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BRST-invariant boundary conditions for gauge theories
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Department of Physics, University of Newcastle Upon Tyne, NE1 7RU United Kingdom
(Received 29 July 1996

A systematic way of generating sets of local boundary conditions on the gauge fields in a path integral is
presented. These boundary conditions are suitable for one-loop effective action calculations on manifolds with
a boundary and for quantum cosmology. For linearized gravity, the general procedure described here leads to
new sets of boundary conditions$s0556-282(97)05002-9

PACS numbds): 11.15.Bt, 04.60-m, 98.80.Hw

[. INTRODUCTION of boundary conditions was not invariant under BRST trans-
formations[12,25. A set found by Barvinskj24] is invari-

The aim of the work reported here is to characterize setant under BRST, but not quite of the same form. In this set,
of local boundary conditions on the fields in a path integral.y in Eg. (1) includes a first order differential operator re-
This is a nontrivial problem for gauge theories, where thestricted to the boundarj25-28.
boundary conditions have to be consistent with the gauge The gauge fixing in both of the cases mentioned above is
symmetry. In the Becchi-Rouet-Stora-TyutiBRST) ap-  a covariant function of the gravitational background. By con-
proach[1,2], which we examine, this consistency with the trast, allowing noncovariant gauge fixing allows a set of
gauge symmetry translates into BRST invariance. The gaugeoundary conditions that is both BRST invariant and of the
fields are augmented by extra families of ghosts, antighostsnixed type[28]. These noncovariant approaches are not ap-
and auxiliary fields that also require boundary conditions. plicable, so far, to all topological situations. Other possibili-

Boundary conditions are needed for effective action calties have also been considef&9,30
culations on manifolds with boundary and for the evaluation It appears that gravity with covariant gauge-fixing terms
of wave functions in quantum cosmolo@§-5]. In many of  in the Lagrangian requires us to generalize the original class
these applications the geometry is curved, and this is wheref mixed boundary conditions to new classés,, where
local boundary conditions are especially useful. Boundaryy is a differential operator of ordar. The asymptotic be-
conditions that required separating transverse from longituhavior of the heat kernel is known for mixed boundary con-
dinal photons, for example, would be nonlocal. This wouldditions M [31]. It should be possible to extend these results
not be a problem in flat spacetime, because the separationts classesM; and M, without too much difficulty.
local in momentum space. In curved spacetimes, however, In the next section we shall see that a set of boundary
these nonlocal operations are best avoided. conditions of typeM,, can always be generated, based upon

There is another important reason for considering locah standard idea of having the ghost and antighost fields van-
boundary conditions. To first order in Planck’s constant, thdésh on the boundar{32]. We shall also see how this gives
result of a path integral is closely related to the asymptotiadise to a means of generating new sets of boundary condi-
behavior of the eigenvalues of an operator. With localtions through the application of canonical transformations
boundary conditions, the asymptotic behavior of the eigenbetween the ghosts and antighosts.
values is determined by local tensors through a heat kernel For linearized gravity with 't Hooft—Veltman gauge fix-
expansior{6-11]. ing (sometimes called harmonic gaug8a3], the general pro-

Local boundary conditions have been described before focedure described above leads to two new sets of boundary
Maxwell gauge theory, where the fields of interest includeconditions in classM,. With certain restrictions on the ex-
perturbations in the vector potential, ghosts, and antighostinsic curvature of the boundary, one new set of boundary
fields[12]. There are two sets of boundary conditions corre-conditions arises that i$1, and is, therefore, the first BRST-
sponding to fixing the magnetic or electric field on theinvariant set of boundary conditions of the original mixed
boundary. Each set has mixtures of Dirichlet and Robintype.
boundary conditons. If we split the fields into two subsets by In this paper we set the signature of the background four-

using projection operatoB.. , metric to be(++++).
(LAY)P.$=0, 1) Il. VANISHING GHOSTS
P_¢=0, 2) In the BRST approach to the path integral the original

fields q are augmented by ghosts antighostsc, and auxil-
whereZ is the Lie derivative along the normal to the bound-iary fieldsb (see[32] for a review. The path integral over
ary 3, andy is a matrix. These boundary conditions are nowthe fields on a manifold with a boundaly will result in an

widely used[13-22. amplitude in which the fields are specified Bn
A similar set of boundary conditions was found for gravi- o
tational fieldg 13,23, but it was soon discovered that this set v=v¥(qg,c,c,b;2). 3)
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If 3 has only one connected component, then the amplitude [c".Qlps= _E (10)
would be a wave function in the sense adopted in the study
of quantum cosmolog{3]. when expressed as a commutator acting on (8g.imply

When evaluating the path integral, a classical term is USUghat Ei also has to vanish oB. The set of boundary condi-
ally subtracted from the fields so that the residual fields satgons so far is. therefore

isfy simplified boundary conditions. The result of the path
integral can then be written in terms of operators acting on c=c'= bi=Ei=0. (12)
the fields.

Our aim is to find what additional restrictions have to be  The BRST variation of the fieldg whenc=0 is given by
placed on the fields in order to recover the correct number of
physical degrees of freedom. In most applications, for ex- SRQn:p_j[anE]- (12)
ample, an immediate restriction follows from the elimination

of the auxiliary field, leading to boundary conditions These fields which commute with belong to a set we call
b'=E'(q,£q), whereL is the Lie derivative along the nor- @ and can be fixed on the boundary. The boundary condi-

mal to the boundary. tions on the fields which do not commute wihare deter-

We will regqrd events on the bour}dary as simultaneou;nined by the vanishing oE(q,p). The vanishing-ghost
andLq as the time derivative aj. The importance of these ), ,nqary conditions on the gauge-fixed path integral are,
time derivatives indicates that Hamiltonian methods shoul

herefore,
be useful.
In the classical Hamiltonian approach we introduce the c=Cc=0, (13)
Poisson brackets
: . . i_ i _
(G P"Tpe= 5 [Ci,Ploe=—8l, [C'piloe=—0l. PrEap=0. (14

(4)

The momenta are distinguished by their indicasandn for
the fields and andj for the ghosts. For field theories, the WhereQ is the set of fields whose momenta do not appear in
index also includes the coordinates &nhand summation the gauge-fixing functionk. These boundary conditions are
over a repeated index includes integration oXer invariant under BRST transformations by construction.

Two important operators that we shall use are constructed Our principal concern is to list all of the possible sets of
from classical generating functiofi82]. The ghost-number boundary conditions, subject to specific restrictions. An ob-

q fixed forqe Q, (19

generator keeps track of the number of ghosts: vious place to begin is the division of phase space into ghosts
N and their conjugate momenta, which is not preserved by ca-
G=cip'—c'p;. (5 nonical transformationgdefined below. One way of creat-

ing further sets of boundary conditions would, therefore, be
to perform an arbitrary canonical transformation before ap-
Roy_ plying the vanishing-ghost conditions.
s"z={z,0]pg, (6) X )

In actual fact, not all canonical transformations turn out to
wheresR is used to denote BRST acting from the right. TheP€ suitable. Some lead to vanishing-ghost boundary condi-
BRST generator depends on constraiBt¢g,p) and their  tions that are not BRST invariant. This is due to structural
structure constant§'ly In the type of theory known as rank €hanges in the BRST generatr. Because of this fact, we

1 the gauge-fixed action leads to a BRST generator whickonsider a restricted class of transformations that satisfy the
has the form following conditions: (1) The transformation is canonical;

(2) it preserves the number of ghost8) the variation of a
Q=pE'+ ciE+ Lcic,Cllypk. (7)  vanishing ghost vanishes.
Condition (3) means thafc,Q2]=0 whenc=0, wherec
We shall assume that the theory has rank 1 for notationak the new ghost field. This condition arises from requiring
convenience. that setting the BRST variation @fto zero should not imply
Vanishing ghost number and BRST invariance are im-any further restrictions on the fields.
posed as fundamental requirements on the quantum theory. We will consider how these restrictions apply to transfor-

The BRST generataf) generates BRST symmetrigs

In terms of operators and amplitudes we set mations between the ghosts, antighosts, and auxiliary fields.
For this purpose it is convenient to blur the distinction be-
G¥=0, (8 tween ghosts and antighosts and write
" LI
These conditions, which reduce the space of states to those Pi c E

that may be regarded as physical, serve as boundary condi- . _ _

tions on the path integral. We also deflna\ié)\ig_qu p) to be the set of fields canoni-
The simplest way to satisfy the constrai® and(9) is  cally conjugate td'=E'(q,p).

to set the ghost fields to zero on the boundary of the path Canonical transformations from {7,P,\,b} to

integral. The Poisson brackets, {n',P',\'",b'} are generated bl (%', P,\",b):
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The ghost-number operator can now be written
G yP'= o (189
~P
In the new coordinate system,
’ i ’ oF
G'=nP =T 19
7i

Setting G’ =G, therefore, leads to transformations of the

form

F=F(P'n/ \',b). (20)
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where Q is now the set of fields whose momenta do not
appear in the other boundary conditions.

For an Abelian theory, these boundary conditions allow
any linear combination of the ghosts and their momenta to be
set to zero as long as it is consistent with ghost number. The
remaining boundary conditions are then determined
uniquely. These boundary conditions, therefore, include all
the possible sets of linear boundary conditions. Since quan-
tum field theories are effectively Abelian up to orderthese
also exhaust sets of linear boundary conditions for one-loop
guantum field theory.

There is still one further restriction to impose, namely,
that the boundary conditions are in a claes, of the mixed
boundary conditions mentioned in the introduction. This
means that the linear transformations must now be local, and
the momenta should be replaced by normal derivatives. We
can then proceed by the following rules.

(1) Each set of linear combinations of the constraints
E(qg,£q) and gauge-fixing conditiong(q,£q) that can be
written in the form of Egs(1) and(2), possibly after remov-
ing an overall surface derivative, defines a set of mixed

The allowed linear transformations on the ghost and antiPoundary conditions.

ghost fields are covered by the following theorem.
Transformations generated by
F=A\)P'n +b\], (21)

where the matrix4 has the properties

A B _ _
Az(c D), dA=dC=dD=0, dB;/=3C"\B,Jd\;,
(22)

satisfy conditiong1)—(3).

(2) The boundary conditions on the ghosts are fixed by
Eq. (25) once the linear combinations are given.

(3) The setQ of fields that can be fixed on the boundary
is finally identified by examining the combinatioq,p)
andE(q,p) for any missing momenta.

The resulting sets of boundary conditions depend on the
choice of gauge-fixing term in the action. This is to be ex-
pected, because the path integral is usually expressed in
terms of operators which themselves depend on the choice of
gauge-fixing term. On the other hand, there is still some
freedom in the choice of Lagrangian density even when the
gauge-fixing term is fixed. For example, it is possible to

These transformations are manifestly of the form given ineliminate the auxiliary fieldo from the action at an early
Eq.(20). The rest of the proof is by direct application of Egs. stage or to leave it in. This affects the form of the constraints,

(17). These allow the generatél to be written in the form

Q=A'n E+3 A Ay 5/ CH P . (23
We are also able to replat2 by b’':
R - P
E=&"+—plp;. (24

N

The linear term i) commutes withc; and gives no further
boundary conditions. The condition d® in Eq. (22) re-

gauge-fixing condition, and even the momenta, but it does
not affect the final form of the boundary conditions.

Ill. ELECTRODYNAMICS

A simple example of the preceding ideas is provided by
electrodynamics in curved spacetime. For Lorentz gauges,
the Maxwell fieldA, is accompanied by one ghost fietd
and one antighost field.

In order to set up a phase space associated with the hy-

persurface®, we need to decompose the Maxwell field into

moves terms beginningipjc”k which are the only ones .
normal and tangential components,

that violate condition(3). This completes the proof of the
theorem.

We can now write the vanishing-ghost boundary condi-
tion in terms of the original variables and obtain new sets of
boundary conditions:

A=yt dny. (29

(The index structure alone distinguishes different vector and

Bi'p'+D;lc'=0, (25  scalar quantities. We find this preferable to a profusion of
o notation) Momenta conjugate t@,, ¢, ¢, andc are de-
Bi'p'-D;!c'=0, (26)  noted byx?, m, p, andp, respectively. The extrinsic curva-
_ _ ture will be denoted b¥,,, and a vertical bar denotes cova-
B/E'+D,/E'=1D,/C", pXc, (27)  riant differentiation in3..
The Lagrangian density can be taken to be the sum of
g fixedforge Q, (28  three terms, the Maxwell, ghost, and gauge-fixing terms
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La=—3FaF® Lgy=—C%C,
Lgr= —bA, 2+ b2 (30
The fieldb can be eliminated by
b=A.2, (3D
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IV. LINEARIZED GRAVITY

Linearized gravity forms the starting point for ordér
guantum gravity calculations based on Einstein gravity, as
well as having wider applications to supergravity and super-
string theories by taking various spacetime dimensions. We
are seeking sets of local boundary conditions for the path
integral, using 't Hooft—Veltman gauges because they are

restricting the nilpotency of the BRST transformations towidely used and are covariant.

solutions of the field equations.

For 't Hooft—Veltman gauges, the metric fluctuatigg,

Starting from the Lagrangian density, one way to find theis accompanied by ghost field®, and antighost field€ 2.

BRST generator is to compute the Noether cur@ntJsing
left BRST transformations' [s-z=(—)sRz for even(odd)
fields z],

Fostz - j? (32
0Z.4 '
wheres‘L=j,2. For the present example,
s"tA;=C,, s-c=b, sc=s'b=0, j,=—Dbc,
(33
The Noether current is, therefore,
J3=—bcP+Fabc,,. (34)

The Noether chargé€) is the volume integral of the local

charge densityo=n_J2.

Decomposition of the Lagrangian density, following the

outline given in the Appendix, results in the momenta
=0 (B~ L),

p=Lc, p=-Lc.

m=—Dh,
(39

Using these expressions, E§4) leads trivially to the BRST
charge density

wZH)—Cﬂ'fa. (36)
In the notation used in the previous SeCtiEF —a (Lor-
entz gauge conditiogrand E= wf‘a (Gauss’ law constrait

The vanishing-ghost boundary condition is given by

$a=0. (37

c=c=b=m=0,

Using Eq.(31) and eliminating momenta puts this into mixed

form,

c=c=0, Lp+Kp=0, ¢,=0. (39

The metric fluctuation is defined in terms of the perturbed
metric

Jabt 2K Vap, (40)

wherex?=87G. We will also make use of the dual quantity
Y=gy, (41)
defined by the metric

g(ab)(cd)= %(gacgbd_,_gadgbc_ gabgcd). (42)

In order to set up a phase space associated with the hy-
persurface, we need to decompose all of these fields into
normal and tangential components:

Yab= Papnt 2¢@aNp) + PNaNy,
Yab= bant 2¢ )+ dnany,

C,=Cytcn,, C3=c¥+cnd (43
(The index structure distinguishes different vector and scalar
quantities) Momenta conjugate t@y, cyx, andcX are de-
noted by=*, pX, andpy, respectively.

The background metric ol will be denoted byh,,.
Variations in the surface metric correspond to variations in
both ¢,, and ¢,, but variations in the surface geometry
depend only onp,,.

The Lagrangian density can be taken to be the sum of
two terms, the gauge-fixed Einstein-Hilbert term and the
ghost terms. For a 't Hooft—Veltman gauge-fixing term,

Ly= =32 Yape+ R* Yy yeat G20 Yy apyea,

Y

Lgn= — C¥PCyp+ R,PC2Cy, (44)
where G, is the Einstein tensor. The auxiliary field has
already been eliminated.

The nonvanishing BRST transformations are

This set of boundary conditions fixes the magnetic field on

the boundary. L
No other linear combination dt andE can be put into

$"¥ab=2C(qp), S-C=22°. (45)

mixed form, except foE itself, which is a total divergence. 1h€ BRST charge density can be calculated as in the last

The momentumr does not appear iE and ¢ can be fixed

section, using Eq(7) and the decompositions in Appendix

on the boundary by ruléd) of Sec. II. The only other set of A The result can be written in the form

mixed boundary conditions is, therefore,

L£c=Lc=0,Lp,=0, p=0. (39)

w=P?E,+ P+ C,E3+CF. (46)

Explicit expressions foE_a, F_Ii andF appear in Appen-

This set of boundary conditions fixes the electric field on thedix C, Eqs.(C7)—(C10. Whilst E, andF are already in the

boundary.

correct form[given in Eq.(1)], E* andF are not.(Even in
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TABLE |. Four sets of boundary conditions for linearized gravity with extrinsic curvature
Kap=Kh,p/3. Each entry is equated to zero, quantities listed ugildenoting Dirichlet boundary conditions
which are combined with the entries underto form the mixed clasa,,. Special combinations of fields are
denoted byp"=hPp,,, ¢Ko=bap— (1K) ¢ Kap, dap=an— P Nap, and ¢-=—(2/3)¢". The operator
A=(LK)+K?—V? andF is defined in the second line.

Set n Q R
I 1 bap LatKea—3Vaep
C,.C Lp+2K+Vip,=F
I 2 d+ad’ dh, Lot Kpa+ V(o) o
KLP — At — (K[2+2K V) ¢p,— (a+ 1)KF
Ca Lc+aKce
I 0 o+ Bd ba Lsp— K dhp
Lp+2Kp—Kpt
c Lc,+ BKe, L
v 2 ba KLt — At — (K[F+2K V?) ¢y — (a+ 1)KF
Ln— KL dp— (B+1)F
Lc,+ aKe,+ BKV

this form they can be used to obtain nonlocal boundary con- (IV) {E} ,F’,¢,,p+ aKc,p—aKc,p,— K, Ch— BCla,Pa
ditions which are potentially useful for particular back- +K_Pc,+ Bcja}=0.
grounds). In caseqlll) and(IV), the expression foE, is a total diver-

We still have the freedom to perform the linear transfor-gence which can be integrated to obtain boundary conditions
mations described in rulg) at the end of Sec. II. We first of of the correct type.

all perform linear transformations 0&® andF to separate The boundary conditions are written explicitly in Table I.

divergences of momenta from gradients of momenta: Boundary conditior(l) has been applied previously to appli-
_ _ cations in quantum cosmology. The other boundary condi-
F'=F—E/°+ aKF, (47)  tions are new, to the best of our knowledge. Boundary con-

dition (llIl) is especially interesting because it contains no

E) =E,— K, E.— Bp—la_ (4g)  spatial derivative terms. o .
Difficulties arise when the extrinsic curvature is not pro-
The newF’ commutes withé, and the fields portional to the surface metric. The functi&j can be writ-

ten as a total divergence, but not of a symmetric tefisee
¢§b: ba— K WKapd, ¢ P=d+add. (49 Eq. (C13)]. Boundary cond|t|o_n_$lll) and (V) belorjg t_o a
wider class of boundary conditions where the projection op-
. . . e -, erators in Eqs(1) and (2) include surface derivatives. This
A final linear transformation allows a choice Bf andE, leaves boundary conditiori® and(11). The resulting expres-

from the sefF',E,’,F,E.}. _sions are listed in Table II.
What happens depends very much on whether the extrin-

sic curvatureK,, is proportional to the surface metric. If

Kap=Kh,/3, then we have the following boundary condi- V. CONCLUSIONS

tions: —— We have assumed that the boundary conditions on the
() {Ea,F,dap,C%C,Ca,0}=0. path integral are local, linear, and BRST invariant. Locality
() {Eq4,F’,¢5p. 6'“),c.Cq,p+ aKc,p— aKc}=0. means that the boundary conditions at a point depend only

If, in addition, K is constant then on the fields and their derivatives and has been imposed
(1) {E.,F,¢4,C,C,pa— KaCp,pat Ko2co} =0, and because it is useful for quantum field theory with nontrivial

TABLE I1l. Two sets of boundary conditions for linearized gravity with extrinsic curvathrg,
#Kh,/3. Each entry is equated to zero as before. Special combinations of fields are as in Table |, except for
Pt=K K¢l and A3P=[2LK3P— K 1 LK)K3P—4K3K P+ KK3P-VayP],

Set n Q R

l 1 bab LdatKa—3Vad
Ca,C L$+2Kp+V2p,=F

I 2 pt+ad’ oy, Lot KepatVOehap

KLpt— A2, —2KE K2 h—[ (K1) +2(K )2V ] da— (a+ 1)KF
Ca Lc+aKce
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background fields. Linearity is imposed for the same reason, APPENDIX B: MOMENTA
since linear theory is the starting point of theexpansion in
guantum field theory.

BRST invariance is meant in the sense that the BRS
operator annihilates the result of the path integral. Th
boundary conditions themselves are BRST invariant in th
sense that, when written in terms of momenta, they commute 1 J(Ldep)
with the BRST generator. e .

With these assumptions, the boundary conditions can all deg J(Lex)
be generated by following the rules given at the end of Secgecayse of the linear form of EGA3), it is also possible to
Il. Using these rules it has been possible to find all of the,ite this as
boundary conditions for linearized gravity with 't Hooft—

Veltman gauge fixing that are of the mixed Robin-Dirichlet- aL

Equation (A3) can be used to express any Lagrangian,
.fhat is second order in derivatives, as a function
L(Lpx,dx). Momentaz™ are defined by differentiation of
2Lagrangian densities with respect tol ¢y,

(B1)

type, generalized to include surface derivative terms. These 7Tx=na&¢ — (B2
are given in Tables | and Il. Set | of boundary conditions X.a
which fixes the surface geometry is known alre4gg—27 For gauge-fixed electrodynamics in curved spaces with

and the other sets are new. Set Ill has no surface derivativethe Lagrangian given by Eq$30),
Boundary conditions for linearized gravity are useful in

quantum cosmology. The first set of boundary conditions La= 30 pja— Lba)(Pjp—Lbp) + - - -,

fixes the scale factor of the universe. The second set of _

boundary conditions would correspond to fixing the expan- Lgn=—(Le)(Le)+- -,

sion rate of the universe instead of the scale factor. The a 1o

expansion rate has the advantage over the scale factor in Ler=—b(¢a "+ LH+Ke)+3b% (B3)

bel_ng a single-valued function of time in classical COSMO-1p <o allow the momenta to be read off using @&1).
logical models.

For gravity, with the Lagrangian density given by Egs.
(44), it is best to use EqB2):
ACKNOWLEDGMENTS

X_ _ nCoab X_ nbra b
P.J.S. was supported by the Government of Venezuela. =y, pT=nCy, px=n"Cqp . (B4)

After application of Eq(A3), the momenta become
APPENDIX A: HYPERSURFACES

(P, oK C
Introducing a hypersurfack into the manifoldM leads Tap= "~ (Lban— 2K adp)o), (B9
to a natural decomposition of the tangent spacevefinto a_ _ onab _woc
the tangent space & and its compliment along the normal ™= 207 (Lo Ko o), (B6)
vectorn®. We denote the intrinsic metric by i —£¢T (B7)
hap=09ap— NaNp - Al _ _
ab™ Jan™ Maflo (AL p?=+(LcA+K3cP), p=Lc, (B8)
The Lie derivative of the intrinsic metric along the normal _ b _
direction defines the extrinsic curvatufg,, : Pa=—(LCa—KyCp), p=—Lc. (B9)
Lhap=2Kgp. (A2) APPENDIX C: BRST CHARGE FOR GRAVITY
The coyariant o_leri\_/ative om, expr_es_,s_ed byba.p, induces Under the BRST variations, the Lagrange densit®$
a covariant derivative ox. The definition transform by a divergence plus extra terms:
¢a|b:¢a;b_nb£¢a+rcab¢<:v (A3) SLL:ja;a+2Eab(2Cd;b7ad+CdYab;d)l (Cy
where where
l_‘Cab: Kcanb+ chna+ (['n)cnanb (A4) Ja=— Zzb;ccb;c'l' Z(Rabdc+ Rdbaca_ Ebcgad)bccd-

is particularly useful. This expression extends to tensors on
.. A particular example is the surface metric itself, which is The tensotE2 depends on the Einstein tensor of the back-
easily seen to satisfiyapc=0. ground fields and also the stress-energy tensor if a matter
Decomposition of the Riemann tensor is straightforwardLagrangian is included:
if we take £Ln=0. Two applications of Eq(A3) give
PP W39 E2P=GaP— kT2, (C3
Rapo=Kepa— Kealbs R =K Kep— LK p,
abed™ Mrebla™ Mealo 20007 ha Theb ab This tensor vanishes for background fields that satisfy the
Raped=abcd— KacKpd+ KadKpe (A5) Einstein equations, which will be assumed throughout.
ahed e o ade The BRST generatap can be obtained from the Noether
wherer?,.4 is the Riemann tensor fdr,,. current, 20=n¢J., where
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oL — . F(7%,0)=Kapm®= 3 7%, (C10
Jo= s“yapts-Cl——]j°. (C9 iy -
9Yab;c dC?%. For the boundary conditions we need to eliminate the mo-

menta. This leads to the expressions

For the Lagrange densiti€d4), this becomes L _
o , Ea=LpatKpatVPehap, (C11)
Jc:_Zyab;cca’b_z'yab\bca;c_Jc- (CH . a_ a— a_ e
_ __wab a
Using the decomposition ruleA3) and the moment&B9), F=LptKP=KTPapt Vi (€12
the BRST generator can be written in the form The linear combinations d, andF that come closest to the
—_ — form that we require are
w=p2E,+p+c,Eq+CF. (Co) o g o o _
. , Ea—KPEp=VPLpap+2VP(K S hpe— phgp) +KPE
The functions appearing here are evaluated on phase space® 2 ° _¢ab (Ka"doc= Phan) al Poc
(7%, $x). The dependence of the functions on the momenta + phpe) + (KK P —r1,P—V2) ¢y, (C13
is given explicitly by . _ o
F—EaP= —K®Lap+ (LKap— VaVp) (42°+ $h?)

Eo(7%,0)=— 172, (7
o +(Kp2P— K24+ 2K2P— 2K haP+ KV2) ¢, .
F(7%,00=—m, (CY (C14
E (75,0)= — mmap®— 3K o7, (C9)  Surface derivatives omy are denoted now by2.
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