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Statistical properties of the linear o model used in dynamical simulations of DCC formation
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The present work develops a simple approximate framework for initializing and interpreting dynamical
simulations with the lineas- model exploring the formation of disoriented chiral condensates in high-energy
collisions. By enclosing the system in a rectangular box with periodic boundary conditions, it is possible to
decompose uniquely the chiral field into its spatial averébe order parameterand its fluctuationgthe
quasiparticleswhich can be treated in the Hartree approximation. The quasiparticle modes are then described
approximately by Klein-Gordon dispersion relations containing an effective mass depending on both the
temperature and the magnitude of the order parameter; their fluctuations are instrumental in shaping the
effective potential governing the order parameter, and the emerging statistical description is thermodynami-
cially consistent. The temperature dependence of the statistical distribution of the order parameter is discussed,
as is the behavior of the associated effective masses; as the system is cooled, the field fluctuations subside,
causing a smooth change from the high-temperature phase in which chiral symmetry is approximately restored
towards the normal phase. Of practical interest is the fact that the equilibrium field configurations can be
sampled in a simple manner, thus providing a convenient means for specifying the initial conditions in
dynamical simulations of the nonequilibrium relaxation of the chiral field; in particular, the correlation function
is much more realistic than those emerging in previous initialization methods. It is illustrated how such
samples remain approximately invariant under propagation by the unapproximated equation of motion over
times that are long on the scale of interest, thereby suggesting that the treatment is sufficiently accurate to be
of practical utility.[S0556-282197)05803-1

PACS numbefs): 11.10.Lm, 11.30.Rd, 25.754

I. INTRODUCTION represented by a classical fieJ@—17]. The present work
seeks to provide a framework that may be useful for initial-
The possibility of producing and observing disorientedizing and interpreting such calculations by elucidating how
chiral condensate®CC'’s) in high-energy collisions of had- the commonly adopted simulation model behaves under the
rons and nuclei has stimulated considerable interest over thidealized conditions of statistical equilibrium, an aspect that
past few yearqfor a recent review, see Reffl,2]). The has not yet been exhibited in the literature. A practical out-
basic premise is that the collision generates an extended doeme of the work is the development of a simple and effi-
main of space within which chiral symmetry is approxi- cient approximate method for sampling field configurations
mately restored. If this happens, macroscopic pion fields mafrom a given thermal ensemble. The motivations for under-
be generated as a consequence of the subsequent nonequititking the present work are primarily twofold, as summa-
rium relaxation towards the normal state. Such isospinfized below.
aligned domains may manifest themselves in anomalous pion Since the linear- model(in its relatively unsophisticated
emission[3-5] of the type seen in the Centauro cosmic rayversion employing classical fieldfias been and still is the
eventy 6]. The experimental exploration of this phenomenonprimary vehicle for simulating the dynamics of DCC forma-
is of fundamental interest because it has a direct bearing ofion, it is important to understand its actual properties. Hav-
the mechanism of spontaneous chiral symmetry breakingng an insight into the statistical properties of the model
Efforts are well underway to search for the associated piomakes it easier to interpret the dynamical behavior observed
multiplicity fluctuations in proton-proton collisiori¥]. in the simulations. In particular, it provides a quantitative
In order to assess the prospects for such a phenomenon basis for assessing the degree of deviation from a mere adia-
actually occur and be detectable above the background dfatic evolution, a key issue for DCC formatiph8]. More-
other pion production processes, it is necessary to perforraver, knowing how the adopted simulation model behaves
extensive dynamical calculations. This is a daunting task bedander equilibrium conditions makes it easier to assess its
cause the chiral degrees of freedom should be properly enphysical utility, since any inherent shortcomings of the
bedded in the complicated environment generated in a highmodel may all too easily be obscured by the complexities
energy collision which evolves from being primarily partonic inherent in the dynamical evolution. Thus we are addressing
at the early stage to entirely hadronic in the course of thehe rather elementary issue of how the particular rather sim-
chiral relaxation process. Fortunately, the study of suitablelistic model in fact behaves in the context of numerical
idealized scenarios can yield valuable insights regarding theimulations, as opposed to issues concerning more refined
prospects for observing the effect. versions of the modelsuch as those including quantum ef-
Most dynamical studies have been carried out within thefects or partonic degrees of freedpmindeed, the work
framework of the lineawr model, treated in the mean-field should not be seen as an endorsement of that particular
approximation in which the chiral degrees of freedom aremodel as an accurate tool for DCC simulations, but is merely
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intended to make judgments about its adequacy easier the average field strength, the order parameec. 1V), and

make. (However, the method developed employed in oursubsequently turn to the properties of the quasiparticle de-

treatment is quite powerful and can be employed more gergrees of freedom associated with the spatial field fluctuations

erally, so in fact the work serves also as an instructive expotSec. V. An impression of the validity of the treatment is

sition of that method of analys)s. then gained by evolving samples of field configurations by
An additional motivation for the present work concernsthe exact equation of motioiBec. V). Finally, a concluding

the manner of initialization of the chiral fields used in the discussion is giveriSec. VI).

simulations. The common method consists in setting up a

spatial lattice and then simply picking the field strength at Il. THE LINEAR o MODEL

each site randomly from a suitable normal distribution. To set the framework for the subsequent developments
When one .proce.eds |n_th|s mannetr, the initial correlaﬂoqu start by briefly recalling the most relevant features of the
fqncUon IS '.” defmed, since the field streng_ths at any tWog, mal framework. The present study is carried out within

different lattice sites are uncorrelated. Effectively, one might, .\ aan-field approximation where the quantum field opera-

say that the correlation length equals the lattice spacing, buf, ¢ are replaced by their expectation values, thereby bring-
such a dependence on a numerical parameter appears phyiﬁi

; X g the treatment to the level of classical field theory. This
cally unacceptable. Moreover, that particular spatial depeng;pjified treatment is expected to suffice for exploratory
dence of the correlation function would hardly correspond t0-alculations. Naturally, the mean-field approximation is only
any physically plausible scenario. Although this kind of first step towards a,more complete description
shortcoming might be less important in many cases, it shoulg The basic object of study is then the chiral fieid
be a cause for concern in situations where instabilities are
present, such as in the DCC context. Indeed, the observed O(r,t)y=o(r,t)+i 7 a(r,t), )
pion spectrum is basically the Fourier transform of the cor-
relation function and this quantity is, roughly speaking,where the three elements of the vecterare the Pauli ma-
merely a magnified or stretched version of the initial corre-trices. Here the scalar field(r,t) and the vector field
lation function, especially in the hoped-for scenario of expo-z(r,t) are both real and can conveniently be combined into
nential amplification. It might, therefore, be useful to devisethe Q4) vector ¢= (o, ).

a physically better based method for initializing the field. In the lineare model[22], one introduces a simple local

Being able to sample configurations from a thermal eneffective interaction energy density:

semble of fields provides a conceptually simple way of char-

acterizing the initialization. However, by developing a con- A

venient approximate method for this task, we do not mean to V()= 733 Z(d)z_vz)z_ Hol, @

suggest that the early dynamics in fact leads to a thermal

form of the chiral field(the resolution of that issue must where¢ denotes the magnitude of thg4) vector ¢,

await specific guidance provided by partonic calculatipns

but merely to establish a much-improved method for initial- ) 8 s o

izing the dynamical simulations. P=d P= Zo $i(r,)*=o"+ @, 3
The scope of the present work is thus limited, as we are .

concerned primarily with problems that are relevant to theyjth j=0,1,2,3 referring to the four chiral directions. The

practical task of performing dynamical simulations with theinteractionV contains three parameteis; the strength of the

linear o model in the specific context of disoriented chiral symmetric termyp), the location of its minimum; and, the

condensates. Accordingly, it is not our intention to exploresirength of the symmetry-breaking term. As is commonly

the entire space of model parameters but rather, we considgpne, these parameters are fixed by specifying the pion de-

only one set parameter values close to those actually ems,y  constant, f. =92 MeV, and the meson masses,

ployed, which are adjusted to approximate the physical sc&y, =138 MeV/c2 andm.= 600 MeV/c2 leading to
nario encountered in nature where a small, but finite " 7 '

symmetry-breaking term is present. In particular, the present micz—micz
work is not intended as a contribution towards the explora- A= —21‘2_:20'14’ (4)
tion of the Q4)-symmetric case which has already been G

studied extensively, albeit mostly from more formal perspec-
tives[19,20. Indeed, while apparently quite a good approxi-
mation in the case of practical interest where a smooth cross
over occurs as a function of temperature, the developed ap-
proximation may be inadequate in the symmetric scenario H:micszz(lzo.ss MeVS. (6)
where a sharp phase transition is expected and, consequently,
where even quantitatively small imperfections in the treat-The precise values of the model parameters are immaterial,
ment may have a qualitative effect on the critical features. both in view of the simple nature of the model and, in par-
After a brief reminder of the relevant features of the linearticular, within the context of our present idealized study. The
o model(Sec. 1), we describe how thermal equilibrium can value for the hypotheticab- mass is the most commonly
be treated approximately by means of a standard linearizaadopted one; fom, we have used the weighted average of
tion procedure invoking the Hartree approximati@ec. lll).  the three observed pion masses, and for the pion decay con-
We then discuss and illustrate the statistical distribution ofstant we have simply taken two-thirds of the pion mass

Mo =3 o) g6 71 wev
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which gives a simple value vyithin the range of experimental ﬁzat2¢+)\[¢§+ < 6> +2< 5¢ﬁ> —vz]¢=H[r, (11)
data (the current values beinf),.+=92.4+0.26 MeV and - —

f0=84£3 MeV[23)). In deriving this equation, we have replaced the spatial aver-
The Lagrangian density is given by ages(-) by thermal averages - >, as may be justified for a
1 /1 1 system of dimensions larger than the correlation leritith
L(rt)= Z(hod)— = (heV b)2 fluctuations in different regions of the system are then inde-
(.9 ﬁgcg( 2( ) 2( ) pendent and can, therefore, be assumed to reflect the thermal

distribution from which the particular field was sampled
) (77 We shall use< 8¢?> to denote the diagonal elements of
the isotropic 3<3 tensor(de¢, 8¢, ), so that<sp?>=
<8¢pf>+3<5¢7> is the total fluctuatiort. Furthermore,
(8¢*5¢) vanishes by symmetry.
1 /1 1 A By subtracting the equation of motion for the order pa-
H(rt)= W(Elﬂz"— E(th b))+ Z((pz—vz)z— Hg), rameter, Eq(11), from the full equation of motiort9), it is
®) posslble to obtain approximate equations for the field fluc-
tuations,

A
- 7(#*=v?)*+Ho

The corresponding energy density is then

where the time derivative=14,¢ is the canonical conju- 1,20t _
gate of the field strength. [O+ pic]o4)=0, (12
The action generated by a given time evolution is given [O+ x2c* 5, =0 (13)
iR 1LY

by S= [drdtL(r,t). By demanding thaf be stationary with
respect to arbitrary variations of both the field strengthere the effective mass
&(r,t) and its first derivatives, one obtains the associateqiuxi”ary gap equations,
equation of motion,

@§ andu, are determined by the

A ufct=N(3¢3+<8p*>+2<8¢7>—0v?), (14

D¢+N*-v?) d=Ho, 9)
pict=N(@i+ <8¢%> +2<5¢>>—v?). (15

where[d=7%29?—%2c?A is the d’Alambert differential op-

erator, andr denotes the unit vector in thedirection. Since In arriving at this result, we have replaced products of two

the equation of motion is of second order in time, the evo|ujndiViduaI fluctuations by their respective thermal ensemble

tion of the system is fully determined once the initial values@verage valuesig; ¢~ < d¢;d¢;, >, and, furthermore,

of the field strengthp(r) and the associated time derivative Products containing three fluctuation factors have been con-

#(r) have been specified. tracted in the usual manngt5],

8¢ 8pjr Spjn~s<Ep; 6> Spjnt <E; Sbpjn> b
+<06¢jndp;> ;. (16)

Ill. APPROXIMATE TREATMENT

We now discuss how the chiral system can be treated in a

convenient approximate manner. For this purpose, we Conequationg(12) and(13) describe the fluctuations as indepen-
fine the system within a rectangular box and impose periodigent quasiparticles having the respective effective masses

boundary conditions. w) and u, , which in turn are given in terms of the field
fluctuations, Eqs(14) and(15). This self-consistent relation-
A. Linearization ship can be stated explicitly by invoking the expression for
Our starting point is the equation of motia@) for the the associated thermal equilibrium fluctuations,
field strength. It is natural to decompose the field: 73¢3 1 1
<8pt>=—>" — —p—
B(1,1)=P(t) + 5P(1.1), (10 77 0% ae’-1

where the first term is the spatial averages (), so that

(8¢)=0. The average part of the fieleh, is often referred to

as the order parameter, whereas the spatial fluctuations,

S8¢(r), may be considered as quasiparticle degrees of fregand similarly for< 8¢?>. The system is enclosed in a rect-

dom representing elementary excitations relative to the corangular box with the volumeQ)=L,L L, and periodic

stant field configuratiohl10]. The Q4) direction of the order boundary conditions are imposed. The wave veclo@re

parameter plays a special role and it it convenient to employhen quantized K,L,= 27K, with K,=0,+1,...,etc), so

a correspondingly aligned reference system, i.e., a system in

which ¢=(¢0,0) and 6¢=(5¢,5¢,). The thermal aver-

age <d¢S¢> is then a diagonal %4 tensor, as can be we call attention to the fact that in the present notation

demonstrated by elementary means. < 6¢>> denotes the variance of the field fluctuations in one of the
Taking the spatial average of the full equation of motiontransverse directions, whereas in Rdfs0,14 it represents three

(9) leads to an equation for time evolution of the order pa-times that amount, namely the sum of the variances in all three

rameterg [24], perpendicular directions.

2
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that the individual quasiparticle modes are enumerated by 409
(Kx,Ky,K,). The corresponding quasiparticle energy is de-
termined by the dispersion relatioa?=7%2c?k?+ u?c?,
where the effective masses and u, lead to the energies

eU( ande, respectively. Finally, the prime on the summation
sign indicates that the mode havikg-0 should be omitted
since it represents the order parameter rather than a spatial
fluctuation.

In Eq. (17), the symbol= indicates the thermodynamic
limit L—oo in which the quasiparticle modes form a con-
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tinuum. The fluctuations can then be expressed analytically F200_~ « - —"'/,,;’f;/j-’ e

in terms of the Modified Bessel Functidf,, as indicated. E ":ff:’.'/,’f’drf". L E
Generally, the fluctuations decrease as the effective mass in- 00 30 60 90 120 150
creases, for a fixed temperatuiie and <5¢j2>=T2/12 Order parameter ¢, (MeV)

when the effective masg; vanishes. The global approxima-

tion <5¢1-2>%(T2/12)(1+ wc?2T)exp(—uciT) is good FIG. 1. The effective masses) (solid) and u, (dashed, as
to better than 2%. functions of the magnitude of the order parametky, for a range

The treatment above has been carried out under the sin®f temperaturesT = 0, 40, 80, 100, 122.68=T,), 160, 200, 240,
plifying assumption of thermal equilibrium which suffices 300, 400,'50(.) MeV, calculated in the thermodynamic limit where
for our present purposes. However, it is interesting to notd"® PO size is largé, —co. For a temperature abovk, the two
that the results can be readily generalized to nonequilibriung{fective-mass curves start out gh=0 with degenerate values,
scenarios by simply replacing the thermal averages- by whereas belowT, they only exist if ¢, is sufficiently large. The

. . . corresponding starting points fqr; are connected by the dotted
the corresponding spatial average$. In this manner, the . . |
svstem of equations would be closed and a conc’e tuaIIcurve and, sincgy is then nearly independent &f only the curve
Y le d q_ | d it H . P th%r T=0 has been shown. The vertical arrow points to the vacuum
s!mp e_ ynamlca escription emer.ges.. Ow,ever’ S'_nce alue of the order parametet),,.=f,.=92 MeV, and the free
direct interaction between the quasiparticles is then ignore

' : i ass valuesuj=m,=600 MeVic? and u, =m_ =138 MeV/c?
any relaxation can occur only via the mean field, and they;o ingicated by the horizontal arrows. The locations of the corre-

accuraC)(/j of such an approach should, therefore, be carefully,onding points in the diagram are shown by the two solid symbols.
assessed.

of ¢o. The appearance qf|, considered as a function of

o, is nearly independent of temperature, except that each
Utilizing the result(17), the coupled equationd4) and curve terminates at the point where the corresponding

(15) for the effective masses can be solved for specified valvanishes. This limiting curve is indicated by the dotted curve

ues of the temperatur€ and the magnitudep,, provided on the interval (;) and it is elementary to calculate,

that these parameters are sufficiently large, and we then have

B. Effective masses

#=p =0. It should be noted that the effective masses are 2_ 5 ° T2 < 562 2 T ~#cTy (18
independent of the parametéd, since the symmetry- Po=v T - <o ~vi- 5(5+e ), (18)
breaking termH o is linear?

In Fig. 1 we show the resulting effective masggsand ,ufc“=)\(202—T2). (19

., as functions ofgp,, for temperatured up to well above
critical. At any temperature, there is always a physical solu-
tion to the coupled equatiori¢4) and(15) for the effective  This behavior continues until the temperature reaches the
masses whewryy=v. This is easy to see from E@l5): At  valueT,, the lowest temperature for which there is a solution
T=0, when the fluctuations vanish, we have to Egs.(14) and(15) for all values of¢,. For this particular
w?=\(¢p5—v?) and sou’ vanishes aipo=v and is posi- temperature both effective masses vanish fgp=0.
tive for larger ¢,; an increase of will always increase the Consequently, < 5¢12> =T3/12 and so T3=2v2 e,
fluctuations, and hence the mass. Moreover, we always have,=122.63 MeV with the adopted parameter valticghe
I degeneracy in the masseg= u, , is a general consequence
Since the field fluctuations and the magnitude of the ordeof the O(4) rotational symmetry that emerges f¢p=0 and
parameter contribute to the effective masses in qualitativelyt, therefore, remains &b is further increased, with the com-
similar ways, an increase of the temperat(gad thus the mon mass valug., increasing steadily. Since the effective
fluctuationg will permit a further decrease a#,, so that the
point at whichu, vanishes is moved to ever smaller values
3The special temperaturg, is here used to denote that unique
value of T for which the effective masses are when the order pa-
2This simplifying feature holds only when, v, andH are con-  rameter vanishes. It is occasionally referred to as the “critical tem-
sidered as the primary model parameters. Wheranishes it is  perature” and denoted., but we find this nomenclature unfortu-
often customary to readjust the other two parameterspate, since the transition from approximate chiral symmetry to a
A=m2c?/2f2=21.27 andv=f =92 MeV, and then the effective broken phase generally occurs at significantly higher temperatures,
masses change correspondingly. as we shall illustrate later on.
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FIG. 2. Effect of finite size on the effective masses. The effec- FIG. 3. The typical magnitude of the spatial fluctuations in the
tive masses are shown as functions of the temperature for eithdield strength,< 842>'2 as a function of the magnitude of the
$0=0, when the @) symmetry is restored, or fopo=",, the  order parameterg,, for specified temperatureb. 122.63(=T,),
physical vacuum value. Three different scenarios have been consid60, 200, 240 MeV. The system is enclosed in a cubic box of side
ered: either the thermodynamic limit of large volume in which the lengthL— < (solid curve$, L =8fm (dasheg, or L=5fm (dotted.
quasiparticle spectrum is continuo{s®lid curvg, corresponding to  The lower four curves display the fluctuations along the chiral di-
the scenario of Fig. 1, or a finite cubic box with side length rection of the order parameteb, while the upper curves represent
L=8 fm (dashed or L=5 fm (dotted, where the quasiparticle the total fluctuation. o
modes are quantized.

tuations are the same in all directions so that each of the
mass atpo=0 is given byudc*=N(6< 5¢>J-2> —v?), it be-  lower curves starts out at half the value of the corresponding
comes proportional t@ at high temperaturegyoc?~1.59T  upper curve. For larger values @, the relative contribution
for T>v. from fluctuations alongp decreases progressively, sineg

The results displayed in Fig. 1 have been calculated in thgrows much larger thap, (see Fig. L
thermodynamic limit,L—<, in which the quasiparticle
modes form a continuum. However, the systems of interest C. Energy
in connection with high-energy nuclear collisions have finite o . ]
volumes. The quasiparticle energies are then discrete and, as It iS instructive to examine the total energy of the system.
a result, the effective masses are modified. This effect idf iS obtained by integrating the energy dens®) over the
largest when the effective mass is small, i.e., near the criticafolume of the box:
conditions, because the absence of the constant mode in Eq. 1 1
(17) is then most significant, and it generally leads to smaller 5(t)=J drH(r,t)=Q<—h2¢2+ =h2c3(Vp)2+V) (20
masses. Figure 2 shows the temperature dependence of the 2 2
effective masses for eithep,=0 or for ¢o=f,. (the value

associated with the physical vacuymas obtained either in =Q(Ep+Egpt oV). (21
the continuum limit or for a cubic box with a side lengttof . _
either 8 fm or 5 fm. The total energy is conserved in time when the field is

For ¢o~0 and temperatures near critical, the effective€volved with the equation of motioi®). The energy is com-
masses are significantly reduced. As a consequence, the d@sed of the three basic contributions exhibited in the second
sociated critical temperature is increased to 154 MeV foexpression: one arising from the time dependence of the field
L=8 fm and to 172 MeV folL=5 fm. However, for tem- Strength, another associated with the spatial variation of the
peratures several tens of MeV above these thresholds, tHi€ld, and a third resulting from the interaction. In the last
effect is relatively small. The effect also disappears quicklyexpression, these contributions have been reorganized into
as the order parameter is moved away from zero and by th@ree different terms which we will now discuss in turn.
time it reaches its vacuum valug,,.=f,=92 MeV, there The first term is the bare energy density, i.e., the energy
is hardly any effect for even the smallest bax=5 fm). density that would arise if the field had no spatial variation,

The effect of the finite size on the fluctuations in the field ¢= ¢ and = i
strength is illustrated in Fig. 3. The upper curveg shl(/);/v the 11 \
typical magnitude of the thermal fluctuationss §¢<>)'7, _ 2 2 202 _
as functions ofp, over a range of temperatures, for the same Bo=gagal g %ot 7 (do—v7)"—H ¢°CO$(°) =Kot Vo.
three box sizes as in Fig. 2, while the lower curves show the (22
continuum result for the contribution arising from fluctua-
tions directed along the order parameifgr< 5¢ﬁ> 12 The  We have here introduceg, to denote the angle of disorien-
fluctuations are remarkably independent of the volume, extation, i.e., the angle between the four-dimensional order pa-
cept in the critical regionT~T, and ¢,~0, as just dis- rameter¢ anAd theo direction. The spatial average of is
cussed. Fokpy=0 the G4) symmetry implies that the fluc- thenoy= ¢ o= ¢oC0Sy,, and the corresponding mean mag-
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nitude of the pion field igrg= ¢oSiny,. In the last expression . 500 T

K, denotes the kinetic part &, andV, is the bare potential ‘:g
energy density. > 400 P
The second term in Eq21) denotes the energy density = r Ve (@) = (V)7

associated with the quasiparticle degrees of freedom, in the
approximation that these form a gas of independent particles,
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(24

FIG. 4. The effective potential energy density along theo
axis for a range of temperatures. The solid curves show the results
We have here invoked the general Fourier expansions abr a number of temperatures: 100, 12263T,), 160, 200, 240
&(r) and yA(r): MeV. For T<T, the effective potential curve starts at a certain
minimum value of¢y between 0 and. These starting points are
connected by the dotted curve, while the dashed curve shows the
¢(r,t)=2 ¢k(t)e“<", (25) bare potentialV, obtained when fluctuations are neglected. The
K arrows point to the minima o¥¢; for H>0 there is only a single
minimum (located atoy=f,), while for H=0 the degenerate
ground-state minima form the surface of the 4-sphere determined
Y(r,t)= 2 Y ()", (26) by ¢=v. The value of the effective potential corresponding to other
k orientations of the order parameter can be easily obtained by noting
that the directional dependence oN; is given by

— 3-3
The expansion coefficients are generally complex and are H docoso/h™c,

given simply in terms of spatial averages, 1
d=(p(rexp(-ik-r)) and g=(y(r)exp(-ik-r)). We CED-=Z3 Tk
note that the components witt~0 represent the order pa- ap Qik: ek/T—1
rameter, o= ¢ and = . Furthermore, the fact that the

hud - 2\4
chiral field is real imposes the relationgy = ¢»_, and xﬂ iz 3iK n +ZK n
3-3 2 21\2 1
= h c® 2m%hSo | n N T
The third term in Eq.21) corrects for the fact that the (29)
quasiparticles in fact interact via the fourth-order term in
V: for each of the four chiral directiong with rET/,ujcz. It

can be expressed analytically in the continuum limit, as in-

N 3 N dicated. Furthermore, the thermal equilibrium value of the
SV= 7 <5¢4>_2<5¢2>2_42 <5¢j2>2 ~— Z<5¢4>_ correction tgrm is quite well represented by its Gaussian ap-
j=0 @7 proximation:

A
, , , <OV>~— (< 8p?>2+2<5pf>2+6<5¢7>7). (30)
The last result can be obtained by using the Gaussian ap- 4

proximation to expres$d?) in terms of squares of qua- o .
dratic terms. In the last expression in Eq@28) the energy has been split

The energy of the system can be calculated as a functiolto the kinetic energy associzatedsvxéith the time depgndence
of the order parameter, assuming that the quasiparticle d&f the order parametei o= ;/2h°c”, and the remainder
grees of freedom are in thermal equilibrium. The resultingWhich can be regarded as an effective potential for the order
energy density is parameter:

Vi(éo.x0) =Vo+ <Egp>+<6V>. (31
E(, ) = Eo( 0, b0 X0) + <Eqp> (o) + < V> (¢bo)
This effective potential has been plotted in Fig. 4 for the

=Ko+ V(o x0), (28) particular situation when the order parameikiis directed
along theo axis, for a range of temperatur@s The direc-
where we have exhibited the dependence of the individudional dependence oW¥/; is simply given by the term
terms on the various parts of the order parameter. Here thid ¢qcosyo/A3c®. At zero temperature the effective potential
thermal equilibrium value of the quasiparticle energy densitycan only be displayed for order parameters whose magnitude
is given by ¢y exceedv, since only then can the effective masses be
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calculated, as explained in Sect. Ill B: For smaller values obver the four-dimensional Fourier amplitudgg and ¢, [see

¢o some of the low-energy quasiparticle modes are unstablggs. (25) and (26)]. If the integration over the field fluctua-
and so have no well-defined thermal equilibrium. As thetjons (i.e., those amplitudes havirg#0) is performed, the
temperature is increased, the domain of stability extends eveemaining integrand is the statistical weight; expressing
lower towardsp,=0. The limiting curve connecting the end the relative probability for finding the system with a speci-
points of all the subcritical curves is determined by the confied value of the order parameter. In order to derive an ex-
dition thatu, vanish, implyinguf=X\(20%~T?). The result  pression fo;, we have replaced the state-dependent cor-
is shown on the figure as the dotted curve betwegr0  rection term 6V [Eq. (27)] by its approximate thermal
and ¢o=v. average< 8V> [Eg. (30)], for each value &, ¢) of the or-

If H were zero the effective potential would havé4D  der paramete(it depends only orp,). The integral over the
symmetry and its minima would then form a degenerate surguasiparticle degrees of freedom can then be performed and
face of a 4-sphere. The presence of the linear symmetryyields the quasiparticle partition functiof,, (which also
breaking term—Ho, tilts the potential towards the direc-  depends only o).
tion and, consequently, there is only one minimum for any This quantity factorizes into contributions from each of
given temperature and it is located on the positive part of thehe four chiral directionqup:szgig where
o axis. The minima of the effective potential move gradually
towards larger values of the order parameter as the tempera- _ . _ 0
ture is increased. In this respect, the results are similar to the zh=1I' (f dwﬁ”d&k”)e"z«fp”
behavior of the energy of nuclear matter as a function of the K
densityp (see, for example, Ref25]). However, while the w o )
energetics alone thus favors ever larger values of either ~H' (f ekdcﬁf dnk>e53p”. (39
p as the temperature is raised, the proper incorporation of the K 0 0
phase spacéy means of the appropriate entrogyrns the

picture around, as we shall now see. Since the complex Fourier amplitude$’ and ¢ are sub-
ject to symmetry relations undée— —k, as already noted
IV. THE ORDER PARAMETER above, is it more convenient to use the representation in

terms of trigonometric functions, Eq$46) and (48). The
We can now consider the distribution of the chiral field in different wave numbers are then fully decoupled, and for
statistical equilibrium at a given temperatufe Since the eachk the integration variables are tljpositive amplitude
equation of motior{9) is of second order in time, we need to C, and the associated phasg, as indicated in the last
specify both the field strengtib(r) and its time derivative expression above. The phases are unimportant here since
Y(r)=nha.p(r) in order to fully characterize a state. As we they each merely contribute a factor ofr2Moreover, the
have already exploited above, the quasiparticle degrees @bmbinationn,= ¢,C2/%3c® can be interpreted as the aver-
freedom can be regarded as a Bose-Einstein gas having th%[ge number of quanta in the moki¢see Eq(47)]. Since we
mal distributions determined by their reSpective effeCtive\Nant to take account of the quanta| nature of the quasiparti_
masses, in the appropriate domaingdgf. Their behavior can  cle degrees of freedoifsee VA1), we replace the continu-
t_hen be calculated once the order parameter has been spegjs integral ovem, by a discrete sum over the possible
fied. integer values of the occupation number, thereby obtaining
the standard expression for an ideal Bose-Einstein gas:
A. The partition function

by considering the partition function for the chiral field. It is
obtained by summing the canonical weights for all the pos-
sible states, T
= f
T

It is natural to start the discussion of statistical properties 2(0) / - e T , T o1
~ e Mk€k = 1—e %k
B | 3, [ a-e s

35)
2= [ Dipre- O

=11 (Jd4'ﬂkd4¢k
K

We have used the fact that the quasiparticle energy is addi-
tive, EQ=Synce. Furthermore, f,=1+f, where
fi=(e«'T—1)"1=<n,> is the mean number of quanta
the chiral directionj) having a wave number of magnitude
(32 k,2 and the czgrresponding energs, is determined by
~ 4.0 44 _ € =ﬁ2C2k2+,u,-C4.
j d fd ¢ exil — (Q/T)(Eot <oV>=)]2q ‘ It follows thallt the free energy density of the quasiparticles

; — () i
is qu—E]-qu with

exd — (Q/T)(Eg+ 6V+Eg)]

= f d*yd*d Wr( e, ), (33

- T L1 -
Fl=——Inzl==2>" [ef—T(fInf —finf
where€ is the total energy of the system given in E(20) ap Q- P Q; Ladfi= T(Tdnfi = fidnfi ]
and (21). The functional integral over all states

((r), () has first been expressed as a multiple integral =<EG>-Ts). (36)
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In the resulting expressiors EJ)> is the average thermal B. Contact with other approaches

energy density of the quasiparticle modes associated with the The present semiclassical treatment of the lineanodel
chiral directionj, Eq. (29), andS{)’ is their entropy density. s hoth conceptually and practically simple, but its quantita-
The total entropy density at the temperatufeis then tive utility of course depends on how well it emulates the
ST=S”T+ 3St whereS”T((po) represents the entropy density properties obtained with more refined treatments.

of the field fluctuations along the direction ¢f [26], Within the narrow context of the present study, namely
the preparation of chiral field configurations for use in dy-
1 o namical simulations of DCC formation, the most relevant

S”Tzﬁ Ek‘,' (f‘klnf‘,‘(— f‘l‘(Inf‘J() (37)  reference treatments would be those invoking more standard

renormalization schemes in conjunction with Hartree factor-
ization technique$11,15. However, for practical reasons,

1 (> de these quantal approaches retain only the leading order in a
= 733 | o2 6(62—Mﬁ04)1/2 1/N expansion and so it is less straightforward to assess the
He accuracy of the particular manner in which divergencies are

avoided in the present approach. The situation is well illus-

X[f(e)Inf(e)—f(e)Inf(e)] (39  trated by the behavior of the critical boundary, the curve

along which the effective pion mass vanishgs,=0. This

_— ) . ___curve starts athg=v at zero temperature. In the treatments
and the contribution to the entropy density from fluctuations

. iUl SN cul of Refs.[11,15 the curve attains the valug,=0 at the
in a perpendicular directionS(#o), can be calculated To=+3v. If a similar 1IN truncation were made in the
analogously by replacing with w, .

. ' . ) . present treatment, the identical value would be obtained.
_Itis evident from the display of the effective potential, 5 ever, our treatment makes nd\léxpansion and instead
Fig. 4t t:at trf]?hene:jgencs alonte WﬁUId favorthrathetr larg ields To= J2v. Itis interesting to compare this value with
magnitu t'esl ot i.OL er piaramﬁ er.l owever, the tin rofpy e result obtained by Tetradis and Wetterich who have made
quasiparticles is higher at small values ¢4, since the ef- a more general investigation of the temperature dependent

fective masses are then smaller, for a given temperé‘tureeffective potential ing* theories with a new method based

This interplay between energy and phase space is conves : . . . .
. > T 9. . ) n average field$20]. For the dimensionality of interest,
niently quantified in the statistical weigfsee Eq(33)] N=4, their numerically determined critical temperature is

To~+2.0v which is in very good quantitative agreement
_ e £ SIT . ;L with the result of the present treatment.
WT(f’@_f D(y'.¢')e 54(? @ 54(15 i’) With regard to the behavior of the equilibrium value of
(390  the order parametap, (the solid curve displayed in Fig)6
recent preliminary and unpublished results obtained with the

_ -~ guantum density matrix approaf®8] display a qualitatively
~ +Vo+<6V>+ o X

exfL— (/M) (Kot Vot <oV +Fop)] similar behavior, although the decreasedgf as the system
=exd —(Q/T)(Kog+F1)] (40)  is heated proceeds at a somewhat slower fiage the cross

over from the broken to the restored phase is gentWhile

- the rough agreement between the two types of calculation
We have used the decompositidt) of the total energy and suggests that the present implicit renormalization scheme is

replg_cedav by Its thermal_averag& V> which causes the reasonable, detailed quantitative comparisons with the meth-
partition function to factorize. In the last expression, we have

! ) ods of Refs[11,15 would be less informative at this point

introduced the free energy density for the order parametebecause of the significant effect of theiNL{runcation.

Fr(#)=V1(¢o.xo) = TSr(do) . I Furthermore, as will be discussed in Sec. IV C 2, the tem-
The free energy density is illustrated in Fig. 5 for a range erature at which theo mass exhibits its minimum

of temperatures above which the trend is obvious. Since th ~240 MeV) is in good accordance with an estimate

entropy density of a free gas at fixddgoes up when the TX~226 MeV) made by Pisarski based on a gauged linear

particle mass is reduced, the entropy provides a restorin )r(nodel[29]

force towards symmetryrecall that a reduction of the order X

arameterwp, leads to smaller effective masseAs a result Finally we note that the present approach and those of
pare [0 - ' Refs.[11,15 all invoke a Hartree factorization and it would,
for increasing temperatures the minimum of the free energ

density approaches,=0, but sinceH is finite it always ¥herefore, be interesting to undertake a study of how impor-

remains on the positive part of tleaxis. As the temperature ']Eant this key approximation is. This issue remains open for

. s . uture study.

is reduced, the minimum i+ moves smoothly outwards,

with the most rapid change occurring neébs=220 MeV.

The resulting behavior is shown by the solid curve in Fig. 6

which will be discussed below. The preceding analysis implies that the statistical weight
W (3, @), which is defined on the eight-dimensional phase
space of the order parameter, in fact depends on only three

“The importance of the quasiparticle entropy in determining thequantities: the speeg,=|#{, the magnitudep,=|¢|, and
statistical properties of the model was already emphasized bthe disalignment anglg,. Moreover, since the entropy de-
Bardeen and Moshg27] a decade ago. pends only on the effective masses, which in turn are deter-

C. Distributions
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FIG. 5. The free energy densify(¢) along thes axis for a

Order parameter ¢, (MeV)

FIG. 6. Temperature dependence of the order parameter. The

range of temperatures. The solid curves show the results for a nunmost probable value ap, the magnitude of the order parameter, in
ber of temperatures. FAr<T, the curve starts at a certain mini- the standard model whet¢>0. In the limit of a very large box,
mum value of the magnitude, and these starting points are con- L—o (solid curvg ¢ is constrained to the value for which the free
nected by the dotted curve, while the dashed curve shows the resinergy density has its minimufsee Fig. 8)]. The bars show the
obtained when the temperature is neglected. The arrow points to tHeall width at half maximum of the thermal distribution @f, in the
minima of F1_, and for the finite temperatures the location of the system withL=5 fm; those forL=8 fm are about half that size

minima are indicated by the solid dots.

(see Fig. 7. The open dots show the centroids o= 0 for the box
with L=5 fm.

mined solely by, the dependence of the free energy on the

direction of ¢ arises only through the symmetry-breaking
H term in the interactiotv [Eq. (2)]. Consequently, the cor-

responding projected probability distribution factorizes,

PT(%:‘f’o:Xo)EJ d4fJ d*¢’ 6(4o— o)

X 3(o= o) 3 xo— X)) Wr(¢ ., @')
=P (o) P 4(b0) P, (d0o; Xx0)

~ P3PS X oW (0, b0, X0)- (42)

the time evolution of the order parameter is therkK>
=4T, as would be expected in four dimensions. The mean
speed is< o> = V9 7k/8.

Considered as a function of the four-dimensional order
parameterg, the probability density has a maximum where
the free energy has a minimum, as is evident from B6).
However, the Jacobian facter ¢3 associated with the pro-
jection from ¢ to ¢, increases the most probable value of
the magnitudep,. This effect depends on volune, as is
illustrated in Fig. 6. The results for a finite box with
L=8 fm (dashed curveare nearly identical to those ob-
tained forL—o0, while L=5 fm (dot9 leads to a more sig-

Here ¢3 and ¢3 are the Jacobians associated with the transnificant increases i, at the higher temperatures. The most

formation from the four-dimensional vectoig and ¢ to
their magnitudesy, and ¢,, respectively, and shy, is the

rapid increase o, occurs neail =200 MeV which is well
above the critical temperatuiig, (arrow) at which the effec-

Jacobian arising from the three-dimensional nature of thdéive masses drop to zero. We finally note that for relatively

space perpendicular to the order paramebefFurthermore,
the three normalized probability densities are given by

O Y
P (o) :Nwlﬁgexf{ 533 2—-|0-) , (42)
1
P¢(¢O)ZN¢¢83XF{_Q(?VT(¢0:XOZO)_ST(¢0)”,
(43

) Q H
P.(é0:x0) :NX(¢0)S|n2XoexF{ 533 ?¢0(1—00W0)) :
(44)
For the normalization constants we havglz 2«2, with the

convenient  abbreviation x=T#3¢%/(Q, and /\/;1
=(ml&)11(&€)exp(=§), with E=H e/ .

The kinetic partP (o), is the projection of an isotropic

low temperatures, the Jacobian causes the most probable
value of ¢, to slightly exceed the vacuum value.

The directional distributionP, (¢¢; xo), Which depends
parametrically on the magnitudg,, grows broader at high
temperature where, decreases. In the temperature range
considered here, up to several hundred MBY/( x,) is well
approximated by the projection of a three-dimensional nor-
mal distribution with a total variance of 8/and the average
magnitude of the disalignment anghg, is then <yg>
~\/8Im&.

It is interesting to note that although the free energy as-
sociated with the special case Bf=0 has a qualitatively
different appearance, displaying anf4psymmetric surface
of degenerate minima, the corresponding curve for the most
probableg, largely exhibits the same behavior as observed
for the finite value oH when finite volumes of nuclear size
are considered, as illustrated in Fig. 6 by the open dots. This
remarkable feature is due to the statistical fluctuations which,

four-dimensional normal distribution having a total variancehen combined with the bias due to the Jacobian fagtpr
of <y3>=4«. The average kinetic energy associated with[see Eq/(43)], cause the behavior &(¢,) to become rela-
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FIG. 7. Distribution of the magnitude of the order parameter
For a cubic box of side length=8 fm is shown the probability
density for the magnitude of the order parametefgp,), for a
range of specified temperatur@s(indicated, obtained either by
scaling the continuum resulsolid curve$ or by quantizing the
quasiparticle mode&ashed curves

tively insensitive to the value ofi. Of course, as the box

size is increased,.—«, the fluctuations will subside and

P(¢,) will become narrowly peaked around the lowest mini-
mum of the free energy. This somewhat academic case
discussed further in Sec. VI C.

1. Distribution of the order parameter

For any finite volume(), the order parameter exhibits
fluctuations around its most probable value. The full width a
half maximum of theg, distribution is shown by the hori-
zontal bars in Fig. 6 for the smallest bok €£5fm) where
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FIG. 8. The joint distributiorP(¢g,xo). The projection of the
probability densityP(¢) onto the variablesp, (the magnitude of
the order parameteand y, (the disalignment anglés displayed as
a function of og= ¢oC0Syy and my= poSiny,, for a cubic box of
side lengthL=8 fm. For each temperaturg, the solid dot indi-
‘cates the location of the maximum Bf ¢, xo) and the solid curve
traces out the half-maximum contour, obtained by scaling the con-
tinuum results. For the temperatures 200 and 240 MeV is indicated
the corresponding result of quantizing the quasiparticle modes
(dashed contours and open centroid gots

of little practical import. For example, foF=80 MeV (the
lowest temperature shown in Fig) te distance from the
centroid (at ~91 MeV) to the boundaryat ~69 MeV) is
gver ten times the dispersion of the distribution
(=2 MeV). Thus, for any temperature, the distribution
P4(o) is sufficiently narrow to make incursions into the
respective unstable regime extremely unlikely.

A more global impression of the statistical distribution of
tthe order parametap can be obtained by considering a con-
tour diagram of the projected probability density

P(¢0:x0)=P4(b0) P,(#0;x0)- Such a plot is displayed in

the fluctuations are the largest. The relative smallness of thE9- 8 for @ box withL =8 fm. The abscissa is the projection
fluctuations indicates that the order parameter is distributedf the order parameter onto ther axis, co=¢ o
within a rather limited range of values. This feature is further= ¢ocosy, and the ordinate is the magnitude of its perpen-

illustrated in Fig. 7 which depicts the entire distribution,

dicular componentsro= ¢oSiny,. For each temperature, the

P4(#o), over a range of temperatures, for a cubic box withdots show the location of the maximum and the half-

side lengthL=8 fm, which is our standard scenario. The

maximum contours are traced out. The solid contours and

solid curves in Fig. 7 have been obtained by scaling thejots refer to the continuum treatment, whereas the dashed
continuum results to the finite volume. The dashed curvegontours and the open dotshown for two temperatures

show the effect of properly quantizing the probldire.,

only) are obtained with a quantized treatment, which is seen

summing over the discrete modes rather than integratingto have little effect. The profiles in Fig. 7 are the projections
The effect is very small, because the distributions are peakegf p( ¢, x,) onto the magnitudep,. It is evident from the

well inside the respective domains of stability.
For small temperatures, the distribution is narrowly
peaked near the vacuum valyg,.=f, (indicated by the

above results that the(@ symmetry is far from restored at
the temperatures expected in the planned high-energy
nuclear collisions. Instead the order parameter is in fact dis-

arrow). As the temperature is increased, the distributionyributed within a fairly limited domain around the axis,
broadens and gradually begins to move inwards towardgth both its magnitudes, and its angle of disalignment

smaller values oth,. The width of the distribution increases
from zero at T=0, exhibits a maximum near
T~220 MeV, and then slowly shrinks 8s—<. The some-

what counterintuitive decrease of the fluctuations at high

Xo exploring only rather narrow ranges.

2. Distribution of the effective masses

temperatures is due to by the fact that the growing thermal The effective masses are functions of the magnitude of

fluctuations cause the interaction to become progressive
more repulsive, causing the effective potentiglto become
ever more confining.

We recall that for low temperatures< T, our treatment

lthe order parameteg($o) andu, (¢o). Consequently, the
thermal fluctuations in the order parameter will cause the
effective masses to fluctuate as well. Since their distributions
may be of some interegsee Sec. V ¢ we consider briefly

can only be carried out above a temperature-dependent mirthe corresponding probability densities for the effective

mum value ofg,. As it turns out, this principal limitation is

masses,
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entirely decoupled from the other degrees of freedsae
700 Frrrrr 17 o iy r T T TTTT [rrrr 17T rIrT] E 42 Th . . I | h T
£ Most probable masses g.(42)]. Thus it is elementary to sample this quantity.
<% 600 F = The most complicated sampling concerns the magnitude
% E ] o, due to the intricate structure of its probability distribu-
S 500 E tion, as discussed above. However, the numerical effort re-
> a00F — E quired is quite modest. The most efficient method requires a
2 . ——- precalculation of the effective masses as functionggffor
7] r My . . . . .
g 300 T - the particularT of interest. This is quickly done by proceed-
o y _}_,,-}——" ] ing as described in Sec. Il B. Thg-independent part of the
& 200 £ _ %__,——I"" E effective potentialV1(#(,0), can then be obtained together
% 100 poE B with the corresponding entrop§ (o). In effect, the prob-
. To T, 7 ability distribution for ¢, can be pretabulated® ,($o) [see
o L 1  JR DI ZHTNE Eqg. (43)], and it is then a numerically trivial task to sample
0 50 100 150 200 250 300 bo.

Temperature T (MeV) Once the magnitudey, has been selected, it is straight-

FIG. 9. The most probable effective masggs(solid) and u, forward to sample th_e dlsahgnment anng_usm_g either the
(dashedlare shown as functions of the temperatiifavith the error ~ €Xact form (44) or its Gaussian approximation. In order
bars indicating the full width at half maximum of the distribution t0 orient ¢ in the @ subspace, there remains the
resulting for a box with a side length df=8 fm. The results task of selecting the remaining (8 spherical angles
obtained by scaling the continuum results are indistinguishable}y and ¢, upon which the order parameter is given

from those of the corresponding quantized treatment. by &= (oCON0, hoSINXESINTCOSPy, hoSINXESINToSingy,
$oSiNyCOSy).
P (pc?)= J d* P() o (ho)C®— uc?),  (45) V. THE QUASIPARTICLES
and analogously for P”(,ucz), where P(¢)= We turn now to the discussion of the quasiparticle degrees

P (o) P, (b0:x0) is the probability density for the order of freedom associated with the spatial variations of the chiral

parameterg. In order to gain an impression of these distri- field, d¢p(r). Once the magnitude of the order parameter,

butions, we show in Fig. 9 the most probable effective¢,, has been chosefsee Sec. IV D, the quasiparticle de-

masses as functions of the temperature. grees of freedom are fully characterized, via the effective
The transverse effective mags increases steadily from masses($o) andu, (¢o), and it is then possible to sample

its free valuem_ as the temperature is raised, whereas théhem appropriately.

parallel effective masg drops by nearly fifty percent be-

fore finally turning upwards. For temperatures above A. Sampling

T~300 MeV, the two effective masses are practically de- . . .
generate and gently approach their asymptotic form On the basis of the above developments, it is possible to

11C?~1.59T. We note that the effective masses always ex_deV|se a simple and efficient method for performing the sta-

ceed the temperature, so it is never reasonable to ignore tﬁ'gt'cal sampling of the chiral field, thus putting the initial-

effective masses. We also note that the transverse mass h%gt'(.)n of dy”"?‘m'ca' S|mulgt|on_s on a formally sound basis.
Since the different quasiparticle modes can be regarded as

g;ﬁ;ﬁﬁilﬁﬂg;&ﬁhg(tger;egirgthfgree pion mass, until the teméﬁ‘ectively .dec.oupled, the sampling is best done by making
0 12" ) - an expansion into the elementary modes,

The parallel effective masg, exhibits a pronounced
minimum atT,~240 MeV. Itis in this region that the order ,
parameter exhibits its most rapid evolution wikh(see Fig. s¢(r,)=(20)Y2)" Clcogk: r—olt— 7)), (46
6) and the temperatur€, at which the minimum inu; oc- K
curs may be taken as the effective critical temperature of th
model[29]. It is interesting to note that a recent study with a
gauged linearc model [29] estimates this quantity as
T,~226 MeV, a value in good accordance with the presen
results.

&nd similarly for the three transverse chiral components

o¢, (r,t). Here the energyg,=#%w, is determined by the

Klein-Gordon dispersion relationg? =#2c?k?+ u?c* (with

w being the appropriate effective massy or u,). The

phaser, is random in the interval (072) and is thus trivial

to sample. Furthermore, the re@nd positivgé amplitude

Cy can be related to the number of quanfaby considering
The above analysis provides a convenient basis for santhe energy carried by the mode,

pling the order parameter in accordance with the statistical

weight W+( ¢, ) given in Eq.(39), and we describe briefly

how this can be accomplished in a manner that is both quick

(i.e., the computational effort is smphnd efficient(i.e., no

effort is expended on rejection We have here omitted the zero-point enef@@], thereby
As noted already, the time derivativeis governed by a eliminating the associated ultraviolet divergence. Although

four-dimensional normal distribution which is isotropic and not quite correct, this approach is justifiaghosterioriby the

D. Sampling of the order parameter

Eﬁ ) Ny 1/2
Ek:nKGKZWCkﬁck:(ﬁSCSE_k) . (47)
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apparent good quality of the resulting approximate treatmentalues attained by‘(‘) and f; are about 0.38 and 0.48 and
(The dynamical tests discussed in Sec. VI are here very imeccur at approximately a temperature of 265 and 235 MeV,
portant, since the statistical samples would not remain starespectively. Since these values are well below unity, the
tionary under time evolution if the treatment were substansystem is never very degenerate.
tially wrong.) Nevertheless, there is an important advantage to using
Thus the problem has been reduced to sampling the nunBose-Einstein rather than Boltzmann statistics for the field
ber of quantan, . Since the probability for finding a particu- fluctuations, as we will now discuss. When classical statistics
lar number of quanta in the mode is given by P(ny) is used, the occupation probability ig~T/¢, reflecting
=[1—exp(—&/T)]exp(—ne /T), itis elementary to sample the equipartition theorem, and, therefore, the total energy
the integem, appropriately’ We note that the thermal aver- density grows as the cube of tiiequired cutoff on e, a
age ofny is equal to the occupandy, employed in the cal- manifestation of the Rayleigh-Jeans divergence. Such a de-
culation of the entropy<n,>=f,. scription would be entirely wrong in the present context and,
Once the amplitudes and phases have been selected, thmreover, it would be numerically ill behaved. By contrast,
expansion(46) readily yields the initial value of the field the quantal occupation probability falls off exponentially and
fluctuations,6¢(r,0). The corresponding conjugate momen-the density of quanta is finite. By adopting the Bose-Einstein
tum, dyY="19,5¢, readily follows since Eq46) implies treatment, we then get a much more realistic formal descrip-
tion of the statistical properties of the system and, in addi-
S dcls ” I tion, the_ numer@cal treatment becomes stra?ghtforward. Of
- eCisink-r—at—1). (48 course, if a configuration sampled on the basis of the quantal
statistics is propagated for a sufficient length of time, it will
eventually exhibit classical features, since the equation of
motion is entirely classical. It is, therefore, fortunate that our
eatment is expected to be applied only to processes that are

are propagated by a leap-frog method, the field strengt X ) . :
s¢(r) is calculated at the times,=nAt while the momen- &' faster than the time scales associated with the reversion to
classical statistics. In particular, for the formation of disori-

tum SyAr) is obtained at the intermediate times. The appro- . T Iy
L AL . . .~ ented chiral condensates in high-energy collisions the rel-
priate initial 5¢Ar) can then easily be obtained by evaluating ; ;
. _ evant time scales are of the order of a few éywhile our
the expansior(48) at t=At/2, after C, and 7, have been : : e .
selected. numerical studies exhibit no ultraviolet run away for at least
Finally, since the sampling has been done in a systen’cfeveral tens of fv.
aligned with the order parametés (in which the mass tensor
is diagonal, an Q4) rotation of the sampled field configura- B. Correlation function
tion is required in order to express the state with respect to
the chiral directions. This is readily accomplished on thef
basis of the anglesxg,¥q,¢q) specifying the direction of

1/2

5sz(r,t)= (5

The entire state of the chiral fieldg(r),y(r)), has then
been selected at the time 0. When the equations of motion

It is particularly interesting to calculate the correlation
unction of the chiral field since this quantity determines the
spectral distribution of the emitted field quanta.
. The density matrix associated with the quasiparticle de-
) grees of freedom is aX4 tensor:
1. Occupation humbers
Since the quasiparticles represent bosonic modes, it is Clrip,t1)=<30e(ry,t;) 6¢(ry,t2)>. (49
useful to know how large the occupancies can become. The
thermal occupation numbers are given by¥nco>  The average is over the ensemble of systems considered, in
=f=1/[exp(e/T)—1], and sinceu, < in any given sce- the present case a thermal ensemble held at the temperature
nario the largest occupancies occur for the transverse modegp,(Fig. 10). Since an ensemble in equilibrium is invariant in
f>f}. Moreover, for a given temperatuf® f, is largest time, the correlation function depends only on the time dif-
when the momentum vanishesfo=1[exp(uc’T)—1],  ferencet;,=t;—t,. Analogously, the translational symmetry
which then provides an upper bound dn(recall thatk>0  of the scenario implies that the spatial dependence is via the
for the quasi-particles modes separatiorr,=r;—r,. Moreover, to the extent that there is
Considered as functions df, the bounds‘u) andfy start  invariance under spatial rotations, only the magnitude
out from zero, display maxima well aboWg, and then drop r,=|r;4 enters. In principle, these spatial symmetries are
off towards a common constant value at high temperaturedroken when a finite box is considered, but the effect is
The (common limiting occupancy is fy=~0.26 since insignificant and can be disregarded in the present study.
wuc?~1.59T when T—. (This feature is a direct conse- Utilizing the expansior{46), it is elementary to show that
quence of the repulsive self-interaction of the chiral field andhe correlation tensdC is diagonal with the elemen and
is in marked contrast to the ever increasing occupancy chagc, , where
acteristic of free bosons in a thermal batfihe maximum
133w, 1 cogk-r—mt
R
>The corresponding algorithm for this task is very simple because ko €k

ny, can be regarded as counting the number of successive times the 1 #c (= sinkr
sampling of a standard random numiee., uniform on (0,1) = —z—f dfeﬁf—COSUkty (50
yields a value below exp{e,/T). 27 1 J e -1
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FIG. 10. The reduced correlation functionC,,= FIG. 11. Temperature dependence of correlation function. The

<8¢(ry)- S¢p(r,)>1< 8¢>> calculated at the special temperature reduced correlation functio,, for a range of temperatures,

T, (for which the effective masses vanish wheg=0), for various  employing for each one the most probable valuebgf the magni-

magnitudes of the order parameter, ranging frgg=0 to the tude of the order parameter.

vacuum value,p,=f,=92 MeV. The most probable value of

¢o at Ty is ~87 MeV. Figure 11 shows how the reduced correlation function
evolves with temperature when the most probable magnitude

with ef=%%wi=12k?c?+ ufc®. An analogous expression of the order parameter is employed. At high temperatures the

holds for C, (r,t). Since#i®c®f /e, is equal to the thermal effective masses grow nearly in proportionTcso then the

average<C§>, we recognize that the resu{b0) corre-  correlation length tends to zero, as is borne out by the steady

sponds to the expressigh46.10 given in Ref.[21]. shrinking of C4,. For temperatures below critical, the field
The usual correlation function is the trace ©f fluctuations are predominantly associated with the transverse
modes, since those have the smallest effective mass,
C=<8¢(r1,t1)- 8¢p(rp,t5)>=trC w, <uy, and the correlation length grows ever larger.
It is common to characterize the system by the “correla-
=Cj(r12,t19) +3C  (r1o,t1). (51 y y

tion length,” defined as the first moment of the equal-time
lts overall magnitude is set by its value at zero, which iscorrelation function which diverges whep—0. For the
simply the corresponding variance in the field strengthjPresent discussion, it is more convenient to characterize
C(0,0)= < 842> It is, therefore, convenient to divid@ by ~ Ci2 by its full width at half maximum for equal times,
this quantity and so define the reduced functionl 12, Since thl$ quantity is always easy to extract, even when
C1o=C(I 12,110/ < 84?>. SinceCy, is unity whenr,=r, the mass vanishes. Figure 12 shows this measure of the cor-
andt, =t,, it expresses the space-time attenuation of the cortelation length as a function of temperature, using the most
relation between the field-strength fluctuations at differenfrobable value oféo. For temperatures near and below
space-time points. In gener&ly,~ (1/r ;) exp(— ucri,/f) in -~ 1~200 MeV the dominant fluctuations are perpendicular to
the limit of large separations;,— o, so thati/ uc provides the order parameter since the corresponding effective mass is
a simple measure of the correlation length. In the speciafelatively small. For higher temperatures the asymptotic re-

case when the effective mass vanishes, the reduced equal-

time correlation function is given on analytical form, 5.0
Cio X(3/0)(cothy—1/7), where {=aTr,/fic. In this ex-

treme case, the correlation function falls off only as 4.0

~l/r12.

Figure 10 shows the reduced correlation funciin ob- £
tained at the particular temperatufg. Its appearance de- &
pends on the magnitude of the order parametgr,through =
the effective masses. A& is increased from zero to its é
vacuum valuef_=92 MeV, the corresponding effective s
masses increase from zero to their free values and the corre- ¢
lation function falls off ever more rapidly. The correlation
function thus exhibits a significant sensitivity to the order

. . 0.0'"'I""l""l""I""l'"'
parameter. We note in particular that for the most probable 0 50 100 150 200 250 300
value, o~87 MeV, the attenuation of,, is considerably Temperature T (MeV)
faster than for¢y=0 and its width has dropped by over a
factor of two. It is, therefore, important to take proper ac- FIG. 12. The correlation lengthi,, (the full width of C,, at half
count of the order parameter when calculating the correlatiofmaximum as a function of temperature, employing the most prob-
function. able value of¢, for eachT.
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ar
Ci(p,E) = 733 eEE_la(mzc“— pich, (59

Free pion strength P,(m,&) .

where we have assumed that the energy and momentum of
the radiated mesons are relatedBf= p?c?+ m2c?.

The above result holds for a specified value of the order
parameterg, which determines the effective mags. As
we have discussed, the order parameter has in general a sta-
tistical distribution,P(¢), giving rise to corresponding dis-
tributions of the effective masse®;(u) and P, (u) (see
Sec. IV C 2). The resulting production rate can then be ob-
tained by integrating over the appropriate thermal mass dis-

0 50 100 150 tribution. Thus, for example, the specific production rate for
Temperature T (MeV) Ty Mesons is

FIG. 13. Pion production rate. The strength function
P, (m,c?) determining the overall rate at which® mesons are
being producefisee Eq( 55)] in a source in thermal equilibrium, as vo(p,E)~ f du?c?P, (u?c)C, (p.E)
a function of its temperatur&. This result is obtained by perform-
ing a Fourier transform of the quasiparticle correlation function wPi(meC“)
associated with a given order parametgrand subsequently aver- :ﬁ3C3W1 (55)
aging over its distributionPy(¢o). The overall normalization is
arbitrary.
and the rates for the charged pions are sinfif@his result is
gime is approached where the chiral symmetry is approxieasy to interpret: The spectral distribution of the radiated
mately restored and the fluctuations are similar in all fourmesons is of thermal Bose-Einstein form, with the tempera-
chiral directions. ture given by the value characterizing the source itself, and
It is sometimes of interest to also consider correlationthe overall normalization of the radiation rate is proportional
functions involvingéi, the time derivative of the local field to the probability that the space and time evolution of the
strength[11]. Those can be obtained in a similar manner. field matches the particular dispersion relation for the type of
meson considered.
C. Radiation spectra Aszarj1 illustration, Fig. 13 displays the strength function
The evolving chiral field may give rise to mesonic radia- Pl(mfc ) obtained by evaluating Eq45) for n=m, as a .
function of the source temperature. As the temperature is

tion, in analogy with the emission of photons by a time de- . A
pendent electromagnetic field. The rate for production of adecreased towards zero, the centroid of fhe distribution

' : . moves down towards the free valoe, and at the same time

field quantum having enerdgy and momentunp is propor- . ; g .

. . ; . 1ts width keeps shrinking towards z e Fig. 9. Through

tional to the square of the corresponding Fourier amphtudt?he supercritri)cal regimg the pion E?Sngthgtr?en grov%s ap-

[31-33, proximately exponentially. Then a plateau is reached where
dN; _ 2 the increase caused by the approach of the centraial, tts

Ed_NU er' dt5¢j(r,t)ef(llh)(p-r*ED . (52 counterbalanced by the decrease due to the shrinkage. As a
P result, the strength is nearly constant from 90 to 30 MeV.
. . N . Finally, after the centroid has practically reac , the
Here j denotes the particular (@ direction considered so free s){rength exhibits a rapid rise as mgydistribhtmn ap-

that j=0 gives rise to isoscalas-like mesons and >0 . ; !
. o roaches & function. On the basis of this result, one would
represent three components of the isovector pionlike mesony - . . :
e X expect radiation of free pions to be unimportant until the
(with j =3 corresponding taro, say. temperature has dropped beldy
A uniform system in equilibrium has both temporal and P PP W
spatial invariance and the specific radiation ratg(p,E)
(i.e., the production per unit volume and per unit tjmis
then given by the Fourier transform of the correlation func-
tion [2], Once the initial state has been prepared, for example by
means of the statistical sampling described above, the chiral
field may be propagated in time by means of the equation of

VI. DYNAMICAL TESTS

_ 1 dNi i/#)(p-r—Et)
Vj(p,E)ZQ—tO<Ed—p>~f dl'f dth(r,t)e(

=Ci(p.E), (53 ®The rates considered here pertain to the idealized scenario of a
macroscopically uniform systepossibly enclosed in a torysand
where Q) is the volume of the system ang is the time hence they differ from those describing the emission from a finite
interval considered. The Fourier transform of the correlatiorsource into the surrounding vacuum. In particular, the familiar ki-
function is easy to obtain in the continuum limit: nematic enhancement of the faster-moving ejectiles is absent.
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%40 Dynamical trajectories up to t=1 fm/c 010
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FIG. 14. Early dynamics of the order parameter. The early tra- - 8
jectories of the order parameter are shown for a sample of eight 0.00 L

configurations, considering a box with=8 fm with a temperature 0 20 40 60 80 100

of either 200 or 240 MeV. The display is similar to that in Fig. 8 Order parameter ¢, (MeV)

and the half-density contour&lashed as well as the centroids

(open dots are those already given there. For each individual tra- FIG. 15. Time-averaged distribution of the order parameter.
jectory, the initial location is indicated by the solid dot and the This figure illustrates the influence of the time evolution on the
attached solid curve traces out the dynamical path up to the timé@istribution of the magnitude of the order parametgy, for a bow
t=1fmlc. with L=8 fm and for the temperatures of 180 and 240 MeV. The
solid curves show the initial distribution @f,, as given by approxi-
mate statistical distributio® ,( o) [see Eq(43)]. A sample of 40
systems are then followed up to the time10 fm/c and the order
parameter is binned at regular time intervals throughout the evolu-
tion, leading to the dashed curves.

motion (9), which is straightforward to implement in either
x or k representation.

It is possible to exploit the dynamical evolution to test the
validity of our approximate statistical treatment. If the sys-
tem is ergodic, as would be expected because of its nonlinear ) ) o o
interaction, a dynamical trajectory will explore the space c)fv_vell in accordance with _the _predlcted equilibrium _d|str|bu-
possible field configurations in accordance with the approprition, but such longer histories are not shown since they
ate microcanonical weight. Conversely, an ensemble of fielgvould clutter the display.
configurations that has been sampled statistically should not This correspondence can be made more quantitative by
exhibit any change under time evolution. These features prastudying how the distribution of the order parameter evolves
vide a convenient means for checking our treatment and wé the course of time. This analysis is illustrated in Fig. 15.
give two illustrations below. The approximate distributio® ,(¢o) given in Eq.(43) is

indicated by the solid curves far=180 andT=240 MeV.
_ Forty individual systems have then been prepared by sam-
A. Average field strength pling their field configurations as described above and they

Perhaps most vividly, we show in Fig. 14 the early trajec-have subsequently been propagated by the equation of mo-
tories of the order parametep for a sample of eight con- tion (9) up to the timet=10 fm/c. In the course of the
figurations, considering a box with=8 fm and either evolution, the value ofp, is extracted at regular intervals
T=200 MeV or T=240 MeV. The dashed contours are and binned into slots that are 5 MeV wide. In this manner the
those already given in Fig. 8 indicating where the projectedime-averaged distribution ap, can be determined and the
probability density has fallen to half its maximum value anddashed curves display the resfuithich is not sensitive to an
the centroids are indicated as wébpen dots For each in-  increase of either the maximum time or the sample)sikiee
dividual trajectory, the initial location is indicated by the overall agreement with the initial distribution is very good.
solid dot and the attached solid curve shows the trajectory uphere is generally a slight shift outwards, amounting typi-
to t=1fm/c. The fact that the initial points reflect the calcu- cally to 1-2 MeV, which suggests that our approximate ther-
lated statistical distribution provides an elementary test ofal distributions may be centered at somewhat too low val-
the numerical sampling algorithms. Less trivial is the factues of¢,.
that the dynamical trajectories indeed appear to explore the Propagations have been carried out up=+d 00 fm/c in
region predicted by the approximate statistical distribution.order to get an impression of the long-term behavior. The
When the propagation is continued for a longer time, up taresults indicate a large degree of stability with respect to the
10-20 fmk, each individual evolution exhibits a trajectory domain explored by the order parameter in the course of
that gradually fills a localized region which appears to betime, but with a gradual evolution towards somewhat larger

magnitudes. Such a trend is expected as a result of the dif-
fusive population of high-frequency modes characteristic of
"It is important to recognize that whereas the statistical propertieslassical dynamics. This mechanism effectively cools the
have been obtained by assuming that the quasiparticle degrees g§stem and hence softens thélrestoring force. However,
freedom are effectively decoupled, no such assumption is beinghis gradual development happens on a time scale that is very
made in the dynamics, since the trajectories are obtained by solvingng in the DCC context and it need, therefore, not concern
the full equation of motior(9). us here.
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1.2 et C. Discussion

10 I Pion correlation function 7 An additional perspective on the utility of the present ap-
& , /] p_rOX|mate treatment may be obtained by conS|_der|n_g the spe-
- 08 Ciz = (8my 8mp) / (31°) / cial case whereéd vanishes, even though that idealized sce-
S - / nario is not within the scope of intended applications. In this
§ c6r- ¢+ [ / — special case one expects a second-order phase transition to
= 04 i —— =0 (N=-) /] occur. Thus, in the limit of large volumek—«, the order
-t% : ---- 0 (N=10) / ] parameter should remain zero down to a critical temperature
Y —— =20(N=10) 7 | at which point it should start growing rapidly following a
S Ko /,/,r/’ . parabolalike trajectory down to its vacuum value When

0.0 St — applying the developed approximate method with0, we

0.2 [ __I L .__ find that for high temperatures the free energy density has

R 1 5 3 4 5 indeed its minimum at);=0 and the symmetric minimum

grows ever more shallow as the temperature drops, as should
be the case. Then, nedr=175 MeV, a very shallow sec-
FIG. 16. Time evolution of the correlation function. The pion ondary minimum appears at,~50 MeV, and it becomes
correlation functiorC7,(s;,) at the temperatur€=240 MeV. The the lowest one from abouf~171 MeV. AsT decreases
dotted curve is the continuum limit.¢~) and the solid curve is further that minimum gently approacheég=v, again as one
the corresponding thermal result for a quantized finit box with awould expect.
side length ofL=5 fm. The correlation function for a sample of However, the appearance of the secondary minimum
ten initial configurations are shown by the short-dashed curves, angauses an abrupt change in the location of the lowest mini-
the long-dashed curves show the corresponding result after theyum of the free energy, and so the order parameter exhibits
have been propagated self-consistently up to the tim&0 fm/c. 3 discontinuous change, as is characteristic of a first-order
The dashed curves have been obtained in two different ways: Thghase transition. Naturally, this feature might at first glance
curves that go up again result from aligning the separatipalong e g cause for concern. But, when trying to assess its signifi-
one of the Cartesian directions, while the other two are obtained fo&ance, one should note that the energy differences respon-
separations directed along a diagonal. The aligned curves haveﬁble for producing the discontinuous behavior are only frac-

EE:\I/OeC!Ci?\l/gegrl:]aélstlc;Lrle\;\Ihereas the periodicity of the diagonal o of an Mev/fni. Consequently, if the calculated free
ger. energy density were adjusted by such small amounts, it
would be possible to eliminate the shallow secondary mini-
B. Field fluctuations mum and thus convert the very weak first-order transition to

Figure 16 displays the correlation function for the pion @ S€cond-order transition. o ,

componentsCT,(s;,), for a box withL=5 fm prepared at The error in the employed approximation arises from the
T=240 MeV. The short-dashed curves show the correlatiorqeplaCement of the state-dependent tenh by its thermal
' . average< sV>. Although this is generally expected to be a

- .Sfairly accurate approximatiofthe associated error being at
and the long-dashed curves then indicate the corresponding, percentage levelit may easily lead to inaccuracies of

result after those systems have been evolved up to the timge ahove small magnitude. Fortunately, while even such
t=10 fm/c. The two curves that go up again have beeng|atively small imperfections can thus produce a qualitative
obtained by aligning the relative separatiqa along one of  change very near the critical point for the idealizet4)®

the cartesian axes, while it is directed diagonally for thesymmetric model, they have little bearing on the situation of
other two curvesthe periodicity is theny3L and so their practical interest, since the finite value léfeliminates such
eventual rise is only barely visibleFor reference is shown critical sensitivity. Moreover, for finite systems of nuclear
the exact thermal correlation function for either the finite boXdimensions, the associated distribution of the order param-
considered(solid curveg or the continuum limit(doty.  eter has a significant width and it is practically insensitive to
While this latter curve tends to zero for large separationsy,ch minor adjustments, even whenhvanishes, as we al-
(and in fact falls off monotonically the correlation function ready noted in connection with Fig. 6. In particular, there is
for a finite box drops to a negative value, because its spatiglp discontinuity near the temperature where the location of

Separation ry, (fm)

average must vanish. . ~ the lowest minimum in the free energy changes abruptly.
The correlation function remains remarkably invariant in
the course of time. This suggests that our treatment, includ- VIl. CONCLUDING REMARKS

ing the sampling procedure, in fact yields a good approxima-

tion to the correlated field fluctuations. As a quantitative The present work was motivated by the current interest in
measure, one may consider the full width at half maximumdisoriented chiral condensates, particularly by the various
I'1,. The continuum value is 1.33 fm, slightly larger than thedynamical simulations carried out with the linearmodel
thermal result for the finite box, 1.30. For the sample of ten[8,9,11,13,14,1p Those calculations follow the nonequilib-
initial configurations we find 1.256 and 1.271 for the carte-rium evolution of the cooling chiral field in order to ascertain
sian and diagonal directions, respectively, which havehe degree to which coherent domains develop. Since the
evolved into 1.263 and 1.290 &+10 fm/c. So there is no dynamics is inherently unstable, with the low-momentum
significant change in the width of the correlation function modes experiencing rapid amplification, one may expect a
over this time period. significant sensitivity of the results to the initial conditions,
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with a commensurate degree of difficulty regarding their in-and order parameter was summarized in Fig. 6 and a more
terpretation. Consequently, caution is required when charaglobal impression of the distribution of the the order param-
terizing the ensemble of initial field configurations em- eter (including its degree of misalignmentan be gained
ployed. from the contour plots in Fig. 8.

In order to provide a useful framework for this aspect of  Since the order parameter is thus very unlikely to vanish,
the problem, we have explored the statistical properties othe effective quasiparticle masses remain finite. Conse-
the linearo model in the form that is being used in the quently, the statistical equilibrium distribution is well be-
numerical simulations, i.e., propagation of classical fields irhaved at all temperatures and the change from the ‘“re-
the presence of a finite symmetry-breaking term. In order testored” phase to the normal one is fairly gradual. However,
achieve a well-defined separation into order parameter anhe finite size generally reduces the effective masses, thereby
quasiparticles, we have confined the system to a torus anstinging the system somewhat closer to criticaltyhich
held it at a fixed temperature. Although this problem can be&hould enhance the DCC phenomenon
treated exactly34], we have found it preferable to linearize  Of course, the statistical properties are of most practical
the equations of motion by means of a Hartree-type approxXimterest at the relatively high-energy densities characteristic
matio_n, since our view is towards practic_al calculations. Theyt the initial stage of the high-energy collision. Once the
resulting treatment then becomes very simple and appears {@,irg| field has been initialized accordingly, any instabilities
be sufficiently accurate in the intended context. We also notgny gssociated amplifications will be automatically included
that the treatment, though approximate, is therquynam'fn the dynamical propagation and the system can generally
cally consistent, since the partition fungthn on which it is be expected to quickly move out of equilibrium. The equi-
based has peen.obtamed consistently within the adopted He“brium results can then provide a meaningful reference
tree approximation scheme. . . L s

The problem separates into one concerning the spatial aa_gamst Wh.'Ch o analy;e the dewgtlon from equilibrium at

y stage in the dynamical relaxation process.

erage of the field, the order parameter, and another dealin@q S ) ) S
with the field fluctuations, referred to as the quasiparticle Additionally, we illustrated briefly the equilibrium form

degrees of freedom. The latter are described approximatefyf the correlation function which is an object of primary
in terms of effective masses that depend on both the orddfterest. Indeed, it is the correlation length that properly ex-
parameter and the temperature, but are independent of ti§esses the “domain size” governing the conjectured
symmetry breakingd term; these were presented in Fig. 1. @nomalous pion radiation. Essentially, what one would ex-
The partition function then takes on a Corresponding Sepd)ect to see at the end is a stretched version of the initial
rable form and, as a consequence, it is possible to developG®rrelation function since the long wavelengths are the most
simple method for performing a statistical sampling of theunstable and so will contribute in an ever larger proportion.
thermal equilibrium field configurations, including their time This underscores the importance of starting out with chiral
derivatives, at any temperatu@ven if subcriticgl. It has the fields that have physically reasonable correlation properties.
combined advantages of being less cumbersome than exabo illustrate the use of the correlation function, we derived
stochastic methods, such as Metropolis sampling, and havinge rate at which real pion mesons are created by the field,
a clear physical basis that brings out the interplay of theand subsequently we calculated the dependence of the free
various quantities entering. The method is expected to bgjon strength on the temperature of the system.
direCtly useful as praCtical means for |n|t|a||Z|ng the dynami' Fina”y, we Sought to assess the accuracy of our approach
cal simulations of the chiral field of the type carried out by sybjecting sampled field configurations to the exact time
recently by several groud$,9,11,13,14,1p thus making it eyolution. This convenient means of testing suggested that
easier to interpret the numerical results. The developed sange approximate treatment is of sufficient accuracy to be of

pling melthod plrese(zjnts ahsijgniﬂpa;]nt_implrovemelnt or\]/erf_tfr ractical utility. We, therefore, anticipate that it may find use
previously employed method which simply samples the fielg, g, jation studies, such as those exploring disoriented

strength independently at each lattice point and thus yields 8niral condensates in high-energy collisions
very unrealistic correlation functich. '

Moreover, our specific illustrations provide useful insight
into the equilibrium properties. In particular, it appears to be
unrealistic to start the order parameter off with a value equal
to zero. Indeed, for temperatures up to more than 200 MeV
the most probable order parameter is closer to its vacuum ACKNOWLEDGMENTS
valuef , than to zero. The relationship between temperature
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