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The partial spontaneous breaking of rigidN52 supersymmetry implies the existence of a masslessN51
Goldstone multiplet. In this paper we show that the spin-(1/2,1) Maxwell multiplet can play this role. We
construct its full nonlinear transformation law and find the invariant Goldstone action. The spin-1 piece of the
action turns out to be of Born-Infeld-type, and the full superfield action is duality invariant. This leads us to
conclude that the Goldstone multiplet can be associated with a D-brane solution of superstring theory for
p53. In addition, we find thatN51 chirality is preserved in the presence of the Goldstone-Maxwell multiplet.
This allows us to couple it toN51 chiral and gauge field multiplets. We find that arbitrary Ka¨hler and
superpotentials are consistent with partially brokenN52 supersymmetry.@S0556-2821~97!00102-1#

PACS number~s!: 11.30.Pb, 11.30.Qc, 12.60.Jv, 14.80.Mz

I. INTRODUCTION

The spontaneous breaking of rigid supersymmetry gives
rise to a massless spin-1/2 Goldstone fieldca(x) @1#. When
N52 supersymmetry is broken toN51, the Goldstone
fermion belongs to a massless multiplet of the unbroken
N51 supersymmetry. One obvious Goldstone candidate is
the N51 chiral multiplet (A1 iB,ca ,F1 iG). In @2# we
used this multiplet to construct a nonlinear realization of
partially brokenN52 supersymmetry. We found that the
complex spin-0 fieldA1 iB is the Goldstone boson associ-
ated with the broken central charge generator ofN52 super-
symmetry; the complex auxiliary fieldF1 iG parametrizes
the coset SU~2!/U~1! of the automorphism group SU~2!. The
superthreebrane of Liu, Hughes, and Polchinski@3# provides
a different, but on-shell-equivalent representation of the
same Goldstone multiplet.

A second candidate Goldstone multiplet is theN51 vec-
tor, or Maxwell, multiplet (Am ,ca ,D). In this case the su-
perpartners of the spin-1/2 Goldstone field are an Abelian
gauge fieldAm and a real auxiliary fieldD. We will show
that the Maxwell multiplet provides a second consistent
Goldstone multiplet for partially brokenN52 supersymme-
try. We will construct its invariant action and its couplings to
N51 matter fields.

Perhaps the most striking feature of the new Goldstone
multiplet is its unification of a Goldstone and a gauge field.
The theory of Goldstone fields is based on the formalism of
nonlinear realizations, which is usually associated with
finite-dimensional groups@4,5#. However, gauge fields can
also be interpreted as Goldstone fields associated with
infinite-dimensional symmetry groups@6#. This suggests that
the full symmetry of the new multiplet is some infinite-
dimensional extension ofN52 supersymmetry. As we shall
see, the gauge fieldAm has only nonminimal interactions; in
other words, the field appears only via its field strength, so
the gauge invariance is hidden. Hence we can use the origi-
nal formalism of @4,5# to study the properties of the
Goldstone-Maxwell multiplet.

This paper can be viewed as an outgrowth of an early
attempt to partially breakN52 supersymmetry@7#. The

problem of ghost states is resolved by requiring the Gold-
stone multiplet to be an irreducible representation ofN51
supersymmetry. Recently, Antoniadis, Partouche, and Taylor
@8# constructed a model with partially brokenN52 super-
symmetry. In their model, the second supersymmetry is re-
alized nonlinearly. However, their action involves an extra,
massive,N51 multiplet. Our approach is completely model
independent; if the extra matter is integrated out, their action
must reduce to ours.

Like the chiral GoldstoneN51 multiplet @2#, the
Goldstone-Maxwell multiplet has a superstring interpreta-
tion. It is related to the recently discovered Dirichlet
p-branes@9#. These objects are solutions of the superstring
equations of motion that can be viewed as dynamical mem-
branes in (p11) world volume space. D-branes characteris-
tically break half of the superstring supersymmetries and in-
volve a (p11)-dimensional gauge field with the Born-Infeld
action. Until now, only the bosonic parts of the D-brane
actions have been constructed. We propose that the
Goldstone-Maxwell action, after eliminating the auxiliary
fields, is precisely the supersymmetric, gauge-fixed, D-brane
action for p53 ~in a flat background!: The gauge fieldAm
has a Born-Infeld action, and the full Goldstone-Maxwell
action is duality invariant.

This paper is organized as follows. In Sec. II we review
the formalism of nonlinear realizations. As we shall see, this
technique has an ambiguity when applied toN52 supersym-
metry: dimensionless invariants can be used to modify the
covariant derivatives and the covariant constraints. However,
requiring consistency of the constraints fixes the ambiguity.
In Sec. III we find a set of consistent constraints, to third
order in the Goldstone fields. We then solve the constraints
in terms of the ordinaryN51 Maxwell multiplet, and derive
the broken supersymmetry transformations of the Goldstone-
Maxwell multiplet to second order in fields. In Sec. IV we
present the full nonlinear transformation law and derive the
invariant action for the Goldstone-Maxwell multiplet. Sur-
prisingly, we find that the gauge field is governed by the
Born-Infeld action, and that the full action is invariant under
a superfield duality transformation. In Sec. V we show that
N51 chirality is preserved in the presence of the Goldstone-
Maxwell multiplet. This allows us to generalize the Ka¨hler
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potential to the case of partially brokenN52 supersymme-
try. It also permits us to constructN52 extensions of the
general superpotential for chiralN51 superfields, as well as
the kinetic and Fayet-Iliopoulos terms forN51 gauge super-
fields. Section VI contains concluding remarks.

II. NONLINEAR REALIZATIONS

In this section we review basics of nonlinear realizations
as applied toN52 supersymmetry. We begin with the
N52 supersymmetry algebra:

$Qa ,Q̄ȧ%52saȧ
a
Pa , $Sa ,S̄ȧ%52saȧ

a
Pa ,

$Qa ,Sb%50, $Qa ,S̄ȧ%50, ~1!

whereQa andSa are the two supersymmetry generators and
Pa is the four-dimensional momentum operator. In what fol-
lows, we takeQa to be the unbrokenN51 supersymmetry
generator, andSa to be its broken counterpart.

Following the formalism of nonlinear realizations@4,5#,
we consider the coset spaceG/H, whereG is the N52
supersymmetry group andH5SO(3,1) is its Lorentz sub-
group. We parametrize the coset elementV as

V5exp@ i ~xaPa1uaQa1 ū ȧQ̄
ȧ!#exp@ i ~caSa1c̄ ȧS̄

ȧ!#.
~2!

Herex,u, and ū are coordinates ofN51 superspace, while
ca5ca(x,u,ū) and its conjugatec̄ ȧ5c̄ ȧ(x,u,ū) are Gold-
stoneN51 superfields of dimension21/2. Note that these
superfields are reducible; they contain spins up to 3/2. In the
next section we will reduce the representations by imposing
N52 covariant irreducibility constraints.

The groupG acts on the coset space by left multiplica-
tion:

gV5V8h ~gPG,hPH !. ~3!

In particular, under S supersymmetry, with
g5exp@i(hS1h̄S̄)#, this implies

x8a5xa1 i ~hsac̄2csah̄ !, u85u, ū85 ū, ~4!

and

c8a~x8,u8,ū8!5ca~x,u,ū !1ha,

c̄ ȧ
8 ~x8,u8,ū8!5c̄ ȧ~x,u,ū !1h̄ ȧ . ~5!

The Cartan one-formV21dV,

V21dV5 i @va~P!Pa1va~Q!Qa1v̄ȧ~Q̄!Q̄ȧ

1va~S!Sa1v̄ȧ~S̄!S̄ȧ#, ~6!

defines covariantN51 superspace coordinate differentials

va~P!5dxa1 i ~dusaū1dūs̄au

1dcsac̄1dc̄s̄ac!,

va~Q!5dua,

v̄ȧ~Q̄!5dū ȧ , ~7!

and covariant Goldstone one-forms

va~S!5dca, v̄ȧ~S̄!5dc̄ ȧ . ~8!

The supervielbein matrixEM
A is found by expanding

the one-formsvA[„va(P), va(Q), v̄ȧ(Q̄)… with respect
to the N51 superspace coordinate differentialsdXM

5(dxm,dum,dū ṁ),

vA5dXMEM
A. ~9!

In a similar fashion, the covariant derivatives of the Gold-
stone superfield ca are found by expanding
va(S)5vADAca, which implies DAca5EA

21M]Mca.
These covariant derivatives can be explicitly written as

Da5va
21m]m ,

Da5Da2 i ~Dacsac̄1Dac̄s̄ac!va
21m]m ,

D̄ȧ5D̄ ȧ2 i ~D̄ ȧcsac̄1D̄ ȧc̄s̄ac!va
21m]m , ~10!

wherevm
a[dm

a 1 i (]mcsac̄1]mc̄s̄ac) andDa ,D̄ ȧ are the
ordinary flatN51 superspace spinor derivatives.

N51 matter superfieldsF(x,u,ū) transform as follows
under the full groupG:

F8~x8,u8,ū8!5R~h!F~x,u,ū !, ~11!

whereR(h) is a matrix in a representation of the stability
subgroup,H5SO(3,1). Since there is noH connection in
the right-hand side of Eq.~6!, the covariant derivatives of the
matter and GoldstoneN51 superfields are identical.

In what follows we will need the algebra of the covariant
derivatives. This algebra can be worked out with the help of
Eq. ~10!:

$Da ,Db%522i ~DacgDbc̄ġ1DbcgDac̄ġ!sgġ
a Da ,

$Da ,D̄ḃ%52isaḃ
a Da22i ~DacgD̄ḃc̄ ġ

1D̄ḃcgDac̄ġ!sgġ
a Da,

@Da ,Da#522i ~DacgDac̄
ġ1Dac

gDac̄ġ!sgġ
b Db .

~12!

An important feature of this formalism is the existence of
two dimensionless invariants,D̄ȧca and Dacb ~together
with their complex conjugates!. These invariants render the
standard formalism of nonlinear realizations somewhat am-
biguous. For example, one can multiply the covariant deriva-
tiveDa by one function of these invariants, or shiftDacb by

1092 55JONATHAN BAGGER AND ALEXANDER GALPERIN



another. This ambiguity will prove important in the next sec-
tion; the reason for it and the way to overcome it will be
discussed in the conclusions.

III. CONSISTENT COVARIANT CONSTRAINTS

The Goldstone superfieldca(x,u,ū) is a reducible repre-
sentation of unbrokenN51 supersymmetry with highest
spin 3/2. It contains the spin-(1,1/2) Maxwell multiplet, but
it also contains ghosts. The only way to eliminate the ghosts
is to impose appropriate irreducibility constraints on the
Goldstone superfield.

In this section we will find a set of consistent,N52 co-
variant constraints which reduceca to theN51 Maxwell
multiplet. The elucidation of the proper constraints is com-
plicated by the dimensionless invariants discussed in the pre-
vious section. Therefore we will adopt a perturbative ap-
proach and present a set of constraints that are consistent to
the third order in the Goldstone fields.

As is well known~see, e.g.,@10#!, the Maxwell multiplet
is described by a chiralN51 field strengthWa of dimension
3/2:

D̄ ȧWa50. ~13!

The superfieldWa satisfies the irreducibility constraint

DaWa1D̄ ȧW̄
ȧ50. ~14!

The second constraint~14! must also satisfy a consistency
condition: its left-hand side must vanish underD2 ~and
D̄2).

The two constraints are solved byWa5 iD̄ 2DaV, where
V(x,u,ū) is the Maxwell prepotential. The fieldV is defined
modulo chiral gauge transformations,dV5 i (L2L̄), with
D̄ ȧL50.

To lowest order, we can identify

cau lin5k2Wa , ~15!

where the constantk ~of dimension22) is the scale of
S-supersymmetry breaking. In what follows, we setk51.

Our aim is to generalize Eqs.~13! and~14! to obtain a set
of constraints that are covariant underN52 supersymmetry.
The new constraints must be consistent and reduce to Eqs.
~13! and ~14! in the linearized approximation.

We begin by generalizing1 Eq. ~13!:

D̄ḃca50. ~16!

Note that the right-hand side of this equation can, in prin-
ciple, involve any power of the dimensionless invariants
Dacb andD̄ḃca . However, it is easy to see that Eq.~16! is
consistent as it stands. Indeed, Lorentz covariance implies
that any terms on the right side~16! must be at least linear in
D̄c andDc̄. Hence the most general modification of Eq.
~16! has the form D̄ȧca5Maȧ

bḃD̄ḃcb1Naȧ
bḃDbc̄ḃ ,

where the matricesM andN are at least linear in the Gold-

stone fields. This equation, together with its conjugate, imply
Eq. ~16!. An important corollary of this result is the fact that
N51 chirality is preserved in the Goldstone background:

$Da ,Db%5$D̄ȧ ,D̄ḃ%50. ~17!

We will discuss the geometrical meaning of covariant chiral-
ity in Sec. V.

We now turn to Eq.~14!. The simplest, most naive gen-
eralization, Daca1D̄ȧc̄ ȧ50, is not consistent at order
O(c3). Applying D̄2 to the left-hand side gives

D̄2~Daca1D̄ȧc̄ ȧ!54Dc]ȧacb]bȧca

18Dacb]ȧgcg]bȧca1O~c5!.

~18!

It is remarkable that there exists the followingN52 covari-
ant generalization of the Maxwell constraints:

Daca1D̄ȧc̄ ȧ2
1

2
DacbDbcaDgcg2

1

2
D̄ȧc̄ ḃD̄ḃc̄ ȧD̄ġc̄ ġ

5O~c5!. ~19!

This constraint is consistent to orderO(c3), in the sense that
D̄2 @left-hand side~19!# 5 O(c5).

The ambiguity of the standard nonlinear realization is
completely fixed by the consistency requirements. In fact,
higher-order terms can be added to the left-hand side of Eq.
~19! to make it consistent to all orders. The structure of these
higher-order corrections is likely to be related to hidden sym-
metries of the Goldstone-Maxwell multiplet.

The consistent covariant constraints~16! and ~19! can be
solved in terms of theN51 Maxwell field strengthWa :

ca5Wa1
1

4
D̄2~W̄2!Wa2 iWbW̄ḃ]bḃWa1O~W5!,

~20!

whereW25WaWa andW̄25W̄ȧW̄
ȧ.

In what follows an important role is played by the non-
linear transformations ofWa under the second supersymme-
try. To find them, let us first consider the form variation of
ca underS supersymmetry:

d*ca[ca8 ~x,u,ū !2ca~x,u,ū !

5ha2 i ~hbc̄ḃ2cbh̄ḃ!]bḃca . ~21!

For the Maxwell field strengthWa , this implies

d*Wa5ha2
1

4
D̄2~W̄2!ha2 i ]aȧ~W2!h̄ ȧ1O~W4!.

~22!

Note that this transformation preserves the defining linear
constraints~13! and ~14!. The corresponding Maxwell pre-
potential transformation is

d*V5
i

4
~ ū21W̄2!uh2

i

4
~u21W2!ūh̄1O~W4!. ~23!1Equation~16! was first discussed in similar context in@7#.
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The commutator of two such transformations reduces to an
ordinary translation~plus a gauge transformation!, as re-
quired by the algebra~1!.

Using Eq. ~22!, we can find the N52 invariant
Goldstone-Maxwell action~to orderW6)

SGoldst5
1

4E d4xd2uW21
1

4E d4xd2ūW̄2

1
1

8E d4xd4uW2W̄21O~W6!. ~24!

The gauge field contribution to this action has the form

~SGoldst!ugauge5E d4xF2
1

4
FmnF

mn2
1

32
~FmnF

mn!2

1
1

8
FmnF

nkFklF
lmG1O~F6!. ~25!

The action~25! coincides with the expansion of the Born-
Infeld action

SBI52E d4xA2det~hmn1Fmn!. ~26!

In the next section we will see that this is not an accident; the
full nonlinear action for the gauge field is precisely that of
Born and Infeld@11#.

IV. THE GOLDSTONE-MAXWELL MULTIPLET

A. The nonlinear transformation law

In this section we will extend the results of the previous
section to all orders. Instead of generalizing the constraints
~16! and~19!, we will work directly with theN51 Maxwell
superfieldWa . We stress that all results of this section are
nonperturbative.

We begin with the full nonlinear transformation law for
Wa . To preserve the defining constraints~13! and ~14! it
must have the form

d*Wa5ha2
1

4
D̄2X̄ha2 i ]aȧXh̄ ȧ, ~27!

where X is a chiral N51 superfield which satisfies
D̄ ȧX50. The commutator of two such transformations
obeys theN52 algebra~1! if X transforms as

d*X52Waha . ~28!

Note that the commutator of two such transformations gives
the correct algebra.

The following recursive expression forX is chiral and has
the required transformation properties:

X5
W2

12~1/4!D̄2X̄
. ~29!

We will not derive this equation since it was guessed. How-
ever, once found, it can be justified by its consistency with
Eqs.~27! and ~28!.2

Equation~29! can be used to expandX in powers ofW2

and its derivatives,

X5W21
1

4
W2D̄2~W̄2!

1
1

16
W2@~D̄2W̄2!21D̄2~W̄2D̄2W̄2!#1•••. ~30!

More importantly, it can also be used to find an explicit
expression forX. To this end, we transform Eq.~29! as

X5W21
W2

4

D̄2X̄

12
1

4
D̄2X̄

5W21
1

4
D̄2F W2W̄2

@12~1/4!D2X#@12~1/4!D̄2X̄#
G . ~31!

We note that the numerator in the square brackets in-
volves the squares of the anticommuting spinor superfields
Wa and W̄ȧ . SinceWaWbWg50 and W̄ȧW̄ḃW̄ġ50, the
terms in the denominator which contain an undifferentiated
W or W̄ must vanish. This implies thatD2X enters the de-
nominator only in the ‘‘effective’’ form

~D2X!eff5
D2W2

12~1/4!~D̄2X̄!eff
. ~32!

This equation, together with its complex conjugate, gives
rise to a quadratic equation for (D2X)eff , with the solution3

~D2X!eff521B22A12A1
1

4
B2, ~33!

where

A5
1

2
~D2W21D̄2W̄2!,

B5
1

2
~D2W22D̄2W̄2!. ~34!

Substituting this into Eq.~31!, we find an explicit expression
for X:

2Note that there can exist only one superfieldX with the required
properties: given two such superfields,X andX8, X2X8 is invariant
underS supersymmetry. No such invariant of dimension 1 can be
built from Wa , except for a constant. The constant part ofX is
fixed by requiringX vanish atWa50.
3The second solution does not vanish atW50 and should be

discarded.
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X5W21
1

2
D̄2F W2W̄2

12
1

2
A1A12A1~1/4!B2G . ~35!

B. The action

The superfieldX plays a second important role: it is also
a chiral density for the invariant Goldstone-Maxwell action.
Indeed, the transformation property~28! implies that the chi-
ral integral

E d4xd2uX ~36!

is invariant underN52 supersymmetry. TheQ supersym-
metry is manifest in Eq.~36!, while theS invariance follows
from the fact that*d4xd2uWaha is a surface term. The
Goldstone-Maxwell action is nothing but the real part of the
invariant ~36!,4

SGM5
1

4E d4xd2uX1
1

4E d4xd2ūX̄

5
1

4E d4xd2uW21h.c.

1
1

4E d4xd2ud2ū
W2W̄2

12~1/2!A1A12A1~1/4!B2
.

~37!

By construction, this action is invariant underN52 super-
symmetry, where the second supersymmetry is given by Eqs.
~27!, ~35!, and~34!. It is written in terms of theN51 Max-
well multiplet field strengthWa and its derivatives.

Physically, the action~37! describes nonminimal cou-
plings of massless spin-1/2 and spin-1 particles, with first-
and second-order equations of motion, respectively. It does
not involve any ghost states.

It is instructive to analyze the bosonic part of the action.
To this end we set the fermionic fieldWauu5050, and use
the identities

DaWb5
1

4
~smnFmn!b

a1
i

4
db

aD,

D2W252
1

2
FmnF

mn2
i

2
FmnF̃

mn1D2, ~38!

which hold atWauu5050. Since Grassmann integration is
equivalent to differentiation, Eqs.~37! and ~38! imply that
the real fieldD enters the bosonic action in a bilinear way.
Therefore on shell,D50, and the gauge field strengthFmn
contains all the bosonic degrees of freedom.

The action for the gauge fieldFmn can be written as

Sbosonic5E d4xF12S 11
1

2
FmnF

mn1
1

8
~FmnF

mn!2

2
1

4
FmnF

nkFklF
lmD 1/2G . ~39!

Since in four dimensions

2det~hmn1Fmn!511
1

2
FmnF

mn1
1

8
~FmnF

mn!2

2
1

4
FmnF

nkFklF
lm, ~40!

this action coincides~up to additive constant! with the Born-
Infeld action~26!. It is remarkable that the Born-Infeld form
of the gauge field action is dictated by the partially broken
N52 supersymmetry. Since the gauge field is a superpartner
of the Goldstone fermion, this hints strongly that a
Goldstone-type symmetry underlies the Born-Infeld action.

We should mention that the action~37! was first con-
structed in@12# as anN51 generalization of the Born-Infeld
action.5 As pointed out in@12#, theN51 supersymmetry is
not sufficient to fix the action~37!. Indeed, one can modify
the d4u part of the N51 Lagrangian by replacing
D2W2→D2W21a(DaWa)

2, wherea is any number. This
clearly does not change the Born-Infeld form of the gauge
field action. Note, however, that this modification is not con-
sistent with the transformations~27! and ~35!. It is the sec-
ond, nonlinear supersymmetry which unambiguously defines
the form of the Goldstone-Maxwell action.

C. Duality

We now turn to the duality properties of the Goldstone-
Maxwell action. Let us first recall that the Born-Infeld action
possesses a certain duality invariance@13#. The duality stems
from the fact that the action involves the field strength only;
therefore one can relax the Bianchi identityemnkl]nFkl50
by including a Lagrange multiplier term

SBI~Fmn!→SBI~Fmn!1
1

2E d4xÃmemnkl]nFkl , ~41!

whereÃm is the multiplier field. If one varies this action with
respect toFmn , and substitutes back the result, one recovers
the Born-Infeld action forÃm itself.

The Goldstone-Matter action~37! enjoys a similar self-
duality. This can be seen as follows. We first relax the Bian-
chi identity ~14! by adding a superfield Lagrange multiplier
term to Eq.~37!:

SGM~W!→SGM~W!1
i

2E d4xd2uW̃aWa

2
i

2E d4xd2ūW̄ȧW̄
ȧ. ~42!

HereW̃a is anN51 Maxwell multiplet which serves as an
N51 Lagrange multiplier, andWa is an arbitrary chiral
N51 superfield. Varying with respect toW̃a reimposes the
Maxwell constraint onWa , while varying with respect to
Wa gives rise to the Goldstone-Maxwell action for the field
W̃a.

To see how this works, let us first vary Eq.~42! with
respect toWa . This gives

4The imaginary part of Eq.~36! reduces to a surface term. 5We are grateful to E. Ivanov for introducing us to this paper.
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Wa52 iW̃aS 12
1

4
D̄2X̄D t21, ~43!

wheret satisfies the recursive equation

t512
1

4
D̄2~ W̃̄2t̄21!. ~44!

We then substitute Eq.~43! back into Eq.~42!. Let us focus
on the part of the action which is an integral over the full
N51 superspace. The trick of Sec. IV can be used to write
t and D̄2X̄ in the ‘‘effective’’ form

teff512
D̄2W̃̄2

4t̄eff
,

S 12
1

4
D̄2X̄D

eff

5
t~ t̄2t11!

t̄1t21
ueff . ~45!

Solving Eq.~45! for t and substituting back into the action,
we recover the Goldstone-Maxwell action~37! for the
N51 Maxwell superfieldW̃a .

In this section we established that the Goldstone-Maxwell
action possesses partially brokenN52 supersymmetry, that
it is self-dual, and that its bosonic part reduces to the Born-
Infeld action. These are exactly the properties that are ex-
pected from a supersymmetric D-brane action@9#. Thus we
may conclude that Eq.~37! is, in fact, the gauge-fixed
D-brane action in a flat background~after the auxiliary fields
are eliminated!.

V. N51 MATTER AND THE GOLDSTONE-MAXWELL
MULTIPLET

A. Chirality

The chirality constraint~16! and integrability of the cova-
riant spinor derivatives~17! allow us to defineN51 chiral
superfields in the Goldstone background:

D̄ȧF50. ~46!

To understand complex geometry behind this covariant
chirality, and to explicitly solve the constraints~16! and~46!,
we consider another, complex parametrizationVL of the
coset spaceG/H @see Eq.~2!#:

VL5exp@ i ~xL
aPa1uaQa1caSa!#exp@ i ~ ū ȧQ̄

ȧ1c̄ ȧS̄
ȧ!#,
~47!

where

xL
a5xa2 iusaū2 icsac̄. ~48!

Since the generatorsQ̄ȧ,S̄ȧ and the Lorentz generators form
a ~complexified! subalgebra H̃ of G, the coordinates
(xL

a ,ua,ca) of the cosetG/H̃ form a closed subspace under
N52 supersymmetry:

xL8
a5xL

a22iusaē22icsah̄,

u8a5ua1ea, ~49!

and

c8a5ca1ha, ~50!

where ea and ha are the first and second supersymmetry
transformation parameters. This implies that we can choose a
surface in this space in anN52 covariant way:

ca5ca~xL ,u!. ~51!

This equation is equivalent to the holomorphicity condition

S ]

]ūȧ
D
L

ca~xL ,u,ū !50. ~52!

In fact, using Eq.~52!, one can show that the spinor covari-
ant derivativeD̄ȧ becomes a partial derivative in terms of the
complex coordinates (xL ,u,ū):

D̄ȧ5S ]

]ūȧ
D
L

. ~53!

Thus the holomorphicity condition~52! is equivalent to the
N51 chirality constraint~16!, and the Goldstone-Maxwell
superfieldca is a chiral superfield. It is now obvious that the
general solution to the covariant chirality constraint~46! is
given by

F5F~xL
a ,ua!. ~54!

B. Chiral superspace invariants

Having defined the chiral subspace (xL
a ,ua), and chiral

superfields covariant underN52 supersymmetry, we are
ready to construct the superspace invariants associated with
chiral superfields. But first we need a chiral density whose
transformation compensates for the chiral volume transfor-
mations

d4xL8d
2u85~122i ]a

Lcsah̄ !d4xLd
2u. ~55!

One way to obtain such a density is to take the vielbein
superdeterminantE5Ber(EM

A) and then change from the
real coordinates (x,u,ū) to the complex coordinates
(xL ,u,ū):

EL[EBerS ]~xL ,u,ū !

]~x,u,ū !
D . ~56!

The densityEL transforms correctly,

EL85~112i ]a
Lcsah̄ !EL , ~57!
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but it is not chiral: in the linearized approximation,
EL5112i ]acsac̄1O(c4). The chirality can be restored
with the help of the dimensionless invariants,

ÊL5ELS 11
1

2
D̄ȧc̄ ḃD̄ȧc̄ ḃ1O~c4! D

512
1

4
D̄2~W̄2!1O~c4!. ~58!

The densityÊL transforms correctly, but is chiral@up to
O(c4) terms#, as can be seen by its expansion in terms of
Wa .

Having found the chiral density, we are ready to write the
generalN51 superpotential in the Goldstone background.
The coupling is just

Ssuperpot5E d4xLd
2uÊLP~F!, ~59!

whereP(F) is an arbitrary holomorphic function of chiral
superfields. This coupling is invariant underN52 supersym-
metry, up toO(c4).

The discussion of theN51 chiral matter interactions can
be generalized to include gauge multiplets as well. The Max-
well gauge superfield is a realN51 superfield,A(x,u,ū),
that is a scalar underN52 supersymmetry:

A8~x8,u8,ū8!5A~x,u,ū !. ~60!

Under gauge symmetry, the superfieldA transforms as

dA5 i @j~xL
a ,u!2 j̄~ x̄L

a ,ū !#. ~61!

where j(xL
a ,u) is a ~covariantly! chiral transformation pa-

rameter.
The kinetic term forA can be written as an integral over

chiral superspace. The first step is to construct the chiral
gauge field strength,Wa , in terms of the Maxwell super-
field, A, and the Goldstone superfield,Wa . The fieldWa
must be a tensor under gauge symmetry as well as supersym-
metry. It is

Wa5 i Fda
b1

1

8
da

bD̄2W̄21D̄ḃ~DaW
bW̄ḃ!G@D̄2Db

14i ~DbȧW
gD̄ȧW̄ġ !D̄ġDg#A1O~W4!. ~62!

Then the supersymmetric and gauge-invariant action is just

Sgauge5
1

4E d4xd2uÊLWaWa1H.c., ~63!

whereÊL is the chiral density defined above.

C. Full superspace invariants

The kinetic part of the chiral superfield action can also be
written in the Goldstone background. In flatN51 super-
space, the kinetic action involves a Ka¨hler potential,
K(F,F̄),

Skin
flat5E d4xd4uK~F,F̄!, ~64!

which is defined up to holomorphic Ka¨hler transformations:

K85K1L~F!1L̄~F̄!. ~65!

To generalize Eqs.~64! and ~65! in the Goldstone back-
ground, we need a real densityÊ with the property

E d4xd4uÊf ~xL ,u!50 ~66!

for an arbitrary chiral functionf . Expanding the density
E511 i ]acsac̄1 i ]ac̄s̄ac1O(c4) and the function
f (xL

a ,u)5(12 icsbc̄]b) f (x
a2 iusaū,u)1O(c4), we see

that E does not satisfy Eq.~66!. As above, we can use the
dimensionless invariants to define a new density with the
property~66!:

Ê5E~12DcD̄c̄ !1O~c4!. ~67!

The Kähler potential part of the matter action is simply

Skin5E d4xd4uÊK~F,F̄!, ~68!

and the Ka¨hler potential enjoys the the invariance~65!.
As discussed above, the matter couplings can be extended

to includeN51 gauge multiplets as well. The kinetic term is
easy to construct in the chiral subspace. Its associated Fayet-
Iliopoulos term is given by

SFI5E d4xd4uÊA, ~69!

which is invariant under gauge andN52 supersymmetry
transformations.

Thus we have seen that all the usual self-couplings of
N51 matter can be extended to the case of partially broken
N52 supersymmetry with the help of the Goldstone-
Maxwell multiplet. A similar result holds for partially broken
N52 supersymmetry with a chiral Goldstone multiplet@2#.

VI. CONCLUSIONS

In this paper we showed that there exists a new Goldstone
multiplet for partially brokenN52 supersymmetry, the
Goldstone-Maxwell multiplet. We found its exact nonlinear
supersymmetry transformation and constructed the invariant
Goldstone-Maxwell action. We also worked out the first per-
turbative terms of theN51 matter couplings to the
Goldstone-Maxwell multiplet. We found that the superspace
description of the Goldstone-Maxwell multiplet requires two
constraints, Eqs.~16! and ~19!. These constraints are pres-
ently on a different footing. The first, Eq.~16!, is known in
its full form; it has a clear geometrical interpretation in terms
of N51 chirality preservation. The second, Eq.~19!, is only
known in a perturbative expansion.

The derivation of the second constraint is obscured by
two dimensionless invariants,D(acb) andDaca . These in-
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variants can be identified~at u50) with the gauge field
strength,Fab , and the auxiliary field,D. It is instructive to
compare this situation with that of the chiral Goldstone mul-
tiplet @2#. Thereall fields of the Goldstone multiplet were
associated with symmetries, so each had a geometrical inter-
pretation. For the case at hand, this suggests that we are
missing the Goldstone-type symmetries associated with the
gauge field strength and the auxiliary field of the Goldstone-
Maxwell multiplet.

In fact, theD field of the Goldstone-Maxwell multiplet
can be interpreted as the Goldstone field associated with the
following subgroup of the SU~2! automorphism group of the
N52 algebra:

dua5 ilca, dca5 ilua. ~70!

Under such a transformation, the fieldD is shifted by the
constant parameterl. This U~1! transformation is a symme-

try of the defining constraints~16! and ~19!. Note that the
rest of the automorphism group SU~2! explicitly breaks these
constraints.

If we were to extendG in G/H by Eq. ~70!, we would
eliminate the dimensionless invariantDaca . However, we
would still have to contend with the dimensionless invariant
associated with the gauge field strength,D(acb) . This sug-
gests that there exists an extension ofN52 supersymmetry
which associates a Goldstone-like symmetry with this field
strength.
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