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Instanton calculus and nonperturbative relations inN=2 supersymmetric gauge theories
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Using instanton calculus we check, in the weak coupling region, the nonperturbative relation
(Tr¢p?)=iw[ F—(al2)dFlsa] obtained for aN=2 globally supersymmetric gauge theory. Our computations
are performed for instantons of winding numberup tok=2, and turn out to agree with previous nonper-
turbative results|S0556-282197)01502-9

PACS numbgs): 11.30.Pb, 11.15.Kc, 11.15.Tk

[. INTRODUCTION framework of perturbation theory, as effective four-fermion
vertices to be added to the tree-level Lagrangian. The com-
In a recent worK 1], Seiberg and Witten have managed to putation of these effective vertices has already been per-
compute the guantum moduli space and the Wilsonian effedormed for the case of instantons of winding number one
tive action for the Yang-Mills theory with globall=2 su-  [3-5] and two[6].
persymmetry =2 SUSY from now oh This achievement The approach presented in this paper is somewhat differ-
has been possible by using judiciously a certain number oént in that we will check the nonperturbative relation
educated guesses for the behavior of the moduli space of
vacua of the theory and by exploiting the unique properties (Trd;z):iw(]—‘— a f
of theN=2 SUSY. In fact, the Wilsonian effective action of 2 da
this theory, after having used the Higgs mechanism, is com- . ) o
pletely determined once a certain prepotenffals known found in[7]. Expanding the left-hand side in E(L.2) as
[2]. In turn, this prepotentialF is determined if its global w
structure is known or postulated. This global structure is
given by the monodromies around the singular points of the
prepotentialF: the group generated by these monodromies is
a subgroup of SL(Z). and substituting Eq(1.1) in Eq. (1.2) we find G, = 2kF, for
In the electric(or Higgs phase of the theory the form of a comparison with the results 8]. The G,'s can also be
the prepotential is known since, due to nonrenormalizatiorstraightforwardly checked against the results of the recursion
theorems, only the one-loop term contributes at the perturbaelation found in[7].2
tive level. Moreover, nonperturbative corrections due to in- Supersymmetric instanton calculus was developed in two
stantons must be considered, leading to the final expressiodistinct wayq9—11] to study supersymmetrsUSY) break-
ing. The main difference between these two approaches con-

1.2

1 4k
(Trgp?(a)y=— Eaz—kgl Gigai= (1.3

1 (A2 2A2 = A% sists in giving or not giving an expectation value to the scalar
F(A)= — ?lnF - k§=:1 ]:k?k*_z ) (1.  (Higgs field of theN=2 multiplet. Given the check we want

to perform the right choice is to follo\®,10,13 where such

an expectation value for the scalar field is present.

In Eg. (1.1) A is the renormalization-group-invariant scale  This is the plan of the paper: in Sec. Il we shall briefly
andA is a chiral superfield whose lowest component squarediscuss the basic ingredients of the Atiyah-Drinfeld-Hitchin-
is a’=—2u, i.e., it is the gauge-invariant coordinate of the Manin (ADHM) construction of instantons which will be
moduli space of vacua, when the gauge group iS25U useful later on. In Sec. lll we introduce the semiclassical
(which will be our choice from now on at least for large expansion of Green functions in SUSY gauge theories, and
u anda. The coefficientsF, give the nonperturbative con- check the relatiorf1.2) against k=1 computation. In Sec.
tributions due to instantons. A formidable check of the asdV we extend our considerations to a background of Pontrya-
sumptions made 1], concerning the symmetries of the gin indexk=2.

moduli space, is thus given by matching the coefficiefts

against those obtained by instanton calculus. This check—

must be performed in the weak coupling region in which The reader should pay attention to different normalizations. The
instanton calculus can be reliably performed. Some work hasonventions of this letter for th&,’s, which have an opposite sign
already been done along these lines. Nonperturbative contnvith respect to those of[6], are connected to[7,8] as
butions induced by instantons can in fact be seen, in thef=—2%27K-T= —j 722}
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Il. A BRIEF REVIEW OF THE ADHM FORMALISM WhEI’EO'IL,,Zi 777“/0-3, with 777“/ the 't Hooft symbols_ Using
Before describing the actual computation we need tcﬁq' (2.8) we also compute
briefly discuss the ADHM construction and collect some _ t
y Tr(F ,,F,,)=20Trb'(1+P)bf], (2.9

useful formulas.

As it is well known, self-dual S(2) connections ors* where
can be put into one-to-one correspondence with holomorphic
vector bundles of rank 2 ovéiP® admitting a reduction of P=UUT=1-AfA" (2.10
the structure group to its compact real form. The ADHM . . . .
construction[ 13,14 gives all these holomorphic bundles and is the projector on the kernel QKT.' Equation(2.9) will wrn
consequently all S(2) connections or8*. The construction out to be |mp9rtant in the following. .
is purely algebraic and we find it more convenient to use The _bosonl_c zero modes,, of the gauge-fixed second
guaternionic notation. The points of the one-dimensional order differential operator
quaternionic spacél=C2=R* can be conveniently repre- M, =—D%A%s, —2F 2.19)
sented in the fornk=x*co,, with o,=(Lio.), c=1,23. my my pye '
The o’s are the usual Pauli matrices. The conjugat& @  which describes the quantum fluctuations of the gauge fields,
x'=x*g! . A quaternion is said to be real if it is propor- can be found by noting that the transverse fluctuations of a

tional to1 and imaginary if it has vanishing real part. self-dual configuration must satisfy the relations
The prescription to find an instanton of winding number
k is the following: introduce ak+ 1)xk quaternionic ma- *(DxZ,))=Dyn2,;, D,Z,=0. (2.12

trix linear in x, . . . o
This allows one to writ& , in terms of the quantities appear-

A=a+bx. (2.1  ingin Eq.(2.1), as[15]
The (anti-Hermitian gauge connection is then written in the z,=U'Co,fb'U-U'bfe,CTU. (2.13
form For Eq. (2.13 to satisfy Eq.(2.12), the k+1)Xk matrix
Aﬂ:UTﬁuuy (2.20  C must obey
whereU is a (k+1)x 1 matrix of quaternions providing an Afc=(@'o), (2.14

T
orthonormal frame of Kex'. In formulas where the superscripT stands for transposition of the

ATu=0, (2.3 quaternionic elements of the matiiwithout transposing the
guaternions themselvesn our case, the number of indepen-
utu=1,, (2.4 dentZ, is 8k (the dimension of the moduli space of the

instanton. C hask(k+1) quaternionic elements, which are
where 1, is the two-dimensional identity matrix. The con- subject to the k(k—1) constraint(2.14. The number of
straint(2.4) ensures tha{\;' is an element of the Lie algebra C's satisfying Eq.(2.14) is thus & as desired. This is the
of the SU2) gauge group. The condition of self-duality on reason why in the following we will sometimes attach a sub-
the field strength of Eq(2.2) is imposed by restricting the scriptr=1, ... ,& to the zero modes.
matrix A to obey Fermionic zero modes are easily deduced from(Bd.3
B by remarking that, due tbl=2 SUSY,
ATA=f"1®1,, (2.5

(r) _ _m —(r)
. . . . . N.,i=0 .2 ", 2.1
with f an invertible Hermitiark X k matrix (of real numbers A~ T pAcn 219

In addition to the gauge freedofnight multiplication of U

by a unitary quaternionwe have the freedom to perform the where A=1,2 labels the two SUSY charges. Furthermore,

the superposition of th&() was computed ifi15] to be

transformations
A—QAR 2.6 Am’_ 4n?
—QAR, : (20,29)= -5 T Cl(1+P.)Cil=~7(C,.Co).
with Q e Spk+1),Re GL(k,R), which leave Eq(2.2) in- (2.19
variant.

These symmetries can be used to simplify the expressionhereP..=1—bb' is the projector® evaluated in the limit
of a and b. Exploiting this fact, in the following we will ~[X|—%. The superpositions of the bosonic zero modes are

choose the matrik to be then tied to the .Ja_cobian which yielc_Js the inte_grgtion mea-
sure for the bosonic collective coordinates. This integration
01xk measure is easily written once the variations of the bosonic
b=— Tt (2.7 fields with respect to the instanton moduli are known. But
X

the zero modd2.13 is also transverse to allow the factor-
computed and it is introduction of the Faddeev-Popov determinab6]. It is
thus useful to separate, in the expression of the bosonic zero
FM=2(Ube(rM,,bTU), (2.899  modes, the variation with respect to the instanton moduli
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from the gauge part needed to make it transvgt3el§. In right operator insertions needed to saturate the integration
the ADHM formalism this yields to the formula for the over the Grassmann parameters and, due to supersymmetry,

variation of the gauge connecti¢h9] they are also position independent. On the other hand, when
. —— . s a#0, the correlator ¢®¢® has a complete expansion in
oA, =U'(6A4)0,fb'U-U'bfo,(54) U+[D#,5§]], terms of instanton contributions, as in H4.3). Thek=1

term has been computed [20] in the framework of the
t constrained superinstanton formalism[@0]. In the follow-
ing we will use the component formalism, which we find to
be simpler, to compute tHe=1,2 coefficients of the instan-
ton expansion.
Fermion zero modes are found by solving the equation

wheres, , r=1, ... ,& stands for the variations with respec
to the instanton moduli, andg, satisfyingdg+ 8g'=0, is
an arbitrary infinitesimal gauge transformation. The uncon
strained variation$, A, which give the integration over the
collective coordinates, cannot be easily traded with Eq.
(2.16 since theC’'s appearing in that formula are con-
strained by Eq(2.14. The complete relation between the
6;A andC'’s is given by

D, o5\ ga=0. (3.6)

For instantons of winding numbec=1 the whole set of
(C/,Co=(8A,80)+2K i M ;mKgim-  (2.18 solution of this equation is obtained via SUSY and supercon-
’ formal transformation, which yield
The explicit expression of the matricksM, which param-

etrize the freedom to transform the ADHM data as in Eq. a :E a Br -
(2.6), can be found if15]. o= Pl Tun)a" s 3.9
ll. THE k=1 SEMICLASSICAL COMPUTATION where { =&+ (x—Xo) ,0,7/\2p, & 7 being two arbitrary

quaternions of Grassmann numbers. It is instructive, and use-
We now briefly review the strategy to perform semiclas-ful for the computations to be performed in the next section,
sical computations in supersymmetric gauge theories, in thg deduce this result using the ADHM expressigasl3—
context of the constrained instanton method. (2.15. For k=1 the constraint(2.14) is always satisfied

The classical potential for the complex scalar fieidof  sinceA'C is a single quaternion. Given a matrix
anN=2 SUSY gauge theory

v
2 A= : 3.8
Vo= (eegbg)? 3. (XO_X) 49
and choosingC to be
has flat directions whew is an SU2) gauge transform of ¢
p=a’c./2i, wherea®=as®® anda is a complex number. J2¢,
Following 't Hooft [17], we shall then expand the action C= )
functional around a properly chosen field configuration, 2C,

which is the solution of the equations

(3.9

with Cy,C, two arbitrary quaternions, we can substitute Eq.

D,(AF,,=0, (3.2 (3.9 in Eqg. (2.13 to find, using Eq(2.8),
o zZ,=2F,,B,, (3.10
D2(A) ¢y=0, lim ¢y=d.=a—. (3.3
x| o0 2i where

The first equation admits instantonic solutions. WlaenO, v Cy
Eq. (3.3 admits the trivial solution¢=0 only. When B=B,0"=C1+(X=Xo) 7 N (3.1
a#0, we shall decompose the fields ¢' as

b= ot g, ¢T=(¢c|)*+¢5, (3.4 Interpreting C,,C, as Grassmann variables and using Eq.

(2.15 we obtain Eq.3.7) with B replacing{.
. ) The correct fermionic integration measure is given by the
and integrate over the quantum fluctuatiohs ¢T ; ; ; ;
g : ! o) inverse of the determinant of the matrix whose entries are the
The integration over bosonic zero modes can be tradedcajar products of the fermionic zero-mode eigenfunctions.

with an integration over collective coordinates, at the cost ofrhis scalar product is induced by the kinetic terms in the
introducing the corresponding Jacobian. The existence of tion and for arbitrary S(@)-valued spinor g is
fermion zero modes is the way by which Ward identities,

related to the group of chiral symmetries of the theory, come 3 .
into play. Whena=0, the anomalous k{1) symmetry (f.9) =2, d4x(f2)*agﬁgz. (3.12
a=1
A—€e\, ¢—ep, (3.5

The fermionic measure now reads
and gauge invariance allow a nonzero result for the Green 4
functions withn insertions of the gauge-invariant quantity d4&d? 9 ) (3.13
(624?)(x) only whenn=2k. These correlators possess the 7 3272 '
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where d*£d*n=d?¢;d%¢,d%5;d%7, . Once auxiliary fields ground of a self-dual gauge field configuration, we have only
are eliminated, the action is zero modes of one chirality, so that this term reduces to

\/Eg 6ab0f ¢aT()\(iO)b)\(20)c) _

S=Se+ Syt Set+ Sy +Sp. (3.14 After the integration over, ¢ and the nonzero modes,
S s the  usual gauge field action, the ¢q insertions get replaced by;,,, where
— 44y Aq ! T
SN A=A D (A)NA] and  Sy[¢,¢"A] $2h=12ge”(D?) 12PN, (3.17

= [d*x(D ¢) '3(D ¢)? are the kinetic terms for the Fermi and
Bose fields minimally coupled to the gauge fiédg . The

Yukawa interactions are given by and the determinants of the various kinetic operators cancel

against each othd21]. The right-hand sidéRHS) of Eq.
— b (3.16 now reads
Sy[¢,¢T,>x,>\]=J§geab°f d*xg?T(A)\5) +H.c.
106 3

2%
(315) A4J d4xodp( ggp )e4ﬂ-2|a2p2
and finally,Sp= [ d*xVp comes from the potential ter(8.1)

2
for the complex scalar field. XJ L pnd g
The evaluation of the correlatdip®$®) in the semiclas- d*éd%y 3272

sical approximation around an instantonic background of
winding numberk=1 yields X (gt dinn) X (Dat+ dinn) 2(X), (3.18

210 6 3
(¢ = f d“dep( ;Tsp )

4
ex%_\/fgeabcj ¢ZI()\(_10)b)\(_20)c)}

where A%= u 8 W4+ 4g=879% s the (one-loop N=2
SUSY renormalization-group-invariant scale with gauge
group SU2). u comes from the Pauli-Villars regularization
of the determinants and the exponentbigk=(ng—ng/2)
whereng,ng b, are the number of bosonic, fermionic zero

_ L modes, and the first coefficient of the function of the
X f [ SQON]ONSPLIpgocse theory.

A straightforward calculation shows thg2]

8m?
X exp< - ?—4772|a|2p2

X eXF{ - SH[ ¢Q ’ d)g 1AC|] - SF[)\!)\_!ACIJ

- C\* __ 2 -1

! d*xQ,M d*xcD?(A°
— 5| dXQuM,,Q,~ xcD“(A%)c (3.19
s g® \* Moreover, it is also easy to convince oneself that 8917
de ¢\ 55 is solved by
xexp{—Sy[ ot dq.(ba) T+ 5 NP A=0]} binn=\2(£105), (3.20
X + o) (Pt do)(X). 3.1
(Pat $Q) (bat $Q)™(X) (3.19 as it can be checked by substituting in
Let us now explain where the different terms in K£g§.16 b (0
come from. [D2]2PpP = \/Egeabc()\(-l ) )\(-2 %, (3.21)

(1) d*xodp(2%°78p%/g®) is the bosonic measufd 7,18
after the integration over SU(2}4 global rotations in color  The Yukawa action doesot contain the Grassmann param-
space has been performed. and p are the center and the eters of the zero modes coming from SUSY transformations.
size of the instantofisee Eq(3.8), with p=|v]]. As a consequence the only nonzero contributions are ob-
(2) Sl b1, (ba) ", A T=4m?|a|?p?, is the contribution of  tained by picking out the terms in thg,,, insertions which
the classical Higgs action, and has been computed by ¢ontain the SUSY solutions of the Dirac equation. We thus

Hooft [17]. completely disregard thep pieces. Since
(3) The second and third lines include the quadratic ap-
proximation of the different kinetic operators for the quan- a ga _ _ g2, aa 2.2 ra ra
tum fluctuation of the fields and the symfdi\ 5Q] denotes Pinn inn =~ E1(0 N )= L 55(FL P, (322
integration over nonzero modesandc are the usual ghost
fields, [d*XcD2(A%) ¢ being the corresponding term in the thiS amounts to say
action. o A . 2.2 a —a
(4) Sy[p, ! N @ N=0] is the Yukawa action calculated (Part dinn) (ot dinn)*— — §165(F ), Fl,). (323

with the complete expansion of the fermionic fields replaced
by their projection over the zero-mode subspace. Accordindhe integration over non-SUSY zero modes is then dealt
to the index theorem for the Dirac operator in the back-with by performing the integration
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f << 92 )2 [{(aC)*g g2 -1 fact just think that two solutions of Eq2.14 are given by
d*y ex (910°95)| == C=a,b], it is convenient to choose a form &f which par-
327° J2 Y TP 32nt
allels Eq.(4.2),
92 2 vy P2 V1 P2
=—(a%)~. 3.2
2 @) (3:29 C=|& & |=|n & |-bé&. 4.3
. s & 5 —nq
Equation(3.16) now becomes
2107653 The constrain{2.14) is satisfied imposing
aay_ A4 4
(0= [ | 257 .
, o= ?[Zdn+vzvl—vlvz]. (4.9

Xe—4772|a|2p2(|:a Fa )g_(a*)Z
prmvn 2 In analogy with the points 2, 4 of the previous calculation for
g% |2 thek=1 case, we have to comptte

x f d4§(_2> &6 (3.29 —

32m7) Sul part Binn (b A+ sy[<z>=o,<¢d>*,x<°>,x=o(]4 !
A simple computation using the explicit form of the=1 '
gauge connection shows thE)ijFZV is a function of the This computation involves only the contributions of tig
differencex—x,. We can then immediately integrate over function and of thep;,, field at the boundary of the physical

Xo remembering thaf d*xF% F& =327%/g°. The remain- space. It has been performed[& and it yields

ing integrations oveg and p in Eq. (3.295 are trivial and
o st £ andp in Bq. (329 St Se=am2lal2([ual?+1ool?)
5 A4 age LT =001 ¢, 1
(#°0%) = ga g7 (3.26 [oa P+ oo 2+ A(dlP e
. . _ . 2 AB ay - By +,. .
This result agrees with the coefficiegif found in[7,8]. +2V2m2e"Be™| (1) ,a(b) P (v) g
IV. THE k=2 COMPUTATION Tr(viv—vov1) P
T\ o+ o P+ 2P+ el
We now come to th&=2 computation. There are several ! 2
modifications to take into account with respect to Kwel X[ (v1) Al (v2) b+ 277,408,811, (4.6
case but the general strategy is unchanged. We start by giv-
ing the form of the matrixA of Eq. (2.1), where ¢., was defined in Eq(3.3.
Let us comment on Eq4.6): in the Yukawa action the
U1 Uy U1 Uy variable &, is missing. In fact, the expectation value of the
A=| xi—x d —| e d|+bx=xo scalar field has broken the conformal but not the translational
! 0/ invariance of the action. The effect is the appearance, in the
d Xy—X d -—e action, of the collective coordinates related to these symme-

(4.0 tries. As SUSY is still a symmetry, the collective coordinates
associated to it must be missing in E¢.6), which is what

The constraint2.5) is obeyed if we observe. In complete analogy with the=1 case, the
Grassmann parameters can now be divided into two sets:
d= E Z— those which do not appear in the acti@onnected to SUS)Y
=5 2(vv1—v1v3), (4.2 . ; ) _
27z must be isolated in the,,, piece to cancel against the mea-

sure. Those which appear in the action will not appear in the

with z=X;—X, [23]. We find it more convenient to expose insertion of$2¢?: all fermionic zero modes are lifted but the
the role of the center of the instanton, the part proportional t§USY ones. There is another consequence of this observa-
the matrixb of Eq. (2.7), because this will be central in the tion. On the RHS of Eq(3.17) there are fermionic fields
integration that we will perform later. This is achieved with expanded in the basis of the zero modes given by(Ed5.
the substitutionsxg= (X1 +X)/2,e=(X;—X,)/2 which give  See also th&=1 casdEqgs.(3.10, (3.11)] for a comparison.
the other form of the matrid in Eq. (4.1). The previous observation thus suggests us to solvé32{)

We also need the form of the matr appearing in Eq. only for those fermionic fields containing the Grassmann pa-
(2.19,2 which is constrained by Eq2.14). Since this con- rameters related to SUSY transformations. As a conse-
straint is very similar to Eq(2.5) [to get convinced of this

3The following expression contains the prescription for computing
°The elements of this matrix must be interpreted as Grassman8,+ Sy on the saddle point for which the only zero modes are the
numbers from the point of view of the functional integration. left-handed ones.
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quence, Eq(3.23 still holds. The ternF2 F2 is given by  The fermionic Jacobiadgem; is obtained from Eqs(2.15

Eq. (2.9, and in Eq.(4.1) A was paramelfrizgd in order to be and(2.16) while Jg,sWas computed if15,6]. Putting these
a function of x—x,. Since Eq.(2.9 depends only om\,  results together, we get

F&.F&. is a function ofx—x, too.

Given all these observations we can write the correlator 1 5 5
for the case&k=2 as JBose)2 2 |le[*—1d|]

=— . (49
Jrermi 78 |U1|2+|02|2+4(|d|2+|C|2)

A8
(629N =< f d*ed*v ,d*,d*nd*v,d*v,
After substituting Eq(4.9) in Eq. (4.7), the remaining inte-

Jgose| Y2 o by grations can be performed and give 5/¢32°g°) [6].
X(Ei e SH SYJ d4§o(§o)'1(§0)'2 Collecting all these results, we finally find
xf d*%oF2 F2 . 4.7) 5 A°
0" pvl <Tr¢2>:_ZW' (4.10

where S=16 is a statistical weight computed jd5]. The

integrations in the last line of Eq4.7) can be performed
immediately after trading th&, with the x integration by
shifting variable, and give

which is in agreement with the results [of,8]
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