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Order a§BO correction to the charged lepton spectrum inb—c/ v, decays

Martin Gremm and lain Stewart
California Institute of Technology, Pasadena, California 91125
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We compute thex23, part of the two-loop QCD corrections to the charged lepton spectrum-ic/ v,
decays and find them to be about 50% of the first order corrections at all lepton energies, except those close to
the end point. Including these corrections we extract the central valae&33 GeV andch;=—0.17 GeVf
for the HQET matrix elements and use them to determineMi® b and ¢ quark masses, anfV/g|.
[S0556-282(97)00603-9

PACS numbdss): 12.39.Hg, 12.38.Bx, 13.20.He

I. INTRODUCTION corrections are roughly equal in magnitude.
The HQET matrix elementd,; and A can be extracted

In the last few years numerous theoretical and experimenfrom the electron spectrum B— X,/ v, decayq11]. Even
tal studies have focused on the electron spectrum in semilephough this method of obtaining HQET matrix elements was
tonic inclusive B— X/ v, decays. The electron spectrum found to be rather insensitive to the first order perturbative
from free quark decays receives both perturbative and norcorrections, it is useful to extrast;,A including thea?g,
perturbative corrections. Knowledge of the shape of thegrrections. Then, these matrix elements can be used to re-
spectrum can provide insights into nonperturbative effects ifite the pole quark mass to the modified minimal subtraction
B meson degays, and thereby also give some information og.peme 1S) masses at order?s,. Similarly, one can in-
the weak mixing angleVcy|. In the framework of heavy ,qq the 2B, parts of the two-loop contribution in the
quark effective theoryHQET) it is possible to show that the o retical prediction for the total rate, which is needed for

qguark level decay rate is the first term in a power Serie§, o determination 0fVe|. Since theaZB, corrections are

expansion in the small parametérocp/m; [1]. For infi- . rather large, the resulting changes in the guark masses and
nitely heavy quarks the free quark model is an exact descrips

V.| are not negligible
. . .. . Cb .
tion of hea_vy meson physics. At f|n|t§ quark masses the f_|rs In Secs. Il and Ill we give analytic expressions for the
few terms in the heavy quark expansion have to be takenintg . .~ . o

. ; ; ontributions from virtual and real gluon radiation. The last
account. Expressions for these nonperturbative corrections . . . .

3 phase-space integral in the virtual correction and the last two

the lepton spectrum are known to ordetdcp/my)° [2—5]

: . integrals in the bremsstrahlung are done numerically. Read-
and theO(as) perturbatwe corrections to the free quark de'ers not interested in calculational details are advised to skip
cay are given iri6].

these sections. In Sec. IV we combine the results from the

The dominant remaining uncertainties are the two-loop revious two sections to obtain the, corrections to the
corrections to the quark level decay rate and the perturbativB 0

corrections to the coefficients of the HQET matrix elementselec'[_ron spectrum, and discuss the implications for the ex-
in the operator product expansion. Here, we examine thfaction ofA,\,, theMS quark masses, andp|. In Appen-
former. While a full two-loop calculation of the electron dix B e give an interpolating polynomial which reproduces
spectrum is a rather daunting task, it is possible to calculatf!® two-loop correction calculated here.

the piece of the two-loop correction that is proportional to

Bo=11-2/3n; with relative ease by performing the one-

loop QCD calculation with a massive gluon. Thé,@o parts . VIRTUAL CORRECTIONS

of the two-loop correction may then be obtained from a dis-  The corrections from massive virtual gluons can be cal-
persion integral over the gluon m&sd. If there are no glu-  cylated in complete analogy to the usual one-loop QCD cor-
ons in the tree-level graph, theZs, part of the two-loop  rections. The ultraviolet divergence in the vertex correction
contribution is believed to dominate the fuly result be-  cancels when combined with the quark wave function renor-
causepf is rather large. Several examples supporting thismalizations. There is no infrared divergence since we do the
belief are listed in[8], while one counterexample can be calculation with a massive gluon. The virtual one-loop cor-
found in[9]. rection to the differential rate can be written as

A recent calculatioig] of the &2, correction to the total
inclusive rate forB— X,/ v, decays showed that the§ﬁ0
parts of the two-loop correction are approximately half as big dT'{H() (V)IVcblzGﬁmﬁ A2
as the one-loop contribution, resulting in a rather low d—y:“s Wf dq
Brodsky-Lepage-Mackenzie (BLM) scale [10] of L
wem=0.13n, . For the electron spectrum we find that this X{2(y=83)(a°+1—r?~y)(a;+aw)
part of the second order correction also amounts to about ~o ~o 2 2
50% of the orderag contribution, at all electron energies ~21q7a, T gy~ D) +y(1=r) —yTag),
except those close to the end point. Close to the end point the @
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where = u/m, is th(i,' rescaled gluon mass, awe2E./ 1 (1-r?)(2—fy) )
m,, r=m¢/m,, and g>=qg%m? are the rescaled electron sz—f2 TBo(O,l,f )
energy, charm mass, and momentum transfer, respectively. . q 2A A
The limits for the integration ovel? are . 20°12(f,+60%) — f,o(f,+20%)
. 1-y—r? 2 F2
0=<@’< y(Tyy) osy<1-r2 (2) 2? f2 21,
) ) xBO(qz,l,rZ)Jr“—zzf—Bo(Orz,‘z)
The functionsa,,(g?) anda;(q?), i=1,2,3 are the contri- R
butions from the wave function renormalization and the ver- 3p2(f1—2) “
tex correction, respectively. They can be expressed in terms + fg Bo(1,1.u%)
of the scalar two- and three-point functioBg andC, [12], T Y N 2
and the derivativa8)= dBg(a,b,c)/da. Explicit expressions pL6r(fy —ar 2) 2f2(f1+2r )] Bo(r2,r2 i)
for these functions are given in Appendix A. Using the stan- 2rof;
dard decomposition for the vector and tensor loop integrals w2+ n?(f,+602)] io 2 mp o
[12], we obtain 72 Co(1.9%,r%,p51,r9),
a;= —2+4Cg+ 2(Cyy+ Cq+12C,p+ 12C,) ™
5 —f;  (1-r?)(2r3-f r2—p?
+2(1— %+ 12)(Cypt Co+ C1+Cy), Corm 1, 0 v By(0.1s2)+
2f, 20°f, fa
a2=2r(C1+C2), ~ 2 _ 2y _
- mL6(f1—=2r%) —1f;] -
, XBo(0r?, %)+ T Bo(1,1,4%)
a3=—4(Cyy+Cypt Cy) —4r(Cp+ Cu+Cy), (3 A 2
6ro(f,—2)—f "
1 X . X &l (21f2 il Bo(r?,r2,n?)
aWTZE Z_BO(]—ULLZ!]-)_Bo(r21M2!r2)+(1_M2)
MECST ) —2p2Q7 (3% + 1) .,
~9 ( _/~L ) 2 2f2 O(q '1’r )
X[Bo(1,4° 1)~ Bo(0,4° D]+ —7— S 2?3 .
7 Rl B P QT+ 1, -
. - + Co(1,6%,r2,12,1,r2),
X [Bo(r2, 3i2,12) —Bo(0,32,12)] 2 ol 14%r% w5115
®

+2(2+ p?)By(1,u2,1)+2(2r%+ p?)By(r3, u?,r?)|.

(4)

Defining f;=1+r2—§? and f,=(f2—4r?), the coefficient
functions take the form

1 R “ “

Coozﬁ[fz"‘ﬂvz(fl_2)30(1,1,M2)+M2(f1_2r2)
2

XBo(r?,r?,u?)+(f,+29%1%)Bo(9%,1,r%)

202 Co(1,9%,r3, 1%, 1,r9)], 5

f,—2r?)(1—r? fi(n?—1
( )(1 )BO(O,l,r2)+ 1(u=1)
f2 2q2f2

2f,
3r2p2(f—2r?)
f3

+2u(fo+q

Cll_

X Bo(0,1,2) + Bo(r2r?,z

©?)
ZQZMZ(f2+ 6G°r?) —f,(f,+2G°r?)
20°%f5
wA6r3(fi—2)—fy(f1+2)]
2f5

Bo(G%,1.,r%)

Bo(1,1,2%)

2% %f ,+ 4 (f,+60°%r?)
f% 0(11q r |M211!r2)!

(6)

1 ~ ~
Cr= 1 [11Bo(L 1A%+ (2r2=f1)Bo(@?1r) — 2r2

r2, 02+ p2(2r2—f,1)Co(1,8%r2, 221,191,
9

X Bo(r?

1
szg[—ZBo(l,l,A ?)+(2—f1)Bo(8%,1,r%)

212 n?)+p(2—11)Co(1,0%r%,u21,r9)].
(10

+f1Bo(r

The infinite parts of the regularized two-point functions can
be shown to cancel in Eql). In the limit w— 0, the vertex
correction diverges logarithmically. This divergence will be
canceled by corresponding divergences in the bremsstrah-
lung contributions discussed in the next section.

I1l. BREMSSTRAHLUNG

The bremsstrahlung correction is found in the usual man-
ner, by inserting a real gluon on tlegeandb quark lines. The
calculation here is complicated by the four-body phase space
with two massive final states. We follow the standard proce-
dure of decomposing the four-body phase space into a two-
and a three-body phase space by introducing the four-
momentumP =p.+ pg. In the rest frame of thb quark this
decomposition reads

dR,=dP2dRs(My ; Pe, 7 P)dR,(P; e pg).  (11)
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The O(a) bremsstrahlung correction to the differential rate = (po2— p2)[ P2(¢,—¢,)+ P%2c, + c3— P%(c4+Cs) ],
is glven in terms of dimensionless variableB’E P%/m,,,

P2/m2) by o X o (13
b,=(P%2—P?)P%c,+3P%c,+ (P?+2P%)
AMfmd ) o RVl ME [ o) o e s e X C3—3POP(cy+Cs), (14)
dy =alV 1957 dP2d PO(P02— p2)~
bs=(P%2—P?)c;+(P2+2P%c,+3c3—3P%(cy+Cs),
X[2b;(1—2P%+ P2)+by(2—2P°—y)y (15)
+by(1—y—P?)(2P%+y—P?-1) b,=— P°(P%2— P?)c, - 3P°P2¢,— 3P%c,
+by(1—y—P2)y+bs(2P+y—2) +(P924 2P?)c,+ 3P0%,, (16)
X (1-2P%—y+P?)]. (12 bs=— P%(P2— P2)c, — 3P°P2c,— 3P,
, o +3P%¢,+ (P24 2P?)cs, (17)
For convenience, the above rate has been written in terms of
the coefficientd;: which are linear combinations of

42+ p?)(h—2P%) (v, —v_)
(20, — A (2v_—?)

Cl:

4(v2 —v? .\ 2[(h+,12—2|5°)2+(,12—2|5°)2+2,12(1+rz)]I (2v+—,12
n
h h

2v_—p?

 8[(z+ &) (P*—h) +2P°)(v. —v_)

. 2(p*—4)(2P°— 2% (v, —v_)
(20, — 1)) (20— ji?)

22 —v2)(2—h) [hp2(34%—4P%+472(2P°—1)—16P%2] | (2v+—,&2
02: - n
h h

2v_—p?

AN PO+ 2P+ 2P (v, —v )

h2 ’ (19)

2”+_,&2

_{(P+ )7+ 2%~ 2P0)(h—2P°) |~ hix* + 4r?P%?)
2v_—p?

C3= h

R P?)(2P°— i ~h)(v, —v_) A[(P*+1r?)(hP°—hz+ 4i?P°) +4r?P2P%)(v, —v )
(20— p?)(2v_—p?) h?

. (20

4PO-P?)(h ~0?) | 2(2+i?)(2P°~ i) (2~ 2P+ ) (v —v )
h (20, —i?) (20— i?)

2[4P%%(2P%+ 42) + (2~ r?)h(2P2+h—4P%) + hP2(P2+12—8P%) (v, —v_)
_ b

C4:

2 R . ~ ~ .~ . A R . 20 — 2
— 122~ PO)(ha?— 2P h+ 4P%2) + h2(1— PO+ 47) — 2021+ 12RO+ P°)+M4(1+r2—2P°)]|n(2+—fL2
R

21

2(pt—4)(PPHr2 =) (v —vo) 2 p2h2+ (P24 r?)(22+2h—h?)+8r2P?) (v, —v_)
° (20— 4D (2v_— i) h?
2[ i*h— (P2+12)(f12h+4P%) + 2P24:2] .
B h

20+—u2
2v_— 2

(22

In the expressions for the we have puh=P2—r2 and
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(|52+;L2_r2) |50t \/Poz_ PZ\/( P2+,&2—r2)2—4,&2P2
V= 57 . (23

The integrals in Eq(12) are done numerically between the dI‘(Z) a8,

dlr' V() 1 dro
kinematic limits — —_—

dy ar Jo p2 |\ dy 14p2 dy

1-y)24+P2 . 1+P? (28)

A=NTHPT_po 4P (24) " o -

2(1-y) 2 Note thatel) defined in theV scheme of BLM[10], is
related to the more familiak, defined in theMS scheme by

- 2-p2—1_
(p+r)yspPs<il-vy. (25 -,
=t 2 s Bt - (29)
To improve the numerical stability for smali> we found it s st 34770 ’

useful to do theP? integral with the variable IFf°—r?). The
remaining limits for this four-body decay are as is evaluated am, unless stated otherwise. In thdS
scheme theT;',BO part of the two-loop correction reads
Osp<yl-y-r, Osy=<1-r2 (26)
dl'® 5 agBy dl'V(0) @By [=du?
dy 3 4xm dy 4w ), ?

IV. THE a?B, CORRECTION

Combining the corrections from virtual and real gluon dr' V(@) 1 drdo) 30
ot i X - .
radiation, Eqs(1) and(12), we obtain dy 144 dy
(1)
dr(l)(ﬂ) dlyin(2) n drbrems(:“ O(I-y—r—/). The dispersion integral has to be done with some care. We
dy dy z found that using Ing¢?) instead ofi.? as the integration vari-

(27)  able simplifies the numerical evaluation considerably.
In Fig. 1 we plot the aS,BO part of the two-loop
In the .— 0 limit, Eq. (27) yields the one-loop correction to correctiort and for comparison the one-loop correction to the
the electron spectrum. We have checked that our expressigiectron spectrum, usmg=0 29,a,=0.2,n;=3, and divid-
reproduces the result 8] in this limit. Thea?8, part of the  ing by I'o= GZ|V,,|*mp/192m. Except for electron energies
two-loop correction is related to the one-loop expression calelose to the end point, theZ,BO corrections are about half as
culated with a massive gluon By] big as the first order corrections. The perturbation series ap-
pears to be controlled but the higher order corrections clearly
are not negligible. Integrating over the electron energy we

O~ reproduce the result for the correction to the total rate given
in Ref.[8]. o
002 1 ] In [11] the HQET matrix elementd,\, were extracted
-l ] from the lepton spectrum using the experimentally accessible
[ observables
-0.04 .
[ R _J15 cedE/E, dT'/dE, _J17 cedEdI'/dE,
5_0 06 - 1 Y Jis cedEdI/dE, > 15 ceWE,dT/dE,
5 ] (31
008l O;S : ] It is straightforward to calculate the2g, corrections to
L — ofy P these quantities. In the spirit of HQET, we use the spin-
i i averaged meson massesg=>5.314 GeV, and mp=
0.1+ A 1.975 GeV instead of quark masses. Keeping only two-loop
I A g 1 corrections that are proportional 8, and neglecting terms

of order aZByA ocp/ Mg, We find

7\\\“ww\\‘\xll)ll\\‘\\\\‘\lllllk\l‘\\\\‘\111'11
0 01 02 03 04 05 06 0.7 08 09
y
. . 1 . . . .
FIG. 1. Perturbative QCD corrections to the lepton spectrum. “In Appendix B we give a polynomial fit to our results that repro-

The differential rates are given in units dfy,, with r=0.29, duces the numerical results to better than 1% for mass ratios in the
‘@=0.2, andn;=3. range 0.28r<0.37.
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s Egﬂo wherem, is the b or ¢ quark pole mass antpesonis the
R;=1.8059- 0.035;—0.082?—+ e (32)  corresponding  spin-averaged meson mass.  With
ag(m,)=0.22, ay(m)=0.39 this yields my(my)=
R 2B 4.16 GeV, m,(m;)=0.99 GeV for theMS quark masses,
R,=0.6581- 0.039—5—0.09812—0+ . albeit with large theoretical uncertainties due to the effect of
m m the higher order nonperturbative corrections on the extrac-

where the ellipses denote the other contributions includingio” f A\ [5]. The value ofmy(my) is in good agreement

nonperturbative corrections discussed[®11]. The BLM  With lattice calculations my(m,)=4.17+0.06 GeV  and

scales for these quantities apegy(R;)=0.0Img, and Mb(Mp)=4.0=0.01 GeV [15]. The weak mixing angle

wem(R,) =0.007mg, reflecting the fact that the second or- |_Vcb| can be determmed_ by comparing the theoretical predic-

der corrections are larger than the first order. This is a resulfon for the total rate with experimental measurements. In-

of the almost complete cancellation of the first order pertur—d;‘d'ng all corrections discussed [11] we find, at order

bative corrections from the denominators and numerators iftsBo:

Ri,. In Eq. (32) the BLM scales for the numerators and

denominators are separately comparable to the BLM scale |Vcb|=0-04:<

for the total rateug y=~0.1mg. Therefore, the very low

BLM scales ofR;, do not necessarily indicate badly be-

haved perturbative series. V. CONCLUSIONS
In order to demonstrate the impact of tEé,BO correc-

tions on the extraction of\,\;, we repeat the analysis of

[11], neglecting nonperturbative corrections of order

(AQCD/mb)3 which may be substantidb]. Because of the

B(B— X v,) 1.55 pg? a4
0.105 8 ' (34

We have calculated tk_l@(aﬁﬁo) corrections to the elec-
tron spectrum inb—c/v, decays which turn out to be
rather large, about 50% of the one-loop corrections. These

higher order nonperturbative corrections, large theoreticaﬁ:orr('?cuonS can be included in thg eg_actlon of the HQET
uncertainties have to be assigned to the extracted values gfa_tr'xoellsmgn\tzs ﬁkﬁ We (r)]bta:m A_r?'33 hGeVI and
A,N;. We find that the central values are moved from 1 - eV, both somewhat fower than the values ex-

A=0.39£0.11 GeV, \;= —0.19i_ 0._10 GeV to A=0.33 torazt(:;;eg )atcf))r(rcésc)t}onLéSInv?/e thssginv%%zsb) jTlénggsmg
GeV, \;=-0.17 GeVf. The shift in the values of the si0 — ’

. . L I m.(m.)=0.99 GeV for the MS quark masses and
HQET matrix elements lies well within the ol statistical oL e — 2
error of the previously extracted values. However, using thel:VCb| =0.043B(B—~X/v,)/0.105<1.55 pskg]™. These

values of the HQET matrix elements extracted at a giVer{esults have large theoretical uncertainties due to the effect
; ; 3
order inag to predict physical observables at the same ordePf nonperturbative corrections of orded gcp/ms)” on the

in ag, guarantees that the renormalon ambiguityAirand extraction ofA,A;.
N1 will cancel[13,14] if the expansion is continued to suffi-

ciently high orders inxg. Thus, including th&gﬂo parts in ACKNOWLEDGMENTS
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_ =y
Mq(Mg) = ( Mmeso~ A+ 5+ APPENDIX A: SCALAR TWO- AND THREE-POINT

FUNCTIONS

Here, we list expressions for the scalar functi@ysand
C, [12] needed for the calculation in Sec. II. With the cut for
(33)  logarithms along the negative real axis, we have

><(1_4075<mq> ~

Ei(mq>ﬂo+ )
= .l

156"

B (ab I w2 J'ld I ax’—x(a+b—c)+b AL
O(av 1C) - n 47TA2977 0 Xn Mz ( )
2 - ~1
—Z i i S xn 4 xin| (A2)
€ 4A%e w? * n - x_ )’
where
a+b—c*(a+b—c)’—4ab

- 2a
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CO(lyazyrZI[Lzal!rz) =

z,—1 z
+L|2( 2 )_L|2( 2
22— Zg 2~ 17

where

_(@-1-r) 4GP -1 -ar?
a —2r? ’

a

pe=2—a(@P—1-r%+p?)
1+r2-g°-2r2a

(A5)

(AB)

P+1-r2=(0°+1-rH)?—40°+ie
2¢°

2— P+ N\(2—p?)? -4

Zg 9= 2

Zg7=

(A7)

The dilogarithms here are defined as

Li2(z):—foldtw. (A8)

TABLE |. Coefficients A, ,, for the interpolation function
£ (y,r) given in Appendix B.

Anm m=0 1 2
n=1 4.9 19.3 —20.4
2 —-2.72 12.4 —14.7
3 3.55 —12.4 115
4 2.21 -10.1 11.9
5 1.97 ~9.59 11.9
6 1.11 ~5.08 6.06
7 ~0.159 0.448 -0.274
8 ~0.336 1.44 ~1.62
9 ~0.319 1.47 ~-1.76
10 ~0.174 0.818 —0.994
11 —0.0881 0.417 —0.509
12 —0.0507 0.247 —0.309

1 L Zl L Zl_l
1+r?—g°—2ar? 22—z, A7z,

1231

(A4)

APPENDIX B: INTERPOLATING FUNCTION

In this appendix we give an interpolation scheme that
makes it easy to reproduce OEE,BO corrections to the lep-
ton spectrum fob—c/ v, decays. The interpolation is done
as a function ofy andr with all other parameters left ex-
plicit:

dr ag a?
—~=I f(°>(y,r)+aff(“(y,r)+ ;—[;Ofm(y,r)) :

dy
(B1)

The well-known tree-level result is given by the exact equa-
tion

_ 2yA(y+r2=1)%(—3-3r?+5y+r?y—2y?

(y—1)° ’
(B2

1Oy,

while the first order functiorf(*) can be obtained from Ref.
[6]. The interpolating functiori®) is found by fitting Cheby-
shev polynomialsT, to the energy dependence, and qua-
dratic polynomials to the mass ratio To improve the accu-
racy of the fit near the end point of the lepton spectrum the
expansion is given in terms of the variable

In[(1—y)?/r?]

Our fit is accurate to better than 1% for the region

0.09<y=<0.991-r?), 0.29<r=<0.37. (B4)

The second order function is given by

12

f(y,r)=2

2
( An,mrm)Tnl(y’), (B5)
=1 \m=0
whereT,(y") =cosf arccosy’). The 36 coefficient#, ; are
given in Table I. Both the coefficients as well BSRTRAN
code evaluatingl'®/dy anddI"V/dy from the expressions
in Secs. -1V are available from the authdrs.

°For information use the

iain@theory.caltech.edu

following electronic address:
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