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New Goldstone multiplet for partially broken supersymmetry
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The partial spontaneous breaking of ridi=2 supersymmetry implies the existence of a masdiesd
Goldstone multiplet. In this paper we show that the spin-(1/2,1) Maxwell multiplet can play this role. We
construct its full nonlinear transformation law and find the invariant Goldstone action. The spin-1 piece of the
action turns out to be of Born-Infeld-type, and the full superfield action is duality invariant. This leads us to
conclude that the Goldstone multiplet can be associated with a D-brane solution of superstring theory for
p=3. In addition, we find thalN= 1 chirality is preserved in the presence of the Goldstone-Maxwell multiplet.
This allows us to couple it ttN=1 chiral and gauge field multiplets. We find that arbitraryhka and
superpotentials are consistent with partially brokéa2 supersymmetry.S0556-282(197)00102-1

PACS numbgs): 11.30.Pb, 11.30.Qc, 12.60.Jv, 14.80.Mz

I. INTRODUCTION problem of ghost states is resolved by requiring the Gold-
stone multiplet to be an irreducible representatiorNef 1
The spontaneous breaking of rigid supersymmetry givesupersymmetry. Recently, Antoniadis, Partouche, and Taylor
rise to a massless spin-1/2 Goldstone figldx) [1]. When  [8] constructed a model with partially brokeéd=2 super-
N=2 supersymmetry is broken tdl=1, the Goldstone Symmetry. In their model, the second supersymmetry is re-
fermion belongs to a massless multiplet of the unbrokerglized nonlinearly. However, their action involves an extra,

N=1 supersymmetry. One obvious Goldstone candidate i§?@ssiveN=1 multiplet. Our approach is completely model
the N=1 chiral multiplet @+iB,¢,,F+iG). In [2] we independent; if the extra matter is integrated out, their action

used this multiplet to construct a nonlinear realization ofmus_tkreduce to ours. B _
partially brokenN=2 supersymmetry. We found that the G Il_(lj(ta theM chlralll Golltc_jsltotn?]N—l multlpie_t [2']’t the i
complex spin-0 fieldA+iB is the Goldstone boson associ- >olastone-Maxwel muftiplet has a superstring interpreta-
i tion. It is related to the recently discovered Dirichlet
ated with the broken central charge generatdlef2 super- . . .
v th | i fiolf+1G i p-branes[9]. These objects are solutions of the superstring
symmetry, the complex auxiliary Tielt: 1t parametrizes equations of motion that can be viewed as dynamical mem-
the coset S(2)/U(1) of the automorphism group $P). The

. o ) branes in p+ 1) world volume space. D-branes characteris-
superthreebrane of Liu, Hughes, and Polchirikiprovides ooy break half of the superstring supersymmetries and in-

a different, but on—s_hell—equwalent representation of the,qe (0+ 1)-dimensional gauge field with the Born-Infeld
same Goldstone multiplet. action. Until now, only the bosonic parts of the D-brane
A second candidate Goldstone multiplet is tde-1 vec-  actions have been constructed. We propose that the
tor, or Maxwell, multiplet @, #,,D). In this case the su- Goldstone-Maxwell action, after eliminating the auxiliary
perpartners of the spin-1/2 Goldstone field are an Abeliarfields, is precisely the supersymmetric, gauge-fixed, D-brane
gauge fieldA,, and a real auxiliary field. We will show  action forp=3 (in a flat background The gauge fieldA,
that the Maxwell multiplet provides a second consistenthas a Born-Infeld action, and the full Goldstone-Maxwell
Goldstone multiplet for partially brokeN=2 supersymme- action is duality invariant.
try. We will construct its invariant action and its couplings to  This paper is organized as follows. In Sec. Il we review
N=1 matter fields. the formalism of nonlinear realizations. As we shall see, this
Perhaps the most striking feature of the new Goldstonéechnique has an ambiguity when applied\ts 2 supersym-
multiplet is its unification of a Goldstone and a gauge field.metry: dimensionless invariants can be used to modify the
The theory of Goldstone fields is based on the formalism otovariant derivatives and the covariant constraints. However,
nonlinear realizations, which is usually associated withrequiring consistency of the constraints fixes the ambiguity.
finite-dimensional group$4,5]. However, gauge fields can In Sec. lll we find a set of consistent constraints, to third
also be interpreted as Goldstone fields associated witbrder in the Goldstone fields. We then solve the constraints
infinite-dimensional symmetry groupp6]. This suggests that in terms of the ordinarfN=1 Maxwell multiplet, and derive
the full symmetry of the new multiplet is some infinite- the broken supersymmetry transformations of the Goldstone-
dimensional extension df=2 supersymmetry. As we shall Maxwell multiplet to second order in fields. In Sec. IV we
see, the gauge field,, has only nonminimal interactions; in present the full nonlinear transformation law and derive the
other words, the field appears only via its field strength, sdanvariant action for the Goldstone-Maxwell multiplet. Sur-
the gauge invariance is hidden. Hence we can use the origprisingly, we find that the gauge field is governed by the
nal formalism of [4,5] to study the properties of the Born-Infeld action, and that the full action is invariant under
Goldstone-Maxwell multiplet. a superfield duality transformation. In Sec. V we show that
This paper can be viewed as an outgrowth of an earlfN=1 chirality is preserved in the presence of the Goldstone-
attempt to partially brealN=2 supersymmetry{7]. The  Maxwell multiplet. This allows us to generalize the er
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potential to the case of partially broké¥~2 supersymme- ©0¥(P)=dx+i(dfo?6+dho26
try. It also permits us to construtd=2 extensions of the .
general superpotential for chirtll=1 superfields, as well as +dyoty+dyody),
the kinetic and Fayet-lliopoulos terms fr=1 gauge super-
fields. Section VI contains concluding remarks. 0*(Q)=de?,
Il. NONLINEAR REALIZATIONS 0o(Q)=db,, ™

In this section we review basics of nonlinear realizationsand covariant Goldstone one-forms
as applied toN=2 supersymmetry. We begin with the RS —
N=2 supersymmetry algebra: 0 (S)=dy*, wy(S=dy,. ®)

The supervielbein matrixEy” is found by expanding
the one-formse”=(w?(P), w%(Q), w,(Q)) with respect
_ to the N=1 superspace coordinate differentiatbx™
{Q..Spt=0, {Q,.S;}=0, (D =(dx™de~,de,),

{Qa,Q_d}=20'2"1Pa, {S, ,§}=202;¥Pa,

whereQ, andS, are the two supersymmetry generators and w*=dX"EyA. 9)

P, is the four-dimensional momentum operator. In what fol- . ) ) o

lows, we takeQ,, to be the unbroke =1 supersymmetry In a similar fas_hlon, the covariant derivatives of the Qold-

generator, an&, to be its broken counterpart. stgne S/ljperf'aeld ¢ are found aby _%(pand;ng
Following the formalism of nonlinear realizatiofid,5],  @“(S)=@"Day®, which implies Day*=E,""dwy®.

we consider the coset spa@H, where G is the N=2 These covariant derivatives can be explicitly written as

supersymmetry group and=SO0O(3,1) is its Lorentz sub-

i Dy=w, M9
group. We parametrize the coset elem@nas a— %a  “ms

Q=exi (X*Pa+ 6°Q, + 0,Q%) Jexli (4S,+ ¥,5%)]. Do=D (D, oY+ D o) w; Mo,

@ D,=D,—i(D,o*Py+D o ) w, "y, (10
Herex, #, and ¢ are coordinates d=1 superspace, while
Y= %(x, 6,0) and its conjugates,= i ,(X, 0, 6) are Gold-
stoneN=1 superfields of dimensior 1/2. Note that these
superfields are reducible; they contain spins up to 3/2. In the
next section we will reduce the representations by imposing!nder the full groupG:
N=2 covariant irreducibility constraints. T —

The groupG acts on the coset space by left multiplica- ®(x",6",0")=R(h)®(x,6,0), (1)

wherew,2= 82 +i(dmpo?y+ dmpayp) andD,,,D, are the
ordinary flatN=1 superspace spinor derivatives.
N=1 matter superfield®(x, 6,0) transform as follows

tion: where R(h) is a matrix in a representation of the stability
P subgroup,H=S0(3,1). Since there is nd connection in
gQ2=0’h (geGheH). G the right-hand side of Ed6), the covariant derivatives of the

] ) matter and Goldstond=1 superfields are identical.
I particular, ~ under S supersymmetry,  with In what follows we will need the algebra of the covariant
g=exdi(»S+»9)], this implies derivatives. This algebra can be worked out with the help of

o - Eq. (10):
X' 2=x2+i(npaly—yody), 6'=6, 0'=60, (4 . . — .
(D, Dg}=—20(Do" Dy + Dt Doih?) 0 Dy,

and

_ _ {D, Dph=2i0%, D= 2i(D " Dyip?
Y'ex,0',0")=y*(x,6,0)+ n°, _ — .
+ DD oth?) 0% Do,
L(X',0',0") = (X, 0,0)+ 7, . 5 _ .
GG © [Da . Dal=—2I(Doy"Daty’+ Dath" Do) 5 Dy .

The Cartan one-fornf ~1dQ, (12

An important feature of this formalism is the existence of

QO =i[w¥(P)P,+ w“(Q)Qaer_&(@a‘; two dimensionless invariantsD,#, and D,y (together
s with their complex conjugateésThese invariants render the
T 0%(S)S,+ wy(S)S], (6)  standard formalism of nonlinear realizations somewhat am-

biguous. For example, one can multiply the covariant deriva-
defines covarianN=1 superspace coordinate differentials tive D, by one function of these invariants, or shit, 5 by
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another. This ambiguity will prove important in the next sec-stone fields. This equation, together with its conjugate, imply
tion; the reason for it and the way to overcome it will be Eq. (16). An important corollary of this result is the fact that
discussed in the conclusions. N=1 chirality is preserved in the Goldstone background:

IIl. CONSISTENT COVARIANT CONSTRAINTS {Do,Dg}={D,,D}=0. 17

The Goldstone superfiema(x,g,g_) is a reducible repre- We will discuss the geometrical meaning of covariant chiral-
sentation of unbrokerN=1 supersymmetry with highest ity in Sec. V.
spin 3/2. It contains the spin-(1,1/2) Maxwell multiplet, but ~We now turn to Eq(14). The simplest, most naive gen-
it also contains ghosts. The only way to eliminate the ghostgralization, D*y,+ D,¢“=0, is not consistent at order

is to impose appropriate irreducibility constraints on the®(y?%). Applying D? to the left-hand side gives
Goldstone superfield.

In this section we will find a set of consisteM=2 co- D?(D*Y,+ D,p*)=4D waw,/,ﬂaﬁ&(/,a
variant constraints which reduag® to the N=1 Maxwell _
multiplet. The elucidation of the proper constraints is com- +8D“¢B&“7¢yaﬁadza+ O(P°).
plicated by the dimensionless invariants discussed in the pre- (18)

vious section. Therefore we will adopt a perturbative ap-

proach and present a set of constraints that are consistent f{0is remarkable that there exists the followihg=2 covari-

the third order in the Goldstone fields. ant generalization of the Maxwell constraints:
As is well known(see, e.g.[10]), the Maxwell multiplet

is described by a chirdll=1 field strengthVV,, of dimension " — 1 s 1—&—[}——
3/2: Do+ Doty = 5D Dgtp D7, — D% Dpip Dy
D,W,=0. (13 =0(y). (19
The superfieldV, satisfies the irreducibility constraint This constraint is consistent to ordé(°), in the sense that
_ D? [left-hand sidg(19)] = O(°).
D*W,+ D, W*=0. (149 The ambiguity of the standard nonlinear realization is

. _ . completely fixed by the consistency requirements. In fact,
The second constrairil4) must also satisfy a consistency higher-order terms can be added to the left-hand side of Eq.
condition: its left-hand side must vanish undBf (and  (19) to make it consistent to all orders. The structure of these

D?). L higher-order corrections is likely to be related to hidden sym-
The two constraints are solved by,=iD?D,V, where — metries of the Goldstone-Maxwell multiplet.
V(x, 6, 6) is the Maxwell prepotential. The fieM is defined The consistent covariant constraiifi$) and(19) can be
modulo chiral gauge transformationsy/=i(A —A), with solved in terms of th&N=1 Maxwell field strengthn,, :
D,A=0. 1 _
To lowest order, we can identify V=W, + ZDZ(Wz)Wa—iWﬁWB&B,;WaJr O(WP),

Palin=K*W,, (15) (20)

where the constank (of dimension—2) is the scale of whereW?=Ww,, and_VVZZWaWa- _
S-supersymmetry breaking. In what follows, we set 1. . In what foIIowg an important role is played by the non-

Our aim is to generalize Eq&L3) and(14) to obtain a set linear transformations dfV, under the second supersymme-
of constraints that are covariant undés2 supersymmetry. - To find them, let us first consider the form variation of
The new constraints must be consistent and reduce to Eqé. UnderS supersymmetry:
(13) and(14) in the linearized approximation. o — —

We begin by generalizirftggq. (13): O Y=o (X,0,0) = ha(X,0,0)

D_Blﬂazo- (16) =0a—1(7PYP— P 0P)dgpth,. (21)

Note that the right-hand side of this equation can, in prin-':Or the Maxwell field strength, , this implies
ciple, involve any power of the dimensionless invariants 1 A
D%z andDpip, . However, it is easy to see that H46) is W, = 1,— ZDZ(WZ) No—10 40 W2) 7%+ O(WH).
consistent as it stands. Indeed, Lorentz covariance implies
that any terms on the right sid&6) must be at least linear in
Dy and Dy. Hence the most general modification of Eq. Note that this transformation preserves the defining linear
(16) has the form D, i, =M ,.*PDyiys+N,.PPDgyy,  constraints(13) and (14). The corresponding Maxwell pre-
where the matricem andN are at least linear in the Gold- potential transformation is

(22

I — — i —
S*V=—(60?+W2) 0n— —(0>+W?) 67+ O(W?*. (23
‘Equation(16) was first discussed in similar context [i]. 4(6 )07 4(0 )07 (W5. (23
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The commutator of two such transformations reduces to alVe will not derive this equation since it was guessed. How-
ordinary translation(plus a gauge transformatipnas re- ever, once found, it can be justified by its consistency with

quired by the algebrél). Egs.(27) and (28).2
Using Eg. (22, we can find the N=2 invariant Equation(29) can be used to exparXlin powers ofW?
Goldstone-Maxwell actiorito orderW®) and its derivatives,
1 1 — 1 — —
Seolds™ 7 J d*xd?oW?+ 7 J d*xd?owW? X=W2+ 2 WD%(W?)
1 — 1 —_— — ———
+ §f d*xd*OW?W2+ O(WE). (24) +EW2[(D2W2)2+ D2(W?D?W?)]+---. (30

The gauge field contribution to this action has the form More importantly, it can also be used to find an explicit
expression foiX. To this end, we transform E¢29) as

1 1
(SGoldsr)|gauge:f d*x _Zanan— 3—2(anan)2 W2 Ex_

X=WPt - ———

1 o

+ gFmdF "FuF'™ [+ O(F®). (25) 1-7D%X

. - . _ 1— W2W2
The action(25) coincides with the expansion of the Born- =W24+ - D? > |- (3D
Infeld action 47 |[1-(1/4)D3X][1—(1/4D?X]

. We note that the numerator in the square brackets in-
Sgi= —j d*xv'—det mnt Fron)- (26)  volves the squares of the anticommuting_spinor superfields
W, and W,. Since W,W,W, =0 and W, W;W,=0, the

In the next section we will see that this is not an accident; théerms_in the denominator which contain an undifferentiated

full nonlinear action for the gauge field is precisely that of W or W must vanish. This implies th@?X enters the de-
Born and Infeld[11]. nominator only in the “effective” form

D2W?
IV. THE GOLDSTONE-MAXWELL MULTIPLET 2

SESETTTCC P

A. The nonlinear transformation law

In this section we will extend the results of the previouspiq equation, together with its complex conjugate, gives

section to all orders. Instead of generalizing the constraintﬁ : : : :
. . : se to a quadratic equation fob€X), with the solutiord
(16) and(19), we will work directly with theN=1 Maxwell q q EX)er

superfieldW,. We stress that all results of this section are 1
nonperturbative. _ _ (D2X)oq=2+B—21 [1-A+>B2, (33)
We begin with the full nonlinear transformation law for 4

W, . To preserve the defining constraintk3) and (14) it
must have the form where

1 . — 1 -
F* W= 16— 7 D*X70=19,:X7", @7 A= 5 (D2W2+D?W?),

where X is a chiral N=1 superfield which satisfies 1 L
D, X=0. The commutator of two such transformations B=§(D2W2—D2W2). (34)
obeys theN=2 algebra(1) if X transforms as

S X=2W7, . (29) ;l#t;?.tituting this into Eq(31), we find an explicit expression

Note that the commutator of two such transformations gives
the correct algebra.

The following recursive expression féris chiral and has
the required transformation properties:

Note that there can exist only one superfi¥lavith the required
properties: given two such superfieldsandX’, X— X' is invariant
underS supersymmetry. No such invariant of dimension 1 can be
built from W, , except for a constant. The constant partxofs

2 fixed by requiringX vanish atw,=0.
X= W : (29) 3The second solution does not vanish\&it=0 and should be
1—(1/4D3X discarded.
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1— W2W2 1 1
X=W?+ EDZ 1 . (3H _detnmn+an):l+§anan+ g(anan)Z
1- A+ J1-A+(1/4)B?
2 1 ki |
— 2 FmaF " FaF ™, (40)

B. The action
this action coincidesup to additive constaptvith the Born-
Infeld action(26). It is remarkable that the Born-Infeld form
of the gauge field action is dictated by the partially broken
N=2 supersymmetry. Since the gauge field is a superpartner
of the Goldstone fermion, this hints strongly that a
f dxd2oX (36) Goldstone-type symmetry underlies the Born-Infeld action.
We should mention that the actioi37) was first con-
is invariant undeM =2 supersymmetry. Th€® supersym- structed if12] as anN=1 generalization of the Born-Infeld
metry is manifest in Eq(36), while theS invariance follows —action® As pointed out in[12], the N=1 supersymmetry is
from the fact thatfd*xd?6W<y, is a surface term. The not sufficient to fix the actiori37). Indeed, one can modify
Goldstone-Maxwell action is nothing but the real part of thethe d*¢# part of the N=1 Lagrangian by replacing

The superfieldX plays a second important role: it is also
a chiral density for the invariant Goldstone-Maxwell action.
Indeed, the transformation propef88) implies that the chi-
ral integral

invariant(36),* D2W2—D2W?2+a(D“W,)?, wherea is any number. This
1 1 - clearly does not change the Born-Infeld form of the gauge
SGM:ZJ’ d*xd?ex + ZJ d*xd?6x field action. Note, however, that this modification is not con-
sistent with the transformation®7) and (35). It is the sec-
1 ond, nonlinear supersymmetry which unambiguously defines
= ZJ d*xd?6oW?+h.c. the form of the Goldstone-Maxwell action.
1 - W2W?2 C. Duality
+—f d*xd?6d?6 : i i
1—(1/2)A+\1-A+(1/4)B? We now turn to the duality properties of the Goldstone-

3 Maxwell action. Let us first recall that the Born-Infeld action
(37 possesses a certain duality invariaht®]. The duality stems

By construction, this action is invariant undie=2 super-  from the fact that the action involves the field strength only;

symmetry, where the second supersymmetry is given by Eqéherefore one can relax the Bianchi identit§"<'9,F\ =0
(27), (35), and(34). It is written in terms of theN=1 Max- Py including a Lagrange multiplier term
well multiplet field strengthW, and its derivatives. 1

Physically, the action(37) describes nonminimal cou- SBI(an)HSBI(an)"'_f d4meemnk'aan,, (41)
plings of massless spin-1/2 and spin-1 particles, with first- 2

and second-order equations of motion, respectively. It does ~ o ) ) ] ]
not involve any ghost states. whereA, is the multiplier field. If one varies this action with

It is instructive to analyze the bosonic part of the action.r€Spect tdn,, and substitutes back the result, one recovers
To this end we set the fermionic fieMV,|,_,=0, and use the Born-Infeld action foA, itself.
the identities The Goldstone-Matter actiof87) enjoys a similar self-
Dew 1 e ) ay i—5“D duality. This can be seen as follows. We first relax the Bian-
B 4(‘7 mn) g 478 chi identity (14) by adding a superfield Lagrange multiplier
term to Eq.(37):

2\ /2 1 mn i =mn 2
D Wz—EanF —EanF +D*, (39 :
which hold atW,|,_o=0. Since Grassmann integration is Sem(W)— Sem(W) + Ef d*xd? oW W,
equivalent to differentiation, Eq$37) and (38) imply that
the real fieldD enters the bosonic action in a bilinear way. i PRI prvestownd
Therefore on shellD =0, and the gauge field strengih,, - §f d*xd” oW, W*. (42)
contains all the bosonic degrees of freedom.
The action for the gauge fieli,,, can be written as HereW® is anN=1 Maxwell multiplet which serves as an
1 1 N=1 Lagrange multiplier, andV, is an arbitrary chiral
Sbosonm:J d*|1—-| 1+ Eanan-i- g(anF”‘”)2 N=1 superfield. Varying with respect ¥* reimposes the
Maxwell constraint onW,, while varying with respect to
1 112 W« gives rise to the Goldstone-Maxwell action for the field
—ZanF“kaF'm) } (39 we
To see how this works, let us first vary EGI2) with
Since in four dimensions respect toV,. This gives

“The imaginary part of Eq(36) reduces to a surface term. SWe are grateful to E. Ivanov for introducing us to this paper.
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~ 1——t 0'*= 0"+ €°, (49
W= —iW¢« 1_ZD Xt (43
and
wheret satisfies the recursive equation
o Y=gttt (50)
t=1-7DAWA™Y). (44)

where €* and #“ are the first and second supersymmetry
transformation parameters. This implies that we can choose a

We then substitute Eq43) back into Eq.(42). Let us focus Isurface in this space in 8d=2 covariant way:

on the part of the action which is an integral over the ful
N=1 superspace. The trick of Sec. IV can be used to write

t andD?X in the “effective” form P =X, 0). (51)
ﬁv\fz This equation is equivalent to the holomorphicity condition
teff: 1— —_—,
4 eff P L
— — | ¥*(x.,6,6)=0. 52
(1 i~ Ct(t—t+1) 45 ((99&):’“ L:6.9) 52
20X| =g ler 45

In fact, using Eq(52), one can show that the spinor covari-
' ant derivativeD“ becomes a partial derivative in terms of the
complex coordinatesx( , 6, 6):

Solving Eq.(45) for t and substituting back into the action
we recover the Goldstone-Maxwell actiof87) for the
N=1 Maxwell superfieldV,,.

In this section we established that the Goldstone-Maxwell
action possesses partially brokBir=2 supersymmetry, that E’z( i ) (53
it is self-dual, and that its bosonic part reduces to the Born- 90-]
Infeld action. These are exactly the properties that are ex- oL
pected from a supersymmetric D-brane actiéh Thus we o N ) )
may conclude that Eq(37) is, in fact, the gauge-fixed Thus the holomorphicity conditiob2) is equivalent to the
D-brane action in a flat backgrourtdfter the auxiliary fields N=1 chirality constraint(16), and the Goldstone-Maxwell

are eliminated superfieldy® is a chiral superfield. It is now obvious that the
general solution to the covariant chirality constraifé) is
V. N=1 MATTER AND THE GOLDSTONE-MAXWELL given by
MULTIPLET
O=D(x2,0%). 54
A. Chirality (XC,0%) (54)

The chirality constrain{16) and integrability of the cova-

riant spinor derivative€17) allow us to defineN=1 chiral B. Chiral superspace invariants

superfields in the Goldstone background: Having defined the chiral subspackf (6*), and chiral
— superfields covariant unded=2 supersymmetry, we are
D,®»=0. (46) ready to construct the superspace invariants associated with

chiral superfields. But first we need a chiral density whose

To understand complex geometry behind this covarianfanstormation compensates for the chiral volume transfor-
chirality, and to explicitly solve the constraintst) and(46), mations

we consider another, complex parametrizatiQp of the
coset spac&/H [see Eq(2)]: d*x[d?60" = (1—2id5pa?n)d*x d?6. (55)

Qu=exli(X{Pat 6°Qqt #*Sy) Jexi (0,Q+ 1,5 ], One way to obtain such a density is to take the vielbein

(47 superdeterminanE=Ber(Ey”") and then change from the
real coordinates X,6,6) to the complex coordinates
(x.,6,0):

where
XP=x2—i 9o 0—i waaI (48

S a(XL [} 010_)
Since the generato®*,S* and the Lorentz generators form ELEEBe’( m) : (56)
a (complexified subalgebraH of G, the coordinates T

(x, 0% ") of the cosetG/H form a closed subspace under

N=2 supersymmetry: The densityE, transforms correctly,

Xl'_a=XE—2i90'aE__2il/f0'a; E|'_=(l+2iz9|élﬂ0'a%E|_, (57
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but it is not chiral: in the linearized approximation, fat . —
E =1+2id,p0%+0O(4*. The chirality can be restored in:j d*xd*OK (@, D), (64)
with the help of the dimensionless invariants,

which is defined up to holomorphic Kéer transformations:

- 1— o
EL=Ey| 1+ 5D D"y + Oy =K+ A(D)+A(D). (65
15— A To generalize Eqs64) and (65) in the Goldstone back-
=1- ZD (W) +0O(y"). (58) ground, we need a real denskywith the property
The densityEL transforms correctly, but is chirdup to f d4xd4géf(xl_,9):0 (66)
O(y* termg, as can be seen by its expansion in terms of
w

aHaving found the chiral density, we are ready to write thefor an arbitrary chiral functionf. Expanding the density

— H a : —a 4 .
generalN=1 superpotential in the Goldstone background.E_a1+'aa”/’U _‘/’+'b‘2a5[”7 l/fj: O_("Z’ g_and thf function
that E does not satisfy Eq66). As above, we can use the

4 o n dimensionless invariants to define a new density with the
Ssuperpot:f d*x d“0E P(®D), (59 property (66):

where P(®) is an arbitrary holomorphic function of chiral E=E(1-DyDy)+O(¢*). (67)
superfields. This coupling is invariant undér 2 supersym-
metry, up toO(y%).

The discussion of th&l=1 chiral matter interactions can

The Kéhler potential part of the matter action is simply

be generalized to include gauge multiplets as well. The Max- Siin= J d4xd40I§K(®,dT), (68
well gauge superfield is a redl=1 superfield,A(x, 6, 6),
that is a scalar undéM=2 supersymmetry: and the Kaler potential enjoys the the invarian(g5).
_ — As discussed above, the matter couplings can be extended
A'(X',0,0")=A(X,0,0). (60)  toincludeN=1 gauge multiplets as well. The kinetic term is
) easy to construct in the chiral subspace. Its associated Fayet-
Under gauge symmetry, the superfieldtransforms as lliopoulos term is given by
SA=I[£0¢,6)— £, 0)]. (61)
where &(x?, ) is a (covariantly chiral transformation pa- Sri= J' d*xd*6EA, (69
rameter.

The kinetic term forA can be written as an integral over which is invariant under gauge ard=2 supersymmetry
chiral superspace. The first step is to construct the chirakransformations.
gauge field strengthyV,, in terms of the Maxwell super- Thus we have seen that all the usual self-couplings of
field, A, and the Goldstone superfieldy,. The field W, N=1 matter can be extended to the case of partially broken
must be a tensor under gauge symmetry as well as supersym=2 supersymmetry with the help of the Goldstone-
metry. It is Maxwell multiplet. A similar result holds for partially broken

N=2 supersymmetry with a chiral Goldstone multip]&t.

[ 1 s — — | =
W,=i| 85+ = 85D W2+ Dy(D,WPWP) |[ D*Dy
8 VI. CONCLUSIONS

+4i(Dg, WD*W?)D;, D, ] A+ O(W?). (62) In this paper we showed that there exists a new Goldstone
multiplet for partially brokenN=2 supersymmetry, the
Then the supersymmetric and gauge-invariant action is jusiGoldstone-Maxwell multiplet. We found its exact nonlinear
supersymmetry transformation and constructed the invariant
Goldstone-Maxwell action. We also worked out the first per-
turbative terms of theN=1 matter couplings to the
Goldstone-Maxwell multiplet. We found that the superspace
whereEL is the chiral density defined above. description of the Goldstone-Maxwell multiplet requires two
constraints, Eqs(16) and (19). These constraints are pres-
ently on a different footing. The first, E§16), is known in
its full form; it has a clear geometrical interpretation in terms
The kinetic part of the chiral superfield action can also beof N=1 chirality preservation. The second, Ef9), is only
written in the Goldstone background. In flak=1 super- known in a perturbative expansion.
space, the kinetic action involves alder potential, The derivation of the second constraint is obscured by
K(®,dD), two dimensionless invariant®),#z andD“y, . These in-

1 “
Sgauge:ZJ' d4Xd20E|_WaWa+ H.c., (63

C. Full superspace invariants
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variants can be identifiedat 6=0) with the gauge field try of the defining constraint§l6) and (19). Note that the

strengthF .5, and the auxiliary fieldD. It is instructive to  rest of the automorphism group 8 explicitly breaks these

compare this situation with that of the chiral Goldstone mul-constraints.

tiplet [2]. Thereall fields of the Goldstone multiplet were If we were to extends in G/H by Eq. (70), we would

associated with symmetries, so each had a geometrical integliminate the dimensionless invariabt*,. However, we

pretation. For the case at hand, this suggests that we aweould still have to contend with the dimensionless invariant

missing the Goldstone-type symmetries associated with thassociated with the gauge field strength, ¢ . This sug-

gauge field strength and the auxiliary field of the Goldstonegests that there exists an extensiorNsf 2 supersymmetry

Maxwell multiplet. which associates a Goldstone-like symmetry with this field
In fact, theD field of the Goldstone-Maxwell multiplet strength.

can be interpreted as the Goldstone field associated with the
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