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The spatial distribution of the action and energy in the color fields of flux tubes is studied in lattice SU~2!
field theory for static quarks at separations up to 1 fm. Special attention is paid to the structure of the color
fields associated with an excited flux tube with Eu symmetry. We compare our results with hadronic string and
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behavior, and to cross-check the methods used.@S0556-2821~97!02903-2#
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I. INTRODUCTION

Confinement in QCD is a nonperturbative phenomenon
and lattice gauge theory techniques are well suited to its
study. One of the simplest manifestations of confinement in
pure glue QCD is the potential energyV(R) between static
quarks at separationR which increases withR. To investi-
gate this in detail, it is possible to probe the spatial distribu-
tion of the color fields around such static quarks. This explo-
ration of the nature of the flux between static quarks has a
long history. Typical points of interest are the transverse ex-
tent of the flux tube and the nature of the color fields~i.e.,
electric or magnetic!. A hadronic string approach gives a
reasonable description of the interquark potential at large
separation. Here we explore this further by investigating the
distribution of color fields for gluonic excitations of this po-
tential and comparing our results with models for the flux
tube in this case also.

On a lattice the technique to explore the color field distri-
butions is to measure the correlation of a plaquetteh @here
defined ash5 1

2Tr(12Uh)# with the generalized Wilson
loopW(R,T) that creates the static quark-antiquark at sepa-
rationR. See Fig. 1 for an illustration. Locating the plaquette
at t5T/2, in the limit T→` the following expression iso-
lates the contribution from the color field at positionr from
the plaquette oriented in them,n plane:

f R
mn~r !5F ^W~R,T!h r

mn&2^W~R,T!&^hmn&

^W~R,T!& G . ~1!

These contributions are related in the naive continuum
limit to the mean squared fluctuation of the Minkowski color
fields by

f R
i j ~r !→

a4

b
Bk
2~r ! with i , j ,k cyclic

and

f R
i4~r !→2

a4

b
Ei
2~r !. ~2!

We shall wish to distinguish electric and magnetic color
fields with different orientations with respect to the inter-
quark separation axis~longitudinal—taken as one-axis! and
adopt the notation that

EL5 f 41, ET5 f 42,43, BT5 f 12,13, BL5 f 23,32. ~3!

It will be convenient to discuss combinations corresponding
naively to the action (S) and energy (E) densities of the
gluon field. These are given by

S~r !52~EL12ET12BT1BL! ~4!

and

E~r !5EL~r !12ET~r !52~EL2BL!22~ET2BT!. ~5!
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FIG. 1. The generalized Wilson loop of sizeR3T with the
plaquette located at timet, longitudinal coordinater L , and trans-
verse coordinater T .
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Note that since the color field contributions come from a
cancellation between the value in a static potential and that
in the vacuum, either sign is possible.

The color field distributions are quite difficult to measure
on a lattice because the correlation of Eq.~1! involves deli-
cate cancellations. Recent results@1# and @2# have concen-
trated on the simpler case of SU~2! color in order to achieve
sufficient statistical accuracy. It is expected that the salient
features of confinement in SU~2! are very similar to those in
the realistic case of SU~3!. Here we focus our attention on
the color field distributions atb52.4 for which the lattice
spacinga'0.1 fm should be sufficiently small for our pur-
poses. The action and energy densities are measured on a
lattice by using plaquettes of areaa2, and hence, do not have
a continuum limit asa→0. To achieve a continuum limit
would require to measure energy and action by using loops
of fixed physical size rather than plaquettes. In the following,
we quote our results in lattice units with the normalization as
given above in Eq.~1!.

Different strategies have been used to improve the signal
to noise in the lattice determination of the color fields. Here
we focus on one method, as described in Sec. III, which is to
create operators which produce ground state potentials with
very little contamination of excited states. As described in
the next section, we are able to achieve this using fuzzed
links and a variational approach. Because we wish to study
sum rules which involve sums over all spatial positions, we
do not employ multihit techniques such as those used in Ref.
@1#. We do not use, either, the proposal of Ref.@2# to treat
^hmn& in Eq. ~1! as a quasilocal average of the plaquette in
the correlation since, although it reduces the noise, it also
modifies the signal.

Lattice sum rules have been derived@3–5# which relate
the sum over all space of the plaquette correlation to expres-
sions involving the potentialV(R) and generalizedb func-
tions. These sum rules have been used in an attempt to ex-
tract suchb functions@6,7#. Here we consider a larger set of
sum rules and we make a careful evaluation of these sum
rules to extract the generalizedb functions and to validate
our methods. This is described in Sec. IV. A preliminary
account has been given in Ref.@8#.

We present our results for the spatial distributions of the
color fields in Sec. V. One feature that goes beyond previous
work, is that we also measure the color field distribution in
the lowest lying gluonic excitation of the static quark poten-
tial. This lowest gluonic excitation has nonzero angular mo-
mentum about the interquark axis and plays a role in hybrid
meson spectroscopy. Hadronic string models predict such
excited modes and agreement with the energy levels deter-
mined on a lattice has been found@9,10#. Here we are able to
explore the spatial distribution of this excited gluonic mode
to make more detailed comparisons with models. We have
also explored a higher gluonic excited state: the first excited
state with the symmetry of the ground state. In this case we
have been unable to extract unambiguously the color fields
associated with this state so we do not report on it further
here.

II. OPERATORS FOR STATIC POTENTIALS

To explore the color field distributions around static
quarks at separationR, we need to find efficient lattice op-

erators to create such states. Efficient here means having a
small contamination of excited states while still allowing a
good signal to noise for correlations of interest. We build on
the experience of studying the corresponding potentials@9#
and use an iterative fuzzing prescription to create the spatial
pathsPi of lengthR, where different levels of iteration of
fuzzing are represented byi . In detail, we use a number of
recursive iterations of replacing each spatial link by the pro-
jected sum of~4 3 straight link1 4 spatialU bends! and
then multiply these fuzzed links to make the spatial path
needed. The correlation of spatial pathPi at timet andPj at
time t1T then gives the generalized Wilson loopWij (T) —
see Fig. 1. We use a 163332 lattice atb52.4 for this study
with the SU~2! gauge group. For many purposes SU~2! color
provides an excellent test bed for QCD studies. In this work
the scale as set by the string tension corresponds to a lattice
spacinga'0.6 GeV21'0.12 fm. The data sample used
comes from a comprehensive study of 80 blocks~60 blocks
for R<3) of 125 measurements separated by four update
sweeps~three over-relaxation plus one heatbath!. Error esti-
mates use a full bootstrap analysis of these blocks.

The fuzzed link operatorPi to create a static quark and
antiquark at separationR with a color field in a state of a
given lattice symmetry will have an expansion in terms of
the eigenstates of the transfer matrix,

uR&5c0uV0&1c1uV1&1•••, ~6!

with the measured correlation of a generalized Wilson loop
given by

W~R,T!5^R0uRT&5c0
2e2V0T~11h21••• !, ~7!

where

h5
c1
c0
e2~V12V0!T/2. ~8!

We shall see that the contamination by excited states needs
to be minimized so thath!1, while, in order to retain a
reasonable signal to noise, we should like to achieve this
with T52. In order to calibrate the contamination by excited
states we show in Table I the results for the effective poten-
tial defined as

Veff~R,T!52 ln@W~R,T!/W~R,T21!#. ~9!

We measure the generalized correlation toT54 for R.3
and toT56 for R<3. The signal is too noisy at largerT
values to be a useful guide. We use a variational method

TABLE I. Potential energy values for the symmetricA1g case.

R Fuzz Veff Veff Veff uhu
levels T 3:2 T 4:3 T→`

1 2,13 0.37333~5! 0.37326~5! 0.37325~5! 0.010
2 2,13 0.56280~14! 0.56247~17! 0.56234~18! 0.026
3 2,13 0.68233~24! 0.68131~32! 0.68088~36! 0.046
4 0,16,40 0.77512~24! 0.77394~34! 0.77329~42! 0.053
6 0,16,40 0.93844~51! 0.93685~80! 0.93585~103! 0.065
8 0,16,40 1.09154~77! 1.08801~131! 1.08558~180! 0.100
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with a combination of paths with different fuzzing levels
chosen so that the effective potential is minimized for
T51. This combination is then used at allT and gives the
effective potential values shown in Table I. As an estimate of
the true ground state potential energy one could use the
T54 effective potential, however, this is an upper limit be-
cause of excited state contributions. Another estimate can be
made by assuming@11# that the change in effective energy
from T53 to 4, namelyDV5Veff(3:2)2Veff(4:3), isgiven
entirely by the contribution of one excited state with an en-
ergy differenceV12V0 determined by the variational analy-
sis outlined above. Definingl5e2(V12V0), this extrapolated
estimate will lie belowVeff(3:2) by DE/(12l) and this
value is shown in Table I labeled asT→`. The difference
between these two methods to extract the ground state po-
tential energy gives an estimate of the systematic error from
extrapolation inT. The potentials are the data points plotted
in Fig. 2.

In order to estimate the magnitude of the excited state
contamination in the state forT52, we use the same ap-
proximation of one excited state only forT.2. Then one has
thath2'DE/(12l)2. The values ofh shown in the Tables
are forT52 which corresponds to our operator having con-
taminationh at t5T/251, namely one time step away. We
see that for the symmetric~A1g) representation, the contami-
nationh is quite small.

We also study potentials between static quarks with glu-
onic excitations in theEu representation. For this case@12#
we needU shaped paths~actually the combinationu2t
with the extension in the transverse spatial direction!. For
this representation, we also need to extract the ground state,
and results from generalized Wilson loops are given in Table
II. Here we have used a single fuzzing level, but two differ-
ent values of the transverse extentd of theU-shaped paths.

As shown, the excited state contaminations are significantly
higher for this representation than for the symmetricA1g
case.

III. LATTICE EVALUATION OF THE COLOR FIELDS

To study the color fields in the ground state of the static
quark-antiquark at separationR, we need to evaluate the dif-
ference of the expectation value of a plaquette in that ground
state with its value in the vacuum:

f R~r !5
^V0uh ruV0&

^V0uV0&
2^0uhu0&. ~10!

This quantity is to be extracted from lattice observables us-
ing the geometry shown in Fig. 1. In terms of the decompo-
sition of our operators into eigenstates of the transfer matrix,
the measured matrix element of a plaquette att in the gen-
eralized Wilson loop of sizeR3T is given by

^R0uh tuRT&5c0
2e2V0TS ^V0uhuV0&1

c1
c0

3@e2~V12V0!t1e2~V12V0!~T2t !#

3^V1uhuV0&1••• D . ~11!

This clearly highlights the central problem which is that con-
tributions from excited state contaminations will be much
larger here than for the determination of the total potential
energy because of the presence of off diagonal terms~e.g.,
^V1uhuV0&). In order to extract the required quantity
^V0uhuV0&, we need to minimize the excited state contribu-
tions by takingT2t>1 andt>1 as discussed in the previ-
ous section. For the case whenT52 and t51, the excited
state contribution will have a coefficient given by 2h with
h evaluated atT52—as estimated in Tables I and II. For
example, to reduce the excited state contamination to&10%,
one needsuhu,0.05. The electric plaquettes are extended by
one unit in the time direction, however, so one needsT53 to
ensure a separation of at least one unit to obtain a sufficiently
pure ground state. We are also able to investigate the excited
state contamination directly by measuring the plaquette cor-
relation forT.3.

For oddT values, we evaluate the electric plaquette with
center att5T/2 and average the magnetic plaquettes over

FIG. 2. The energies of the potentials in lattice units for sepa-
ration R with an interpolation from Eqs.~15! and ~16!. The data
points are for the symmetric ground state~A1g representation! and
first gluonic excitation~Eu representation!.

TABLE II. Potential energy values for the gluonic excitation
with Eu symmetry.

R Fuzz d Veff Veff Veff uhu
level T 3:2 T 4:3 T→`

1 13 1, 2 1.4102~12! 1.3955~33! 1.3813~65! 0.24
2 13 1, 2 1.3484~11! 1.3346~25! 1.3218~49! 0.23
3 13 1, 2 1.3237~11! 1.3164~25! 1.3099~43! 0.16
4 16 1, 4 1.3157~9! 1.3094~20! 1.3018~41! 0.17
6 16 1, 4 1.3569~9! 1.3519~21! 1.3455~44! 0.16
8 16 1, 4 1.4341~11! 1.4282~27! 1.4200~62! 0.18
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t5(T61)/2. For evenT, we average the electric plaquettes
over positions with center att5(T61)/2 whereas the mag-
netic plaquettes are att5T/2.

For the sum rule study, we need the sum of plaquettes
over all space in principle. On the lattice, we sum the
plaquettes over all transverse space~a 16316 plane! for each
r L . The sum overr L is then approximated by selecting the
region within62 lattice units of the Wilson loop~i.e., from
r L522 to R12). We checked that this approximation did
not introduce any significant error since the missingr L re-
gion contributes noise and no signal to the correlation. Be-
cause we sum all plaquettes including those adjacent to the
generalized Wilson loop, it is not appropriate to use variance
reducing techniques such as multihit.

For our study at the center point between the static
quarks,r L5R/2, we average the plaquettes with a corner~or
side! at each value of the transverse distancer T along a
lattice axis.

IV. SUM RULES FOR POTENTIALS

We consider the static quark potential for separationR
which is defined asV(R) in lattice units. Then the color
fields associated with this pair of static quarks can be mea-
sured using plaquettes of appropriate orientation. Sum rules
have been derived to relate the sum over all spatial positions
of these color fields toV(R) and its derivative@5#:

21

b SV1R
]V

]RD1S052( ~EL12ET12BT1BL!,

~12!

1

4b f SV1R
]V

]RD1E05( ~2EL1BL!, ~13!

1

4b f SV2R
]V

]RD1E05( ~2ET1BT!. ~14!

Here the sum is over all space. The quantities on the right-
hand sides are defined by taking correlations of appropriate
plaquettes with the generalized Wilson loops as discussed in
the Introduction. Because the combination2E6B corre-
sponds to energy/action, we refer to these sum rules as ‘‘ac-
tion,’’ ‘‘longitudinal energy,’’ and ‘‘transverse energy,’’ re-
spectively.

The conventionalb function is defined asb5db/dlna
with b54/g2, whereg2 is the bare lattice coupling. By con-
sidering a lattice with different lattice spacings in different
directions, it is possible to define generalizedb functions. At
the symmetry point whereai5a, one such combination is
independent and is given byU2S5]bs /] lnat2]bt /]lnat
52b f in the notations of Refs.@5,13#.

The sum rules were derived@5# for torelons, where there
is no self-energy associated with the static quarks. For the
more practical case of the interquark potential between static
sources, a self-energy term must be included in each of the
sum rules — as shown above by termsS0 and E0. This
self-energy will be independent of the interquark separation
R and hence can be removed exactly by considering differ-
ences of the sum rules for two differentR values. Moreover,
it should be independent of spatial orientation about the
source and, hence, is the same for transverse and longitudinal
energy as shown above. These self-energy terms arise from
the contribution of each static quark line separately, thus we

FIG. 3. The color flux contributions in lattice units for separa-
tion R corresponding to the action (S) sum rule of Eq.~12! for the
static quark potential. The expressions for the left-hand sides de-
rived from the measured potentials as discussed in the text are
shown by the lines. The data points for the symmetric ground state
~A1g representation! are shown by squares (T53), bursts (T54),
and fancy squares (T55). For the transverse gluonic excitation
~Eu representation!, the data are shown by octagons (T53), dia-
monds (T54), and crosses (T55).

FIG. 4. The color flux contributions in lattice units for separa-
tion R corresponding to the longitudinal (EL) sum rules of Eq.~13!
for the static quark potential. The expressions for the left-hand sides
derived from the measured potentials are shown by the lines. The
data points withT53 are for the symmetric ground state~A1g rep-
resentation — squares! and first gluonic excitation~Eu representa-
tion — octagons!.
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shall refer to bothS0 andE0 as ‘‘self-energy’’ even though
S0 contributes to the action sum rule.

Our evaluations of the sum rule contribution over all
space are shown in Figs. 3–5 for the symmetric~A1g) and
transversely excited~Eu) potentials. To isolate the contribu-
tion from the ground state in each symmetry case, we need to
evaluate the color field sum using plaquettes with large sepa-
ration from the operators which create and annihilate the
static potential. As discussed above, using our variational
operators,T53 provides a reasonable approximation to
this—allowing a separation of one spacing between operator
and plaquette. It is important to explore the effect of any
possible contamination from excited states as discussed
above. The largest and, hence, best determined signal is for
the action sum rule. For that case, we are able forR<3 to
determine the color fields forT54 and 5 and our evaluations
are also shown in the figures. These set the likely size of the
systematic error from excited state contamination. For the
A1g case, the agreement with higherT values is good and
confirms that we have isolated the ground state by choosing
T53. For theEu case, however, such a contamination for
the action sum rule could be relatively large. This is consis-
tent with our estimates of the excited state contaminations
h given above.

We now discuss the evaluation of the left-hand sides of
the sum rules. One obstacle is the presence of the derivative
]V/]R. Since only discrete values ofR are measured, one
way forward @8# is to eliminate this derivative between the
three sum rules which still allows the generalizedb func-
tionsb and f to be determined. Here we study the sum rules
in a more comprehensive way by explicitly estimating the
derivative. From our lattice data for the static potentials, we
can find good interpolations~valid for 1,R<8):

V~R!A1g50.56210.0696R20.255/R20.045/R2, ~15!

V~R!Eu2V~R!A1g5p/R24.24/R213.983/R4. ~16!

These interpolations are illustrated in Fig. 2. Here we have
used the fact that the self-energy is the same for excited and
ground states, and the string model expectation that the ex-
cited state has an energy excitation ofp/R for largeR. The
coefficients ofR22 and R24 in these expressions are not
intended to have explicit physical interpretation — we just
require expressions to interpolate accurately inR.

From these expressions, we can evaluate the left-hand
sides of the sum rules and they are compared with our results
at b52.4 for the color flux sum over all space in Figs. 3–5.
We use the values of the generalizedb functions determined
previously@8#, namelyb520.35 andf50.61 as an illustra-
tion. After choosing values for the self-energy terms as dis-
cussed below, we find an excellent overall agreement. The
small discrepancies which remain are comparable to the sys-
tematic error expected from usingT53 to evaluate the color
sums. Indeed for the action sum rule, our evaluations with
T54 and 5 are also shown and these indicate that the esti-
mated systematic error is large enough to accommodate
agreement. The slope of the action sum rule versusR gives
directly theb functionb. A somewhat steeper slope than that
illustrated (b520.35) would fit better — particularly if the
T54 data are selected. A preferred value for this comparison
would beb520.33. This is compatible with our determina-
tion of Ref. @8# which quotedb520.35(2).

The perturbative expressions for these quantities in terms
of the bare lattice couplinga5g2/4p51/pb for SU~2!
color fields are@13#

b520.3715~110.49a1••• !, f5121.13a1•••.
~17!

The bare value ofa is 0.13, which gives next to leading
order perturbative values ofb520.395 andf50.85. The
effective coupling is expected to be approximately twice as
big which will decrease the perturbative estimate forf from
0.85 to'0.71 and improve the agreement with our nonper-
turbative result. Forb, however, such an increase ina will
make the agreement even worse by reducingb from –0.395
to '20.42. Thus a perturbative evaluation ofb is unreli-
able.

The b function has also been studied nonperturbatively
on a lattice by matching the measured potentials at twob
values. Between b52.4 and 2.5, this gave @9#
b520.277(4) and, in Ref.@14#, using five values ofb in
the range 2.35–2.55 resulted inb520.304(5). The value
determined here is the derivative atb52.4 rather than com-
ing from a finite difference. The qualitative features of the
two approaches are in agreement, however. A nonperturba-
tive study of scaling@15# from a thermodynamic approach
gave values ofb520.30 andf50.66 atb52.4, although
systematic errors are not easy to quantify since an ansatz for
the functional dependence was assumed.

The simplest assumption for the self-energy contributions
is that they are given by evaluating the left-hand sides, inter-
pretingV(R) asV(R)2V0 with V050.562. We find that this
is a reasonable approximation for the action sum rule since,

FIG. 5. The color flux contributions in lattice units for separa-
tion R corresponding to the transverse energy (ET) sum rule of Eq.
~14! for the static quark potential. The expressions for the left-hand
sides derived from the measured potentials are shown by the lines.
The data points withT53 are for the symmetric ground state
~A1g representation — squares! and first gluonic excitation~Eu rep-
resentation — octagons!.

1220 55A. M. GREEN, C. MICHAEL, AND P. S. SPENCER



with this assumption, we haveS050 which is the value used
in plotting Fig. 3. Using the same assumption for the two
energy sum rules, however, we find that an explicit self-
energy termE050.10 must be used to obtain the agreement
shown in Figs. 4 and 5. This self-energy should be the same
for longitudinal and transverse sum rules and we find agree-
ment with a common expression. A nonzero value arises
naturally in the derivation@3# of these sum rules.

The satisfactory agreement between the sum over
plaquette correlations and the sum rule expressions gives
confidence that we are able to measure the color field around
a static quark and antiquark. This opens up a study of the
shape of the color field distribution itself.

V. COLOR FIELD DISTRIBUTIONS

Since we have measured the plaquette expectation values
in the gluonic excited state~Eu), we can explore the spatial
distribution of the color field and make comparison with
models for the gluonic excitation such as string and flux-tube
models. This has been undertaken for the ground state
~A1g) previously@1,2#. Comparison with models is most ap-
propriate at largeR where stringlike behavior is expected.
Here we are able to reachR58 which corresponds to a
separation of order 1 fm. Unfortunately, for theEu symmetry
state, the contamination from excited states~here we mean
higher energyEu representation states! is significant—being
of order 30%~see Table II!. As an exploratory study, we
report our results usingT53 for the generalized Wilson
loop, since this is the largestT value with a reasonable sig-
nal. The color field distributions may then be interpreted as
applying to a state which is predominantly the required low-
est energyEu state, but with some contamination from ex-
cited states.

The full spatial distribution of different components of
electric and magnetic fields is a considerable body of data.
Because we find that all components are approximately
equal, we evaluate the combinations of color fields corre-
sponding to the average~the action! and to those differences

given by the longitudinal and transverse energy. These three
combinations are also appropriate for sum rule study because
they correspond to the three sum rules of Eqs.~12!–~14!. To
get at the essential behavior, we specialize to the midpoint
(r L5R/2) to minimize the effect of self-energy components.
Results for the transverse dependence of the color fluxes for
the action~S!, longitudinal and transverse energies (EL,T) at
R58 are shown in Fig. 6 where the first excited state~Eu)
case is compared with the symmetric~A1g) potential case. A
qualitatively similar behavior was found forR56.

We have also measured the longitudinal dependence of
the sum overr T which is illustrated in Figs. 7 and 8. Here the
effect of the self-energy contributions near the sources at
r L54 units from the center can be clearly seen for the com-
binations corresponding to longitudinal and transverse en-
ergy.

The interpretation of these results is facilitated by the sum
rules. Although the sum rules relate the sum of the color field
fluctuation over all space, for a stringlike model the longitu-
dinal dependence will be rather mild. The longitudinal pro-
files given by the contributions to the overall spatial sum
from each longitudinal slice~fixed r L and summed over
r T) show a fairly flat distribution inr L for the action sum
between the static sources with theEu case showing a
slightly more spread out distribution than theA1g case. A
similar behavior is shown by the energy sums after subtract-
ing self-energy components. Thus some intuition can be
gained about the color field sums over transverse space at the
midpoint r L5R/2 from looking at the left-hand sides of the
sum rules divided byR.

Consider an interquark potential given byV(R)
5e/R1KR1V0, where the coefficiente'20.25 for the
A1g potential ~this is the ‘‘Coulomb’’ coefficient! while in
string models we expecte5p for the first excited string
mode ~which corresponds@10# to the Eu case!. Then the
‘‘transverse energy’’ sum rule@Eq. ~14!# will relate the sum
over transverse energy fluctuations toe/R. This is consistent
with the much larger transverse energy seen for the excited
gluonic case~Fig. 8! compared to the symmetric ground state

FIG. 6. The color flux contributions corre-
sponding to the action (S), longitudinal (EL , left
plot!, and transverse energy (2ET , right plot!
sum rules of Eqs.~12!–~14! for the static quark
potential. These are shown in lattice units~with
a'0.6 GeV21) versus transverse distancer T at
the midpoint (r L5R/2) for separationR58. The
data are for the symmetric ground state~A1g rep-
resentation! and first gluonic excitation~Eu rep-
resentation!.
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potential~Fig. 7!. The other two sum rules suggest that the
action and longitudinal energy will have fairly similar con-
tributions~at r L5R/2 when summed overr T) for the excited
gluonic and ground state, since the left-hand side is propor-
tional to 2KR in each case. We do find approximately this
behavior for the integrals overr T as shown in Figs. 7 and 8,
although, as shown in Fig. 6, we see a flatterr T distribution
for theEu case than theA1g case. This flatter distribution in
r T for the excited gluonic case corresponds to a ‘‘fatter’’ flux
tube for that case.

Before analyzing in detail the distributions shown in Fig.
6, we need to estimate the size of any self-energy contami-
nation. SinceR58, the self-energy contributions atr L54
units from the sources are appropriate and these can be esti-
mated from the measured plaquette correlation at 4 units
from either source in the direction away from the other
source. These are illustrated from our data atR58 in Figs. 7
and 8 as the points withr L58. The self-energy contributions

here are clearly very small but, in this case, finite size effects
are potentially important since the spatial length of the lattice
is only 16 units. Using instead our data for the electric and
magnetic color field contribution withR52, 4, and 6, we
find that this self-energy contribution to the measured
plaquette correlation summed overr T is less than 5% of the
signal at the midpoint forR58. This implies that the self-
energy contribution to the action distribution is small, but
that the energy distributions, which involve strong cancella-
tions between electric and magnetic plaquettes could have
larger self-energy contaminations. This self-energy contribu-
tion is large enough~and has the correct sign! to explain why
the transverse energy for theA1g case is positive in Fig. 6
~which contains the self-energy component! whereas the sum
rule analysis described above suggests a small negative con-
tribution ~sincee,0).

A way to eliminate the self-energy contribution com-
pletely is to focus on the difference of theA1g andEu dis-
tributions, since the distributions of the self-energy will be
identical. Viewing Fig. 6 in this light, there is seen to be a
significant difference in the distribution inr T between the
excited gluonic state and the ground state and it is of interest
to compare this with models—the topic of the next section.

VI. MODELS FOR FLUX TUBE PROFILES

A. The model of Isgur and Paton

A bosonic quantized string will not be consistent in two
transverse dimensions. In order to render the string approach
applicable, Isgur and Paton~IP! @16# proposed a flux tube
model in which the string degrees of freedom are reduced by
considering a string made ofN equally spaced masses. This
discretization of the string makes the string self-energy finite
and this model then makes specific predictions although they
do depend in detail onN. The salient feature of the model is
that the excitations are transverse and so should be observ-
able in the transverse energy. This, indeed, is qualitatively in
accord with our results, since only the transverse energy sum
is greatly modified in comparing theEu state to theA1g state.
Furthermore, this is also seen directly from the plot of the
transverse energy profile (2ET) for the Monte Carlo~MC!
calculations in Fig. 6. In the next paragraphs it will be seen
to what extent this qualitative feature of the IP model com-
pares with details of these energy profiles.

In the IP model, when the string is discretized intoN
masses, each a distanceaIP5R/(N11) apart, it is conve-
nient to express the Hamiltonian in the form

H~ IP,N!5(
i51

N

Hi~ IP,N!5(
i51

N

~Ti1Vi !, ~18!

where

Ti5
pxi
2 1pyi

2

2m
~19!

and

ViÞ1,N5
bIP~N11!

2R

1

2
@~xi2xi21!

21~xi2xi11!
21y8s#,

~20!

FIG. 7. The dependence on longitudinal position (r L) of the sum
over the transverse plane of the color flux contributions correspond-
ing to the action, longitudinal (EL) and transverse energy (ET) sum
rules of Eqs.~12!–~14! for the static quark potential. Herer L is
measured from the midpoint for separationR58. The data are in
lattice units for the symmetric ground state~A1g representation!.

FIG. 8. As in Fig. 7, but for the first gluonic excitation~Eu

representation!.
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Vi51,N5
bIP~N11!

2R Fxi21 1

2
~xi2xi61!

21y8sG . ~21!

Herem is the mass of each of theN points andbIP is the
barestring energy. The two are related bym5bIPaIP . In this
part of the paper, for clarity, there is a notation change with
the earlierr L , r T now becomingzi , Axi21yi

2.
The energy profile associated with the pointzi on the line

connecting the two quarks has the form for the state
cn(IP,x1 , . . . ,xN ,y1 , . . . ,yN):

Ei
n~N,xi ,yi ,zi !5E )

jÞ i

N

dxjdyjc* ~ IP!Hi~ IP,N!c~ IP!.

~22!

The energy contained in a profile for a givenzi is then

Ei
n~N,zi !5E dxidyiEi

n~N,xi ,yi ,zi !. ~23!

In most of this workN53, where for the IP ground state
(n51),

E1
1~3!5E3

1~3!50.3445ET
1 and E2

1~3!50.3109ET
1

and for the first excited state (n52)

E1
2~3!5E3

2~3!50.3464ET
2, and E2

2~3!50.3071ET
2

where the total energy in staten is given by
ET
n5(na11a21a3)/m with ai52bIPsin(ip/8) being the IP

eigenfrequencies. In each case, the kineticKi
n and potential

Pi
n energies are approximately equal, e.g.,

K2
250.1762ET

2 and P2
250.1308ET

2 .

This shows that, in spite of the averaging over 2(N21)
coordinates (xi ,yi), the resultantEi

n ,Ti
n ,Pi

n are still very
much as expected from the basic simple harmonic oscillator
structure of the originalH(IP,N). In general,

DEIP~n82n,N!5ET
n8~N!2ET

n~N!5~n82n!a1~N!/m

5~n82n!
2~N11!

R
sinS p

2~N11! D

→
N→`

~n82n!p/R. ~24!

For N51,3 this is already a good approximation to the
N→` limit with DEIP(n82n,N)/DEIP(n82n,`)
50.90,0.97, respectively. Another point to note is that the
energy profileEi

n(N,xi ,yi ,zi) in Eq. ~22! is proportional to
bIP , so that, forr T50, it can be tuned to fit the correspond-
ing lattice result. However, the energy contained in a given
profile Ei

n(N,zi) in Eq. ~23! is independent ofbIP .
In the lattice calculation it is the energy and action densi-

ties that are measured, i.e., basically in units of GeV/fm3,
whereas the IP model gives the energyEi

n(N,xi ,yi ,zi) dis-
tributed on a series onN planes through the pointszi , i.e., in
units of GeV/fm2. To be able to compare the two it is nec-

essary, to smooth out theEi
n(N,xi ,yi ,zi) into neighboring

regions away from theN planes. This is most easily achieved
by defining anĒn such that

Ēn~N,x,y,z!5
Ei
n~N,x,y,z!

aIP
for S zi2 R

2~N11! D
<z<S zi1 R

2~N11! D . ~25!

In the following, it is Ēn that is compared with the MC
results. Figure 9 shows—separately for the ground state
(n51) and first excited state (n52) — the energy profile
predictions of the IP model withR58 andN51, 3 on the
plane passing through the center of the axis connecting the
two quarks. This illustrates the strongN dependence referred
to earlier with theN53 profiles being much larger than
those forN51. But this is expected, since their 3d spatial
integrals have the formET

n5(na11a21a3)/m for N53 and
na8/m for N51, where ai52bIPsin(ip/8) and
a852bIPsin(p/4). On these same figures the MC results are
also plotted for the total energy and its transverse compo-
nent, since the latter shows the qualitative features expected
from a string-based model. But at this stage it is premature to
compare the IP and MC results for a given state, since — as
in the sum rule case — the two approaches involve different
self-energies. Therefore, in Fig. 9~c! the profile differences
between the two states are shown. However, it is seen that
the IP predictions still do not correspond to the MC results.
Here the value of the string energy used in the IP model has
been the empirical value ofbsa

250.07 — but there is no
reason for the bare string energy (bIP) relevant to the IP
model to have this same value. Unfortunately, tuningbIP
does not help, since the radial integrals of the IP profiles are

FIG. 9. The energy density at the midpoint versus transverse
distance. The lattice data are atR58 ~usingT53) and are for the
total energy~solid squares! and transverse component of the energy
~open circles!. The predictions of the IP model are forN51,3 ~dot-
ted, solid!. The comparison is presented in lattice units:~a! For the
gluonic ground state~A1g): ~b! For the gluonic first excited state
~Eu): ~c! The differences (Eu–A1g) between the profiles in~a! and
~b!. @Compared with Fig. 6 — for convenience, the profiles~in
lattice units witha'0.6 GeV21) have been multiplied by a factor
of 103.#
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constrained to be'a1 /Nm—as discussed above — and also
the MC results have the similar constraints due to the sum
rules in Eqs.~12!–~14!. Therefore, any attempt to improve
the IP model on the axis simply moves the position of the
node further from the axis. The IP model is expected to be
best for large values ofR and is the reason for making the
above comparisons atR58. However, with smaller values of
R, the results are still qualitatively the same with no indica-
tion that the situation has improved asR increases from 4 to
8.

Since the IP model is quite easy to use and is also, at
present, the only model capable of dealing with excited
states, it is of interest to try to locate a reason for its poor
agreement with the MC data. Here we study the transverse
profile of different components of the total energy density at
the midpoint both on a lattice and in the IP model. In Figs.
10~a! and ~b! we show the contributions from the electricE
and magneticB terms in Eq.~5! from the lattice and from the
kinetic energyK and the potential energyP of the IP model.
The self-energy contributions to these electric and magnetic
contributions are expected to be small as argued above.
There does not seem to be any prospect of identifying the IP
model contributions to the kinetic and potential energy sepa-
rately with the lattice electric and magnetic contributions~or
vice versa! even invoking the freedom to set the scale in the
IP model by choosing the bare string tension. The feature of
the lattice data that there is a large cancellation between the
electric and magnetic contributions to the energy is known to
have its origin@3,4# in the trace anomaly of QCD. This is not
present in a semiclassical model such as the IP model. One
way to interpret these results is to note that the IP flux tube
model treats the flux tube as smooth whereas the empirical
lattice results show a rough color flux trajectory.

One suggestion is to interpret the energy density of the IP
model as reproducing the electric color flux only@17#. In fact
this is already implied in the original IP work. This can be
justified if the motion of the flux tube in the model is taken to
be nonrelativistic so that magnetic contributions will be sup-
pressed. The comparison of this approach is shown in Figs.
10~c! and ~d!. By using the freedom to set the bare string
tension in the IP model, a reasonable description of both the
ground state and first excited state distributions can be
achieved. Here the dash-dot curves correspond to a compro-
mise choice of bare string tension of 2bs , which allows both
ground state and first excited state to be described simulta-
neously.

B. The dual potential model of Baker, Ball, and Zachariasen

The attraction of the IP model is its extreme simplicity.
However, there are other models in which flux-tube profiles
can be calculated. In Ref.@18# a model proposed by Baker,
Ball, and Zachariasen~BBZ!, based on dual potentials, was
developed that is expected to be best for large values ofR.
Also for technical reasons it is very difficult in this model to
calculate the transverse profiles for small values ofr T with-
out introducing large errors. Since the overall scales, in both
the BBZ model and in the lattice calculations, are set by the
observed string energy, it is not the absolute magnitudes that
are of interest, but more the comparison between the shapes
of the profiles. In Fig. 11 it is seen that the two have similar
ranges and, surprisingly, the BBZ model does not seem to
deteriorate significantly asR decreases from 8 to 1 lattice
unit. This comparison is done more quantitatively in Table
III. There the ranges of the lattice and BBZ energy profiles
are fitted with the function (A1BrT)exp(2CrT). For the lat-
tice case all the available data is used in the fit, i.e.,
0<r T<3 or 4 lattice units. However, for the BBZ model
different ranges ofr T are considered. In case I the range is
approximately the same as that covered by the MC data. In II

FIG. 10. Contributions to the energy density at the midpoint
versus transverse distance. Comparison atR58 between theT53
lattice data for the color electric field~solid circles!, magnetic field
~crosses!, and the IP predictions for the kinetic energy~solid!, po-
tential energy~dashed!: ~a! For the gluonic ground state~A1g). ~b!
For the gluonic first excited state~Eu); and comparison between the
color electric fieldE ~solid circles! and the total energy for the IP
model—usingbIP5bs50.07 ~solid line!, bIP52bs ~dash-dotted!,
and bIP tuned to fit lattice data~dashed line!. ~c! For the gluonic
ground state (A1g) tuning factor 2.45 for the dashed line.~d! For the
gluonic first excited state~Eu) tuning factor 1.6 for the dashed line.
All profiles are in lattice units witha'0.6 GeV21.

FIG. 11. On a semilog scale, a comparison of the total energy
profile for the BBZ model of Ref.@18# ~solid line! and the lattice
predictions~solid circles! for R ranging from 8 down to 1 lattice
unit. All profiles are in lattice units witha'0.6 GeV21.
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the range is extended by about 2 lattice units and it is seen
that this leads to smaller values ofC for the smaller values of
R. In case III — probably the most realistic — the BBZ
model is restricted tor T>1.0, i.e., those values ofr T for
which it can be reliably evaluated, and alsor T values upto
the maximum for the lattice data. It is seen that this last case
does indeed correspond quite closely to the trend shown by
the lattice results.

Since the BBZ model~unlike that of IP! is not a semiclas-
sical model and contains explicitly the trace anomaly, it may
be possible to also make realistic predictions about the ac-
tion. This would be of considerable interest, since the value
of the action is much larger than that of the energy and so on
the lattice can be extracted with greater accuracy to larger
values ofr T and so serve even better in comparisons with the
BBZ model.

VII. CONCLUSIONS

We evaluated sum rules for the action, longitudinal en-
ergy, and transverse energy for a range ofR values. We

conclude that all the sum rules atb52.4 are consistent with
a set of generalizedb functions with values of
b520.35(2) andf50.61(3). These nonperturbative values
are not in agreement with those obtained by the first two
terms in the perturbative expression. An extension of our
methods to largerb values would be of interest to study this
discrepancy as the coupling constant is decreased.

The distribution of the color fields around a static quark
and antiquark at separationR has been explored. For the
symmetric ground state potential~A1g), the results are in
agreement with previous studies. We also determine the dis-
tribution for the lowest gluonic excitation~Eu) for the first
time. For this excited state, the action distribution shows a
central node in its transverse dependence. The general fea-
tures of the energy distribution are an enhanced contribution
in the transverse energy and a flatter distribution withr T .
These features are compared with string inspired models and
with intuition from sum rules. Although no comprehensive
model for the observed behavior is currently available, two
positive features emerge. Firstly, the Isgur-Paton model@16#
predicts an energy profile that has a very similar shape to that
of the electric field squaredE on the lattice@Figs. 10~c!, ~d!#
and, secondly, the dual potential model of Baker, Ball, and
Zachariasen@18# predicts the correct trend for the shape of
the lattice energy profile even for small values ofR, where
their model should not be applicable~Table III!.
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TABLE III. Comparison between the inverse ranges (C) of the
energy profiles for the lattice~MC! and the BBZ model of Ref.@18#
— by fitting with the form (A1BrT)exp(2CrT). TheC are in units
of 1/a'8.3 fm21. MC : C for the lattice data; BBZ I :C for the
BBZ model over the range 0.2,0.4<r T<3.0,4.0; BBZ II :C for the
BBZ model over the range 0.2,0.4<r T<5.0,6.0; BBZ III :C for the
BBZ model over the range 1.0<r T<3.0,4.0.

R 8 6 4 3 2 1

MC 1.19~7! 1.60~13! 1.91~8! 2.19~8! 2.32~1! 3.64~5!

BBZ I 1.05~1! 1.26~1! 1.71~9! 2.43~1! 3.50~1! 6.27~2!

II 1.11~1! 1.26~1! 1.55~1! 2.42~1! 2.45~1! 6.27~2!

III 1.13~2! 1.33~1! 1.61~3! 1.81~4! 2.47~1! 4.13~6!
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