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A systematic way of generating sets of local boundary conditions on the gauge fields in a path integral is
presented. These boundary conditions are suitable for one-loop effective action calculations on manifolds with
a boundary and for quantum cosmology. For linearized gravity, the general procedure described here leads to
new sets of boundary conditions.@S0556-2821~97!05002-9#
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I. INTRODUCTION

The aim of the work reported here is to characterize sets
of local boundary conditions on the fields in a path integral.
This is a nontrivial problem for gauge theories, where the
boundary conditions have to be consistent with the gauge
symmetry. In the Becchi-Rouet-Stora-Tyutin~BRST! ap-
proach@1,2#, which we examine, this consistency with the
gauge symmetry translates into BRST invariance. The gauge
fields are augmented by extra families of ghosts, antighosts,
and auxiliary fields that also require boundary conditions.

Boundary conditions are needed for effective action cal-
culations on manifolds with boundary and for the evaluation
of wave functions in quantum cosmology@3–5#. In many of
these applications the geometry is curved, and this is where
local boundary conditions are especially useful. Boundary
conditions that required separating transverse from longitu-
dinal photons, for example, would be nonlocal. This would
not be a problem in flat spacetime, because the separation is
local in momentum space. In curved spacetimes, however,
these nonlocal operations are best avoided.

There is another important reason for considering local
boundary conditions. To first order in Planck’s constant, the
result of a path integral is closely related to the asymptotic
behavior of the eigenvalues of an operator. With local
boundary conditions, the asymptotic behavior of the eigen-
values is determined by local tensors through a heat kernel
expansion@6–11#.

Local boundary conditions have been described before for
Maxwell gauge theory, where the fields of interest include
perturbations in the vector potential, ghosts, and antighost
fields @12#. There are two sets of boundary conditions corre-
sponding to fixing the magnetic or electric field on the
boundary. Each set has mixtures of Dirichlet and Robin
boundary conditons. If we split the fields into two subsets by
using projection operatorsP6 ,

~L1c!P1f50, ~1!

P2f50, ~2!

whereL is the Lie derivative along the normal to the bound-
aryS andc is a matrix. These boundary conditions are now
widely used@13–22#.

A similar set of boundary conditions was found for gravi-
tational fields@13,23#, but it was soon discovered that this set

of boundary conditions was not invariant under BRST trans-
formations@12,25#. A set found by Barvinski@24# is invari-
ant under BRST, but not quite of the same form. In this set,
c in Eq. ~1! includes a first order differential operator re-
stricted to the boundary@25–28#.

The gauge fixing in both of the cases mentioned above is
a covariant function of the gravitational background. By con-
trast, allowing noncovariant gauge fixing allows a set of
boundary conditions that is both BRST invariant and of the
mixed type@28#. These noncovariant approaches are not ap-
plicable, so far, to all topological situations. Other possibili-
ties have also been considered@29,30#

It appears that gravity with covariant gauge-fixing terms
in the Lagrangian requires us to generalize the original class
of mixed boundary conditions to new classesMn , where
c is a differential operator of ordern. The asymptotic be-
havior of the heat kernel is known for mixed boundary con-
ditionsM0 @31#. It should be possible to extend these results
to classesM1 andM2 without too much difficulty.

In the next section we shall see that a set of boundary
conditions of typeMn can always be generated, based upon
a standard idea of having the ghost and antighost fields van-
ish on the boundary@32#. We shall also see how this gives
rise to a means of generating new sets of boundary condi-
tions through the application of canonical transformations
between the ghosts and antighosts.

For linearized gravity with ’t Hooft–Veltman gauge fix-
ing ~sometimes called harmonic gauge! @33#, the general pro-
cedure described above leads to two new sets of boundary
conditions in classM2. With certain restrictions on the ex-
trinsic curvature of the boundary, one new set of boundary
conditions arises that isM0 and is, therefore, the first BRST-
invariant set of boundary conditions of the original mixed
type.

In this paper we set the signature of the background four-
metric to be~1111!.

II. VANISHING GHOSTS

In the BRST approach to the path integral the original
fieldsq are augmented by ghostsc, antighostsc̄, and auxil-
iary fieldsb ~see@32# for a review!. The path integral over
the fields on a manifold with a boundaryS will result in an
amplitude in which the fields are specified onS:

C5C~q,c,c̄,b;S!. ~3!
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If S has only one connected component, then the amplitude
would be a wave function in the sense adopted in the study
of quantum cosmology@3#.

When evaluating the path integral, a classical term is usu-
ally subtracted from the fields so that the residual fields sat-
isfy simplified boundary conditions. The result of the path
integral can then be written in terms of operators acting on
the fields.

Our aim is to find what additional restrictions have to be
placed on the fields in order to recover the correct number of
physical degrees of freedom. In most applications, for ex-
ample, an immediate restriction follows from the elimination
of the auxiliary field, leading to boundary conditions
bi5Ēi(q,Lq), whereL is the Lie derivative along the nor-
mal to the boundary.

We will regard events on the boundary as simultaneous
andLq as the time derivative ofq. The importance of these
time derivatives indicates that Hamiltonian methods should
be useful.

In the classical Hamiltonian approach we introduce the
Poisson brackets

@qn ,p
m#PB5dn

m , @ci ,p
j #PB52d i

j , @ c̄i ,p̄ j #PB52d i
j .

~4!

The momenta are distinguished by their indices,m andn for
the fields andi and j for the ghosts. For field theories, the
index also includes the coordinates onS and summation
over a repeated index includes integration overS.

Two important operators that we shall use are constructed
from classical generating functions@32#. The ghost-number
generator keeps track of the number of ghosts:

G5cip
i2 c̄i p̄i . ~5!

The BRST generatorV generates BRST symmetriess:

sRz5@z,V#PB, ~6!

wheresR is used to denote BRST acting from the right. The
BRST generator depends on constraintsEi(q,p) and their
structure constantsCi j

k In the type of theory known as rank
1 the gauge-fixed action leads to a BRST generator which
has the form

V5 p̄iE
i1ciĒ

i1 1
2cicjC

i j
kp

k. ~7!

We shall assume that the theory has rank 1 for notational
convenience.

Vanishing ghost number and BRST invariance are im-
posed as fundamental requirements on the quantum theory.
In terms of operators and amplitudes we set

GC50, ~8!

VC50. ~9!

These conditions, which reduce the space of states to those
that may be regarded as physical, serve as boundary condi-
tions on the path integral.

The simplest way to satisfy the constraints~8! and ~9! is
to set the ghost fields to zero on the boundary of the path
integral. The Poisson brackets,

@ c̄i ,Q#PB52Ēi , ~10!

when expressed as a commutator acting on Eq.~9!, imply
that Ēi also has to vanish onS. The set of boundary condi-
tions so far is, therefore,

ci5 c̄i5bi5Ēi50. ~11!

The BRST variation of the fieldsq whenc50 is given by

sRqn5 p̄ j@qn ,Ē
j #. ~12!

Those fields which commute withĒ belong to a set we call
Q and can be fixed on the boundary. The boundary condi-
tions on the fields which do not commute withĒ are deter-
mined by the vanishing ofĒ(q,p). The vanishing-ghost
boundary conditions on the gauge-fixed path integral are,
therefore,

ci5 c̄i50, ~13!

bi5Ēi~q,p!50, ~14!

q fixed forqPQ, ~15!

whereQ is the set of fields whose momenta do not appear in
the gauge-fixing functionsĒ. These boundary conditions are
invariant under BRST transformations by construction.

Our principal concern is to list all of the possible sets of
boundary conditions, subject to specific restrictions. An ob-
vious place to begin is the division of phase space into ghosts
and their conjugate momenta, which is not preserved by ca-
nonical transformations~defined below!. One way of creat-
ing further sets of boundary conditions would, therefore, be
to perform an arbitrary canonical transformation before ap-
plying the vanishing-ghost conditions.

In actual fact, not all canonical transformations turn out to
be suitable. Some lead to vanishing-ghost boundary condi-
tions that are not BRST invariant. This is due to structural
changes in the BRST generatorV. Because of this fact, we
consider a restricted class of transformations that satisfy the
following conditions: ~1! The transformation is canonical;
~2! it preserves the number of ghosts;~3! the variation of a
vanishing ghost vanishes.

Condition ~3! means that@c,V#50 whenc50, wherec
is the new ghost field. This condition arises from requiring
that setting the BRST variation ofc to zero should not imply
any further restrictions on the fields.

We will consider how these restrictions apply to transfor-
mations between the ghosts, antighosts, and auxiliary fields.
For this purpose it is convenient to blur the distinction be-
tween ghosts and antighosts and write

h i5S cip̄i D , Pi5S pic̄i D , Ei5S Ei

Ēi D . ~16!

We also definel i5l i(q,p) to be the set of fields canoni-
cally conjugate tobi5Ēi(q,p).

Canonical transformations from $h,P,l,b% to
$h8,P8,l8,b8% are generated byF(h8,P,l8,b):
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h i5
]F

]P i , l i52
]F

]bi
,

P8 i52
]F

]h i8
, b8 i52

]F

]l i8
. ~17!

The ghost-number operator can now be written

G5h iP i5
]F

]PiP
i . ~18!

In the new coordinate system,

G85h i8P8 i52h i8
]F

]h i8
. ~19!

SettingG85G, therefore, leads to transformations of the
form

F[F~P ih j8 ,l8,b!. ~20!

The allowed linear transformations on the ghost and anti-
ghost fields are covered by the following theorem.

Transformations generated by

F5Ai
j~l8!P ih j81bil i8 , ~21!

where the matrixA has the properties

A5S A B

C DD , dA5dC5dD50, dBi
j5 1

2C
kl
iBl

j dlk8 ,

~22!

satisfy conditions~1!–~3!.
These transformations are manifestly of the form given in

Eq. ~20!. The rest of the proof is by direct application of Eqs.
~17!. These allow the generatorV to be written in the form

V5Ai
lh l8Ei1 1

2Ai
lAj

mh l8hm8C
i j
kPk. ~23!

We are also able to replacebi by b8 i :

Ei5E8 i1
]Bj

k

]l i8
pj p̄k8 . ~24!

The linear term inV commutes withci8 and gives no further
boundary conditions. The condition onB in Eq. ~22! re-
moves terms beginningp̄i p̄ jC

i j
k which are the only ones

that violate condition~3!. This completes the proof of the
theorem.

We can now write the vanishing-ghost boundary condi-
tion in terms of the original variables and obtain new sets of
boundary conditions:

Bi
jpi1Di

j c̄i50, ~25!

Bi
j p̄i2Di

jci50, ~26!

Bi
j Ēi1Di

j Ē i5 1
2Di

jC il
k p

kcl , ~27!

q fixed forqPQ, ~28!

whereQ is now the set of fields whose momenta do not
appear in the other boundary conditions.

For an Abelian theory, these boundary conditions allow
any linear combination of the ghosts and their momenta to be
set to zero as long as it is consistent with ghost number. The
remaining boundary conditions are then determined
uniquely. These boundary conditions, therefore, include all
the possible sets of linear boundary conditions. Since quan-
tum field theories are effectively Abelian up to order\, these
also exhaust sets of linear boundary conditions for one-loop
quantum field theory.

There is still one further restriction to impose, namely,
that the boundary conditions are in a classMn of the mixed
boundary conditions mentioned in the introduction. This
means that the linear transformations must now be local, and
the momenta should be replaced by normal derivatives. We
can then proceed by the following rules.

~1! Each set of linear combinations of the constraints
E(q,Lq) and gauge-fixing conditionsĒ(q,Lq) that can be
written in the form of Eqs.~1! and~2!, possibly after remov-
ing an overall surface derivative, defines a set of mixed
boundary conditions.

~2! The boundary conditions on the ghosts are fixed by
Eq. ~25! once the linear combinations are given.

~3! The setQ of fields that can be fixed on the boundary
is finally identified by examining the combinationsE(q,p)
and Ē(q,p) for any missing momenta.

The resulting sets of boundary conditions depend on the
choice of gauge-fixing term in the action. This is to be ex-
pected, because the path integral is usually expressed in
terms of operators which themselves depend on the choice of
gauge-fixing term. On the other hand, there is still some
freedom in the choice of Lagrangian density even when the
gauge-fixing term is fixed. For example, it is possible to
eliminate the auxiliary fieldb from the action at an early
stage or to leave it in. This affects the form of the constraints,
gauge-fixing condition, and even the momenta, but it does
not affect the final form of the boundary conditions.

III. ELECTRODYNAMICS

A simple example of the preceding ideas is provided by
electrodynamics in curved spacetime. For Lorentz gauges,
the Maxwell fieldAa is accompanied by one ghost fieldc
and one antighost fieldc̄.

In order to set up a phase space associated with the hy-
persurfaceS we need to decompose the Maxwell field into
normal and tangential components,

Aa5fa1fna . ~29!

~The index structure alone distinguishes different vector and
scalar quantities. We find this preferable to a profusion of
notation.! Momenta conjugate tofa , f, c, and c̄ are de-
noted bypa, p, p, and p̄, respectively. The extrinsic curva-
ture will be denoted byKab and a vertical bar denotes cova-
riant differentiation inS.

The Lagrangian densityL can be taken to be the sum of
three terms, the Maxwell, ghost, and gauge-fixing terms
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LA52 1
4FabF

ab, Lgh52 c̄;ac;a ,

LGF52bAa
;a1 1

2b
2. ~30!

The fieldb can be eliminated by

b5Aa
;a , ~31!

restricting the nilpotency of the BRST transformations to
solutions of the field equations.

Starting from the Lagrangian density, one way to find the
BRST generator is to compute the Noether currentJa. Using
left BRST transformationssL @sLz5(2)sRz for even~odd!
fields z#,

Ja5sLz
]L

]z;a
2 j a, ~32!

wheresLL5 j a
;a . For the present example,

sLAa5c;a , sLc̄5b, sLc5sLb50, j a52bc;a .
~33!

The Noether current is, therefore,

Ja52bc;b1Fabc;b . ~34!

The Noether chargeV is the volume integral of the local
charge densityv5naJ

a.
Decomposition of the Lagrangian density, following the

outline given in the Appendix, results in the momenta

pa5gab~f ub2Lfa!, p52b,

p5Lc̄, p̄52Lc. ~35!

Using these expressions, Eq.~34! leads trivially to the BRST
charge density

v5 p̄b2cp ua
a . ~36!

In the notation used in the previous section,Ē52p ~Lor-
entz gauge condition! andE5p ua

a ~Gauss’ law constraint!.
The vanishing-ghost boundary condition is given by

c5 c̄5b5p50, fa50. ~37!

Using Eq.~31! and eliminating momenta puts this into mixed
form,

c5 c̄50, Lf1Kf50, fa50. ~38!

This set of boundary conditions fixes the magnetic field on
the boundary.

No other linear combination ofĒ andE can be put into
mixed form, except forE itself, which is a total divergence.
The momentump does not appear inE andf can be fixed
on the boundary by rule~3! of Sec. II. The only other set of
mixed boundary conditions is, therefore,

Lc5Lc̄50,Lfa50,f50. ~39!

This set of boundary conditions fixes the electric field on the
boundary.

IV. LINEARIZED GRAVITY

Linearized gravity forms the starting point for order\
quantum gravity calculations based on Einstein gravity, as
well as having wider applications to supergravity and super-
string theories by taking various spacetime dimensions. We
are seeking sets of local boundary conditions for the path
integral, using ’t Hooft–Veltman gauges because they are
widely used and are covariant.

For ’t Hooft–Veltman gauges, the metric fluctuationgab

is accompanied by ghost fieldsCa and antighost fieldsC̄ a.
The metric fluctuation is defined in terms of the perturbed
metric

gab12kgab , ~40!

wherek258pG. We will also make use of the dual quantity

ḡab5g~ab!~e f!ge f , ~41!

defined by the metric

g~ab!~cd!5 1
2 ~gacgbd1gadgbc2gabgcd!. ~42!

In order to set up a phase space associated with the hy-
persurfaceS we need to decompose all of these fields into
normal and tangential components:

gab5fab12f~anb)1fnanb ,

ḡab5f̄ab12f̄~anb)1f̄nanb ,

Ca5ca1cna , C̄a5 c̄a1 c̄na. ~43!

~The index structure distinguishes different vector and scalar
quantities.! Momenta conjugate tofX , cX , and c̄

X are de-
noted bypX, pX, and p̄X , respectively.

The background metric onS will be denoted byhab .
Variations in the surface metric correspond to variations in
both fab and fa , but variations in the surface geometry
depend only onfab .

The Lagrangian densityL can be taken to be the sum of
two terms, the gauge-fixed Einstein-Hilbert term and the
ghost terms. For a ’t Hooft–Veltman gauge-fixing term,

Lg52 1
2
ab;cgab;c1Racbdḡabgcd1Gacgbdḡabgcd ,

Lgh52C̄a;bCa;b1Ra
bC̄aCb , ~44!

whereGab is the Einstein tensor. The auxiliary fieldb has
already been eliminated.

The nonvanishing BRST transformations are

sLgab52C~a;b! , sLC̄52 ab
;b . ~45!

The BRST charge density can be calculated as in the last
section, using Eq.~7! and the decompositions in Appendix
A. The result can be written in the form

v5 p̄aĒa1 p̄1caE
a1cF. ~46!

Explicit expressions forĒa , F̄, E
a, andF appear in Appen-

dix C, Eqs.~C7!–~C10!. Whilst Ēa and F̄ are already in the
correct form@given in Eq.~1!#, Ea andF are not.~Even in
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this form they can be used to obtain nonlocal boundary con-
ditions which are potentially useful for particular back-
grounds.!

We still have the freedom to perform the linear transfor-
mations described in rule~1! at the end of Sec. II. We first of
all perform linear transformations onEa andF to separate
divergences of momenta from gradients of momenta:

F85F2Ēc
uc1aKF̄, ~47!

Ea85Ea2Ka
cĒc2bF̄ ua . ~48!

The newF8 commutes withfa and the fields

fab
K 5fab2K21Kabfc

c , f~a!5f1afa
a . ~49!

A final linear transformation allows a choice ofF̄8 and Ēa8
from the set$F8,Ea8,F̄,Ēa%.

What happens depends very much on whether the extrin-
sic curvatureKab is proportional to the surface metric. If
Kab5Khab/3, then we have the following boundary condi-
tions:

~I! $Ēa ,F̄,fab ,c̄
a,c̄,ca ,c%50.

~II ! $Ēa ,F8,fab
K ,f (a),c,c̄a ,p1aKc̄,p̄2aKc%50.

If, in addition,K is constant then
~III ! $Ea8 ,F̄,fa ,c̄,c,pa2Ka

bc̄b ,p̄a1Ka
bcb%50, and

~IV ! $Ea8 ,F8,fa ,p1aKc̄,p̄2aKc,pa2Ka
bc̄b2b c̄ua ,p̄a

1Ka
bcb1bcua%50.

In cases~III ! and~IV !, the expression forEa8 is a total diver-
gence which can be integrated to obtain boundary conditions
of the correct type.

The boundary conditions are written explicitly in Table I.
Boundary condition~I! has been applied previously to appli-
cations in quantum cosmology. The other boundary condi-
tions are new, to the best of our knowledge. Boundary con-
dition ~III ! is especially interesting because it contains no
spatial derivative terms.

Difficulties arise when the extrinsic curvature is not pro-
portional to the surface metric. The functionEa8 can be writ-
ten as a total divergence, but not of a symmetric tensor@see
Eq. ~C13!#. Boundary conditions~III ! and ~IV ! belong to a
wider class of boundary conditions where the projection op-
erators in Eqs.~1! and ~2! include surface derivatives. This
leaves boundary conditions~I! and~II !. The resulting expres-
sions are listed in Table II.

V. CONCLUSIONS

We have assumed that the boundary conditions on the
path integral are local, linear, and BRST invariant. Locality
means that the boundary conditions at a point depend only
on the fields and their derivatives and has been imposed
because it is useful for quantum field theory with nontrivial

TABLE I. Four sets of boundary conditions for linearized gravity with extrinsic curvature
Kab5Khab/3. Each entry is equated to zero, quantities listed underQ denoting Dirichlet boundary conditions
which are combined with the entries underR to form the mixed classMn . Special combinations of fields are
denoted byfT5habfab , fab

K 5fab2(1/K)fTKab , fab
L 5fab2fThab , andfL52(2/3)fT. The operator

D5(LK)1K22¹2 and F̄ is defined in the second line.

Set n Q R

I 1 fab Lfa1Kfa2
1
2¹af

ca ,c Lf̄12K1¹afa5F̄
II 2 f1afT,fab

K Lfa1Kfa1¹a(f
L2f̄)

KLfL2DfL2(KL
ua12KL¹

a)fa2(a11)KF̄
ca Lc1aKc

III 0 f1bfT,fa Lfab
L 2KLfab

L

Lf̄12Kf̄2KfL

c Lca1bKca
IV 2 fa KLfL2DfL2(KL

ua12KL¹
a)fa2(a11)KF̄

Lfab
L 2KLfab

L 2(b11)F̄
Lca1aKca1bK¹ac

TABLE II. Two sets of boundary conditions for linearized gravity with extrinsic curvatureKab

ÞKhab/3. Each entry is equated to zero as before. Special combinations of fields are as in Table I, except for
fL5K21Kabfab

L andDab5@2LKab2K21(LK)Kab24KacKc
b1KKab2¹a¹b#.

Set n Q R

I 1 fab Lfa1Kfa2
1
2¹af

ca ,c Lf̄12Kf̄1¹afa5F̄
II 2 f1afT,fab

K Lfa1Kfa1¹bf̄ab

KLfL2Dabfab
L 22Kab

L Kabf̄2@(KL)
ab

ub12(KL)
ab¹b#fa2(a11)KF̄

ca Lc1aKc
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background fields. Linearity is imposed for the same reason,
since linear theory is the starting point of the\ expansion in
quantum field theory.

BRST invariance is meant in the sense that the BRST
operator annihilates the result of the path integral. The
boundary conditions themselves are BRST invariant in the
sense that, when written in terms of momenta, they commute
with the BRST generator.

With these assumptions, the boundary conditions can all
be generated by following the rules given at the end of Sec.
II. Using these rules it has been possible to find all of the
boundary conditions for linearized gravity with ’t Hooft–
Veltman gauge fixing that are of the mixed Robin-Dirichlet-
type, generalized to include surface derivative terms. These
are given in Tables I and II. Set I of boundary conditions
which fixes the surface geometry is known already@24–27#
and the other sets are new. Set III has no surface derivatives.

Boundary conditions for linearized gravity are useful in
quantum cosmology. The first set of boundary conditions
fixes the scale factor of the universe. The second set of
boundary conditions would correspond to fixing the expan-
sion rate of the universe instead of the scale factor. The
expansion rate has the advantage over the scale factor in
being a single-valued function of time in classical cosmo-
logical models.
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APPENDIX A: HYPERSURFACES

Introducing a hypersurfaceS into the manifoldM leads
to a natural decomposition of the tangent space ofM into
the tangent space ofS and its compliment along the normal
vectorna. We denote the intrinsic metric by

hab5gab2nanb . ~A1!

The Lie derivative of the intrinsic metric along the normal
direction defines the extrinsic curvatureKab :

Lhab52Kab . ~A2!

The covariant derivative onM, expressed byfa;b , induces
a covariant derivative onS. The definition

faub5fa;b2nbLfa1Gc
abfc , ~A3!

where

Gc
ab5Kc

anb1Kc
bna1~Ln!cnanb ~A4!

is particularly useful. This expression extends to tensors on
S. A particular example is the surface metric itself, which is
easily seen to satisfyhabuc50.

Decomposition of the Riemann tensor is straightforward
if we takeLn50. Two applications of Eq.~A3! give

Rabc05Kcbua2Kcaub , Ra0b05Ka
cKcb2LKab ,

Rabcd5r abcd2KacKbd1KadKbc , ~A5!

wherer abcd is the Riemann tensor forhab .

APPENDIX B: MOMENTA

Equation ~A3! can be used to express any Lagrangian,
that is second order in derivatives, as a function
L(LfX ,fX). MomentapX are defined by differentiation of
Lagrangian densitiesL with respect toLfX ,

pX5
1

detg

]~Ldetg!

]~LfX!
. ~B1!

Because of the linear form of Eq.~A3!, it is also possible to
write this as

pX5na
]L

]fX;a
. ~B2!

For gauge-fixed electrodynamics in curved spaces with
the Lagrangian given by Eqs.~30!,

LA52 1
2g

ab~f ua2Lfa!~f ub2Lfb!1•••,

Lgh52~Lc̄!~Lc!1•••,

LGF52b~fa
ua1Lf1Kf!1 1

2b
2. ~B3!

These allow the momenta to be read off using Eq.~B1!.
For gravity, with the Lagrangian density given by Eqs.

~44!, it is best to use Eq.~B2!:

pX52ncḡab
;c , pX5nbC̄a

;b , p̄X5nbCa;b . ~B4!

After application of Eq.~A3!, the momenta become

pab52~Lf̄ab22K ~a
c f̄b)c!, ~B5!

pa522gab~Lfb2Kb
cfb!, ~B6!

p52Lf̄, ~B7!

pa51~Lc̄a1Ka
bc̄

b!, p5Lc̄, ~B8!

p̄a52~Lca2Ka
bcb!, p̄52Lc. ~B9!

APPENDIX C: BRST CHARGE FOR GRAVITY

Under the BRST variations, the Lagrange densities~44!
transform by a divergence plus extra terms:

sLL5 j a;a12Eab~2Cd
;bgad1Cdgab;d!, ~C1!

where

j a522ḡab;cC
b;c12~Ra

b
d
c1Rd

bd c
a2Ebcgad!bcC

d.
~C2!

The tensorEab depends on the Einstein tensor of the back-
ground fields and also the stress-energy tensor if a matter
Lagrangian is included:

Eab5Gab2k2Tab. ~C3!

This tensor vanishes for background fields that satisfy the
Einstein equations, which will be assumed throughout.

The BRST generatorv can be obtained from the Noether
current, 2v5ncJc , where
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Jc5
]L

]gab;c
sLgab1sLC̄a

]L

]C̄a
;c

2 j c. ~C4!

For the Lagrange densities~44!, this becomes

Jc522ḡab;cC
a;b22ḡab

ubCa;c2 j c . ~C5!

Using the decomposition rule~A3! and the momenta~B9!,
the BRST generator can be written in the form

v5 p̄aĒa1 p̄1caE
a1cF. ~C6!

The functions appearing here are evaluated on phase space
(pX,fX). The dependence of the functions on the momenta
is given explicitly by

Ēa~pX,0!52 1
2pa, ~C7!

F̄~pX,0!52p, ~C8!

Ea~pX,0!52pab
ub2 1

2Kabp
b, ~C9!

F~pX,0!5Kabp
ab2 1

2pa
ua . ~C10!

For the boundary conditions we need to eliminate the mo-
menta. This leads to the expressions

Ēa5Lfa1Kfa1¹bf̄ab , ~C11!

F̄5Lf̄1Kf̄2Kabf̄ab1¹afa . ~C12!

The linear combinations ofEa andF that come closest to the
form that we require are

Ea2Ka
bĒb5¹bLf̄ab12¹b~Ka

cf̄bc2f̄hab!1Kbc
ua~f̄bc

1f̄hbc!1~Ka
cKc

b2r a
b2¹2!fb , ~C13!

F2Ēa
ua52KabLf̄ab1~LKab2¹a¹b!~f̄ab1f̄hab!

1~Kb
aub2K ua12Kab22Khab1K¹a!fa .

~C14!

Surface derivatives onfX are denoted now by¹a.
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