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Using instanton calculus we check, in the weak coupling region, the nonperturbative relation
^Trf2&5 ip@F2(a/2)]F/]a# obtained for aN52 globally supersymmetric gauge theory. Our computations
are performed for instantons of winding numberk, up to k52, and turn out to agree with previous nonper-
turbative results.@S0556-2821~97!01502-6#

PACS number~s!: 11.30.Pb, 11.15.Kc, 11.15.Tk

I. INTRODUCTION

In a recent work@1#, Seiberg and Witten have managed to
compute the quantum moduli space and the Wilsonian effec-
tive action for the Yang-Mills theory with globalN52 su-
persymmetry (N52 SUSY from now on!. This achievement
has been possible by using judiciously a certain number of
educated guesses for the behavior of the moduli space of
vacua of the theory and by exploiting the unique properties
of theN52 SUSY. In fact, the Wilsonian effective action of
this theory, after having used the Higgs mechanism, is com-
pletely determined once a certain prepotentialF is known
@2#. In turn, this prepotentialF is determined if its global
structure is known or postulated. This global structure is
given by the monodromies around the singular points of the
prepotentialF: the group generated by these monodromies is
a subgroup of SL(2,Z).

In the electric~or Higgs! phase of the theory the form of
the prepotential is known since, due to nonrenormalization
theorems, only the one-loop term contributes at the perturba-
tive level. Moreover, nonperturbative corrections due to in-
stantons must be considered, leading to the final expression
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In Eq. ~1.1! L is the renormalization-group-invariant scale
andA is a chiral superfield whose lowest component squared
is a2[22u, i.e., it is the gauge-invariant coordinate of the
moduli space of vacua, when the gauge group is SU~2!
~which will be our choice from now on!, at least for large
u anda. The coefficientsFk give the nonperturbative con-
tributions due to instantons. A formidable check of the as-
sumptions made in@1#, concerning the symmetries of the
moduli space, is thus given by matching the coefficientsFk
against those obtained by instanton calculus. This check
must be performed in the weak coupling region in which
instanton calculus can be reliably performed. Some work has
already been done along these lines. Nonperturbative contri-
butions induced by instantons can in fact be seen, in the

framework of perturbation theory, as effective four-fermion
vertices to be added to the tree-level Lagrangian. The com-
putation of these effective vertices has already been per-
formed for the case of instantons of winding number one
@3–5# and two@6#.

The approach presented in this paper is somewhat differ-
ent in that we will check the nonperturbative relation
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found in @7#. Expanding the left-hand side in Eq.~1.2! as
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and substituting Eq.~1.1! in Eq. ~1.2! we findGk52kFk for
a comparison with the results of@8#. The Gk’s can also be
straightforwardly checked against the results of the recursion
relation found in@7#.1

Supersymmetric instanton calculus was developed in two
distinct ways@9–11# to study supersymmetry~SUSY! break-
ing. The main difference between these two approaches con-
sists in giving or not giving an expectation value to the scalar
~Higgs! field of theN52 multiplet. Given the check we want
to perform the right choice is to follow@9,10,12# where such
an expectation value for the scalar field is present.

This is the plan of the paper: in Sec. II we shall briefly
discuss the basic ingredients of the Atiyah-Drinfeld-Hitchin-
Manin ~ADHM ! construction of instantons which will be
useful later on. In Sec. III we introduce the semiclassical
expansion of Green functions in SUSY gauge theories, and
check the relation~1.2! against ak51 computation. In Sec.
IV we extend our considerations to a background of Pontrya-
gin indexk52.

1The reader should pay attention to different normalizations. The
conventions of this letter for theFk’s, which have an opposite sign
with respect to those of@6#, are connected to@7,8# as
Fk5226k22FkKLT52 ip22kFkM .
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II. A BRIEF REVIEW OF THE ADHM FORMALISM

Before describing the actual computation we need to
briefly discuss the ADHM construction and collect some
useful formulas.

As it is well known, self-dual SU~2! connections onS4

can be put into one-to-one correspondence with holomorphic
vector bundles of rank 2 overCP3 admitting a reduction of
the structure group to its compact real form. The ADHM
construction@13,14# gives all these holomorphic bundles and
consequently all SU~2! connections onS4. The construction
is purely algebraic and we find it more convenient to use
quaternionic notation. The pointsx of the one-dimensional
quaternionic spaceH[C2[R4 can be conveniently repre-
sented in the formx5xmsm , with sm5(1,isc), c51,2,3.
Thesc’s are the usual Pauli matrices. The conjugate ofx is
x†5xmsm

† . A quaternion is said to be real if it is propor-
tional to 1 and imaginary if it has vanishing real part.

The prescription to find an instanton of winding number
k is the following: introduce a (k11)3k quaternionic ma-
trix linear in x,

D5a1bx. ~2.1!

The ~anti-Hermitian! gauge connection is then written in the
form

Am
cl5U†]mU, ~2.2!

whereU is a (k11)31 matrix of quaternions providing an
orthonormal frame of KerD†. In formulas

D†U50, ~2.3!

U†U512 , ~2.4!

where 12 is the two-dimensional identity matrix. The con-
straint~2.4! ensures thatAm

cl is an element of the Lie algebra
of the SU~2! gauge group. The condition of self-duality on
the field strength of Eq.~2.2! is imposed by restricting the
matrix D to obey

D†D5 f21
^ 12 , ~2.5!

with f an invertible Hermitiank3k matrix ~of real numbers!.
In addition to the gauge freedom~right multiplication ofU
by a unitary quaternion!, we have the freedom to perform the
transformations

D→QDR, ~2.6!

with QPSp(k11),RPGL(k,R), which leave Eq.~2.2! in-
variant.

These symmetries can be used to simplify the expressions
of a and b. Exploiting this fact, in the following we will
choose the matrixb to be

b52S 013k

1k3k
D . ~2.7!

From Eq.~2.2!, the field strength of the gauge field can be
computed and it is

Fmn52~U†b fsmnb
†U !, ~2.8!

wheresmn5 ihmn
a sa, with hmn

a the ’t Hooft symbols. Using
Eq. ~2.8! we also compute

Tr~FmnFmn!52hTr@b†~11P!b f#, ~2.9!

where

P5UU†512D fD† ~2.10!

is the projector on the kernel ofD†. Equation~2.9! will turn
out to be important in the following.

The bosonic zero modesZm of the gauge-fixed second
order differential operator

Mmn52D2~Acl!dmn22Fmn
cl , ~2.11!

which describes the quantum fluctuations of the gauge fields,
can be found by noting that the transverse fluctuations of a
self-dual configuration must satisfy the relations

* ~D [mZn] !5D [mZn] , DmZm50. ~2.12!

This allows one to writeZm in terms of the quantities appear-
ing in Eq. ~2.1!, as@15#

Zm5U†Cs̄m f b
†U2U†b fsmC

†U. ~2.13!

For Eq. ~2.13! to satisfy Eq.~2.12!, the (k11)3k matrix
C must obey

D†C5~D†C!T, ~2.14!

where the superscriptT stands for transposition of the
quaternionic elements of the matrix~without transposing the
quaternions themselves!. In our case, the number of indepen-
dent Zm is 8k ~the dimension of the moduli space of the
instanton!. C hask(k11) quaternionic elements, which are
subject to the 4k(k21) constraint~2.14!. The number of
C’s satisfying Eq.~2.14! is thus 8k as desired. This is the
reason why in the following we will sometimes attach a sub-
script r51, . . . ,8k to the zero modes.

Fermionic zero modes are easily deduced from Eq.~2.13!
by remarking that, due toN52 SUSY,

lbȦ
~r !

5sbȦ
m
Zm

~r ! , ~2.15!

where Ȧ51,2 labels the two SUSY charges. Furthermore,
the superposition of theZm

(r ) was computed in@15# to be

~Z~r !,Z~s!!5
4p2

g2
Tr@Cr

†~11P`!Cs#[
4p2

g2
~Cr ,Cs!,

~2.16!

whereP`512bb† is the projectorP evaluated in the limit
uxu→`. The superpositions of the bosonic zero modes are
then tied to the Jacobian which yields the integration mea-
sure for the bosonic collective coordinates. This integration
measure is easily written once the variations of the bosonic
fields with respect to the instanton moduli are known. But
the zero mode~2.13! is also transverse to allow the factor-
ization of the infinite volume of the gauge group via the
introduction of the Faddeev-Popov determinant@16#. It is
thus useful to separate, in the expression of the bosonic zero
modes, the variation with respect to the instanton moduli
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from the gauge part needed to make it transverse@17,18#. In
the ADHM formalism this yields to the formula for the
variation of the gauge connection@19#

d rAm5U†~d rD!s̄m f b
†U2U†b fsm~d rD!†U1@Dm ,dg#,

~2.17!

whered r , r51, . . . ,8k stands for the variations with respect
to the instanton moduli, anddg, satisfyingdg1dg†50, is
an arbitrary infinitesimal gauge transformation. The uncon-
strained variationsd rD, which give the integration over the
collective coordinates, cannot be easily traded with Eq.
~2.16! since theC’s appearing in that formula are con-
strained by Eq.~2.14!. The complete relation between the
d rD andC’s is given by

~Cr ,Cs!5~d rD,dsD!12Kr ji M i j ,lmKslm . ~2.18!

The explicit expression of the matricesK,M , which param-
etrize the freedom to transform the ADHM data as in Eq.
~2.6!, can be found in@15#.

III. THE k51 SEMICLASSICAL COMPUTATION

We now briefly review the strategy to perform semiclas-
sical computations in supersymmetric gauge theories, in the
context of the constrained instanton method.

The classical potential for the complex scalar fieldf of
anN52 SUSY gauge theory

VD5
g2

2
~eabcfbf†c!2 ~3.1!

has flat directions whenf is an SU~2! gauge transform of
f5acsc /2i , wherea

c5adc3 anda is a complex number.
Following ’t Hooft @17#, we shall then expand the action
functional around a properly chosen field configuration,
which is the solution of the equations

Dm~A!Fmn50, ~3.2!

D2~A!fcl50, lim
uxu→`

fcl[f`5a
s3

2i
. ~3.3!

The first equation admits instantonic solutions. Whena50,
Eq. ~3.3! admits the trivial solutionf50 only. When
aÞ0, we shall decompose the fieldsf, f† as

f5fcl1fQ , f†5~fcl!
†1fQ

† , ~3.4!

and integrate over the quantum fluctuationsfQ , fQ
†

The integration over bosonic zero modes can be traded
with an integration over collective coordinates, at the cost of
introducing the corresponding Jacobian. The existence of
fermion zero modes is the way by which Ward identities,
related to the group of chiral symmetries of the theory, come
into play. Whena50, the anomalous UR(1) symmetry

l→eial, f→e2iaf, ~3.5!

and gauge invariance allow a nonzero result for the Green
functions withn insertions of the gauge-invariant quantity
(fafa)(x) only whenn52k. These correlators possess the

right operator insertions needed to saturate the integration
over the Grassmann parameters and, due to supersymmetry,
they are also position independent. On the other hand, when
aÞ0, the correlator̂ fafa& has a complete expansion in
terms of instanton contributions, as in Eq.~1.3!. The k51
term has been computed in@20# in the framework of the
constrained superinstanton formalism of@10#. In the follow-
ing we will use the component formalism, which we find to
be simpler, to compute thek51,2 coefficients of the instan-
ton expansion.

Fermion zero modes are found by solving the equation

Dms̄m
ȧblbȦ50. ~3.6!

For instantons of winding numberk51 the whole set of
solution of this equation is obtained via SUSY and supercon-
formal transformation, which yield

laȦ
a

5
1

2
Fmn
a ~smn!a

bzbȦ , ~3.7!

where z5j1(x2x0)msmh̄/A2r, j, h̄ being two arbitrary
quaternions of Grassmann numbers. It is instructive, and use-
ful for the computations to be performed in the next section,
to deduce this result using the ADHM expressions~2.13!–
~2.15!. For k51 the constraint~2.14! is always satisfied
sinceD†C is a single quaternion. Given a matrix

D5S v

x02xD , ~3.8!

and choosingC to be

C5S A2C0

2C1
D , ~3.9!

with C0 ,C1 two arbitrary quaternions, we can substitute Eq.
~3.9! in Eq. ~2.13! to find, using Eq.~2.8!,

Zm52FmnBn , ~3.10!

where

B5Bnsn5C11~x2x0!
v̄
v2

C0

A2
. ~3.11!

InterpretingC0 ,C1 as Grassmann variables and using Eq.
~2.15! we obtain Eq.~3.7! with B replacingz.

The correct fermionic integration measure is given by the
inverse of the determinant of the matrix whose entries are the
scalar products of the fermionic zero-mode eigenfunctions.
This scalar product is induced by the kinetic terms in the
action and for arbitrary SU~2!-valued spinorsf ,g is

~ f ,g![ (
a51

3 E d4x~ f a
a !* s̄0

ȧbgb
a . ~3.12!

The fermionic measure now reads

d4jd4h̄S g2

32p2D 4, ~3.13!
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whered4jd4h̄[d2j 1̇d
2j 2̇d

2h̄ 1̇d
2h̄ 2̇ . Once auxiliary fields

are eliminated, the action is

S5SG1SH1SF1SY1SD . ~3.14!

SG is the usual gauge field action,
SF@l,l̄,A#5*d4xl̄Ȧa@D” (A)l Ȧ#a and SH@f,f†,A#
5*d4x(Df)†a(Df)a are the kinetic terms for the Fermi and
Bose fields minimally coupled to the gauge fieldAm . The
Yukawa interactions are given by

SY@f,f†,l,l̄#5A2geabcE d4xfa†~l 1̇
b
l 2̇
c
!1H.c.

~3.15!

and finally,SD5*d4xVD comes from the potential term~3.1!
for the complex scalar fieldf.

The evaluation of the correlator^fafa& in the semiclas-
sical approximation around an instantonic background of
winding numberk51 yields

^fafa&5E d4x0drS 210p6r3

g8 D
3expS 2

8p2

g2
24p2uau2r2D

3E @dQdl#dl̄dfQ
† dfQd c̄dc

3expF2SH@fQ ,fQ
† ,Acl#2SF@l,l̄,Acl#

2
1

2E d4xQmMmnQn2E d4xc̄D2~Acl!cG
3E d4jd4h̄S g2

32p2D 4
3exp$2SY@fcl1fQ ,~fcl!

†1fQ
† ,l~0!,l̄50#%

3~fcl1fQ!a~fcl1fQ!a~x!. ~3.16!

Let us now explain where the different terms in Eq.~3.16!
come from.

~1! d4x0dr(210p6r3/g8) is the bosonic measure@17,18#
after the integration over SU(2)/Z2 global rotations in color
space has been performed.x0 and r are the center and the
size of the instanton@see Eq.~3.8!, with r[uvu#.

~2! SH@fcl ,(fcl)
†,Acl#54p2uau2r2, is the contribution of

the classical Higgs action, and has been computed by ’t
Hooft @17#.

~3! The second and third lines include the quadratic ap-
proximation of the different kinetic operators for the quan-
tum fluctuation of the fields and the symbol@dldQ# denotes
integration over nonzero modes.c̄ andc are the usual ghost
fields, *d4xc̄D2(Acl)c being the corresponding term in the
action.

~4! SY@f,f†,l (0),l̄50# is the Yukawa action calculated
with the complete expansion of the fermionic fields replaced
by their projection over the zero-mode subspace. According
to the index theorem for the Dirac operator in the back-

ground of a self-dual gauge field configuration, we have only
zero modes of one chirality, so that this term reduces to
A2geabc*fa†(l 1̇

(0)b
l 2̇
(0)c).

After the integration overf, f† and the nonzero modes,
thefQ insertions get replaced byf inh , where

f inh
a 5A2gebdc@~D2!21#ab~l 1̇

~0!d
l 2̇

~0!c
!, ~3.17!

and the determinants of the various kinetic operators cancel
against each other@21#. The right-hand side~RHS! of Eq.
~3.16! now reads

L4E d4x0drS 210p6r3

g8 De24p2uau2r2

3E d4jd4h̄S g2

32p2D 4expF2A2geabcE fcl
† ~l 1̇

~0!b
l 2̇

~0!c
!G

3~fcl1f inh !a~fcl1f inh!
a~x!, ~3.18!

where L45m82(1/2)(414)e28p2/g2 is the ~one-loop! N52
SUSY renormalization-group-invariant scale with gauge
group SU~2!. m comes from the Pauli-Villars regularization
of the determinants and the exponent isb1k5(nB2nF/2)
wherenB ,nF ,b1 are the number of bosonic, fermionic zero
modes, and the first coefficient of theb function of the
theory.

A straightforward calculation shows that@22#

SY@fcl ,fcl
† ,l~0!,l̄50#5

~ac!* g

A2
~ h̄ 1̇s

ch̄ 2̇!S g2

32p2D 21

.

~3.19!

Moreover, it is also easy to convince oneself that Eq.~3.17!
is solved by

f inh
a 5A2~z 1̇l 2̇

a
!, ~3.20!

as it can be checked by substituting in

@D2#abf inh
b 5A2geabc~l 1̇

~0!b
l 2̇

~0!c
!. ~3.21!

The Yukawa action doesnot contain the Grassmann param-
eters of the zero modes coming from SUSY transformations.
As a consequence the only nonzero contributions are ob-
tained by picking out the terms in thef inh insertions which
contain the SUSY solutions of the Dirac equation. We thus
completely disregard thefcl pieces. Since

f inh
a f inh

a 52z 1̇
2
~l 2̇

a
l 2̇
a
!52z 1̇

2
z 2̇
2
~Fmn

a Fmn
a !, ~3.22!

this amounts to say

~fcl1f inh !a~fcl1f inh!
a→2j 1̇

2
j 2̇
2
~Fmn

a Fmn
a !. ~3.23!

The integration over non-SUSY zero modes is then dealt
with by performing the integration
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E d4h̄S g2

32p2D 2expF ~ac!* g

A2
~ h̄ 1̇s

ch̄ 2̇!S g2

32p2D 21G
5
g2

2
~a* !2. ~3.24!

Equation~3.16! now becomes

^fafa&5L4E d4x0drS 210p6r3

g8 D
3e24p2uau2r2~Fmn

a Fmn
a !

g2

2
~a* !2

3E d4jS g2

32p2D 2j 1̇2j 2̇2. ~3.25!

A simple computation using the explicit form of thek51
gauge connection shows thatFmn

a Fmn
a is a function of the

differencex2x0. We can then immediately integrate over
x0 remembering that*d4xFmn

a Fmn
a 532p2/g2. The remain-

ing integrations overj and r in Eq. ~3.25! are trivial and
yield @3#

^fafa&5
2

g4
L4

a2
. ~3.26!

This result agrees with the coefficientG1 found in @7,8#.

IV. THE k52 COMPUTATION

We now come to thek52 computation. There are several
modifications to take into account with respect to thek51
case but the general strategy is unchanged. We start by giv-
ing the form of the matrixD of Eq. ~2.1!,

D5S v1 v2
x12x d

d x22x
D 5S v1 v2

e d

d 2e
D 1b~x2x0!.

~4.1!

The constraint~2.5! is obeyed if

d5
1

2

z

z2
~ v̄2v12 v̄1v2!, ~4.2!

with z5x12x2 @23#. We find it more convenient to expose
the role of the center of the instanton, the part proportional to
the matrixb of Eq. ~2.7!, because this will be central in the
integration that we will perform later. This is achieved with
the substitutionsx05(x11x2)/2,e5(x12x2)/2 which give
the other form of the matrixD in Eq. ~4.1!.

We also need the form of the matrixC appearing in Eq.
~2.15!,2 which is constrained by Eq.~2.14!. Since this con-
straint is very similar to Eq.~2.5! @to get convinced of this

fact just think that two solutions of Eq.~2.14! are given by
C5a,b#, it is convenient to choose a form ofC which par-
allels Eq.~4.1!,

C5S n1 n2

j1 d

d j2
D 5S n1 n2

h d

d 2h
D 2bj0 . ~4.3!

The constraint~2.14! is satisfied imposing

d5
z

z2
@2d̄h1 v̄2n12 v̄1n2#. ~4.4!

In analogy with the points 2, 4 of the previous calculation for
the k51 case, we have to compute3

SH@fcl1f inh ,~fcl!
†,Acl#1SY@f50,~fcl!

†,l~0!,l̄50#.
~4.5!

This computation involves only the contributions of thefcl
function and of thef inh field at the boundary of the physical
space. It has been performed in@6# and it yields

SH1SY54p2uau2~ uv1u21uv2u2!

24p2
@Tr~v1v̄22v2v̄1!f`#2

uv1u21uv2u214~ udu21ucu2!

12A2p2e ȦḂeagF ~n i !gȦ~f`!a
b~n i !bḂ

1S Tr~v1v̄22v2v̄1!f`

uv1u21uv2u214~ udu21ucu2! D
3u~n1!gȦ@~n2!aḂ12hgȦdaḂ] #, ~4.6!

wheref` was defined in Eq.~3.3!.
Let us comment on Eq.~4.6!: in the Yukawa action the

variablej0 is missing. In fact, the expectation value of the
scalar field has broken the conformal but not the translational
invariance of the action. The effect is the appearance, in the
action, of the collective coordinates related to these symme-
tries. As SUSY is still a symmetry, the collective coordinates
associated to it must be missing in Eq.~4.6!, which is what
we observe. In complete analogy with thek51 case, the
Grassmann parameters can now be divided into two sets:
those which do not appear in the action~connected to SUSY!
must be isolated in thef inh piece to cancel against the mea-
sure. Those which appear in the action will not appear in the
insertion offafa: all fermionic zero modes are lifted but the
SUSY ones. There is another consequence of this observa-
tion. On the RHS of Eq.~3.17! there are fermionic fields
expanded in the basis of the zero modes given by Eq.~2.15!.
See also thek51 case@Eqs.~3.10!, ~3.11!# for a comparison.
The previous observation thus suggests us to solve Eq.~3.21!
only for those fermionic fields containing the Grassmann pa-
rameters related to SUSY transformations. As a conse-

2The elements of this matrix must be interpreted as Grassmann
numbers from the point of view of the functional integration.

3The following expression contains the prescription for computing
SH1SY on the saddle point for which the only zero modes are the
left-handed ones.
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quence, Eq.~3.23! still holds. The termFmn
a Fmn

a is given by
Eq. ~2.9!, and in Eq.~4.1! D was parametrized in order to be
a function of x2x0. Since Eq.~2.9! depends only onD,
Fmn
a Fmn

a is a function ofx2x0 too.
Given all these observations we can write the correlator

for the casek52 as

^fafa&5
L8

S E d4ed4v1d
4v2d

4hd4n1d
4n2

3S JBoseJFermi
D 1/2e2SH2SYE d4j0~j0! 1̇

2
~j0! 2̇

2

3E d4x0Fmn
a Fmn

a , ~4.7!

whereS516 is a statistical weight computed in@15#. The
integrations in the last line of Eq.~4.7! can be performed
immediately after trading thex0 with the x integration by
shifting variable, and give

E d4j0@~j0! 1̇#
2@~j0! 2̇#

2E d4x0Fmn
a Fmn

a 54
64p2

g2
.

~4.8!

The fermionic JacobianJFermi is obtained from Eqs.~2.15!
and~2.16! while JBosewas computed in@15,6#. Putting these
results together, we get

S JBoseJFermi
D
1
2
5
210

p8

zueu22udu2z
uv1u21uv2u214~ udu21ucu2!

. ~4.9!

After substituting Eq.~4.9! in Eq. ~4.7!, the remaining inte-
grations can be performed and give 5/(32p2a6g6) @6#.

Collecting all these results, we finally find

^Trf2&52
5

4

L8

g8a6
, ~4.10!

which is in agreement with the results of@7,8#
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