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We compute theas
2b0 part of the two-loop QCD corrections to the charged lepton spectrum inb→cl n̄ l

decays and find them to be about 50% of the first order corrections at all lepton energies, except those close to
the end point. Including these corrections we extract the central valuesL̄50.33 GeV andl1520.17 GeV2

for the HQET matrix elements and use them to determine theMS b and c quark masses, anduVcbu.
@S0556-2821~97!00603-6#

PACS number~s!: 12.39.Hg, 12.38.Bx, 13.20.He

I. INTRODUCTION

In the last few years numerous theoretical and experimen-
tal studies have focused on the electron spectrum in semilep-
tonic inclusiveB→Xcl n̄ l decays. The electron spectrum
from free quark decays receives both perturbative and non-
perturbative corrections. Knowledge of the shape of the
spectrum can provide insights into nonperturbative effects in
B meson decays, and thereby also give some information on
the weak mixing angleuVcbu. In the framework of heavy
quark effective theory~HQET! it is possible to show that the
quark level decay rate is the first term in a power series
expansion in the small parameterLQCD/mb @1#. For infi-
nitely heavy quarks the free quark model is an exact descrip-
tion of heavy meson physics. At finite quark masses the first
few terms in the heavy quark expansion have to be taken into
account. Expressions for these nonperturbative corrections to
the lepton spectrum are known to order (LQCD/mb)

3 @2–5#
and theO(as) perturbative corrections to the free quark de-
cay are given in@6#.

The dominant remaining uncertainties are the two-loop
corrections to the quark level decay rate and the perturbative
corrections to the coefficients of the HQET matrix elements
in the operator product expansion. Here, we examine the
former. While a full two-loop calculation of the electron
spectrum is a rather daunting task, it is possible to calculate
the piece of the two-loop correction that is proportional to
b051122/3nf with relative ease by performing the one-
loop QCD calculation with a massive gluon. Theas

2b0 parts
of the two-loop correction may then be obtained from a dis-
persion integral over the gluon mass@7#. If there are no glu-
ons in the tree-level graph, theas

2b0 part of the two-loop
contribution is believed to dominate the fullas

2 result be-
causeb0 is rather large. Several examples supporting this
belief are listed in@8#, while one counterexample can be
found in @9#.

A recent calculation@8# of theas
2b0 correction to the total

inclusive rate forB→Xcl n̄ l decays showed that theas
2b0

parts of the two-loop correction are approximately half as big
as the one-loop contribution, resulting in a rather low
Brodsky-Lepage-Mackenzie ~BLM ! scale @10# of
mBLM50.13mb . For the electron spectrum we find that this
part of the second order correction also amounts to about
50% of the orderas contribution, at all electron energies
except those close to the end point. Close to the end point the

corrections are roughly equal in magnitude.
The HQET matrix elementsl1 and L̄ can be extracted

from the electron spectrum inB→Xcl n̄ l decays@11#. Even
though this method of obtaining HQET matrix elements was
found to be rather insensitive to the first order perturbative
corrections, it is useful to extractl1 ,L̄ including theas

2b0

corrections. Then, these matrix elements can be used to re-
late the pole quark mass to the modified minimal subtraction
scheme (MS) masses at orderas

2b0. Similarly, one can in-
clude theas

2b0 parts of the two-loop contribution in the
theoretical prediction for the total rate, which is needed for
the determination ofuVcbu. Since theas

2b0 corrections are
rather large, the resulting changes in the quark masses and
uVcbu are not negligible.

In Secs. II and III we give analytic expressions for the
contributions from virtual and real gluon radiation. The last
phase-space integral in the virtual correction and the last two
integrals in the bremsstrahlung are done numerically. Read-
ers not interested in calculational details are advised to skip
these sections. In Sec. IV we combine the results from the
previous two sections to obtain theas

2b0 corrections to the
electron spectrum, and discuss the implications for the ex-
traction ofL̄,l1, theMS quark masses, anduVcbu. In Appen-
dix B we give an interpolating polynomial which reproduces
the two-loop correction calculated here.

II. VIRTUAL CORRECTIONS

The corrections from massive virtual gluons can be cal-
culated in complete analogy to the usual one-loop QCD cor-
rections. The ultraviolet divergence in the vertex correction
cancels when combined with the quark wave function renor-
malizations. There is no infrared divergence since we do the
calculation with a massive gluon. The virtual one-loop cor-
rection to the differential rate can be written as

dGvirt
~1!~ m̂ !

dy
5as

~V!
uVcbu2GF

2mb
5

48p4 E dq̂2

3$2~y2q̂2!~ q̂2112r 22y!~a11awr!

22rq̂2a21@ q̂2~y21!1y~12r 2!2y2#a3%,

~1!
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where m̂5m/mb is the rescaled gluon mass, andy52Ee /
mb , r5mc /mb , and q̂

25q2/mb
2 are the rescaled electron

energy, charm mass, and momentum transfer, respectively.
The limits for the integration overq̂2 are

0<q̂2<
y~12y2r 2!

12y
, 0<y<12r 2. ~2!

The functionsawr(q̂
2) andai(q̂

2), i51,2,3 are the contri-
butions from the wave function renormalization and the ver-
tex correction, respectively. They can be expressed in terms
of the scalar two- and three-point functionsB0 andC0 @12#,
and the derivativeB085]B0(a,b,c)/]a. Explicit expressions
for these functions are given in Appendix A. Using the stan-
dard decomposition for the vector and tensor loop integrals
@12#, we obtain

a152214C0012~C111C11r 2C221r 2C2!

12~12q̂21r 2!~C121C01C11C2!,

a252r ~C11C2!,

a3524~C111C121C1!24r 2~C121C221C2!, ~3!

awr5
1

2 F22B0~1,m̂
2,1!2B0~r

2,m̂2,r 2!1~12m̂2!

3@B0~1,m̂
2,1!2B0~0,m̂

2,1!#1
~r 22m̂2!

r 2

3@B0~r
2,m̂2,r 2!2B0~0,m̂

2,r 2!#

12~21m̂2!B08~1,m̂
2,1!12~2r 21m̂2!B08~r

2,m̂2,r 2!G .
~4!

Defining f 1511r 22q̂2 and f 25( f 1
224r 2), the coefficient

functions take the form

C005
1

4 f 2
@ f 21m̂2~ f 122!B0~1,1,m̂

2!1m̂2~ f 122r 2!

3B0~r
2,r 2,m̂2!1~ f 212q̂2m̂2!B0~ q̂

2,1,r 2!

12m̂2~ f 21q̂2m̂2!C0~1,q̂
2,r 2,m̂2,1,r 2!#, ~5!

C115
r 2

f 2
1

~ f 122r 2!~12r 2!

2q̂2f 2
B0~0,1,r

2!1
f 1~m̂221!

2 f 2

3B0~0,1,m̂
2!1

3r 2m̂2~ f 122r 2!

f 2
2 B0~r

2,r 2,m̂2!

1
2q̂2m̂2~ f 216q̂2r 2!2 f 2~ f 212q̂2r 2!

2q̂2f 2
2

B0~ q̂
2,1,r 2!

1
m̂2@6r 2~ f 122!2 f 2~ f 112!#

2 f 2
2 B0~1,1,m̂

2!

1
2m̂2r 2f 21m̂4~ f 216q̂2r 2!

f 2
2 C0~1,q̂

2,r 2,m̂2,1,r 2!,

~6!

C225
1

f 2
1

~12r 2!~22 f 1!

2q̂2f 2
B0~0,1,r

2!

1
2q̂2m̂2~ f 216q̂2!2 f 2~ f 212q̂2!

2q̂2f 2
2

3B0~ q̂
2,1,r 2!1

~m̂22r 2! f 1
2r 2f 2

B0~0,r
2,m̂2!

1
3m̂2~ f 122!

f 2
2 B0~1,1,m̂

2!

1
m̂2@6r 2~ f 122r 2!2 f 2~ f 112r 2!#

2r 2f 2
2 B0~r

2,r 2,m̂2!

1
m̂2@2 f 21m̂2~ f 216q̂2!#

f 2
2 C0~1,q̂

2,r 2,m̂2,1,r 2!,

~7!

C125
2 f 1
2 f 2

1
~12r 2!~2r 22 f 1!

2q̂2f 2
B0~0,1,r

2!1
r 22m̂2

f 2

3B0~0,r
2,m̂2!1

m̂2@6~ f 122r 2!2 f 2#

2 f 2
2 B0~1,1,m̂

2!

1
m̂2@6r 2~ f 122!2 f 2#

2 f 2
2 B0~r

2,r 2,m̂2!

1
f 2~ f 21q̂2f 1!22m̂2q̂2~3q̂2f 11 f 2!

2q̂2f 2
2

B0~ q̂
2,1,r 2!

1
m̂2@2 f 1f 22m̂2~3q̂2f 11 f 2#

f 2
2 C0~1,q̂

2,r 2,m̂2,1,r 2!,

~8!

C15
1

f 2
@ f 1B0~1,1,m̂

2!1~2r 22 f 1!B0~ q̂
2,1,r 2!22r 2

3B0~r
2,r 2,m̂2!1m̂2~2r 22 f 1!C0~1,q̂

2,r 2,m̂2,1,r 2!#,
~9!

C25
1

f 2
@22B0~1,1,m̂

2!1~22 f 1!B0~ q̂
2,1,r 2!

1 f 1B0~r
2,r 2,m̂2!1m̂2~22 f 1!C0~1,q̂

2,r 2,m̂2,1,r 2!#.
~10!

The infinite parts of the regularized two-point functions can
be shown to cancel in Eq.~1!. In the limit m̂→0, the vertex
correction diverges logarithmically. This divergence will be
canceled by corresponding divergences in the bremsstrah-
lung contributions discussed in the next section.

III. BREMSSTRAHLUNG

The bremsstrahlung correction is found in the usual man-
ner, by inserting a real gluon on thec andb quark lines. The
calculation here is complicated by the four-body phase space
with two massive final states. We follow the standard proce-
dure of decomposing the four-body phase space into a two-
and a three-body phase space by introducing the four-
momentumP5pc1pg . In the rest frame of theb quark this
decomposition reads

dR45dP2dR3~mb ;pe ,p n̄ ,P!dR2~P;pc ,pg!. ~11!
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TheO(as) bremsstrahlung correction to the differential rate
is given in terms of dimensionless variables (P̂05P0/mb ,
P̂25P2/mb

2) by

dGbrems
~1! ~ m̂ !

dy
5as

~V!
GF
2 uVcbu2mb

5

192p4 E dP̂2dP̂0~ P̂022 P̂2!25/2

3@2b1~122P̂01 P̂2!1b2~222P̂02y!y

1b3~12y2 P̂2!~2P̂01y2 P̂221!

1b4~12y2 P̂2!y1b5~2P̂
01y22!

3~122P̂02y1 P̂2!#. ~12!

For convenience, the above rate has been written in terms of
the coefficientsbi :

b15~ P̂022 P̂2!@ P̂2~c22c1!1 P̂02c11c32 P̂0~c41c5!#,

~13!

b25~ P̂022 P̂2!P̂2c113P̂4c21~ P̂212P̂02!

3c323P̂0P̂2~c41c5!, ~14!

b35~ P̂022 P̂2!c11~ P̂212P̂0!c213c323P̂0~c41c5!,

~15!

b452 P̂0~ P̂022 P̂2!c123P̂0P̂2c223P̂0c3

1~ P̂0212P̂2!c413P̂02c5 , ~16!

b552 P̂0~ P̂022 P̂2!c123P̂0P̂2c223P̂0c3

13P̂02c41~ P̂0212P̂2!c5 , ~17!

which are linear combinations of

c15
4~v1

2 2v2
2 !

h
1
2@~h1m̂222P̂0!21~m̂222P̂0!212m̂2~11r 2!#

h
lnS 2v12m̂2

2v22m̂2D 1
4~21m̂2!~h22P̂0!~v12v2!

~2v12m̂2!~2v22m̂2!

2
8@~z1m̂2!~ P̂02h!1zP̂0#~v12v2!

h2
, ~18!

c25
2~v1

2 2v2
2 !~22h!

h
2

@hm̂2~3m̂224P̂0!14m̂2~2P̂021!216P̂02#

h
lnS 2v12m̂2

2v22m̂2D 1
2~m̂424!~2P̂02m̂2!~v12v2!

~2v12m̂2!~2v22m̂2!

2
4@h2~m̂22 P̂0!12P̂0~m̂212P̂2!#~v12v2!

h2
, ~19!

c35
$~ P̂21r 2!@h212~m̂222P̂0!~h22P̂0!#2hm̂414r 2P̂2m̂2%

h
lnS 2v12m̂2

2v22m̂2D
1
2~21m̂2!~m̂22r 22 P̂2!~2P̂02m̂22h!~v12v2!

~2v12m̂2!~2v22m̂2!
2
4@~ P̂21r 2!~hP̂02hz1m̂2P̂0!14r 2P̂2P̂0#~v12v2!

h2
, ~20!

c45
4~ P̂02 P̂2!~v1

2 2v2
2 !

h
1
2~21m̂2!~2P̂02m̂2!~m̂222P̂01h!~v12v2!

~2v12m̂2!~2v22m̂2!

2
2@4P̂02~2P̂21m̂2!1~m̂22r 2!h~2P̂21h24P̂0!1hP̂2~ P̂21r 228P̂0!#~v12v2!

h2

2
2

h
@2~m̂22 P̂0!~hm̂222P̂0h14P̂02!1h2~12 P̂01m̂2!22m̂2~r 21r 2P̂01 P̂0!1m̂4~11r 222P̂0!# lnS 2v12m̂2

2v22m̂2D ,
~21!

c55
2~m̂424!~ P̂21r 22m̂2!~v12v2!

~2v12m̂2!~2v22m̂2!
2
2@m̂2h21~ P̂21r 2!~2m̂212h2h2!18r 2P̂2#~v12v2!

h2

2
2@m̂4h2~ P̂21r 2!~m̂2h14P̂0!12P̂2m̂2#

h
lnS 2v12m̂2

2v22m̂2D . ~22!

In the expressions for theci we have puth5 P̂22r 2 and
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v65
~ P̂21m̂22r 2!P̂06AP̂022 P̂2A~ P̂21m̂22r 2!224m̂2P̂2

2P̂2
. ~23!

The integrals in Eq.~12! are done numerically between the
kinematic limits

~12y!21 P̂2

2~12y!
< P̂0<

11 P̂2

2
, ~24!

~m̂1r !2< P̂2<12y. ~25!

To improve the numerical stability for smallm̂2 we found it
useful to do theP̂0 integral with the variable ln(P̂02r2). The
remaining limits for this four-body decay are

0<m̂<A12y2r , 0<y<12r 2. ~26!

IV. THE as
2b0 CORRECTION

Combining the corrections from virtual and real gluon
radiation, Eqs.~1! and ~12!, we obtain

dG~1!~ m̂ !

dy
5
dGvirt

~1!~ m̂ !

dy
1
dGbrems

~1! ~ m̂ !

dy
Q~A12y2r2m̂ !.

~27!

In the m̂→0 limit, Eq. ~27! yields the one-loop correction to
the electron spectrum. We have checked that our expression
reproduces the result in@6# in this limit. Theas

2b0 part of the
two-loop correction is related to the one-loop expression cal-
culated with a massive gluon by@7#

dG~2!

dy
52

as
~V!b0

4p E
0

`dm̂2

m̂2 S dG~1!~ m̂ !

dy
2

1

11m̂2

dG~1!~0!

dy D .
~28!

Note thatas
(V) defined in theV scheme of BLM@10#, is

related to the more familiarās , defined in theMS scheme by

as
~V!5ās1

5

3

ās
2

4p
b01•••. ~29!

as is evaluated atmb unless stated otherwise. In theMS
scheme theās

2b0 part of the two-loop correction reads

dG~2!

dy
5
5

3

āsb0

4p

dG~1!~0!

dy
2

āsb0

4p E
0

`dm̂2

m̂2

3S dG~1!~ m̂ !

dy
2

1

11m̂2

dG~1!~0!

dy D . ~30!

The dispersion integral has to be done with some care. We
found that using ln(m̂2) instead ofm̂2 as the integration vari-
able simplifies the numerical evaluation considerably.

In Fig. 1 we plot the ās
2b0 part of the two-loop

correction1 and for comparison the one-loop correction to the
electron spectrum, usingr50.29,ās50.2,nf53, and divid-
ing byG05GF

2 uVcbu2mb
5/192p3. Except for electron energies

close to the end point, theas
2b0 corrections are about half as

big as the first order corrections. The perturbation series ap-
pears to be controlled but the higher order corrections clearly
are not negligible. Integrating over the electron energy we
reproduce the result for the correction to the total rate given
in Ref. @8#.

In @11# the HQET matrix elementsL̄,l1 were extracted
from the lepton spectrum using the experimentally accessible
observables

R15
*1.5 GeVdEl El dG/dEl

*1.5 GeVdEl dG/dEl
, R25

*1.7 GeVdEl dG/dEl
*1.5 GeVdEl dG/dEl

.

~31!

It is straightforward to calculate theās
2b0 corrections to

these quantities. In the spirit of HQET, we use the spin-
averaged meson massesm̄B55.314 GeV, and m̄D5
1.975 GeV instead of quark masses. Keeping only two-loop
corrections that are proportional tob0, and neglecting terms
of order ās

2b0LQCD/m̄B , we find

1In Appendix B we give a polynomial fit to our results that repro-
duces the numerical results to better than 1% for mass ratios in the
range 0.29<r<0.37.

FIG. 1. Perturbative QCD corrections to the lepton spectrum.
The differential rates are given in units ofG0, with r50.29,
ās50.2, andnf53.
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R151.805920.035
ās

p
20.082

ās
2b0

p2 1•••, ~32!

R250.658120.039
ās

p
20.098

ās
2b0

p2 1•••,

where the ellipses denote the other contributions including
nonperturbative corrections discussed in@5,11#. The BLM
scales for these quantities aremBLM(R1)50.01m̄B , and
mBLM(R2)50.007m̄B , reflecting the fact that the second or-
der corrections are larger than the first order. This is a result
of the almost complete cancellation of the first order pertur-
bative corrections from the denominators and numerators in
R1,2. In Eq. ~32! the BLM scales for the numerators and
denominators are separately comparable to the BLM scale
for the total ratemBLM'0.1m̄B . Therefore, the very low
BLM scales ofR1,2 do not necessarily indicate badly be-
haved perturbative series.

In order to demonstrate the impact of theās
2b0 correc-

tions on the extraction ofL̄,l1, we repeat the analysis of
@11#, neglecting nonperturbative corrections of order
(LQCD/mb)

3 which may be substantial@5#. Because of the
higher order nonperturbative corrections, large theoretical
uncertainties have to be assigned to the extracted values of
L̄,l1. We find that the central values are moved from
L̄50.3960.11 GeV, l1520.1960.10 GeV2 to L̄50.33
GeV, l1520.17 GeV2. The shift in the values of the
HQET matrix elements lies well within the 1s statistical
error of the previously extracted values. However, using the
values of the HQET matrix elements extracted at a given
order inas to predict physical observables at the same order
in as , guarantees that the renormalon ambiguity inL̄ and
l1 will cancel @13,14# if the expansion is continued to suffi-
ciently high orders inas . Thus, including theās

2b0 parts in
the determination ofL̄,l1 allows one to calculate the MS̄
quark masses consistently at orderās

2b0. To second order in
LQCD/mq and to orderās

2b0, we have

m̄q~mq!5S m̄meson2L̄1
l1

2mq
1••• D

3S 12
4ās~mq!

3p
21.56

ās
2~mq!b0

p2 1••• D ,
~33!

wheremq is the b or c quark pole mass andm̄meson is the
corresponding spin-averaged meson mass. With
ās(mb)50.22, ās(mc)50.39 this yields m̄b(mb)5
4.16 GeV, m̄c(mc)50.99 GeV for theMS quark masses,
albeit with large theoretical uncertainties due to the effect of
the higher order nonperturbative corrections on the extrac-
tion of L̄,l1 @5#. The value ofm̄b(mb) is in good agreement
with lattice calculations m̄b(mb)54.1760.06 GeV and
m̄b(mb)54.060.01 GeV @15#. The weak mixing angle
uVcbu can be determined by comparing the theoretical predic-
tion for the total rate with experimental measurements. In-
cluding all corrections discussed in@11# we find, at order
as
2b0,

uVcbu50.043SB~B→Xcl n̄ l !

0.105

1.55 ps

tB
D 1/2. ~34!

V. CONCLUSIONS

We have calculated theO(as
2b0) corrections to the elec-

tron spectrum inb→cl n̄ l decays which turn out to be
rather large, about 50% of the one-loop corrections. These
corrections can be included in the extraction of the HQET
matrix elements L̄,l1. We obtain L̄50.33 GeV and
l1520.17 GeV2, both somewhat lower than the values ex-
tracted at O(as). Using these values and including
O(as

2b0) corrections we obtain m̄b(mb)54.16 GeV,
m̄c(mc)50.99 GeV for the MS quark masses and
uVcbu50.043@B(B→Xcl n̄ l )/0.10531.55 ps/tB#1/2. These
results have large theoretical uncertainties due to the effect
of nonperturbative corrections of order (LQCD/mb)

3 on the
extraction ofL̄,l1.
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APPENDIX A: SCALAR TWO- AND THREE-POINT
FUNCTIONS

Here, we list expressions for the scalar functionsB0 and
C0 @12# needed for the calculation in Sec. II. With the cut for
logarithms along the negative real axis, we have

B0~a,b,c!5
2

e
2 lnS m2

4pL2e2gD2E
0

1

dxlnS ax22x~a1b2c!1b

m2 D ~A1!

5
2

e
2 lnS m2

4pL2e2gD122 lnS c

m2D1x1lnS x121

x1
D1x2lnS x221

x2
D , ~A2!

where

x65
a1b2c6A~a1b2c!224ab

2a
; ~A3!
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C0~1,q̂
2,r 2,m̂2,1,r 2!5

1

11r 22q̂222ar 2
H Li2S z1

z12z4
D2Li2S z121

z12z4
D1Li2S z1

z12z5
D2Li2S z121

z12z5
D2Li2S z2

z22z6
D

1Li2S z221

z22z6
D2Li2S z2

z22z7
D1Li2S z221

z22z7
D1Li2S z3

z32z8
D2Li2S z321

z32z8
D

1Li2S z3
z32z9

D2Li2S z321

z32z9
D J , ~A4!

where

a5
~ q̂2212r 2!1A~ q̂2212r 2!224r 2

22r 2
,

z05
m̂2222a~ q̂2212r 21m̂2!

11r 22q̂222r 2a
, ~A5!

z15z01a, z25
z0

~12a!
, z352

z0
a
,

z4,55
m̂26Am̂424m̂2r 2

2r 2
, ~A6!

z6,75
q̂2112r 26A~ q̂2112r 2!224q̂21 i e

2q̂2
,

z8,95
22m̂26A~22m̂2!224

2
. ~A7!

The dilogarithms here are defined as

Li2~z!52E
0

1

dt
ln~12zt!

t
. ~A8!

APPENDIX B: INTERPOLATING FUNCTION

In this appendix we give an interpolation scheme that
makes it easy to reproduce ourās

2b0 corrections to the lep-
ton spectrum forb→cl n̄ l decays. The interpolation is done
as a function ofy and r with all other parameters left ex-
plicit:

dG

dy
5G0S f ~0!~y,r !1

ās

p
f ~1!~y,r !1

ās
2b0

p2 f ~2!~y,r ! D .
~B1!

The well-known tree-level result is given by the exact equa-
tion

f ~0!~y,r !5
2y2~y1r 221!2~2323r 215y1r 2y22y2!

~y21!3
,

~B2!

while the first order functionf (1) can be obtained from Ref.
@6#. The interpolating functionf (2) is found by fitting Cheby-
shev polynomialsTn to the energy dependence, and qua-
dratic polynomials to the mass ratior . To improve the accu-
racy of the fit near the end point of the lepton spectrum the
expansion is given in terms of the variable

y85
ln@~12y!2/r 2#

ln~r 2!
. ~B3!

Our fit is accurate to better than 1% for the region

0.09<y<0.99~12r 2!, 0.29<r<0.37. ~B4!

The second order function is given by

f ~2!~y,r !5 (
n51

12 S (
m50

2

An,mr
mDTn21~y8!, ~B5!

whereTn(y8)5cos(n arccosy8). The 36 coefficientsAi , j are
given in Table I. Both the coefficients as well asFORTRAN
code evaluatingdG (2)/dy anddG (1)/dy from the expressions
in Secs. II–IV are available from the authors.2

2For information use the following electronic address:
iain@theory.caltech.edu

TABLE I. Coefficients An,m for the interpolation function
f (2)(y,r ) given in Appendix B.

An,m m50 1 2

n51 24.9 19.3 220.4
2 22.72 12.4 214.7
3 3.55 212.4 11.5
4 2.21 210.1 11.9
5 1.97 29.59 11.9
6 1.11 25.08 6.06
7 20.159 0.448 20.274
8 20.336 1.44 21.62
9 20.319 1.47 21.76
10 20.174 0.818 20.994
11 20.0881 0.417 20.509
12 20.0507 0.247 20.309
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