 9 4.100%10°°
15 89.1 95 15 1.0156393860442280531282'8 10 —9.9151x10°©
16 33.4 31 16 —2.25043034101688033898440
17 11.8 2 17 3.1279928138927774773%3D'
18 3.9 2 18 —2.05264263426692496453800%°
J C. Application to the P{? distribution
JZO a;=1. (19 We also calculatedr(q) for the distribution[17]

P?=(n+1)%% "z (20
It should Ibe fu%fllle:t |fn tthe Whotle lgr,octesiuof f:jndmg_ the wherez is a normalization factor. Unlike the Poissonian dis-
pro?erhviaf/egjo j1.'h Irst, Wi setala; s 1o i an basst|gn tribution, not only are there statistical fluctuations, but there
a steph=1/(2J). Then, we change ead) in turn by step o 51, dynamical fluctuations in tiRé?) distribution.
h to acquire the maximum likelihood. The change could be At first, we generate a sample of5lBlonte Carlo events,

?ositive/or nigative./lfa%hanﬁ]e i%n;ade folr_talr.pedan extrah the multiplicities of which are generated according to the
actor 1/(1+h) or 1/(1~h) should be multiplied to each p(2) yisyipytion. Then we calculate the multiplicity distribu-

g; (includinga;) in order to satisfy Eq(19). When the best tion P, for this sample and calcula, and E(q) by the

values ofé'j are obtained at step, we reduce the step and maximum likelihood method. The event numbiés and the

find better values foa; . The last step used in our calculation . : .
is 0.0001 ] P fitted valueN,, are listed in Table Ill. It can be seen from the

TABLE Ill. Results of a Monte Carlo sample (1@vents for

@ distributi
B. Application of the maximum likelihood method the Py distribution.

to a Monte Carlo sample of the Poissonian distribution

n NP Ny(MO) N, g F(q)
The maximum likelihood method is applied to the previ- s
ous 10-event Monte Carlo sample of the Poissonian distri-° 52016.2 52231 52206.9 1.0 7.776% 1015
bution with(n)=1. The results o’ﬁ(q) are shown in Fig. 2 1 27061.9 26955 27047.2 08 2171K 10"
. o ~ ' 2 12193.0 12137 12103.6 —0.6 1.542% 103
with a dotted line. It can be seen tiagg)~1. So the mea- 5 51795 5230 51246 —04  3.1475 101
surement errors are well constrained. 4 2130.3 2043 21072 —02  9111%K1¢°

Because the fit qf the maximum IiI_<eIihood method is per-g 8585 850 850.9 0.0 0.9978
formed toN+1 points P,, the maximum number of the ¢

L~ ) o 341.1 343 339.3 0.2 —8.5623x 10’
coefficienta; |§ N+1, i.e.,J<N. WhenJ=N, Ij[ WI|| come 7 134.2 132 134.1 10 1.0000
back to the original Hwa's method. Whér=0, it is equiva- g 523 51 527 12 5.196710"

lent to fitting P, with only one negative binomial distribu- ¢ 20.3 14

_ nia 20.6 2.0 0.7846
tion. Generally, the value of used for the fit is chosen 78 10 8.0 30 _18.959
according to the practical multiplicity distributioR,,. The ;4 30 5 31 4.0 4771
dotted line in Fig. 2 is the result of=2. The fitted value ,, 12 1 12 50 —0.8628¢10°
N, and the fitting coefficie@j are listed in Table I. Itcanbe 3 0.4 1 05 6.0 —1.9438<10°

seen that\, is consistent witiN, in their statistical errors.
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TABLE IV. A typical result of P, and En in one bin at

M =20.
n 0 1 2 3 4 5
NePn 2609 881 188 52 9 1
Nean 2611.39 868.62 207.03 4291 8.23 150
g
W
ment are described elsewhgds8—20.
A. Experimental results of factorial moments
of continuous order
In this paper, the following normalized pseudorapidity
5 [21] is adopted:
q Jo p(n")dy'
X(m)= ”’:‘;—’d’ (21
FIG. 3. F(q) obtained by Hwa’s original method fd?{? cal- fﬂminp(ﬂ )dn

culated by Eq(20) with~N=1O (solid line), N=15 (dashed ling
N =20 (dotted ling, andF(q) obtained by the maximum likelihood \where [ 7,ir, 7mad iS chosen[ —2,2], and X is uniformly
method for a Monte Carlo sample (16vent3 generated according  gistributed in[0,1]. The dynamical fluctuation of the multi-
to P distribution (solid circles. plicity distribution in decreasing the bin size is studied by
calculating the factorial moments of continuous order. At
table that the maximum likelihood method can well fit the one bin size, th& space is divided intd/ bins of equal size
distribution which has dynamical fluctuations. The results ofs and the calculation is done in each bin independently. At
F(q) are shown in Fig. 3 with solid circles. We have also first, the multiplicity distributionP, ., of bin m is calculated
applied the original Hwa's method to this Monte Carlo for the experimental data. Secors (K; m.X;j.m) is calcu-
sample and the results &f(q) are listed in Table IIl. It can lated according to Eq(7) and ?a‘j’m is determined by the
be seen that thE(q) is totally covered by statistical noise. It maximum likelihood method according to E¢$8) and(16)
might suggest that the application of the original Hwa's(3=4 for M<4 andJ=2 for M>4). Then,'fm(q) is calcu-
method might require that the distributiéh, be analytically  |ated for binm according to Eq(11). At last, an average is

calculated out, e.g., by EQZO) made over each bin:
The application of Hwa’s method tB,, analytically cal-
culated by Eq.20) is done withN= 10, 15, and 20. The 1 MoT (@
results ofF(qg) are shown in Fig. 3 with a solid line, dashed E(q,5)= > wﬂ (22)
line, and dotted line, respectively. It can be seen that the Mi=1 [fr(1)]9

results of Hwa's method for analytic&(®) are consistent

with the results of the maximum likelihood method for a Therefore, the factorial momeft(q, §) of continuous order
Monte Carlo sample in the rangg>0, while in the range q at bin sized is obtained. Some information about the qual-
q<0, there are deviations and the deviation is much greatety of the fits can be found in Table IV. The results of
for large N. This might be because the original Hwa's F(q, ) are shown in Fig. 4solid circle. To see the effect of
method requires expansioi®) to penetrate all theN+1  parameter number, we perform the calculation in the same
points P{?) analytically calculated out by Eq20). But ex-  way but with a smaller (J=2 for M<4 and J=0 for
pansion(6) is not the trueP'? distribution. And the differ- M>4). The results are shown in Fig. 4 as open circles. It
ence between them may be amplified due to the ill-can be seen that the two results are consistent within their
conditioned character of the matrix composed by thestatistical errors foM >4. It means that the multiplicity dis-
PNB(kj ,Xj) of Eq.(6). The amplitude would be much greater tribution P, of this experiment can be well described by a
for largerN. So a very larges; with alternating signs may negative binomial distribution. _
appear and cause the deviation d&¥(q). In fact, In order to see the statistical contribution kdq, 5), we
P{3~10"*, and is very small. S&(q) of N=10 may reveal generate a sample of Monte Carlo events. Compared to the
the main character dapff) better than that oN=15, 20 as a experimental data, the sample of Monte Carlo events has the
result of which the amplitude is decreased for smaller same multiplicity distribution irX space but no correlations.
For each evenit of n; particles, we distribute these particles
randomly throughX space in a uniform distribution. A total
of 100Ne, Monte Carlo events is generated. The results of
Using the LEBC films offered by the CERN NA27 Col- F(d,9) for these Monte Carlo events are also shown in Fig.
laboration, we measured the pseudorapidity distribution oft with dashed lines. It can be seen that if there is only a
charged particles produced in 400 GeMsp collisions. A statistical fluctuation, the momerfgq, §) of continuous or-
sample of 3740 events is obtained. Details of the measuralers remain constant whehis decreased. Hence the inter-

V. EXPERIMENTAL RESULTS
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1.1

105} .

D(aQ)

InF(q,5)

095 |

0.9
2

FIG. 5. Multifractal dimensiorD(q) versusq. The dashed line
represents the results for Monte Carlo events which have no corre-
lation in X space. The dotted line represents the results for Monte
Carlo events generated according to thenodel.

INF(q,8)

divided into\ sub-bins, and the probability of finding a par-
ticle in one previous bin is multiplied by factorsW(aj)/)\
(1=aj=N\) so as to obtain the probability of finding a par-
ticle in the A sub-bins, whereW(aj)’s are random variables
generated for thex sub-bins. They fulfill the normalized
equationEﬁlj:lWaj =1. So, at step, X space is divided into

\” bins. We denote each bin with a set of parameters
{aq, ...,a,}. The probability that one particle is distributed
in bin{ay,...,a,}is

InF(q,5)

1
p{a'l, P ,CYV}:FW(QV)W(&V_:L). . .W(az)W(al) .
(23

The probability is the same for the particles of one event.

So particle density fluctuates. In the Monte Carlo simulation,

. N we chosen=2, v=16,W;=1+ar, andW,=1—ar, where

05005 1 15 2 25 3 35 4 a=0.275, and is a random number uniformly distributed in
In(1/8) range[ —1,1]. A sample of 108l,, Monte Carlo events is

_ generated. The results 6fq) for this sample are shown in

FIG. 4. InF(qg,0) versus In(16). The solid circles represent the Fig. 4 with dotted lines. They give out approximately the

experimental results obtained by the maximum likelihood methodsame slopes as the experimental results do at sénalll
with J=4 for M<4 andJ=2 for M>4. The solid lines are the

results of fitting theF(q, 6)'s (for M>4) with Eq.(24). The open C. Experimental study for multifractal dimensions
circles represent the experimental results obtained by the maximum ] ] )
likelihood method withJ=2 for M<4 andJ=0 for M>4. The When 6—0, we obtain the intermittency exponeg#(q)

dashed lines show results for the Monte Carlo events which have nby fitting E(q, 8) with the formula(for M >4)
correlation inX space. The dotted lines show results for the Monte —
Carlo events which are generated according todthmodel. F(q,8)xs ¢, (24)

From ¢(gq) we can calculate the multifractal spectrum

mittency exponentg(q) (see beloware equal to zero. This F(a) and multifractal dimensio(q) using the relations

suggests that the statistical fluctuations are filtered out fo

experimental data. (q)=q—1—¢(q)
B. Simulation with the random cascadea model a=dr(q)/dq,
To describe the intermittent behavior, we made a Monte f(a)=qa—7(q),
Carlo simulation with the random cascagénodel[1,22]. In
the simulation, the multiplicities are generated according to D(q)=7(q)/(q—1). (25)
the experimental multiplicity distribution. Having generated
the multiplicity n for one Monte Carlo event) particles are D(q) versusq is shown in Fig. 5. It can be seen that

distributed in theX space through a cascading process acb(0)=1 for the experimental data. Af=0, it can be ob-
cording to the random cascadimgmodel. In one step of the tained from Eqs(4), (5), and(24) that ¢(0) should be zero,
cascading process, each bin obtained in the previous step éven though there is dynamic fluctuation, and consequently,
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TABLE V. Muliifractal dimensionD obtained by different 1.2
methods.
q D(q)(F(a)) Do(Fo) DY(Gy)
0 1 1+
1 0.9868-0.0004
2 0.9764+0.0060 0.9750.002 0.961*0.006 @ &
3 0.9654+0.0076 0.9640.002 0.956:0.006 -
4 0.9535-0.0087 0.953 0.004 0.966:0.007 o8 |
5 0.9409-0.0094 0.946:0.010 0.9470.010 )
D(0) should be 1. The results of the Monte Carlo samples
with particles randomly distributed iK space are shown in 06 ' '
Fig. 5 with a dashed line. It can be seen thgt)) =1 at each 06 08 1 12
g for the MC data. It can be seen from E®5) that, if there a

is no dynamic fluctuatiof¢(q)=0], D(q) should be 1 for
all g. The dotted line in Fig. 5 is the Monte Carlo results of  FIG. 6. Multifractal spectrunf(a). The open circles represent
the random cascade model. It approximately reproduces the experimental results. The solid circle represents the results for
the behavior oD(q) for experimental data. The decrease of Monte Carlo events which have no correlation Xnspace. The
D(q) with increasingq for experimental data suggests that curved.line represents the results for Monte Carlo events generated
there is multifractal behavior in multiparticle productions. ~according to thex model.

Several values ob(q) at integerq are listed in Table V
in comparison with that obtained by the ordinary scaled facdom cascading: model the multiplicities of which are gen-
torial momentF, [19] and that obtained by the modifie® erated according to the Poissonian distribution, the obtained
moment[14]. It can be seen from Table V that the results of Spectrum having a parabolic shafet shown.
D(q) of the present method are well consistent with that of
the ordinary method of scaled factorial moments. So the VI. CONCLUSION
present method is a successful one in filtering out statistical

fluctuations as the scaled factorial moments do. The resultgor!f[‘insl’jgzgni%’e;’vg hl?;/i?] Sﬁ\ljlglr?ti tggrlﬁcgsgﬁlsrg%rgeg)zs e?if-
of D(q) are also consistent with that of the modified y 9 b

G-moment method, the change 8X(q) versusq of the mental data. A maximum likelihood method is proposed in

present method being smoother than that of the modifie&rder to apply the facterial moments of continqous order to
G-moment method. It means that the present method hareal data. And the maximum likelihood method is used in the

; sﬁudy of dynamical fluctuations in decreasing intervals of
successfully extended the ordgrto the continuous range. normalized pseudorapidity space for 400 Ge\p colli

sions. Monte Carlo simulations indicate that the statistical

fluctuations are filtered out. The results of multifractal di-
The spectrunf(«) is shown in Fig. 6open circles Itis  mensionsD(q) are consistent with the ones obtained by the

concave downward with a maximum atq=0, ordinary scaled factorial moment. So the present method is a

f(«(0))=D(0)=1. The straight linef(«) =« is tangent to  successful one in extending to a continuous range and

the f(a) curve atg=1. The solid point represents the resultsfiltering out statistical fluctuations. The observed hierarchy

of the Monte Carlo sample with particles randomly distrib- D(0)>D(1)>D(2) provides evidence of multifractal be-

uted inX space, which essentially condense to a single pointhavior for multiparticle production. The multifractal spec-
The deviation of the spectrum from parabolic shape mightrum f(a) can be well reproduced by the random cascade

be related to the NBD form multiplicity distribution. The a model.

solid curve in Fig. 6 is the Monte Carlo results of the random

cascad_ea model the r_nultlpllcmes _of' vyhlch are generated ACKNOWLEDGMENTS

according to the experimental multiplicity distribution. It can
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D. Experimental results of multifractal spectrum
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