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The spatial distribution of the action and energy in the color fields of flux tubes is studied in lattigg SU
field theory for static quarks at separations up to 1 fm. Special attention is paid to the structure of the color
fields associated with an excited flux tube with &mmetry. We compare our results with hadronic string and
flux-tube models. Sum rules are used to extract generafiz&hctions, to describe the expected color field
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I. INTRODUCTION By a4

fL{(r)HEBﬁ(r) with i,j,k cyclic
Confinement in QCD is a nonperturbative phenomenon

and lattice gauge theory techniques are well suited to its
study. One of the simplest manifestations of confinement irﬁ”md

pure glue QCD is the potential eneriR) between static 4

quarks at separatioR which increases witlR. To investi- Fi4(r)— — a—E-z(r) @)
gate this in detall, it is possible to probe the spatial distribu- R e

tion of the color fields around such static quarks. This explo-

ration of the nature of the flux between static quarks has gve shall wish to distinguish electric and magnetic color
long history. Typical points of interest are the transverse eXfields with different orientations with respect to the inter-

electric or magnetic A hadronic string approach gives a adopt the notation that

reasonable description of the interquark potential at large

z_epa_lratl_on. Here We_explore this fgrther _by _mvesﬂga'qng the g =4 &=f24 B =213 B {832 (3)
istribution of color fields for gluonic excitations of this po-

tential and comparing our results with models for the flux

tube in this case also.

On a lattice the technique to explore the color field distri-
butions is to measure the correlation of a plaquett¢here
defined asl0=3Tr(1—Ug)] with the generalized Wilson
loop W(R, T) that creates the static quark-antiquark at sepa-
rationR. See Fig. 1 for an illustration. Locating the plaquette
att=T/2, in the limit T—o the following expression iso- and
lates the contribution from the color field at positiorirom
the plaquette oriented in the, v plane:

(W(R,T)OF") —(W(R,T))(O*")
(W(R,T))

It will be convenient to discuss combinations corresponding
naively to the action $) and energy E) densities of the
gluon field. These are given by

E(r)=EL(r)+2Ex(r)=—(&.—B)—2(&—By). (9

fR"(r)= ) r

These contributions are related in the naive continuum
limit to the mean squared fluctuation of the Minkowski color R
fields by
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Note that since the color field contributions come from a TABLE I. Potential energy values for the symmetAg, case.
cancellation between the value in a static potential and that
in the vacuum, either sign is possible. R  Fuzz Vet Veit Vet |
The color field distributions are quite difficult to measure levels T 3:2 T 4:3 T
on a lattice because the correlation of E%). involves deli-
cate cancellations. Recent resyll§ and[2] have concen-
trated on the simpler case of &) color in order to achieve 2 213 0562804 0.5624717) 0.5623418) 0.026
sufficient statistical accuracy. It is expected that the salient 213  06823@4) 06813132 0.6808836) 0.046
features of confinement in §P) are very similar to those in 4 016,40 0.775124)  0.7739434)  0.7732942)  0.053
the realistic case of S3). Here we focus our attention on 6 0,16,40 0.9384%1) 0.9368%80) 0.9358%103 0.065
the color field distributions aB8=2.4 for which the lattice 8 0,16,40 1.0915#7) 1.08801131) 1.08558180 0.100
spacinga~0.1 fm should be sufficiently small for our pur-

poses. The action and energy densities are measured on a - .
lattice by using plaquettes of ara3, and hence, do not have erators to create such states. Efficient here means having a
a continuum limit asa—0. To achieve a con,tinuum limit small contamination of excited states while still allowing a

would require to measure energy and action by using loop ood signal to noise for correlations of interest. We build on

of fixed physical size rather than plaquettes. In the following, e experience of studying the corresponding potenfis

we quote our results in lattice units with the normalization asand Use an lterative fuzzing prescription to create ihe spatial

given above in Eq(1) pathsP; of length R, where different levels of iteration of

Different strategies have been used to improve the signa{fJZZIng are represented by In detail, we use a number of

to noise in the lattice determination of the color fields. Here_recurSive iterations of replacing each spatial link by the pro-

we focus on one method, as described in Sec. Ill, which is té)eCtEd sum of(4 X straight link + 4 spatialU bends and

create operators which produce ground state potentials Witﬂ1en multiply these fuzzed links to make the spatial path

very little contamination of excited states. As described inneeded. TEe correlatlﬁn of spatllgl %ﬂh‘?}t t'mﬁt andP; at
the next section, we are able to achieve this using fuzzell€t+ T then gives the generalized Wilson low; (T) —
links and a variational approach. Because we wish to stud

1 2,13 0.3733®) 0.373265) 0.3732%5) 0.010

ee Fig. 1. We use a 18 32 lattice atB= 2.4 for this study

sum rules which involve sums over all spatial positions, welVith the SU2) gauge group. For many purposes(@Lkolor

do not employ multihit techniques such as those used in Reprowdes an excellent test _bed for QCD studies. In this Wor_k

[1]. We do not use, either, the proposal of R to treat the scale as set by the string tension corresponds to a lattice
- 1 1 . — l~

(O*") in Eq. (1) as a quasilocal average of the plaquette inspacmgfa~0_6 GeV™ h~0-1'2 fm. The]c dataI samplle llised

the correlation since, although it reduces the noise, it alsG°MeS from a comprehensive study of 80 blo(@ blocks

modifies the signal. or R<3) of 125 measurements separated by four update
Lattice sum rules have been derivEgi-5] which relate sweepgthree over-relaxation plus_ one heatbhathrror esti-

the sum over all space of the plaquette correlation to expredi@tes use a full bootstrap analysis of these blocks.

sions involving the potentia¥(R) and generalizeg@ func- The fuzzed link operatoP; to create a static quark and

tions. These sum rules have been used in an attempt to exitiquark at separatioR with a color field in a state of a

tract suchg functions[6,7]. Here we consider a larger set of 91Ven lattice symmetry will have an expansion in terms of

sum rules and we make a careful evaluation of these sufll® éigenstates of the transfer matrix,

rules to extract the generalize# functions and to validate RY=calV) + e V) + - - - 6
our methods. This is described in Sec. IV. A preliminary IR)=Col Vo) +calVy) ' ©
account has been given in R¢8]. with the measured correlation of a generalized Wilson loop

We present our results for the spatial distributions of thegiven by
color fields in Sec. V. One feature that goes beyond previous
work, is that we also measure the color field distribution in W(R,T)=(Rg|R;)=cge Vo'(1+h?+-..), (7)
the lowest lying gluonic excitation of the static quark poten-
tial. This lowest gluonic excitation has nonzero angular mowhere
mentum about the interquark axis and plays a role in hybrid
meson spectroscopy. Hadronic string models predict such h= ﬂef(vlfvomz_ ®)
excited modes and agreement with the energy levels deter- Co
mined on a lattice has been fouf110]. Here we are able to o .
explore the spatial distribution of this excited gluonic modeWe shall see that the contamination by excited states needs
to make more detailed comparisons with models. We hav& be minimized so thah<1, while, in order to retain a
also explored a higher gluonic excited state: the first excited€@sonable signal to noise, we should like to achieve this
have been unable to extract unambiguously the color field§tates we show in Table | the results for the effective poten-
associated with this state so we do not report on it furthefial defined as

here. Ver( R, T)=—In[W(R, T)/W(R, T—1)]. 9

Il. OPERATORS FOR STATIC POTENTIALS . .
We measure the generalized correlationTte 4 for R>3
To explore the color field distributions around staticand toT=6 for R<3. The signal is too noisy at largér

quarks at separatioR, we need to find efficient lattice op- values to be a useful guide. We use a variational method
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- TABLE Il. Potential energy values for the gluonic excitation

1D T T 7 T 17 T T ‘ i T T T T T .
B\@’—U/;/EL with E, symmetry.
I i
B T R Fuzz d Vst Ve \ |h|
r 7 level T 3:2 T 4:3 T—oo
10 ; ; 1 13 1, 2 141020 1.395533) 1.381365 0.24
' | . i 2 13 1,2 1.348411) 1.334625 1.321849) 0.23
s | 3 13 1,2 1.323@1) 1.316425 1.309943) 0.16
&= i 4 16 1,4 1.315® 1.309420) 1.301841) 0.17
= " ] 6 16 1,4 1.356@) 1.351921) 1.345%44) 0.16
[ I 8 16 1, 4 1434011 1.428227) 1.420@062) 0.18
05— -
. .
- 4 As shown, the excited state contaminations are significantly
L ’ 4 higher for this representation than for the symmethg,
L i case.
OO [ | ‘ N | ‘ I ‘ | | ‘1 I I ‘
0 2 4 6 8 10 lll. LATTICE EVALUATION OF THE COLOR FIELDS

R To study the color fields in the ground state of the static

FIG. 2. The energies of the potentials in lattice units for sepa-duark-antiquark at separatiét) we need to evaluate the dif-
ration R with an interpolation from Eqs(15) and (16). The data  ference of the expectation value of a plaquette in that ground
points are for the symmetric ground st##e,, representationand  state with its value in the vacuum:
first gluonic excitation(E, representation

<VO|Dr|VO>

W—(omm). (10)

fr(r)=
with a combination of paths with different fuzzing levels R(1)

chosen so that the effective potential is minimized for

T=1. This combination is then used at dlland gives the This quantity is to be extracted from lattice observables us-
effective potential values shown in Table I. As an estimate ofng the geometry shown in Fig. 1. In terms of the decompo-
the true ground state potential energy one could use theition of our operators into eigenstates of the transfer matrix,
T=4 effective potential, however, this is an upper limit be- the measured matrix element of a plaquette &t the gen-
cause of excited state contributions. Another estimate can pyalized Wilson loop of siz&XT is given by

made by assuminfiL1] that the change in effective energy
from T=3 to 4, namelyAV=V_4(3:2)—V4(4:3), isgiven
entirely by the contribution of one excited state with an en-
ergy differencev,—V, determined by the variational analy-
sis outlined above. Defining=e~(V1~V0), this extrapolated
estimate will lie belowV4(3:2) by AE/(1—\) and this
value is shown in Table | labeled 8s—%. The difference X(V4|O[Vo)+ - -
between these two methods to extract the ground state po-

tential energy gives an estimate of the systematic error ffoMpig ¢learly highlights the central problem which is that con-
extrapolation inT. The potentials are the data points plottedyripytions from excited state contaminations will be much

in Fig. 2. larger here than for the determination of the total potential
In order to estimate the magnitude of the excited statenergy because of the presence of off diagonal teerg,
contamination in the state fofF=2, we use the same ap- (v,|0|V,)). In order to extract the required quantity
proximation of one excited state only for>2. Then one has  (V,|0|V,), we need to minimize the excited state contribu-
thath?~AE/(1—\)2. The values oh shown in the Tables tions by takingT—t=1 andt=1 as discussed in the previ-
are forT=2 which corresponds to our operator having con-ous section. For the case wh&s=2 andt=1, the excited
taminationh att=T/2=1, namely one time step away. We state contribution will have a coefficient given by 2wvith
see that for the symmetri@\,4) representation, the contami- h evaluated aflf =2—as estimated in Tables | and II. For
nationh is quite small. example, to reduce the excited state contaminatios16%,
We also study potentials between static quarks with gluone needsh|<0.05. The electric plaguettes are extended by
onic excitations in theE,, representation. For this cagg2]  one unit in the time direction, however, so one neeéds3 to
we needU shaped pathsgactually the combinatiom — U ensure a separation of at least one unit to obtain a sufficiently
with the extension in the transverse spatial diregtidfor ~ pure ground state. We are also able to investigate the excited
this representation, we also need to extract the ground statgtate contamination directly by measuring the plaquette cor-
and results from generalized Wilson loops are given in Tableelation forT>3.
Il. Here we have used a single fuzzing level, but two differ- For oddT values, we evaluate the electric plaquette with
ent values of the transverse extehof the U-shaped paths. center att=T/2 and average the magnetic plaquettes over

- C1
(Rl Rr) =cie™ 7| (Ve IVo) +

x[e~(V1~Volt4 g=(V1~Vo)(T-1)]

. (11
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FIG. 3. The color flux contributions in lattice units for separa-  FIG. 4. The color flux contributions in lattice units for separa-
tion R corresponding to the actior( sum rule of Eq(12) for the  tion R corresponding to the longitudinaE() sum rules of Eq(13)
static quark potential. The expressions for the left-hand sides ddor the static quark potential. The expressions for the left-hand sides
rived from the measured potentials as discussed in the text arderived from the measured potentials are shown by the lines. The
shown by the lines. The data points for the symmetric ground statdata points withl =3 are for the symmetric ground std, ; rep-

(A4 representationare shown by square§ €3), bursts T=4), resentation — squargsnd first gluonic excitatiofE, representa-
and fancy squaresT(5). For the transverse gluonic excitation tion — octagonk
(E, representation the data are shown by octagorb=3), dia-

monds T=4), and crossesI(=5). 1 Vv
457 VT RoR +Eo=2, (—& +BY), (13
t=(T=x1)/2. For evenl, we average the electric plaquettes
over positions with center at=(T+1)/2 whereas the mag-
i 1 v
netic plaguettes are &&= T/2. —(V— R—|+Eo=>, (—&+By). (14
For the sum rule study, we need the sum of plaquettes 4t IR

over all space in principle. On the lattice, we sum the . - )
plaguettes over all transverse spéad 6x 16 plang for each Here the sum is over all space. The quar_1t|t|es on the rlg_ht-
r_. The sum over, is then approximated by selecting the hand sides are defined by _takmg _correlat|ons of appropriate
region within =2 lattice units of the Wilson loofi.e., from  Plaquettes with the generalized Wilson loops as discussed in
r.=—2 to R+2). We checked that this approximation did the Introduction. Because the combinatien€£ 5 corre-
not introduce any significant error since the missingre- ~ SPONdS to energy/action, we refer to these sum rules as “ac-
gion contributes noise and no signal to the correlation. BeloN,” “longitudinal energy,” and “transverse energy,” re-
cause we sum all plaquettes including those adjacent to thPectively. , o .
generalized Wilson loop, it is not appropriate to use variance . | "€ CO”‘Z’e”t'O”aWZ function is defined ab=dg/dina
reducing techniques such as multihit. with B=4/g*, whereg” is the bare lattice coupling. By con-
For our study at the center point between the statié'_dermg a !a_ttlce Wl_th dlfferer_n lattice spacings in different
quarks,r, = R/2, we average the plaquettes with a corfer directions, itis po_SS|bIe to define generallz@dimct.lons.. At.
side at each value of the transverse distamgealong a  (he Symmetry point wher@;=a, one such combination is

lattice axis. independent and is given by —S=4d8,/dlna,—dB;/dlina
=2pf in the notations of Refg5,13].
IV. SUM RULES FOR POTENTIALS The sum rules were derivd&] for torelons, where there

is no self-energy associated with the static quarks. For the

We consider the static quark potential for separafion more practical case of the interquark potential between static

which is defined as/(R) in lattice units. Then the color sources, a self-energy term must be included in each of the
fields associated with this pair of static quarks can be measum rules — as shown above by teri8g and E,. This

sured using plaquettes of appropriate orientation. Sum ruleself-energy will be independent of the interquark separation

have been derived to relate the sum over all spatial positionR and hence can be removed exactly by considering differ-

of these color fields t&(R) and its derivativg5]: ences of the sum rules for two differeRtvalues. Moreover,
v it should be independent of spatial orientation about the
- J _ source and, hence, is the same for transverse and longitudinal
T | VIRGR) T S= -2 (& 28+ 2B+ B, energy as shown above. These self-energy terms arise from

(120  the contribution of each static quark line separately, thus we
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0.3 ——r—— RN R R V(R)Alg=0.562+0.0696?—0.255R—0.045R2, (15

V(R)gy— V(R)a1g= /R~ 4.24R*+3.983R*.  (16)

% . These interpolations are illustrated in Fig. 2. Here we have
i E ‘ used the fact that the self-energy is the same for excited and
§ E ] ground states, and the string model expectation that the ex-
7 cited state has an energy excitationmfR for largeR. The
- - coefficients ofR"? and R™4 in these expressions are not
- - intended to have explicit physical interpretation — we just
- 4 require expressions to interpolate accuratelyRin
From these expressions, we can evaluate the left-hand
i ' sides of the sum rules and they are compared with our results
at B=2.4 for the color flux sum over all space in Figs. 3-5.
We use the values of the generalizedunctions determined
| m i previously[8], namelyb= —0.35 andf=0.61 as an illustra-
| 3 | o “ tion. After choosing _values for the self-energy terms as dis-
0.0 -+ S — — cussed below, we find an excellent overall agreement. The
0 < 4 6 8 10 small discrepancies which remain are comparable to the sys-
R - tematic error expected from usifig=3 to evaluate the color
sums. Indeed for the action sum rule, our evaluations with
T=4 and 5 are also shown and these indicate that the esti-
Ornated systematic error is large enough to accommodate

(@]
[AV]
|
o
et

Trans Energy

1
|

FIG. 5. The color flux contributions in lattice units for separa-
tion R corresponding to the transverse enerfy)(sum rule of Eq.

(14) for the static quark potential. The expressions for the left-han t The sl fh i I RUE
sides derived from the measured potentials are shown by the line greement. 1he SIope of tne aclion sum rule VErsusves

The data points withT=3 are for the symmetric ground state directly theB functionb. A somewhat steeper slope than that

(A4 representation — squaeand first gluonic excitatiofE,, rep- illustrated = —0.35) would fit better — particularly if the
resentation — octagohs T=4 data are selected. A preferred value for this comparison

would beb=—0.33. This is compatible with our determina-
shall refer to botts, andE, as “self-energy” even though tion of Ref.[8] which quotedb= —0.352).
Sy contributes to the action sum rule. The perturbative expressions for these quantities in terms
Our evaluations of the sum rule contribution over all of the bare lattice couplingr=g?/4m=1/78 for SU(2)
space are shown in Figs. 3-5 for the symmetAgy) and  color fields arg13]
transversely excite¢E,) potentials. To isolate the contribu-
tion from the ground state in each symmetry case, we needto b=-0.371314+04%+---), f=1-21.13x+---.
evaluate the color field sum using plaquettes with large sepa- a7
ration from the operators which create and annihilate the
static potential. As discussed above, using our variationalhe bare value ofr is 0.13, which gives next to leading
operators, T=3 provides a reasonable approximation toorder perturbative values df=—0.395 andf=0.85. The
this—allowing a separation of one spacing between operatcffective coupling is expected to be approximately twice as
and plaquette. It is important to explore the effect of anybig which will decrease the perturbative estimate fidrom
possible contamination from excited states as discusse@l85 to~0.71 and improve the agreement with our nonper-
above. The largest and, hence, best determined signal is fturbative result. Fob, however, such an increase anwill
the action sum rule. For that case, we are ableRier3 to = make the agreement even worse by redudirfgom —0.395
determine the color fields faf=4 and 5 and our evaluations to ~—0.42. Thus a perturbative evaluation lofis unreli-
are also shown in the figures. These set the likely size of thable.
systematic error from excited state contamination. For the The B function has also been studied nonperturbatively
A4 case, the agreement with high€rvalues is good and on a lattice by matching the measured potentials at gvo
confirms that we have isolated the ground state by choosingalues. Between 8=2.4 and 2.5, this gave[9]
T=3. For theE, case, however, such a contamination forb=—0.277(4) and, in Ref[14], using five values of3 in
the action sum rule could be relatively large. This is consisthe range 2.35-2.55 resulted = —0.3045). The value
tent with our estimates of the excited state contaminationsletermined here is the derivative @t 2.4 rather than com-
h given above. ing from a finite difference. The qualitative features of the
We now discuss the evaluation of the left-hand sides ofwo approaches are in agreement, however. A nonperturba-
the sum rules. One obstacle is the presence of the derivativeve study of scalind15] from a thermodynamic approach
dVIdR. Since only discrete values & are measured, one gave values ob=—0.30 andf=0.66 atB=2.4, although
way forward[8] is to eliminate this derivative between the systematic errors are not easy to quantify since an ansatz for
three sum rules which still allows the generaliz8dfunc-  the functional dependence was assumed.
tionsb andf to be determined. Here we study the sum rules The simplest assumption for the self-energy contributions
in a more comprehensive way by explicitly estimating theis that they are given by evaluating the left-hand sides, inter-
derivative. From our lattice data for the static potentials, wepretingV(R) asV(R) — Vg with Vy=0.562. We find that this
can find good interpolation&ralid for 1<R<8): is a reasonable approximation for the action sum rule since,
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with this assumption, we hav&=0 which is the value used given by the longitudinal and transverse energy. These three
in plotting Fig. 3. Using the same assumption for the twocombinations are also appropriate for sum rule study because
energy sum rules, however, we find that an explicit self-they correspond to the three sum rules of E48)—(14). To
energy termE,=0.10 must be used to obtain the agreemenget at the essential behavior, we specialize to the midpoint
shown in Figs. 4 and 5. This self-energy should be the samé | =R/2) to minimize the effect of self-energy components.
for longitudinal and transverse sum rules and we find agreeResults for the transverse dependence of the color fluxes for
ment with a common expression. A nonzero value ariseshe action(S), longitudinal and transverse energiés ;) at
naturally in the derivation3] of these sum rules. R=8 are shown in Fig. 6 where the first excited stdg)

The satisfactory agreement between the sum ovecase is compared with the symmetif, ) potential case. A
plaquette correlations and the sum rule expressions givegualitatively similar behavior was found f&t=6.
confidence that we are able to measure the color field around We have also measured the longitudinal dependence of
a static quark and antiquark. This opens up a study of théhe sum over which is illustrated in Figs. 7 and 8. Here the
shape of the color field distribution itself. effect of the self-energy contributions near the sources at
r_=4 units from the center can be clearly seen for the com-
binations corresponding to longitudinal and transverse en-
ergy.

Since we have measured the plaquette expectation values The interpretation of these results is facilitated by the sum
in the gluonic excited statéE ), we can explore the spatial rules. Although the sum rules relate the sum of the color field
distribution of the color field and make comparison with fluctuation over all space, for a stringlike model the longitu-
models for the gluonic excitation such as string and flux-tubedinal dependence will be rather mild. The longitudinal pro-
models. This has been undertaken for the ground statfes given by the contributions to the overall spatial sum
(A14) previously[1,2]. Comparison with models is most ap- from each longitudinal slicefixed r, and summed over
propriate at largeR where stringlike behavior is expected. rt) show a fairly flat distribution inr| for the action sum
Here we are able to reacR=8 which corresponds to a between the static sources with titg, case showing a
separation of order 1 fm. Unfortunately, for tBg symmetry  slightly more spread out distribution than tiAg, case. A
state, the contamination from excited stateere we mean similar behavior is shown by the energy sums after subtract-
higher energyE, representation stateis significant—being ing self-energy components. Thus some intuition can be
of order 30%(see Table ). As an exploratory study, we gained about the color field sums over transverse space at the
report our results using =3 for the generalized Wilson midpointr, =R/2 from looking at the left-hand sides of the
loop, since this is the largedt value with a reasonable sig- sum rules divided byR.
nal. The color field distributions may then be interpreted as Consider an interquark potential given by/(R)
applying to a state which is predominantly the required low-=e/R+KR+V,, where the coefficiene~—0.25 for the
est energyE, state, but with some contamination from ex- A;4 potential (this is the “Coulomb” coefficient while in
cited states. string models we expeat=m for the first excited string

The full spatial distribution of different components of mode (which correspond$10] to the E, cas¢. Then the
electric and magnetic fields is a considerable body of datd:transverse energy” sum rulggEq. (14)] will relate the sum
Because we find that all components are approximatelpver transverse energy fluctuationsef®. This is consistent
equal, we evaluate the combinations of color fields correwith the much larger transverse energy seen for the excited
sponding to the averagéhe action and to those differences gluonic caséFig. 8 compared to the symmetric ground state

V. COLOR FIELD DISTRIBUTIONS
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here are clearly very small but, in this case, finite size effects

0.6 [T T T T T T T T are potentially important since the spatial length of the lattice
- O Action is only _16 units. _Using ins_teaq our_data for the electric and
B . %10 r_nagneﬂc co_lor field contribution _WltIi_R=2, 4, and 6, we
i - L find that this self-energy contribution to the measured
0.4 P o Eq*10

plaguette correlation summed owgris less than 5% of the
signal at the midpoint foR=8. This implies that the self-
energy contribution to the action distribution is small, but
that the energy distributions, which involve strong cancella-
tions between electric and magnetic plaguettes could have
larger self-energy contaminations. This self-energy contribu-
tion is large enougkand has the correct sigto explain why
— e ] the transverse energy for th, case is positive in Fig. 6
" (which contains the self-energy componenmhereas the sum
rule analysis described above suggests a small negative con-
tribution (sincee<0).
ool b b bl A way to eliminate the self-energy contribution com-
0 ) 4 8 8 10 pletely is to focus on the difference of thgy andE, dis-
r, tributions, since the distributions of the self-energy will be
identical. Viewing Fig. 6 in this light, there is seen to be a
significant difference in the distribution iny between the
excited gluonic state and the ground state and it is of interest
dfo compare this with models—the topic of the next section.

0.2

1 1 | i | 1 1 ] 1 | 1 1 1

A,, sum over ryg

1 1 ] 1

FIG. 7. The dependence on longitudinal positiop)(of the sum
over the transverse plane of the color flux contributions correspon
ing to the action, longitudinalE, ) and transverse energi{) sum
rules of Egs.(12—(14) for the static quark potential. Heng is
measured from the midpoint for separatiBs8. The data are in VI. MODELS FOR FLUX TUBE PROFILES

lattice units for the symmetric ground std#, 4 representation A. The model of Isgur and Paton

potential (Fig. 7). The other two sum rules suggest that the A bosonic quantized string will not be consistent in two
action and longitudinal energy will have fairly similar con- transverse dimensions. In order to render the string approach
tributions(atr, = R/2 when summed over;) for the excited ~ @pplicable, Isgur and PatoftP) [16] proposed a flux tube
gluonic and ground state, since the left-hand side is proporT0del in which the string degrees of freedom are reduced by
tional to 2KR in each case. We do find approximately this COnsidering a string made &f equally spaced masses. This
behavior for the integrals over as shown in Figs. 7 and 8, discretization of the string makes the string self-energy finite
although, as shown in Fig. 6, we see a flattedistribution and this model then makes specific predictions although they

for the E,, case than thé,, case. This flatter distribution in 40 depend in detail oN. The salient feature of the model is
r; for the excited gluonic case corresponds to a “fatter” flux that the excitations are transverse and so should be observ-

tube for that case. able in the transverse energy. This, indeed, is qualitatively in

Before analyzing in detail the distributions shown in Fig. @cord with our results, since only the transverse energy sum
6, we need to estimate the size of any self-energy contam|s 9reatly modified in comparing tte, state to the,  state.
nation. SinceR=8, the self-energy contributions at =4 Furthermore, this is also seen directly from the plot of the
units from the sources are appropriate and these can be edfignsverse energy profile E2) for the Monte Carlo(MC)
mated from the measured plaguette correlation at 4 unit§@lculations in Fig. 6. In the next paragraphs it will be seen
from either source in the direction away from the othert© what extent this qualitative feature of the IP model com-
source. These are illustrated from our dat®at8 in Figs. 7 Pares with details of these energy profiles.

and 8 as the points with = 8. The self-energy contributions !N the 1P model, when the string is discretized irto
masses, each a distanag=R/(N+1) apart, it is conve-

0.6 [rrrr e nient to express the Hamiltonian in the form
h O Action ] N N
5 «Bpi0 ) H(|P,N)=21 Hi(IP,N)=21 (Ti+Vy), (18)
& ] i= i=
2 0.2 7 where
o PX Py,
0.0 4 e —
E I 2m (19)
P U D D B B and
0 2 4 6 8 10
" bs(N+1) 1
Visin=—55— 5[ (Xi—Xi-1) %+ (Xi— X+ 1)?+Y's],
FIG. 8. As in Fig. 7, but for the first gluonic excitatiofE, 171N 2R 2[( X )T (XX ) T Y]

representation (20



_bp(N+1)

2 1 2 ’
i=INT T oR X +§(Xi_xiil) +y’s|. (2D

Here m is the mass of each of thid points andb is the
barestring energy. The two are related by=b;pap. In this

part of the paper, for clarity, there is a notation change with

the earlierr, r+ now becomingg; , \/xinry"’i .
The energy profile associated with the painbn the line

connecting the two quarks has the form for the state

Ua(IPX1, oo XNO Y1 - - - YN

N
EM(N, XY aZi):f Jl;[l dxdy;¢* (IPYH;(IP,N) 4(1P).
(22

The energy contained in a profile for a givenis then

Ein(NrZi):J' dxdy;E'(N,X;,Y;,Z). (23

In most of this workN=3, where for the IP ground state
(n=1),
E}(3)=E3(3)=0.344E7 and E3(3)=0.310E7
and for the first excited statenE& 2)
E3(3)=E3(3)=0.3464£2, and E5(3)=0.307E2

where the total energy in staten is given by
Ef=(na;+a,+az)/m with a;=2bpsin(i#/8) being the IP
eigenfrequencies. In each case, the kinsticand potential
P[" energies are approximately equal, e.g.,

K2=0.176E2 and P5=0.130%3.

This shows that, in spite of the averaging ovemN2(1)

coordinates X;,y;), the resultantg]',T",P}" are still very

STRUCTURE OF FLUX TUBES IN S(2)
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FIG. 9. The energy density at the midpoint versus transverse
distance. The lattice data areR& 8 (usingT=3) and are for the
total energy(solid squaresand transverse component of the energy
(open circles The predictions of the IP model are fidr= 1,3 (dot-
ted, solid. The comparison is presented in lattice unies:For the
gluonic ground statgA,4): (b) For the gluonic first excited state
(Ey): (c) The differences & ,—~A,4) between the profiles ife) and
(b). [Compared with Fig6 — for convenience, the profile@n
lattice units witha~0.6 GeV ™) have been multiplied by a factor
of 10°]

essary, to smooth out th&(N,x;,y;,z) into neighboring
regions away from th#&l planes. This is most easily achieved
by defining anE" such that

( ,ny,z)— a-IP Zi 2(N+1)
R
=7< ZrFm . (25)

much as expected from the basic simple harmonic oscillatoin the following, it is E" that is compared with the MC

structure of the originaH(IP,N). In general,
AEp(n’—n,N)=ET (N)—EXN)=(n’—n)ay(N)/m

o

2(N+1)

=(n"—n) Z(NR+ 1)::,in(

N—oo

— (n"=n)w/R. (24

results. Figure 9 shows—separately for the ground state
(n=1) and first excited staten&2) — the energy profile
predictions of the IP model witiR=8 andN=1, 3 on the
plane passing through the center of the axis connecting the
two quarks. This illustrates the strohgdependence referred

to earlier with theN=3 profiles being much larger than
those forN=1. But this is expected, since theid Zpatial
integrals have the for&}=(na; +a,+as)/m for N=3 and
na’'/m for N=1, where a=2bpsin(#/8) and
a’'=2bpsin(w/4). On these same figures the MC results are
also plotted for the total energy and its transverse compo-

For N=1,3 this is already a good approximation to the nent, since the latter shows the qualitative features expected

N— oo limit with

AE”:)(n,_n,N)/AE”:(n’ —n,OO)

from a string-based model. But at this stage it is premature to

energy profileE'(N,X;,y;,z) in Eq. (22) is proportional to

bp, so that, forrt=0, it can be tuned to fit the correspond-

in the sum rule case — the two approaches involve different
self-energies. Therefore, in Fig(d the profile differences

ing lattice result. However, the energy contained in a giverpetween the two states are shown. However, it is seen that

profile E'(N,z) in Eq. (23) is independent ob,p.

the IP predictions still do not correspond to the MC results.

In the lattice calculation it is the energy and action densi-Here the value of the string energy used in the IP model has

ties that are measured, i.e., basically in units of GeV/fm
whereas the IP model gives the ene&f}(N,x;,y;,z;) dis-
tributed on a series oN planes through the points, i.e., in

been the empirical value di;a?=0.07 — but there is no
reason for the bare string energp ) relevant to the IP
model to have this same value. Unfortunately, tunimg

units of GeV/fn?. To be able to compare the two it is nec- does not help, since the radial integrals of the IP profiles are
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FIG. 10. Contributions to the energy density at the midpoint 10 0123 4
versus transverse distance. ComparisoRa8 between thél =3 r
lattice data for the color electric fielgolid circles, magnetic field T
(crossey and the IP predictions for the kinetic energplid), po-
tential energy(dashedt (a) For the gluonic ground stai@,). (b) FIG. 11. On a semilog scale, a comparison of the total energy

For the gluonic first excited staf&,); and comparison between the profile for the BBZ model of Ref[18] (solid line) and the lattice
color electric field€ (solid circleg and the total energy for the IP  predictions(solid circles for R ranging from 8 down to 1 lattice
model—usingb,p=b;=0.07 (solid line), b,p=2b, (dash-dottey unit. All profiles are in lattice units witm~0.6 GeV 1.

and b;p tuned to fit lattice datddashed ling (c) For the gluonic

ground stateA, ) tuning factor 2.45 for the dashed lingl) For the One suggestion is to interpret the energy density of the IP
gluonic.first excjted sFatéEQ tuning factor 1.6 for the dashed line. model as reproducing the electric color flux ofdy7]. In fact
All profiles are in lattice units wita~0.6 GeV*. this is already implied in the original IP work. This can be
justified if the motion of the flux tube in the model is taken to
constrained to be-a; /Nm—as discussed above — and also be nonrelativistic so that magnetic contributions will be sup-
the MC results have the similar constraints due to the SUressed. The comparison of this approach is shown in Figs.
rules in Egs.(12—(14). Therefore, any attempt to improve 10(c) and (d). By using the freedom to set the bare string
the IP model on the axis simply moves the position of thetension in the IP model, a reasonable description of both the
node further from the axis. The IP model is expected to beyround state and first excited state distributions can be
best for large values dR and is the reason for making the achieved. Here the dash-dot curves correspond to a compro-
above comparisons &=8. However, with smaller values of mise choice of bare string tension db2 which allows both
R, the results are still qualitatively the same with no indica-ground state and first excited state to be described simulta-
tion that the situation has improved Rsncreases from 4 to neously.
8.

Since the IP model is quite easy to use and is also, at
present, the only model capable of dealing with excited
states, it is of interest to try to locate a reason for its poor The attraction of the IP model is its extreme simplicity.
agreement with the MC data. Here we study the transverselowever, there are other models in which flux-tube profiles
profile of different components of the total energy density atcan be calculated. In Reff18] a model proposed by Baker,
the midpoint both on a lattice and in the IP model. In Figs.Ball, and Zachariase(BBZ), based on dual potentials, was
10(a) and (b) we show the contributions from the electéic  developed that is expected to be best for large valueR. of
and magnetid terms in Eq(5) from the lattice and from the Also for technical reasons it is very difficult in this model to
kinetic energyK and the potential energy of the IP model.  calculate the transverse profiles for small values-otvith-

The self-energy contributions to these electric and magnetiout introducing large errors. Since the overall scales, in both
contributions are expected to be small as argued abovéhe BBZ model and in the lattice calculations, are set by the
There does not seem to be any prospect of identifying the IRbserved string energy, it is not the absolute magnitudes that
model contributions to the kinetic and potential energy sepaare of interest, but more the comparison between the shapes
rately with the lattice electric and magnetic contributigos  of the profiles. In Fig. 11 it is seen that the two have similar
vice versa even invoking the freedom to set the scale in theranges and, surprisingly, the BBZ model does not seem to
IP model by choosing the bare string tension. The feature ofleteriorate significantly aR decreases from 8 to 1 lattice
the lattice data that there is a large cancellation between thanit. This comparison is done more quantitatively in Table
electric and magnetic contributions to the energy is known tdll. There the ranges of the lattice and BBZ energy profiles
have its origin 3,4] in the trace anomaly of QCD. This is not are fitted with the functionA+ Br;)exp(—Cry). For the lat-
present in a semiclassical model such as the IP model. Orteee case all the available data is used in the fit, i.e.,
way to interpret these results is to note that the IP flux tub®=<r;=<3 or 4 lattice units. However, for the BBZ model
model treats the flux tube as smooth whereas the empiricaifferent ranges of ; are considered. In case | the range is
lattice results show a rough color flux trajectory. approximately the same as that covered by the MC data. In Il

B. The dual potential model of Baker, Ball, and Zachariasen



55 STRUCTURE OF FLUX TUBES IN S(2)

TABLE lll. Comparison between the inverse rang€ (of the
energy profiles for the latticeMC) and the BBZ model of Ref18]
— by fitting with the form A+ Br)exp(—Cry). TheC are in units
of 1/a~8.3 fm~1. MC : C for the lattice data; BBZ | C for the
BBZ model over the range 0.2,6s4;<3.0,4.0; BBZ Il :C for the
BBZ model over the range 0.2,6+41<5.0,6.0; BBZ Ill : C for the
BBZ model over the range 1s0r;<3.0,4.0.

R 8 6 4 3 2 1
MC 1.197) 1.6013 1.948) 2.198) 2.32A1) 3.645)
BBZ | 1.051) 1.261) 1719 2.431) 3.501) 6.272)

I 1.111) 1.261) 1.551) 2.421) 2.451) 6.272)

M 1.132) 1.331) 1.613) 1.814) 2.471) 4.136)
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conclude that all the sum rules gt=2.4 are consistent with

a set of generalizedB functions with values of
b=—-0.35(2) andf =0.61(3). These nonperturbative values
are not in agreement with those obtained by the first two
terms in the perturbative expression. An extension of our
methods to largeB values would be of interest to study this
discrepancy as the coupling constant is decreased.

The distribution of the color fields around a static quark
and antiquark at separatidR has been explored. For the
symmetric ground state potentiéh,,), the results are in
agreement with previous studies. We also determine the dis-
tribution for the lowest gluonic excitatiofE,) for the first
time. For this excited state, the action distribution shows a
central node in its transverse dependence. The general fea-
tures of the energy distribution are an enhanced contribution
in the transverse energy and a flatter distribution with

the range is extended by about 2 lattice units and it is Seefp g features are compared with string inspired models and

that this leads to smaller values ©ffor the smaller values of
R. In case lll — probably the most realistic — the BBZ

model is restricted ta1=1.0, i.e., those values af; for

which it can be reliably evaluated, and alsp values upto

with intuition from sum rules. Although no comprehensive
model for the observed behavior is currently available, two
positive features emerge. Firstly, the Isgur-Paton mpb&|
predicts an energy profile that has a very similar shape to that

the maximum for the lattice data. It is seen that this last CasEt the electric field squarefl on the latticg Figs. 10c), (d)]
does indeed correspond quite closely to the trend shown byn4 secondly, the dual potential model of Baker, Ball, and

the lattice results.

Since the BBZ modelunlike that of IB is not a semiclas-

Zachariasen 18] predicts the correct trend for the shape of
the lattice energy profile even for small valuesRyfwhere

sical model and contains explicitly the trace anomaly, it Mayihair model should not be applicahl€able llI).
be possible to also make realistic predictions about the ac-

tion. This would be of considerable interest, since the value
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