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The present work develops a simple approximate framework for initializing and interpreting dynamical
simulations with the linears model exploring the formation of disoriented chiral condensates in high-energy
collisions. By enclosing the system in a rectangular box with periodic boundary conditions, it is possible to
decompose uniquely the chiral field into its spatial average~the order parameter! and its fluctuations~the
quasiparticles! which can be treated in the Hartree approximation. The quasiparticle modes are then described
approximately by Klein-Gordon dispersion relations containing an effective mass depending on both the
temperature and the magnitude of the order parameter; their fluctuations are instrumental in shaping the
effective potential governing the order parameter, and the emerging statistical description is thermodynami-
cially consistent. The temperature dependence of the statistical distribution of the order parameter is discussed,
as is the behavior of the associated effective masses; as the system is cooled, the field fluctuations subside,
causing a smooth change from the high-temperature phase in which chiral symmetry is approximately restored
towards the normal phase. Of practical interest is the fact that the equilibrium field configurations can be
sampled in a simple manner, thus providing a convenient means for specifying the initial conditions in
dynamical simulations of the nonequilibrium relaxation of the chiral field; in particular, the correlation function
is much more realistic than those emerging in previous initialization methods. It is illustrated how such
samples remain approximately invariant under propagation by the unapproximated equation of motion over
times that are long on the scale of interest, thereby suggesting that the treatment is sufficiently accurate to be
of practical utility. @S0556-2821~97!05803-7#

PACS number~s!: 11.10.Lm, 11.30.Rd, 25.75.2q

I. INTRODUCTION

The possibility of producing and observing disoriented
chiral condensates~DCC’s! in high-energy collisions of had-
rons and nuclei has stimulated considerable interest over the
past few years~for a recent review, see Refs.@1,2#!. The
basic premise is that the collision generates an extended do-
main of space within which chiral symmetry is approxi-
mately restored. If this happens, macroscopic pion fields may
be generated as a consequence of the subsequent nonequilib-
rium relaxation towards the normal state. Such isospin-
aligned domains may manifest themselves in anomalous pion
emission@3–5# of the type seen in the Centauro cosmic ray
events@6#. The experimental exploration of this phenomenon
is of fundamental interest because it has a direct bearing on
the mechanism of spontaneous chiral symmetry breaking.
Efforts are well underway to search for the associated pion
multiplicity fluctuations in proton-proton collisions@7#.

In order to assess the prospects for such a phenomenon to
actually occur and be detectable above the background of
other pion production processes, it is necessary to perform
extensive dynamical calculations. This is a daunting task be-
cause the chiral degrees of freedom should be properly em-
bedded in the complicated environment generated in a high-
energy collision which evolves from being primarily partonic
at the early stage to entirely hadronic in the course of the
chiral relaxation process. Fortunately, the study of suitable
idealized scenarios can yield valuable insights regarding the
prospects for observing the effect.

Most dynamical studies have been carried out within the
framework of the linears model, treated in the mean-field
approximation in which the chiral degrees of freedom are

represented by a classical field@8–17#. The present work
seeks to provide a framework that may be useful for initial-
izing and interpreting such calculations by elucidating how
the commonly adopted simulation model behaves under the
idealized conditions of statistical equilibrium, an aspect that
has not yet been exhibited in the literature. A practical out-
come of the work is the development of a simple and effi-
cient approximate method for sampling field configurations
from a given thermal ensemble. The motivations for under-
taking the present work are primarily twofold, as summa-
rized below.

Since the linears model~in its relatively unsophisticated
version employing classical fields! has been and still is the
primary vehicle for simulating the dynamics of DCC forma-
tion, it is important to understand its actual properties. Hav-
ing an insight into the statistical properties of the model
makes it easier to interpret the dynamical behavior observed
in the simulations. In particular, it provides a quantitative
basis for assessing the degree of deviation from a mere adia-
batic evolution, a key issue for DCC formation@18#. More-
over, knowing how the adopted simulation model behaves
under equilibrium conditions makes it easier to assess its
physical utility, since any inherent shortcomings of the
model may all too easily be obscured by the complexities
inherent in the dynamical evolution. Thus we are addressing
the rather elementary issue of how the particular rather sim-
plistic model in fact behaves in the context of numerical
simulations, as opposed to issues concerning more refined
versions of the model~such as those including quantum ef-
fects or partonic degrees of freedom!. Indeed, the work
should not be seen as an endorsement of that particular
model as an accurate tool for DCC simulations, but is merely
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intended to make judgments about its adequacy easier to
make. ~However, the method developed employed in our
treatment is quite powerful and can be employed more gen-
erally, so in fact the work serves also as an instructive expo-
sition of that method of analysis.!

An additional motivation for the present work concerns
the manner of initialization of the chiral fields used in the
simulations. The common method consists in setting up a
spatial lattice and then simply picking the field strength at
each site randomly from a suitable normal distribution.
When one proceeds in this manner, the initial correlation
function is ill defined, since the field strengths at any two
different lattice sites are uncorrelated. Effectively, one might
say that the correlation length equals the lattice spacing, but
such a dependence on a numerical parameter appears physi-
cally unacceptable. Moreover, that particular spatial depen-
dence of the correlation function would hardly correspond to
any physically plausible scenario. Although this kind of
shortcoming might be less important in many cases, it should
be a cause for concern in situations where instabilities are
present, such as in the DCC context. Indeed, the observed
pion spectrum is basically the Fourier transform of the cor-
relation function and this quantity is, roughly speaking,
merely a magnified or stretched version of the initial corre-
lation function, especially in the hoped-for scenario of expo-
nential amplification. It might, therefore, be useful to devise
a physically better based method for initializing the field.
Being able to sample configurations from a thermal en-
semble of fields provides a conceptually simple way of char-
acterizing the initialization. However, by developing a con-
venient approximate method for this task, we do not mean to
suggest that the early dynamics in fact leads to a thermal
form of the chiral field~the resolution of that issue must
await specific guidance provided by partonic calculations!,
but merely to establish a much-improved method for initial-
izing the dynamical simulations.

The scope of the present work is thus limited, as we are
concerned primarily with problems that are relevant to the
practical task of performing dynamical simulations with the
linear s model in the specific context of disoriented chiral
condensates. Accordingly, it is not our intention to explore
the entire space of model parameters but rather, we consider
only one set parameter values close to those actually em-
ployed, which are adjusted to approximate the physical sce-
nario encountered in nature where a small, but finite
symmetry-breaking term is present. In particular, the present
work is not intended as a contribution towards the explora-
tion of the O~4!-symmetric case which has already been
studied extensively, albeit mostly from more formal perspec-
tives @19,20#. Indeed, while apparently quite a good approxi-
mation in the case of practical interest where a smooth cross
over occurs as a function of temperature, the developed ap-
proximation may be inadequate in the symmetric scenario
where a sharp phase transition is expected and, consequently,
where even quantitatively small imperfections in the treat-
ment may have a qualitative effect on the critical features.

After a brief reminder of the relevant features of the linear
s model~Sec. II!, we describe how thermal equilibrium can
be treated approximately by means of a standard lineariza-
tion procedure invoking the Hartree approximation~Sec. III!.
We then discuss and illustrate the statistical distribution of

the average field strength, the order parameter~Sec. IV!, and
subsequently turn to the properties of the quasiparticle de-
grees of freedom associated with the spatial field fluctuations
~Sec. V!. An impression of the validity of the treatment is
then gained by evolving samples of field configurations by
the exact equation of motion~Sec. VI!. Finally, a concluding
discussion is given~Sec. VII!.

II. THE LINEAR s MODEL

To set the framework for the subsequent developments,
we start by briefly recalling the most relevant features of the
formal framework. The present study is carried out within
the mean-field approximation where the quantum field opera-
tors are replaced by their expectation values, thereby bring-
ing the treatment to the level of classical field theory. This
simplified treatment is expected to suffice for exploratory
calculations. Naturally, the mean-field approximation is only
a first step towards a more complete description.

The basic object of study is then the chiral field

F~r,t !5s~r,t !1 i t•p~r,t !, ~1!

where the three elements of the vectort are the Pauli ma-
trices. Here the scalar fields(r,t) and the vector field
p(r,t) are both real and can conveniently be combined into
the O~4! vectorf5(s,p).

In the linears model @22#, one introduces a simple local
effective interaction energy density:

V~f!5
1

\3c3S l

4
~f22v2!22Hs D , ~2!

wheref denotes the magnitude of the O~4! vectorf,

f2[f•f5(
j50

3

f j~r,t !
25s21 p•p, ~3!

with j50,1,2,3 referring to the four chiral directions. The
interactionV contains three parameters:l, the strength of the
symmetric term;v, the location of its minimum; andH, the
strength of the symmetry-breaking term. As is commonly
done, these parameters are fixed by specifying the pion de-
cay constant, fp592 MeV, and the meson masses,
mp5138 MeV/c2 andms5600 MeV/c2, leading to

l5
ms
2c22mp

2c2

2 f p
2 520.14, ~4!

v5Sms
223mp

2

ms
22mp

2 f p
2 D 1/2586.71 MeV, ~5!

H5mp
2c2f p5~120.55 MeV!3. ~6!

The precise values of the model parameters are immaterial,
both in view of the simple nature of the model and, in par-
ticular, within the context of our present idealized study. The
value for the hypotheticals mass is the most commonly
adopted one; formp we have used the weighted average of
the three observed pion masses, and for the pion decay con-
stant we have simply taken two-thirds of the pion mass
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which gives a simple value within the range of experimental
data ~the current values beingfp6592.460.26 MeV and
f p058463 MeV @23#!.
The Lagrangian density is given by

L~r,t !5
1

\3c3S 12 ~\] tf!22
1

2
~\c¹f!2

2
l

4
~f22v2!21Hs D . ~7!

The corresponding energy density is then

H~r,t !5
1

\3c3S 12c21
1

2
~\c¹f!21

l

4
~f22v2!22Hs D ,

~8!

where the time derivativec[\] tf is the canonical conju-
gate of the field strength.

The action generated by a given time evolution is given
by S5*drdtL(r,t). By demanding thatS be stationary with
respect to arbitrary variations of both the field strength
f(r,t) and its first derivatives, one obtains the associated
equation of motion,

hf1l~f22v2!f5Hŝ, ~9!

whereh5\2] t
22\2c2n is the d’Alambert differential op-

erator, andŝ denotes the unit vector in thes direction. Since
the equation of motion is of second order in time, the evolu-
tion of the system is fully determined once the initial values
of the field strengthf(r) and the associated time derivative
c(r) have been specified.

III. APPROXIMATE TREATMENT

We now discuss how the chiral system can be treated in a
convenient approximate manner. For this purpose, we con-
fine the system within a rectangular box and impose periodic
boundary conditions.

A. Linearization

Our starting point is the equation of motion~9! for the
field strength. It is natural to decompose the field:

f~r,t !5f~ t !1df~r,t !, ~10!

where the first term is the spatial average,f[^f&, so that
^df&50. The average part of the field,f, is often referred to
as the order parameter, whereas the spatial fluctuations,
df(r), may be considered as quasiparticle degrees of free-
dom representing elementary excitations relative to the con-
stant field configuration@10#. The O~4! direction of the order
parameter plays a special role and it it convenient to employ
a correspondingly aligned reference system, i.e., a system in
which f5(f0 ,0) anddf5(df i ,df'). The thermal aver-
ageadfdfs is then a diagonal 434 tensor, as can be
demonstrated by elementary means.

Taking the spatial average of the full equation of motion
~9! leads to an equation for time evolution of the order pa-
rameterf @24#,

\2] t
2f1l@f0

21adf2s12adf i
2s2v2#f5Hŝ, ~11!

In deriving this equation, we have replaced the spatial aver-
ageŝ •& by thermal averagesa•s, as may be justified for a
system of dimensions larger than the correlation length~the
fluctuations in different regions of the system are then inde-
pendent and can, therefore, be assumed to reflect the thermal
distribution from which the particular field was sampled!.
We shall useadf'

2s to denote the diagonal elements of
the isotropic 333 tensor ^df'df'&, so thatadf2s5
adf i

2s13adf'
2s is the total fluctuation.1 Furthermore,

^df2df& vanishes by symmetry.
By subtracting the equation of motion for the order pa-

rameter, Eq.~11!, from the full equation of motion~9!, it is
possible to obtain approximate equations for the field fluc-
tuations,

@h1m i
2c4#df i50, ~12!

@h1m'
2c4#df'50, ~13!

where the effective massesm i andm' are determined by the
auxiliary gap equations,

m i
2c4[l~3f0

21adf2s12adf i
2s2v2!, ~14!

m'
2c4[l~f0

21adf2s12adf'
2s2v2!. ~15!

In arriving at this result, we have replaced products of two
individual fluctuations by their respective thermal ensemble
average values,df jdf j 8 adf jdf j 8s, and, furthermore,
products containing three fluctuation factors have been con-
tracted in the usual manner@15#,

df jdf j 8df j 9 adf jdf j 8sdf j 91adf j 8df j 9sdf j

1adf j 9df jsdf j 8. ~16!

Equations~12! and~13! describe the fluctuations as indepen-
dent quasiparticles having the respective effective masses
m i and m' , which in turn are given in terms of the field
fluctuations, Eqs.~14! and~15!. This self-consistent relation-
ship can be stated explicitly by invoking the expression for
the associated thermal equilibrium fluctuations,

adf i
2s5

\3c3

V (
k

8
1

ek

1

eek /T21

_̂
T

2p2m ic
2(
n.0

1

n
K1S nm ic

2

T D , ~17!

and similarly foradf'
2s. The system is enclosed in a rect-

angular box with the volumeV5LxLyLz and periodic
boundary conditions are imposed. The wave vectorsk are
then quantized (kxLx52pKx with Kx50,61, . . . , etc.!, so

1We call attention to the fact that in the present notation
adf'

2s denotes the variance of the field fluctuations in one of the
transverse directions, whereas in Refs.@10,14# it represents three
times that amount, namely the sum of the variances in all three
perpendicular directions.
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that the individual quasiparticle modes are enumerated by
(Kx ,Ky ,Kz). The corresponding quasiparticle energy is de-
termined by the dispersion relationek

25\2c2k21m2c4,
where the effective massesm i andm' lead to the energies
ek

i andek
' respectively. Finally, the prime on the summation

sign indicates that the mode havingk50 should be omitted
since it represents the order parameter rather than a spatial
fluctuation.

In Eq. ~17!, the symbol_̂ indicates the thermodynamic
limit L→` in which the quasiparticle modes form a con-
tinuum. The fluctuations can then be expressed analytically
in terms of the Modified Bessel FunctionK1, as indicated.
Generally, the fluctuations decrease as the effective mass in-
creases, for a fixed temperatureT, and adf j

2s5T2/12
when the effective massm j vanishes. The global approxima-
tion adf j

2s'(T2/12)(11mc2/2pT)exp(2mc2/T) is good
to better than 2%.

The treatment above has been carried out under the sim-
plifying assumption of thermal equilibrium which suffices
for our present purposes. However, it is interesting to note
that the results can be readily generalized to nonequilibrium
scenarios by simply replacing the thermal averagesa•s by
the corresponding spatial averages^•&. In this manner, the
system of equations would be closed and a conceptually
simple dynamical description emerges. However, since the
direct interaction between the quasiparticles is then ignored,
any relaxation can occur only via the mean field, and the
accuracy of such an approach should, therefore, be carefully
assessed.

B. Effective masses

Utilizing the result~17!, the coupled equations~14! and
~15! for the effective masses can be solved for specified val-
ues of the temperatureT and the magnitudef0, provided
that these parameters are sufficiently large, and we then have
m i>m'>0. It should be noted that the effective masses are
independent of the parameterH, since the symmetry-
breaking termHs is linear.2

In Fig. 1 we show the resulting effective massesm i and
m' as functions off0, for temperaturesT up to well above
critical. At any temperature, there is always a physical solu-
tion to the coupled equations~14! and ~15! for the effective
masses whenf0>v. This is easy to see from Eq.~15!: At
T50, when the fluctuations vanish, we have
m'
25l(f0

22v2) and som'
2 vanishes atf05v and is posi-

tive for largerf0; an increase ofT will always increase the
fluctuations, and hence the mass. Moreover, we always have
m i>m' .

Since the field fluctuations and the magnitude of the order
parameter contribute to the effective masses in qualitatively
similar ways, an increase of the temperature~and thus the
fluctuations! will permit a further decrease off0, so that the
point at whichm' vanishes is moved to ever smaller values

of f0. The appearance ofm i , considered as a function of
f0, is nearly independent of temperature, except that each
curve terminates at the point where the correspondingm'

vanishes. This limiting curve is indicated by the dotted curve
on the interval (0,v) and it is elementary to calculate,

f0
25v22

5

12
T22adf i

2s'v22
T2

12
~51e2m ic

2/T!, ~18!

m i
2c45l~2v22T2!. ~19!

This behavior continues until the temperature reaches the
valueT0, the lowest temperature for which there is a solution
to Eqs.~14! and~15! for all values off0. For this particular
temperature both effective masses vanish forf050.
Consequently, adf j

2s5T0
2/12 and so T0

252v2, i.e.,
T05122.63 MeV with the adopted parameter values.3 The
degeneracy in the masses,m i5m' , is a general consequence
of the O~4! rotational symmetry that emerges forf050 and
it, therefore, remains asT is further increased, with the com-
mon mass valuem0 increasing steadily. Since the effective

2This simplifying feature holds only whenl, v, andH are con-
sidered as the primary model parameters. WhenH vanishes it is
often customary to readjust the other two parameters,
l5ms

2c2/2f p
2521.27 andv5 f p592 MeV, and then the effective

masses change correspondingly.

3The special temperatureT0 is here used to denote that unique
value ofT for which the effective masses are when the order pa-
rameter vanishes. It is occasionally referred to as the ‘‘critical tem-
perature’’ and denotedTc , but we find this nomenclature unfortu-
nate, since the transition from approximate chiral symmetry to a
broken phase generally occurs at significantly higher temperatures,
as we shall illustrate later on.

FIG. 1. The effective massesm i ~solid! and m' ~dashed!, as
functions of the magnitude of the order parameter,f0, for a range
of temperatures:T 5 0, 40, 80, 100, 122.63~5T0), 160, 200, 240,
300, 400, 500 MeV, calculated in the thermodynamic limit where
the box size is large,L→`. For a temperature aboveT0, the two
effective-mass curves start out atf050 with degenerate values,
whereas belowT0 they only exist iff0 is sufficiently large. The
corresponding starting points form i are connected by the dotted
curve and, sincem i is then nearly independent ofT, only the curve
for T50 has been shown. The vertical arrow points to the vacuum
value of the order parameter,fvac5 f p592 MeV, and the free
mass valuesm i5ms5600 MeV/c2 and m'5mp5138 MeV/c2

are indicated by the horizontal arrows. The locations of the corre-
sponding points in the diagram are shown by the two solid symbols.
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mass atf050 is given bym0
2c45l(6adf j

2s2v2), it be-
comes proportional toT at high temperatures,m0c

2'1.59T
for T@v.

The results displayed in Fig. 1 have been calculated in the
thermodynamic limit, L→`, in which the quasiparticle
modes form a continuum. However, the systems of interest
in connection with high-energy nuclear collisions have finite
volumes. The quasiparticle energies are then discrete and, as
a result, the effective masses are modified. This effect is
largest when the effective mass is small, i.e., near the critical
conditions, because the absence of the constant mode in Eq.
~17! is then most significant, and it generally leads to smaller
masses. Figure 2 shows the temperature dependence of the
effective masses for eitherf050 or for f05 f p ~the value
associated with the physical vacuum!, as obtained either in
the continuum limit or for a cubic box with a side lengthL of
either 8 fm or 5 fm.

For f0'0 and temperatures near critical, the effective
masses are significantly reduced. As a consequence, the as-
sociated critical temperature is increased to 154 MeV for
L58 fm and to 172 MeV forL55 fm. However, for tem-
peratures several tens of MeV above these thresholds, the
effect is relatively small. The effect also disappears quickly
as the order parameter is moved away from zero and by the
time it reaches its vacuum value,fvac5 f p592 MeV, there
is hardly any effect for even the smallest box~L55 fm!.

The effect of the finite size on the fluctuations in the field
strength is illustrated in Fig. 3. The upper curves show the
typical magnitude of the thermal fluctuations, (adf2s)1/2,
as functions off0 over a range of temperatures, for the same
three box sizes as in Fig. 2, while the lower curves show the
continuum result for the contribution arising from fluctua-
tions directed along the order parameterf, adf i

2s1/2. The
fluctuations are remarkably independent of the volume, ex-
cept in the critical regionT'T0 and f0'0, as just dis-
cussed. Forf050 the O~4! symmetry implies that the fluc-

tuations are the same in all directions so that each of the
lower curves starts out at half the value of the corresponding
upper curve. For larger values off0 the relative contribution
from fluctuations alongf decreases progressively, sincem i
grows much larger thanm' ~see Fig. 1!.

C. Energy

It is instructive to examine the total energy of the system.
It is obtained by integrating the energy density~8! over the
volume of the box:

E~ t !5E drH~r,t !5V K 12 \2c21
1

2
\2c2~¹f!21VL ~20!

5V~E01Eqp1dV!. ~21!

The total energy is conserved in time when the field is
evolved with the equation of motion~9!. The energy is com-
posed of the three basic contributions exhibited in the second
expression: one arising from the time dependence of the field
strength, another associated with the spatial variation of the
field, and a third resulting from the interaction. In the last
expression, these contributions have been reorganized into
three different terms which we will now discuss in turn.

The first term is the bare energy density, i.e., the energy
density that would arise if the field had no spatial variation,
f5f andc5c :

E05
1

\3c3S 12c0
21

l

4
~f0

22v2!22Hf0cosx0D5K01V0 .

~22!

We have here introducedx0 to denote the angle of disorien-
tation, i.e., the angle between the four-dimensional order pa-
rameterf and thes direction. The spatial average ofs is
thens05f•ŝ5f0cosx0, and the corresponding mean mag-

FIG. 2. Effect of finite size on the effective masses. The effec-
tive masses are shown as functions of the temperature for either
f050, when the O~4! symmetry is restored, or forf05 f p , the
physical vacuum value. Three different scenarios have been consid-
ered: either the thermodynamic limit of large volume in which the
quasiparticle spectrum is continuous~solid curve!, corresponding to
the scenario of Fig. 1, or a finite cubic box with side length
L58 fm ~dashed! or L55 fm ~dotted!, where the quasiparticle
modes are quantized.

FIG. 3. The typical magnitude of the spatial fluctuations in the
field strength,adf2s1/2, as a function of the magnitude of the
order parameter,f0, for specified temperaturesT: 122.63~5T0),
160, 200, 240 MeV. The system is enclosed in a cubic box of side
lengthL→` ~solid curves!, L58fm ~dashed!, or L55fm ~dotted!.
The lower four curves display the fluctuations along the chiral di-
rection of the order parameterf, while the upper curves represent
the total fluctuation.
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nitude of the pion field isp05f0sinx0. In the last expression
K0 denotes the kinetic part ofE0 andV0 is the bare potential
energy density.

The second term in Eq.~21! denotes the energy density
associated with the quasiparticle degrees of freedom, in the
approximation that these form a gas of independent particles,

Eqp5
1

\3c3(j50

4
1

2
^~\] tdf j !

21~\c¹df j !
21m j

2c4df j
2&

~23!

5
1

\3c3(j50

4
1

2(k
8 ~ uck

~ j !u21~\2k2c21m j
2c4!ufk

~ j !u2!.

~24!

We have here invoked the general Fourier expansions of
f(r) andc(r):

f~r,t !5(
k

fk~ t !e
ik•r, ~25!

c~r,t !5(
k

ck~ t !e
ik•r. ~26!

The expansion coefficients are generally complex and are
given simply in terms of spatial averages,
fk5^f(r)exp(2ik•r)& and ck5^c(r)exp(2ik•r)&. We
note that the components withk50 represent the order pa-
rameter,f05f andc05c. Furthermore, the fact that the
chiral field is real imposes the relationsfk*5f2k and
ck*5c2k .

The third term in Eq.~21! corrects for the fact that the
quasiparticles in fact interact via the fourth-order term in
V:

dV5
l

4S ^df4&22^df2&224(
j50

3

^df j
2&2D'2

l

4
^df4&.

~27!

The last result can be obtained by using the Gaussian ap-
proximation to expresŝdf4& in terms of squares of qua-
dratic terms.

The energy of the system can be calculated as a function
of the order parameter, assuming that the quasiparticle de-
grees of freedom are in thermal equilibrium. The resulting
energy density is

E~c,f!5E0~c0 ,f0 ,x0!1aEqps~f0!1adVs~f0!

5K01VT~f0 ,x0!, ~28!

where we have exhibited the dependence of the individual
terms on the various parts of the order parameter. Here the
thermal equilibrium value of the quasiparticle energy density
is given by

aEqp
~ j !s5

1

V(
k

8
ek

eek /T21

_̂
~mc2!4

\3c3
1

2p2(
n.0

F3t2

n2
K2S nt D1

t

n
K1S nt D G

~29!

for each of the four chiral directionsj , with t[T/m j c
2. It

can be expressed analytically in the continuum limit, as in-
dicated. Furthermore, the thermal equilibrium value of the
correction term is quite well represented by its Gaussian ap-
proximation:

adVs'2
l

4
~adf2s212adf i

2s216adf'
2s2!. ~30!

In the last expression in Eq.~28! the energy has been split
into the kinetic energy associated with the time dependence
of the order parameter,K05c0

2/2\3c3, and the remainder
which can be regarded as an effective potential for the order
parameter:

VT~f0 ,x0!5V01aEqps1adVs. ~31!

This effective potential has been plotted in Fig. 4 for the
particular situation when the order parameterf is directed
along thes axis, for a range of temperaturesT. The direc-
tional dependence ofVT is simply given by the term
Hf0cosx0 /\

3c3. At zero temperature the effective potential
can only be displayed for order parameters whose magnitude
f0 exceedv, since only then can the effective masses be

FIG. 4. The effective potential energy densityVT along thes
axis for a range of temperatures. The solid curves show the results
for a number of temperatures: 100, 122.63~5T0), 160, 200, 240
MeV. For T,T0 the effective potential curve starts at a certain
minimum value off0 between 0 andv. These starting points are
connected by the dotted curve, while the dashed curve shows the
bare potentialV0 obtained when fluctuations are neglected. The
arrows point to the minima ofVT ; for H.0 there is only a single
minimum ~located ats05 f p), while for H50 the degenerate
ground-state minima form the surface of the 4-sphere determined
byf5v. The value of the effective potential corresponding to other
orientations of the order parameter can be easily obtained by noting
that the directional dependence ofVT is given by
2Hf0cosx0 /\

3c3.
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calculated, as explained in Sect. III B: For smaller values of
f0 some of the low-energy quasiparticle modes are unstable
and so have no well-defined thermal equilibrium. As the
temperature is increased, the domain of stability extends ever
lower towardsf050. The limiting curve connecting the end
points of all the subcritical curves is determined by the con-
dition thatm' vanish, implyingm i

25l(2v22T2). The result
is shown on the figure as the dotted curve betweenf050
andf05v.

If H were zero the effective potential would have O~4!
symmetry and its minima would then form a degenerate sur-
face of a 4-sphere. The presence of the linear symmetry-
breaking term,2Hs, tilts the potential towards thes direc-
tion and, consequently, there is only one minimum for any
given temperature and it is located on the positive part of the
s axis. The minima of the effective potential move gradually
towards larger values of the order parameter as the tempera-
ture is increased. In this respect, the results are similar to the
behavior of the energy of nuclear matter as a function of the
densityr ~see, for example, Ref.@25#!. However, while the
energetics alone thus favors ever larger values of eitherf0 or
r as the temperature is raised, the proper incorporation of the
phase space~by means of the appropriate entropy! turns the
picture around, as we shall now see.

IV. THE ORDER PARAMETER

We can now consider the distribution of the chiral field in
statistical equilibrium at a given temperatureT. Since the
equation of motion~9! is of second order in time, we need to
specify both the field strengthf(r) and its time derivative
c(r)[\] tf(r) in order to fully characterize a state. As we
have already exploited above, the quasiparticle degrees of
freedom can be regarded as a Bose-Einstein gas having ther-
mal distributions determined by their respective effective
masses, in the appropriate domain off0. Their behavior can
then be calculated once the order parameter has been speci-
fied.

A. The partition function

It is natural to start the discussion of statistical properties
by considering the partition function for the chiral field. It is
obtained by summing the canonical weights for all the pos-
sible states,

ZT[E D~c,f!e2E~c,f!/T

5)
k

S E d4ckd
4fkDexp@2~V/T!~E01dV1Eqp!#

~32!

'E d4cd4f exp@2~V/T!~E01adVs !#Zqp

5E d4cd4f WT~f,c!, ~33!

whereE is the total energy of the system given in Eqs.~20!
and ~21!. The functional integral over all states
„c(r),f(r)… has first been expressed as a multiple integral

over the four-dimensional Fourier amplitudesck andfk @see
Eqs.~25! and ~26!#. If the integration over the field fluctua-
tions ~i.e., those amplitudes havingkÞ0) is performed, the
remaining integrand is the statistical weightWT expressing
the relative probability for finding the system with a speci-
fied value of the order parameter. In order to derive an ex-
pression forWT , we have replaced the state-dependent cor-
rection term dV @Eq. ~27!# by its approximate thermal
averageadVs @Eq. ~30!#, for each value (c,f) of the or-
der parameter~it depends only onf0). The integral over the
quasiparticle degrees of freedom can then be performed and
yields the quasiparticle partition functionZqp ~which also
depends only onf0).

This quantity factorizes into contributions from each of
the four chiral directions,Zqp5) jZqp( j ) where

Zqp~ j ![)
k

8 S E dck
~ j !dfk

~ j !D e2Eqp
~ j !/T

;)
k

8 S E
0

`

ekdCk
2E

0

2p

dhkD e2Eqp
~ j !/T. ~34!

Since the complex Fourier amplitudesck
( j ) andfk

( j ) are sub-
ject to symmetry relations underk→2k, as already noted
above, is it more convenient to use the representation in
terms of trigonometric functions, Eqs.~46! and ~48!. The
different wave numbers are then fully decoupled, and for
eachk the integration variables are the~positive! amplitude
Ck and the associated phasehk , as indicated in the last
expression above. The phases are unimportant here since
they each merely contribute a factor of 2p. Moreover, the
combinationnk[ekCk

2/\3c3 can be interpreted as the aver-
age number of quanta in the modek @see Eq.~47!#. Since we
want to take account of the quantal nature of the quasiparti-
cle degrees of freedom~see VA1!, we replace the continu-
ous integral overnk by a discrete sum over the possible
integer values of the occupation number, thereby obtaining
the standard expression for an ideal Bose-Einstein gas:

Zqp~ j !;)
k

8 S (
nk50

`

e2nkek /TD 5)
k

8 ~12e2ek /T!21

5)
k

8 f̄ k
~ j ! . ~35!

We have used the fact that the quasiparticle energy is addi-
tive, Eqp

( j )5(knkek . Furthermore, f̄ k[11 f k where
f k5(eek /T21)215anks is the mean number of quanta~in
the chiral directionj ) having a wave number of magnitude
k, and the corresponding energyek is determined by
ek
25\2c2k21m j

2c4.
It follows that the free energy density of the quasiparticles

is Fqp5( jFqp
( j ) with

Fqp
~ j ![2

T

V
lnZqp~ j !5

1

V(
k

8 @ekf k2T~ f̄ kln f̄ k2 f klnf k!#

5aEqp
~ j !s2TST

~ j ! . ~36!
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In the resulting expression,aEqp
( j )s is the average thermal

energy density of the quasiparticle modes associated with the
chiral directionj , Eq. ~29!, andST

( j ) is their entropy density.
The total entropy density at the temperatureT is then
ST5ST

i 13ST
' whereST

i (f0) represents the entropy density
of the field fluctuations along the direction off @26#,

ST
i 5

1

V (
k

8 ~ f̄ k
i ln f̄ k

i 2 f k
i lnf k

i ! ~37!

_̂
1

\3c3Em ic
2

` de

2p2 e~e22m i
2c4!1/2

3@ f̄ ~e!ln f̄ ~e!2 f ~e!lnf ~e!# ~38!

and the contribution to the entropy density from fluctuations
in a perpendicular direction,ST

'(f0), can be calculated
analogously by replacingm i with m' .

It is evident from the display of the effective potential,
Fig. 4, that the energetics alone would favor rather large
magnitudes of the order parameter. However, the entropy of
quasiparticles is higher at small values off0, since the ef-
fective masses are then smaller, for a given temperature.4

This interplay between energy and phase space is conve-
niently quantified in the statistical weight@see Eq.~33!#:

WT~c,f![E D~c8,f8!e2E~c8,f8!/Td4~c82c!d4~f82f!

~39!

'exp@2~V/T!~K01V01adVs1Fqp!#

5exp@2~V/T!~K01FT!# ~40!

We have used the decomposition~21! of the total energy and
replaceddV by its thermal averageadVs which causes the
partition function to factorize. In the last expression, we have
introduced the free energy density for the order parameter,
FT(f)5VT(f0 ,x0)2TST(f0).

The free energy density is illustrated in Fig. 5 for a range
of temperatures above which the trend is obvious. Since the
entropy density of a free gas at fixedT goes up when the
particle mass is reduced, the entropy provides a restoring
force towards symmetry~recall that a reduction of the order
parameterf0 leads to smaller effective masses!. As a result,
for increasing temperatures the minimum of the free energy
density approachesf050, but sinceH is finite it always
remains on the positive part of thes axis. As the temperature
is reduced, the minimum inFT moves smoothly outwards,
with the most rapid change occurring nearT'220 MeV.
The resulting behavior is shown by the solid curve in Fig. 6
which will be discussed below.

B. Contact with other approaches

The present semiclassical treatment of the linears model
is both conceptually and practically simple, but its quantita-
tive utility of course depends on how well it emulates the
properties obtained with more refined treatments.

Within the narrow context of the present study, namely
the preparation of chiral field configurations for use in dy-
namical simulations of DCC formation, the most relevant
reference treatments would be those invoking more standard
renormalization schemes in conjunction with Hartree factor-
ization techniques@11,15#. However, for practical reasons,
these quantal approaches retain only the leading order in a
1/N expansion and so it is less straightforward to assess the
accuracy of the particular manner in which divergencies are
avoided in the present approach. The situation is well illus-
trated by the behavior of the critical boundary, the curve
along which the effective pion mass vanishes,m'50. This
curve starts atf05v at zero temperature. In the treatments
of Refs. @11,15# the curve attains the valuef050 at the
T05A3v. If a similar 1/N truncation were made in the
present treatment, the identical value would be obtained.
However, our treatment makes no 1/N expansion and instead
yieldsT05A2v. It is interesting to compare this value with
the result obtained by Tetradis and Wetterich who have made
a more general investigation of the temperature dependent
effective potential inf4 theories with a new method based
on average fields@20#. For the dimensionality of interest,
N54, their numerically determined critical temperature is
T0'A2.05v which is in very good quantitative agreement
with the result of the present treatment.

With regard to the behavior of the equilibrium value of
the order parameterf0 ~the solid curve displayed in Fig. 6!,
recent preliminary and unpublished results obtained with the
quantum density matrix approach@28# display a qualitatively
similar behavior, although the decrease off0 as the system
is heated proceeds at a somewhat slower pace~i.e., the cross
over from the broken to the restored phase is gentler!. While
the rough agreement between the two types of calculation
suggests that the present implicit renormalization scheme is
reasonable, detailed quantitative comparisons with the meth-
ods of Refs.@11,15# would be less informative at this point
because of the significant effect of their 1/N truncation.

Furthermore, as will be discussed in Sec. IV C 2, the tem-
perature at which thes mass exhibits its minimum
(Tx'240 MeV) is in good accordance with an estimate
(Tx'226 MeV) made by Pisarski based on a gauged linear
s model @29#.

Finally we note that the present approach and those of
Refs.@11,15# all invoke a Hartree factorization and it would,
therefore, be interesting to undertake a study of how impor-
tant this key approximation is. This issue remains open for
future study.

C. Distributions

The preceding analysis implies that the statistical weight
WT(c,f), which is defined on the eight-dimensional phase
space of the order parameter, in fact depends on only three
quantities: the speedc05ucu, the magnitudef05ufu, and
the disalignment anglex0. Moreover, since the entropy de-
pends only on the effective masses, which in turn are deter-

4The importance of the quasiparticle entropy in determining the
statistical properties of the model was already emphasized by
Bardeen and Moshe@27# a decade ago.
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mined solely byf0, the dependence of the free energy on the
direction of f arises only through the symmetry-breaking
H term in the interactionV @Eq. ~2!#. Consequently, the cor-
responding projected probability distribution factorizes,

PT~c0 ,f0 ,x0![E d4c8E d4f8d~c082c0!

3d~f082f0!d~x082x0!WT~c8,f8!

5Pc~c0!Pf~f0!Px~f0 ;x0!

;c0
3f0

3sin2x0WT~c0 ,f0 ,x0!. ~41!

Herec0
3 andf0

3 are the Jacobians associated with the trans-
formation from the four-dimensional vectorsc and f to
their magnitudesc0 andf0, respectively, and sin2x0 is the
Jacobian arising from the three-dimensional nature of the
space perpendicular to the order parameterf. Furthermore,
the three normalized probability densities are given by

Pc~c0!5Ncc0
3expS 2

V

\3c3
c0
2

2TD , ~42!

Pf~f0!5Nff0
3expF2VS 1TVT~f0 ,x050!2ST~f0! D G ,

~43!

Px~f0 ;x0!5Nx~f0!sin
2x0expS 2

V

\3c3
H

T
f0~12cosx0! D .

~44!

For the normalization constants we haveNc
2152k2, with the

convenient abbreviation k[T\3c3/V, and Nx
21

5(p/j)I 1(j)exp(2j), with j[Hf0 /k.
The kinetic part,Pc(c0), is the projection of an isotropic

four-dimensional normal distribution having a total variance
of ac0

2s54k. The average kinetic energy associated with

the time evolution of the order parameter is thenaKs
54T, as would be expected in four dimensions. The mean
speed isac0s5A9pk/8.

Considered as a function of the four-dimensional order
parameterf, the probability density has a maximum where
the free energy has a minimum, as is evident from Eq.~39!.
However, the Jacobian factor;f0

3 associated with the pro-
jection fromf to f0 increases the most probable value of
the magnitudef0. This effect depends on volumeV, as is
illustrated in Fig. 6. The results for a finite box with
L58 fm ~dashed curve! are nearly identical to those ob-
tained forL→`, while L55 fm ~dots! leads to a more sig-
nificant increases inf0 at the higher temperatures. The most
rapid increase off0 occurs nearT'200 MeV which is well
above the critical temperatureT0 ~arrow! at which the effec-
tive masses drop to zero. We finally note that for relatively
low temperatures, the Jacobian causes the most probable
value off0 to slightly exceed the vacuum value.

The directional distributionPx(f0 ;x0), which depends
parametrically on the magnitudef0, grows broader at high
temperature wheref0 decreases. In the temperature range
considered here, up to several hundred MeV,Px(x0) is well
approximated by the projection of a three-dimensional nor-
mal distribution with a total variance of 3/j, and the average
magnitude of the disalignment anglex0 is then ax0s
'A8/pj.

It is interesting to note that although the free energy as-
sociated with the special case ofH50 has a qualitatively
different appearance, displaying an O~4!-symmetric surface
of degenerate minima, the corresponding curve for the most
probablef0 largely exhibits the same behavior as observed
for the finite value ofH when finite volumes of nuclear size
are considered, as illustrated in Fig. 6 by the open dots. This
remarkable feature is due to the statistical fluctuations which,
hen combined with the bias due to the Jacobian factorf0

3

@see Eq.~43!#, cause the behavior ofP(f0) to become rela-

FIG. 5. The free energy densityFT(f) along thes axis for a
range of temperatures. The solid curves show the results for a num-
ber of temperatures. ForT,T0 the curve starts at a certain mini-
mum value of the magnitudef0 and these starting points are con-
nected by the dotted curve, while the dashed curve shows the result
obtained when the temperature is neglected. The arrow points to the
minima ofFT50 and for the finite temperatures the location of the
minima are indicated by the solid dots.

FIG. 6. Temperature dependence of the order parameter. The
most probable value off0, the magnitude of the order parameter, in
the standard model whereH.0. In the limit of a very large box,
L→` ~solid curve! f0 is constrained to the value for which the free
energy density has its minimum@see Fig. 5~b!#. The bars show the
full width at half maximum of the thermal distribution off0 in the
system withL55 fm; those forL58 fm are about half that size
~see Fig. 7!. The open dots show the centroids forH50 for the box
with L55 fm.
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tively insensitive to the value ofH. Of course, as the box
size is increased,L→`, the fluctuations will subside and
P(f0) will become narrowly peaked around the lowest mini-
mum of the free energy. This somewhat academic case is
discussed further in Sec. VI C.

1. Distribution of the order parameter

For any finite volumeV, the order parameter exhibits
fluctuations around its most probable value. The full width at
half maximum of thef0 distribution is shown by the hori-
zontal bars in Fig. 6 for the smallest box (L55fm) where
the fluctuations are the largest. The relative smallness of the
fluctuations indicates that the order parameter is distributed
within a rather limited range of values. This feature is further
illustrated in Fig. 7 which depicts the entire distribution,
Pf(f0), over a range of temperatures, for a cubic box with
side lengthL58 fm, which is our standard scenario. The
solid curves in Fig. 7 have been obtained by scaling the
continuum results to the finite volume. The dashed curves
show the effect of properly quantizing the problem~i.e.,
summing over the discrete modes rather than integrating!.
The effect is very small, because the distributions are peaked
well inside the respective domains of stability.

For small temperatures, the distribution is narrowly
peaked near the vacuum valuefvac5f p ~indicated by the
arrow!. As the temperature is increased, the distribution
broadens and gradually begins to move inwards towards
smaller values off0. The width of the distribution increases
from zero at T50, exhibits a maximum near
T'220 MeV, and then slowly shrinks asT→`. The some-
what counterintuitive decrease of the fluctuations at high
temperatures is due to by the fact that the growing thermal
fluctuations cause the interaction to become progressively
more repulsive, causing the effective potentialVT to become
ever more confining.

We recall that for low temperatures,T,T0, our treatment
can only be carried out above a temperature-dependent mini-
mum value off0. As it turns out, this principal limitation is

of little practical import. For example, forT580 MeV ~the
lowest temperature shown in Fig. 7! the distance from the
centroid~at '91 MeV) to the boundary~at '69 MeV) is
over ten times the dispersion of the distribution
('2 MeV). Thus, for any temperature, the distribution
Pf(f0) is sufficiently narrow to make incursions into the
respective unstable regime extremely unlikely.

A more global impression of the statistical distribution of
the order parameterf can be obtained by considering a con-
tour diagram of the projected probability density
P(f0 ,x0)[Pf(f0)Px(f0 ;x0). Such a plot is displayed in
Fig. 8 for a box withL58 fm. The abscissa is the projection

of the order parameter onto thes axis, s0[f•ŝ
5f0cosx0, and the ordinate is the magnitude of its perpen-
dicular component,p0[f0sinx0. For each temperature, the
dots show the location of the maximum and the half-
maximum contours are traced out. The solid contours and
dots refer to the continuum treatment, whereas the dashed
contours and the open dots~shown for two temperatures
only! are obtained with a quantized treatment, which is seen
to have little effect. The profiles in Fig. 7 are the projections
of P(f0 ,x0) onto the magnitudef0. It is evident from the
above results that the O~4! symmetry is far from restored at
the temperatures expected in the planned high-energy
nuclear collisions. Instead the order parameter is in fact dis-
tributed within a fairly limited domain around thes axis,
with both its magnitudef0 and its angle of disalignment
x0 exploring only rather narrow ranges.

2. Distribution of the effective masses

The effective masses are functions of the magnitude of
the order parameter,m i(f0) andm'(f0). Consequently, the
thermal fluctuations in the order parameter will cause the
effective masses to fluctuate as well. Since their distributions
may be of some interest~see Sec. V C!, we consider briefly
the corresponding probability densities for the effective
masses,

FIG. 7. Distribution of the magnitude of the order parameter.
For a cubic box of side lengthL58 fm is shown the probability
density for the magnitude of the order parameter,P(f0), for a
range of specified temperaturesT ~indicated!, obtained either by
scaling the continuum result~solid curves! or by quantizing the
quasiparticle modes~dashed curves!.

FIG. 8. The joint distributionP(f0 ,x0). The projection of the
probability densityP(f) onto the variablesf0 ~the magnitude of
the order parameter! andx0 ~the disalignment angle! is displayed as
a function ofs05f0cosx0 and p05f0sinx0, for a cubic box of
side lengthL58 fm. For each temperatureT, the solid dot indi-
cates the location of the maximum ofP(f0 ,x0) and the solid curve
traces out the half-maximum contour, obtained by scaling the con-
tinuum results. For the temperatures 200 and 240 MeV is indicated
the corresponding result of quantizing the quasiparticle modes
~dashed contours and open centroid dots!.
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P'~mc2![E d4f P~f!d„m'~f0!c
22mc2…, ~45!

and analogously for Pi(mc
2), where P(f)5

Pf(f0)Px(f0 ;x0) is the probability density for the order
parameterf. In order to gain an impression of these distri-
butions, we show in Fig. 9 the most probable effective
masses as functions of the temperature.

The transverse effective massm' increases steadily from
its free valuemp as the temperature is raised, whereas the
parallel effective massm i drops by nearly fifty percent be-
fore finally turning upwards. For temperatures above
T'300 MeV, the two effective masses are practically de-
generate and gently approach their asymptotic form
mc2'1.59T. We note that the effective masses always ex-
ceed the temperature, so it is never reasonable to ignore the
effective masses. We also note that the transverse mass has
practically no strength near the free pion mass, until the tem-
perature is belowT0 ~see Fig. 13!.

The parallel effective massm i exhibits a pronounced
minimum atTx'240 MeV. It is in this region that the order
parameter exhibits its most rapid evolution withT ~see Fig.
6! and the temperatureTx at which the minimum inm i oc-
curs may be taken as the effective critical temperature of the
model@29#. It is interesting to note that a recent study with a
gauged linears model @29# estimates this quantity as
Tx'226 MeV, a value in good accordance with the present
results.

D. Sampling of the order parameter

The above analysis provides a convenient basis for sam-
pling the order parameter in accordance with the statistical
weightWT(f,c) given in Eq.~39!, and we describe briefly
how this can be accomplished in a manner that is both quick
~i.e., the computational effort is small! and efficient~i.e., no
effort is expended on rejection!.

As noted already, the time derivativec is governed by a
four-dimensional normal distribution which is isotropic and

entirely decoupled from the other degrees of freedom@see
Eq. ~42!#. Thus it is elementary to sample this quantity.

The most complicated sampling concerns the magnitude
f0, due to the intricate structure of its probability distribu-
tion, as discussed above. However, the numerical effort re-
quired is quite modest. The most efficient method requires a
precalculation of the effective masses as functions off0, for
the particularT of interest. This is quickly done by proceed-
ing as described in Sec. III B. Thex0-independent part of the
effective potential,VT(f0,0), can then be obtained together
with the corresponding entropyST(f0). In effect, the prob-
ability distribution forf0 can be pretabulated,Pf(f0) @see
Eq. ~43!#, and it is then a numerically trivial task to sample
f0.

Once the magnitudef0 has been selected, it is straight-
forward to sample the disalignment anglex0, using either the
exact form ~44! or its Gaussian approximation. In order
to orient f in the p subspace, there remains the
task of selecting the remaining O~3! spherical angles
q0 and w0, upon which the order parameter is given
by f5(f0cosx0,f0sinx0sinq0cosw0,f0sinx0sinq0sinw0,
f0sinx0cosq0).

V. THE QUASIPARTICLES

We turn now to the discussion of the quasiparticle degrees
of freedom associated with the spatial variations of the chiral
field, df(r). Once the magnitude of the order parameter,
f0, has been chosen~see Sec. IV D!, the quasiparticle de-
grees of freedom are fully characterized, via the effective
massesm i(f0) andm'(f0), and it is then possible to sample
them appropriately.

A. Sampling

On the basis of the above developments, it is possible to
devise a simple and efficient method for performing the sta-
tistical sampling of the chiral field, thus putting the initial-
ization of dynamical simulations on a formally sound basis.

Since the different quasiparticle modes can be regarded as
effectively decoupled, the sampling is best done by making
an expansion into the elementary modes,

df i~r,t !5~2V!1/2(
k

8 Ck
i cos~k•r2vk

i t2hk
i !, ~46!

and similarly for the three transverse chiral components
df'(r,t). Here the energyek5\vk is determined by the
Klein-Gordon dispersion relation,ek

25\2c2k21m2c4 ~with
m being the appropriate effective mass,m i or m'). The
phasehk is random in the interval (0,2p) and is thus trivial
to sample. Furthermore, the real~and positive! amplitude
Ck can be related to the number of quantank by considering
the energy carried by the mode,

Ek5nkek5
ek
2

\3c3
Ck
2⇒Ck5S \3c3

nk
ek

D 1/2. ~47!

We have here omitted the zero-point energy@30#, thereby
eliminating the associated ultraviolet divergence. Although
not quite correct, this approach is justifieda posterioriby the

FIG. 9. The most probable effective massesm i ~solid! andm'

~dashed! are shown as functions of the temperatureT, with the error
bars indicating the full width at half maximum of the distribution
resulting for a box with a side length ofL58 fm. The results
obtained by scaling the continuum results are indistinguishable
from those of the corresponding quantized treatment.

1198 55JO”RGEN RANDRUP



apparent good quality of the resulting approximate treatment.
~The dynamical tests discussed in Sec. VI are here very im-
portant, since the statistical samples would not remain sta-
tionary under time evolution if the treatment were substan-
tially wrong.!

Thus the problem has been reduced to sampling the num-
ber of quantank . Since the probability for finding a particu-
lar number of quanta in the modek is given by P(nk)
5@12exp(2ek /T)#exp(2nkek /T), it is elementary to sample
the integernk appropriately.

5 We note that the thermal aver-
age ofnk is equal to the occupancyf k employed in the cal-
culation of the entropy,anks5 f k .

Once the amplitudes and phases have been selected, the
expansion~46! readily yields the initial value of the field
fluctuations,df(r,0). The corresponding conjugate momen-
tum, dc[\] tdf, readily follows since Eq.~46! implies

dc i~r,t !5S 2V D 1/2(
k

ek
iCk

i sin~k•r2vk
i t2hk

i !. ~48!

The entire state of the chiral field,„f(r),c(r)…, has then
been selected at the timet50. When the equations of motion
are propagated by a leap-frog method, the field strength
df(r) is calculated at the timestn5nDt while the momen-
tum dc(r) is obtained at the intermediate times. The appro-
priate initialdc(r) can then easily be obtained by evaluating
the expansion~48! at t5Dt/2, afterCk and hk have been
selected.

Finally, since the sampling has been done in a system
aligned with the order parameterf ~in which the mass tensor
is diagonal!, an O~4! rotation of the sampled field configura-
tion is required in order to express the state with respect to
the chiral directions. This is readily accomplished on the
basis of the angles (x0 ,q0 ,w0) specifying the direction of
f.

1. Occupation numbers

Since the quasiparticles represent bosonic modes, it is
useful to know how large the occupancies can become. The
thermal occupation numbers are given byanks
5 f k51/@exp(ek /T)21#, and sincem',m i in any given sce-
nario the largest occupancies occur for the transverse modes,
f k
'. f k

i . Moreover, for a given temperatureT, f k is largest
when the momentum vanishes,f 051/@exp(mc2/T)21#,
which then provides an upper bound onf k ~recall thatk.0
for the quasi-particles modes!.

Considered as functions ofT, the boundsf 0
i and f 0

' start
out from zero, display maxima well aboveT0, and then drop
off towards a common constant value at high temperatures.
The ~common! limiting occupancy is f 0'0.26 since
mc2'1.59T when T→`. ~This feature is a direct conse-
quence of the repulsive self-interaction of the chiral field and
is in marked contrast to the ever increasing occupancy char-
acteristic of free bosons in a thermal bath.! The maximum

values attained byf 0
i and f 0

' are about 0.38 and 0.48 and
occur at approximately a temperature of 265 and 235 MeV,
respectively. Since these values are well below unity, the
system is never very degenerate.

Nevertheless, there is an important advantage to using
Bose-Einstein rather than Boltzmann statistics for the field
fluctuations, as we will now discuss. When classical statistics
is used, the occupation probability isnk'T/ek , reflecting
the equipartition theorem, and, therefore, the total energy
density grows as the cube of the~required! cutoff on ek , a
manifestation of the Rayleigh-Jeans divergence. Such a de-
scription would be entirely wrong in the present context and,
moreover, it would be numerically ill behaved. By contrast,
the quantal occupation probability falls off exponentially and
the density of quanta is finite. By adopting the Bose-Einstein
treatment, we then get a much more realistic formal descrip-
tion of the statistical properties of the system and, in addi-
tion, the numerical treatment becomes straightforward. Of
course, if a configuration sampled on the basis of the quantal
statistics is propagated for a sufficient length of time, it will
eventually exhibit classical features, since the equation of
motion is entirely classical. It is, therefore, fortunate that our
treatment is expected to be applied only to processes that are
far faster than the time scales associated with the reversion to
classical statistics. In particular, for the formation of disori-
ented chiral condensates in high-energy collisions the rel-
evant time scales are of the order of a few fm/c, while our
numerical studies exhibit no ultraviolet run away for at least
several tens of fm/c.

B. Correlation function

It is particularly interesting to calculate the correlation
function of the chiral field since this quantity determines the
spectral distribution of the emitted field quanta.

The density matrix associated with the quasiparticle de-
grees of freedom is a 434 tensor:

C~r 12,t12![adf~r1 ,t1!df~r2 ,t2!s. ~49!

The average is over the ensemble of systems considered, in
the present case a thermal ensemble held at the temperature
T ~Fig. 10!. Since an ensemble in equilibrium is invariant in
time, the correlation function depends only on the time dif-
ferencet125t12t2. Analogously, the translational symmetry
of the scenario implies that the spatial dependence is via the
separationr125r12r2. Moreover, to the extent that there is
invariance under spatial rotations, only the magnitude
r 125ur12u enters. In principle, these spatial symmetries are
broken when a finite box is considered, but the effect is
insignificant and can be disregarded in the present study.

Utilizing the expansion~46!, it is elementary to show that
the correlation tensorC is diagonal with the elementsCi and
C' , where

Ci~r ,t !5
\3c3

V (
k

8
1

ek

cos~k•r2vkt !

ebek21

_̂
1

2p2

\c

r Em ic
2

`

de
sinkr

ebe21
cosvkt, ~50!

5The corresponding algorithm for this task is very simple because
nk can be regarded as counting the number of successive times the
sampling of a standard random number@i.e., uniform on (0,1)#
yields a value below exp(2ek /T).
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with ek
25\2vk

25\2k2c21m i
2c4. An analogous expression

holds forC'(r,t). Since\3c3f k /ek is equal to the thermal
averageaCk

2s, we recognize that the result~50! corre-
sponds to the expression~146.10! given in Ref.@21#.

The usual correlation function is the trace ofC,

C[adf~r1 ,t1!•df~r2 ,t2!s5trC

5Ci~r 12,t12!13C'~r 12,t12!. ~51!

Its overall magnitude is set by its value at zero, which is
simply the corresponding variance in the field strength,
C(0,0)5adf2s. It is, therefore, convenient to divideC by
this quantity and so define the reduced function
C12[C(r 12,t12)/adf2s. SinceC12 is unity when r15r2
andt15t2, it expresses the space-time attenuation of the cor-
relation between the field-strength fluctuations at different
space-time points. In general,C12;(1/r 12)exp(2mcr12/\) in
the limit of large separations,r 12→`, so that\/mc provides
a simple measure of the correlation length. In the special
case when the effective mass vanishes, the reduced equal-
time correlation function is given on analytical form,

C12 _̂(3/z)(cothz21/z), where z[pTr12/\c. In this ex-
treme case, the correlation function falls off only as
;1/r 12.

Figure 10 shows the reduced correlation functionC12 ob-
tained at the particular temperatureT0. Its appearance de-
pends on the magnitude of the order parameter,f0, through
the effective masses. Asf0 is increased from zero to its
vacuum value fp592 MeV, the corresponding effective
masses increase from zero to their free values and the corre-
lation function falls off ever more rapidly. The correlation
function thus exhibits a significant sensitivity to the order
parameter. We note in particular that for the most probable
value,f0'87 MeV, the attenuation ofC12 is considerably
faster than forf050 and its width has dropped by over a
factor of two. It is, therefore, important to take proper ac-
count of the order parameter when calculating the correlation
function.

Figure 11 shows how the reduced correlation function
evolves with temperature when the most probable magnitude
of the order parameter is employed. At high temperatures the
effective masses grow nearly in proportion toT so then the
correlation length tends to zero, as is borne out by the steady
shrinking ofC12. For temperatures below critical, the field
fluctuations are predominantly associated with the transverse
modes, since those have the smallest effective mass,
m'!m i , and the correlation length grows ever larger.

It is common to characterize the system by the ‘‘correla-
tion length,’’ defined as the first moment of the equal-time
correlation function which diverges whenm→0. For the
present discussion, it is more convenient to characterize
C12 by its full width at half maximum for equal times,
G12, since this quantity is always easy to extract, even when
the mass vanishes. Figure 12 shows this measure of the cor-
relation length as a function of temperature, using the most
probable value off0. For temperatures near and below
T'200 MeV the dominant fluctuations are perpendicular to
the order parameter since the corresponding effective mass is
relatively small. For higher temperatures the asymptotic re-

FIG. 10. The reduced correlation functionC125
adf(r1)•df(r2)s/adf2s calculated at the special temperature
T0 ~for which the effective masses vanish whenf050), for various
magnitudes of the order parameter, ranging fromf050 to the
vacuum value,fvac5 f p592 MeV. The most probable value of
f0 at T0 is '87 MeV.

FIG. 11. Temperature dependence of correlation function. The
reduced correlation functionC12 for a range of temperaturesT,
employing for each one the most probable value off0, the magni-
tude of the order parameter.

FIG. 12. The correlation lengthG12 ~the full width ofC12 at half
maximum! as a function of temperature, employing the most prob-
able value off0 for eachT.
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gime is approached where the chiral symmetry is approxi-
mately restored and the fluctuations are similar in all four
chiral directions.

It is sometimes of interest to also consider correlation
functions involvingdc, the time derivative of the local field
strength@11#. Those can be obtained in a similar manner.

C. Radiation spectra

The evolving chiral field may give rise to mesonic radia-
tion, in analogy with the emission of photons by a time de-
pendent electromagnetic field. The rate for production of a
field quantum having energyE and momentump is propor-
tional to the square of the corresponding Fourier amplitude
@31–33#,

E
dNj

dp
;U E drE dtdf j~r,t !e

2~ i /\!~p•r2Et!U2. ~52!

Here j denotes the particular O~4! direction considered so
that j50 gives rise to isoscalars-like mesons andj.0
represent three components of the isovector pionlike mesons
~with j53 corresponding top0, say!.

A uniform system in equilibrium has both temporal and
spatial invariance and the specific radiation rate,n j (p,E)
~i.e., the production per unit volume and per unit time!, is
then given by the Fourier transform of the correlation func-
tion @2#,

n j~p,E![
1

Vt0
aE

dNj

dp
s;E drE dtCj~r ,t !e

~ i /\!~p•r2Et!

[Cj~p,E!, ~53!

whereV is the volume of the system andt0 is the time
interval considered. The Fourier transform of the correlation
function is easy to obtain in the continuum limit:

Cj~p,E! _̂ \3c3
p

ebE21
d~m2c42m j

2c4!, ~54!

where we have assumed that the energy and momentum of
the radiated mesons are related byE25p2c21m2c4.

The above result holds for a specified value of the order
parameterf0 which determines the effective massm j . As
we have discussed, the order parameter has in general a sta-
tistical distribution,P(f0), giving rise to corresponding dis-
tributions of the effective masses,Pi(m) and P'(m) ~see
Sec. IV C 2.!. The resulting production rate can then be ob-
tained by integrating over the appropriate thermal mass dis-
tribution. Thus, for example, the specific production rate for
p0 mesons is

np0~p,E!;E dm2c4P'~m2c4!C'~p,E!

5\3c3
pP'~mp

2c4!

ebE21
, ~55!

and the rates for the charged pions are similar.6 This result is
easy to interpret: The spectral distribution of the radiated
mesons is of thermal Bose-Einstein form, with the tempera-
ture given by the value characterizing the source itself, and
the overall normalization of the radiation rate is proportional
to the probability that the space and time evolution of the
field matches the particular dispersion relation for the type of
meson considered.

As an illustration, Fig. 13 displays the strength function
P'(mp

2c4) obtained by evaluating Eq.~45! for m5mp as a
function of the source temperature. As the temperature is
decreased towards zero, the centroid of them' distribution
moves down towards the free valuemp and at the same time
its width keeps shrinking towards zero~see Fig. 9!. Through
the supercritical regime the pion strength then grows ap-
proximately exponentially. Then a plateau is reached where
the increase caused by the approach of the centroid tomp is
counterbalanced by the decrease due to the shrinkage. As a
result, the strength is nearly constant from 90 to 30 MeV.
Finally, after the centroid has practically reachedmp , the
free strength exhibits a rapid rise as them' distribution ap-
proaches ad function. On the basis of this result, one would
expect radiation of free pions to be unimportant until the
temperature has dropped belowT0.

VI. DYNAMICAL TESTS

Once the initial state has been prepared, for example by
means of the statistical sampling described above, the chiral
field may be propagated in time by means of the equation of

6The rates considered here pertain to the idealized scenario of a
macroscopically uniform system~possibly enclosed in a torus!, and
hence they differ from those describing the emission from a finite
source into the surrounding vacuum. In particular, the familiar ki-
nematic enhancement of the faster-moving ejectiles is absent.

FIG. 13. Pion production rate. The strength function
P'(mpc

2) determining the overall rate at whichp0 mesons are
being produced@see Eq.~ 55!# in a source in thermal equilibrium, as
a function of its temperatureT. This result is obtained by perform-
ing a Fourier transform of the quasiparticle correlation function
associated with a given order parameterf0 and subsequently aver-
aging over its distribution,P0(f0). The overall normalization is
arbitrary.
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motion ~9!, which is straightforward to implement in either
x or k representation.

It is possible to exploit the dynamical evolution to test the
validity of our approximate statistical treatment. If the sys-
tem is ergodic, as would be expected because of its nonlinear
interaction, a dynamical trajectory will explore the space of
possible field configurations in accordance with the appropri-
ate microcanonical weight. Conversely, an ensemble of field
configurations that has been sampled statistically should not
exhibit any change under time evolution. These features pro-
vide a convenient means for checking our treatment and we
give two illustrations below.7

A. Average field strength

Perhaps most vividly, we show in Fig. 14 the early trajec-
tories of the order parameterf for a sample of eight con-
figurations, considering a box withL58 fm and either
T5200 MeV or T5240 MeV. The dashed contours are
those already given in Fig. 8 indicating where the projected
probability density has fallen to half its maximum value and
the centroids are indicated as well~open dots!. For each in-
dividual trajectory, the initial location is indicated by the
solid dot and the attached solid curve shows the trajectory up
to t51fm/c. The fact that the initial points reflect the calcu-
lated statistical distribution provides an elementary test of
the numerical sampling algorithms. Less trivial is the fact
that the dynamical trajectories indeed appear to explore the
region predicted by the approximate statistical distribution.
When the propagation is continued for a longer time, up to
10–20 fm/c, each individual evolution exhibits a trajectory
that gradually fills a localized region which appears to be

well in accordance with the predicted equilibrium distribu-
tion, but such longer histories are not shown since they
would clutter the display.

This correspondence can be made more quantitative by
studying how the distribution of the order parameter evolves
in the course of time. This analysis is illustrated in Fig. 15.
The approximate distributionPf(f0) given in Eq. ~43! is
indicated by the solid curves forT5180 andT5240 MeV.
Forty individual systems have then been prepared by sam-
pling their field configurations as described above and they
have subsequently been propagated by the equation of mo-
tion ~9! up to the timet510 fm/c. In the course of the
evolution, the value off0 is extracted at regular intervals
and binned into slots that are 5 MeV wide. In this manner the
time-averaged distribution off0 can be determined and the
dashed curves display the result~which is not sensitive to an
increase of either the maximum time or the sample size!. The
overall agreement with the initial distribution is very good.
There is generally a slight shift outwards, amounting typi-
cally to 1–2 MeV, which suggests that our approximate ther-
mal distributions may be centered at somewhat too low val-
ues off0.

Propagations have been carried out up tot5100 fm/c in
order to get an impression of the long-term behavior. The
results indicate a large degree of stability with respect to the
domain explored by the order parameter in the course of
time, but with a gradual evolution towards somewhat larger
magnitudes. Such a trend is expected as a result of the dif-
fusive population of high-frequency modes characteristic of
classical dynamics. This mechanism effectively cools the
system and hence softens the O~4! restoring force. However,
this gradual development happens on a time scale that is very
long in the DCC context and it need, therefore, not concern
us here.

7It is important to recognize that whereas the statistical properties
have been obtained by assuming that the quasiparticle degrees of
freedom are effectively decoupled, no such assumption is being
made in the dynamics, since the trajectories are obtained by solving
the full equation of motion~9!.

FIG. 14. Early dynamics of the order parameter. The early tra-
jectories of the order parameter are shown for a sample of eight
configurations, considering a box withL58 fm with a temperature
of either 200 or 240 MeV. The display is similar to that in Fig. 8
and the half-density contours~dashed! as well as the centroids
~open dots! are those already given there. For each individual tra-
jectory, the initial location is indicated by the solid dot and the
attached solid curve traces out the dynamical path up to the time
t51fm/c.

FIG. 15. Time-averaged distribution of the order parameter.
This figure illustrates the influence of the time evolution on the
distribution of the magnitude of the order parameter,f0, for a bow
with L58 fm and for the temperatures of 180 and 240 MeV. The
solid curves show the initial distribution off0, as given by approxi-
mate statistical distributionPf(f0) @see Eq.~43!#. A sample of 40
systems are then followed up to the timet510 fm/c and the order
parameter is binned at regular time intervals throughout the evolu-
tion, leading to the dashed curves.
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B. Field fluctuations

Figure 16 displays the correlation function for the pion
components,C12

p (s12), for a box withL55 fm prepared at
T5240 MeV. The short-dashed curves show the correlation
function obtained on the basis of ten sampled configurations,
and the long-dashed curves then indicate the corresponding
result after those systems have been evolved up to the time
t510 fm/c. The two curves that go up again have been
obtained by aligning the relative separationr12 along one of
the cartesian axes, while it is directed diagonally for the
other two curves~the periodicity is thenA3L and so their
eventual rise is only barely visible!. For reference is shown
the exact thermal correlation function for either the finite box
considered~solid curves! or the continuum limit ~dots!.
While this latter curve tends to zero for large separations
~and in fact falls off monotonically!, the correlation function
for a finite box drops to a negative value, because its spatial
average must vanish.

The correlation function remains remarkably invariant in
the course of time. This suggests that our treatment, includ-
ing the sampling procedure, in fact yields a good approxima-
tion to the correlated field fluctuations. As a quantitative
measure, one may consider the full width at half maximum
G12. The continuum value is 1.33 fm, slightly larger than the
thermal result for the finite box, 1.30. For the sample of ten
initial configurations we find 1.256 and 1.271 for the carte-
sian and diagonal directions, respectively, which have
evolved into 1.263 and 1.290 att510 fm/c. So there is no
significant change in the width of the correlation function
over this time period.

C. Discussion

An additional perspective on the utility of the present ap-
proximate treatment may be obtained by considering the spe-
cial case whereH vanishes, even though that idealized sce-
nario is not within the scope of intended applications. In this
special case one expects a second-order phase transition to
occur. Thus, in the limit of large volumes,L→`, the order
parameter should remain zero down to a critical temperature
at which point it should start growing rapidly following a
parabolalike trajectory down to its vacuum valuev. When
applying the developed approximate method withH50, we
find that for high temperatures the free energy density has
indeed its minimum atf050 and the symmetric minimum
grows ever more shallow as the temperature drops, as should
be the case. Then, nearT'175 MeV, a very shallow sec-
ondary minimum appears atf0'50 MeV, and it becomes
the lowest one from aboutT'171 MeV. As T decreases
further that minimum gently approachesf05v, again as one
would expect.

However, the appearance of the secondary minimum
causes an abrupt change in the location of the lowest mini-
mum of the free energy, and so the order parameter exhibits
a discontinuous change, as is characteristic of a first-order
phase transition. Naturally, this feature might at first glance
be a cause for concern. But, when trying to assess its signifi-
cance, one should note that the energy differences respon-
sible for producing the discontinuous behavior are only frac-
tions of an MeV/fm3. Consequently, if the calculated free
energy density were adjusted by such small amounts, it
would be possible to eliminate the shallow secondary mini-
mum and thus convert the very weak first-order transition to
a second-order transition.

The error in the employed approximation arises from the
replacement of the state-dependent termdV by its thermal
averageadVs. Although this is generally expected to be a
fairly accurate approximation~the associated error being at
the percentage level!, it may easily lead to inaccuracies of
the above small magnitude. Fortunately, while even such
relatively small imperfections can thus produce a qualitative
change very near the critical point for the idealized O~4!-
symmetric model, they have little bearing on the situation of
practical interest, since the finite value ofH eliminates such
critical sensitivity. Moreover, for finite systems of nuclear
dimensions, the associated distribution of the order param-
eter has a significant width and it is practically insensitive to
such minor adjustments, even whenH vanishes, as we al-
ready noted in connection with Fig. 6. In particular, there is
no discontinuity near the temperature where the location of
the lowest minimum in the free energy changes abruptly.

VII. CONCLUDING REMARKS

The present work was motivated by the current interest in
disoriented chiral condensates, particularly by the various
dynamical simulations carried out with the linears model
@8,9,11,13,14,16#. Those calculations follow the nonequilib-
rium evolution of the cooling chiral field in order to ascertain
the degree to which coherent domains develop. Since the
dynamics is inherently unstable, with the low-momentum
modes experiencing rapid amplification, one may expect a
significant sensitivity of the results to the initial conditions,

FIG. 16. Time evolution of the correlation function. The pion
correlation functionC12

p (s12) at the temperatureT5240 MeV. The
dotted curve is the continuum limit (L→`) and the solid curve is
the corresponding thermal result for a quantized finit box with a
side length ofL55 fm. The correlation function for a sample of
ten initial configurations are shown by the short-dashed curves, and
the long-dashed curves show the corresponding result after they
have been propagated self-consistently up to the timet510 fm/c.
The dashed curves have been obtained in two different ways: The
curves that go up again result from aligning the separationr12 along
one of the Cartesian directions, while the other two are obtained for
separations directed along a diagonal. The aligned curves have a
periodicity equal toL, whereas the periodicity of the diagonal
curves isA3 times larger.
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with a commensurate degree of difficulty regarding their in-
terpretation. Consequently, caution is required when charac-
terizing the ensemble of initial field configurations em-
ployed.

In order to provide a useful framework for this aspect of
the problem, we have explored the statistical properties of
the linears model in the form that is being used in the
numerical simulations, i.e., propagation of classical fields in
the presence of a finite symmetry-breaking term. In order to
achieve a well-defined separation into order parameter and
quasiparticles, we have confined the system to a torus and
held it at a fixed temperature. Although this problem can be
treated exactly@34#, we have found it preferable to linearize
the equations of motion by means of a Hartree-type approxi-
mation, since our view is towards practical calculations. The
resulting treatment then becomes very simple and appears to
be sufficiently accurate in the intended context. We also note
that the treatment, though approximate, is thermodynami-
cally consistent, since the partition function on which it is
based has been obtained consistently within the adopted Har-
tree approximation scheme.

The problem separates into one concerning the spatial av-
erage of the field, the order parameter, and another dealing
with the field fluctuations, referred to as the quasiparticle
degrees of freedom. The latter are described approximately
in terms of effective masses that depend on both the order
parameter and the temperature, but are independent of the
symmetry breakingH term; these were presented in Fig. 1.

The partition function then takes on a corresponding sepa-
rable form and, as a consequence, it is possible to develop a
simple method for performing a statistical sampling of the
thermal equilibrium field configurations, including their time
derivatives, at any temperature~even if subcritical!. It has the
combined advantages of being less cumbersome than exact
stochastic methods, such as Metropolis sampling, and having
a clear physical basis that brings out the interplay of the
various quantities entering. The method is expected to be
directly useful as practical means for initializing the dynami-
cal simulations of the chiral field of the type carried out
recently by several groups@8,9,11,13,14,16#, thus making it
easier to interpret the numerical results. The developed sam-
pling method presents a significant improvement over the
previously employed method which simply samples the field
strength independently at each lattice point and thus yields a
very unrealistic correlation function.8

Moreover, our specific illustrations provide useful insight
into the equilibrium properties. In particular, it appears to be
unrealistic to start the order parameter off with a value equal
to zero. Indeed, for temperatures up to more than 200 MeV
the most probable order parameter is closer to its vacuum
value f p than to zero. The relationship between temperature

and order parameter was summarized in Fig. 6 and a more
global impression of the distribution of the the order param-
eter ~including its degree of misalignment! can be gained
from the contour plots in Fig. 8.

Since the order parameter is thus very unlikely to vanish,
the effective quasiparticle masses remain finite. Conse-
quently, the statistical equilibrium distribution is well be-
haved at all temperatures and the change from the ‘‘re-
stored’’ phase to the normal one is fairly gradual. However,
the finite size generally reduces the effective masses, thereby
bringing the system somewhat closer to criticality~which
should enhance the DCC phenomenon!.

Of course, the statistical properties are of most practical
interest at the relatively high-energy densities characteristic
of the initial stage of the high-energy collision. Once the
chiral field has been initialized accordingly, any instabilities
and associated amplifications will be automatically included
in the dynamical propagation and the system can generally
be expected to quickly move out of equilibrium. The equi-
librium results can then provide a meaningful reference
against which to analyze the deviation from equilibrium at
any stage in the dynamical relaxation process.

Additionally, we illustrated briefly the equilibrium form
of the correlation function which is an object of primary
interest. Indeed, it is the correlation length that properly ex-
presses the ‘‘domain size’’ governing the conjectured
anomalous pion radiation. Essentially, what one would ex-
pect to see at the end is a stretched version of the initial
correlation function since the long wavelengths are the most
unstable and so will contribute in an ever larger proportion.
This underscores the importance of starting out with chiral
fields that have physically reasonable correlation properties.
To illustrate the use of the correlation function, we derived
the rate at which real pion mesons are created by the field,
and subsequently we calculated the dependence of the free
pion strength on the temperature of the system.

Finally, we sought to assess the accuracy of our approach
by subjecting sampled field configurations to the exact time
evolution. This convenient means of testing suggested that
the approximate treatment is of sufficient accuracy to be of
practical utility. We, therefore, anticipate that it may find use
in simulation studies, such as those exploring disoriented
chiral condensates in high-energy collisions.
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