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We study the detailed properties @, domain walls in the deconfined high-temperature phase of the
d=2+1 SU?2) gauge theory. These walls are studied both by computer simulations of the lattice theory and
by one-loop perturbative calculations. The latter are carried out both in the continuum and on the lattice. We
find that leading order perturbation theory reproduces the detailed properties of these domain walls remarkably
accurately even at temperatures where the effective dimensionless expansion payatfiateclose to unity.

The quantities studied include the surface tension, the action density profiles, roughening, and the electric
screening mass. It is only for the last quantity that we find an exception to the precocious success of pertur-
bation theory. All this shows that, despite the presence of infrared divergences at higher ordei®, high-
perturbation theory can be an accurate calculational {&01556-282(97)02802-6

PACS numbg(s): 11.10.Wx, 11.15.Ha, 11.2¥d

I. INTRODUCTION walls have peculiar thermodynamic properties, which be-
come more acute when one includes quarks into the theory
Non-Abelian gauge theories possess many surprising ag4]. It is important to resolve these uncertainties not only
pects. An example is the linear confining potential present irbecause of the theoretical interest of these domain walls, but
both the three- and four-dimensional (theories at low also because related structures can be associated with impor-
temperaturel. At some finiteT there is a phase transition, tant physical phenomena when one considers the standard
and confinement is then logt,2]; but this is not unexpected model in the early universib].
because simple energy versus entropy arguments tell us that In this paper we address the particular problem associated
a confining “flux tube” will condense into the vacuum at with the uncertain status of perturbation theory at highVe
some finite value of the temperature. These phenomena ashall do so by calculating the properties of the domain walls
nonperturbative and have so far defied analytic, as opposdsbth in perturbation theory and by a fully nonperturbative
to numerical, approaches. However, at sufficiently high Monte Carlo computer simulation. We shall work with the
there would appear to be an important theoretical simplificaSU(2) gauge group because the problems should not be any
tion. All these theories are asymptotically free so that thedifferent for larger groups. Moreover we shall work ir-2
effective interaction on the relevant energy scdleshould dimensions rather than in the more physical case 6 3
become small at higli and the physics of the gluon plasma dimensions. The reason is that the computational resources
should become accurately calculable in perturbation theoryneeded are much less in the former case and only there can
Unfortunately there are infrared divergences in higher orderwe perform calculations with enough precision and control
of perturbation theory, which are associated with the perturto be really useful. At the same time, the origin of the infra-
bative masslessness of the magnetic gluon. Although we exed problems is similar id=2+1 and ind=3+1, and their
pect this gluon to acquire a mass through the nonperturbativeeverity is, if anything, greater in the lower dimensional
physics of the dimensionally reduced theory, this leavegase.
room for uncertainty about how reliable highperturbation We shall find in the calculations described below that
theory really is. one-loop perturbation theory does indeed work remarkably
However, even this naive picture of gauge theories at high— even precociously — well for ouZ, domain walls. By
T — as a weakly interacting plasma of gluons — containsimplication, this provides evidence for the general applica-
surprises. There turns out to be a symmetry associated withility of perturbation theory at higi.
the center of the grou(N), which is spontaneously bro- At the same time we emphasize that we make no attempt
ken at highT. Separating two differerif(N) vacua will be a in this paper to address the other controversial aspects of
domain wall whose properties have been calculated in perdomain walls and so do not attempt to settle the interesting
turbation theory fofT— [3]. However the reality of these question of their potential role in, for example, separating
domain walls is controversial for a variety of reasons. Firstbubbles of different vacua in the early universe.
there are the general doubts about higherturbation theory We shall now outline the contents of this paper. In Sec. Il
that we alluded to above. Second, all this is in the usualve give a heuristic introduction to domain walls and the
Euclidean formulation of finite temperature field theories anadthermodynamics of gauge theories at high temperatures. This
there is a question of what, if anything, these domain wallswill provide the general background for the more detailed
might correspond to in Minkowski space time. Finally the and specific calculations of the later sections. We then turn to
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the perturbative calculation, at one-loop, of the properties oflistances, so that its value at high temperagf(@) should
domain walls. In Sec. Ill we perform the calculation of the be small enough for us to apply perturbation theory. In other
surface tension for the continuum theory. The calculation isvays the two theories are also similar: numerical simulations
by a method that easily extends to other dimensions and sf25] show that thel=2-+ 1 theory has linear confinement, a
as well as obtaining expressions fi+=2+ 1, we can com- deconfining temperaturg;, and a glueball spectrum that are
pare with previousdl=3+1 calculations. In order to com- similar in many ways to that of the theory in+3 dimen-
pare with our later numerical work it is useful to have similar sions.

results for a finite value of the lattice spaciagThis calcu- So we expect a hot gauge theory to be, to a very good
lation is carried out in Sec. IV. In Sec. V we calculate theapproximation, a plasma of free gluons, with interactions
action density in the domain wall, as a function of the dis-given in terms of the small effective coupling at the ambient
tance from the center of the wall, since this is one of thetemperaturd. These gluons are screened just as are photons
quantities we shall later calculate numerically. In Sec. VI Ain a plasma of charged particles. The Debye screening mass
we calculate the effects of oscillations of the wall once itsmy that they acquire grows witfi; to lowest ordem?y is
length is large — the “roughening” of the wall, which has O(g?) so we expect, on purely dimensional grounds, that
been neglected in most previous studies. In Sec. VI B weny~g(T)T in d=3+1 andmp~gT*?in d=2+1.

show how the finite size of the volume, in the direction or-  However, this simple picture is not the whole story. An
thogonal to the wall, affects the profile and surface tension ohdditional and important role is played by the cer@éN) of

the wall. This is important to understand since our numericathe gauge symmetry group SNJ. This subgroup has a spe-
work will necessarily be on lattices of a finite size. We thencial status because the gluons, which transform according to
turn, in Sec. VII, to a description of our simulations and thethe adjoint representation, are invariant under gauge transfor-
results we obtain thereby. We begin, in Sec. VII A, by de-mations that belong to the center. Since the gluons only feel
scribing how we can simulate domain walls through the us&sU(N) gauge transformations modulo aAyN) transforma-

of twisted boundary conditions. In Sec. VII B we point out tion, their symmetry group is really SM)/Z(N). Sources in
that these domain walls can be viewed as 't Hooft disordethe fundamental representation, on the other hand, are not
loops that have been squashed by the short Euclidean timgvariant under transformations iB#(N). Consider such a
direction. Section VIIC describes how we calculate theheavy source in the usual Euclidean space-time formulation
properties of the domain wall and the electric screeningf the highT field theory where the Euclidean time is peri-
mass. Section VII D lists the large-volume raw “data” from odic with period 1T. As is well known the presence of such
which we will eventually extract physical quantities. Sectiong static heavy source leads to an extra factor of
VII E describes in detail how we control finite volume ef- p=(1/N) trPexp{i [A,dt} — a Polyakov loop — in the par-
fects. This is crucial since the potential problems with perition function. In the lowT confining phaséP)=0 while at
turbation theory are infrared ones. Finally, in Sec. VII F wepigh T |(P)|=1. Since the gluons are screened, the correla-
compare our numerical results with those of perturbationjgns are short range at high and so if, for exampleP is

theory. Section VIII contains our conclusions. close to 1 at one point, the vacuum will hae=1 every-
Our theoretical analysis, in Secs. lll to VI, is performed yhere. But thezZ(N) symmetry tells us that there must be
for the general case of SM) gauge fields in Zd<4 di- N such vacua, in each of which the physics is identical, and

mensions. Our numerical results, on the other hand, are fQnich are differentiated by being close to one of thal
the particular case of S@) gauge fields ind=2+1. The complex Nth roots of unity. The picking of one of these
preliminary resul_ts of this study appeared in the Proceedinggcua corresponds to the spontaneous breaking of the sym-
of the 1994 Lattice Conferend@]. A study of the case of ety That the spontaneous breaking takes place athigh
SU(3) gauge fields ind=2+1 has recently been reported raher than at lowl is remarkable but not impossible; it is,
[7]. Both the SW2) and SU3) results are in agreement with for example, commonplace iself-)dual theories.
our theoretical analysis. In addition both show the same large ag soon as we have spontaneous symmetry breaking we
deviation from D'Hoker's self-consistent formula for the paye the possibility of domain walls which will occur at the
Debye mass. interface between two of the vacud@hroughout this paper
we shall call these objects “walls” and will speak of their
Il. GENERAL CONSIDERATIONS “Sl_Jrface” tension, even though_the_interface is r_eal_ly a
string when we are in two spatial dimensions. This is to
In 2+1 dimensions the gauge coupligg is dimensionful  avoid confusion with the confining stringin the case of
and its value sets the mass scale for the theory. If we perforrimterest to us, S{2), such a domain wall would separate
a perturbative calculation of a quantity in which there is aregions of our Euclidean space-time volume that are charac-
dominant momentum scal® then the effective expansion terized byP=+1 on the one side ané=—1 on the other.
parameter will clearly beg?/Q so that the theory rapidly One can compute the free energy density of the wall for
becomes free at short distances. So at higthe effective  small coupling and one indeed finds a positive excess over
expansion parametey’/T will be small and we can expect the free energy of the gluon plasma.
that we should be able to apply perturbation theory. All this Thus we have a picture of the gluon plasma that parallels
is very similar to the case in31 dimensions. There the that of a ferromagnetic substance below the Curie tempera-
coupling is dimensionless but this difference is only apparture: the average of the Polyakov loop, which arises from the
ent: the scale invariance is anomalous, the coupling runs arttkavy fundamental source, being the order parameter. But
its value only serves to set the overall mass s¢dlmen-  what is the analogue of the external field? Such a field is
sional transmutation The coupling becomes small at short needed in order to make the system choose a particular di-
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rection of magnetization on a macroscopic scale. Withoumean that any gauge transformatianhas to be periodic,

such an analogue one cannot trigger a thermodynamical stabmly that it should be periodic modulo an element,

where our order parametd? takes the valuet1 or one z.=-exp|ik(27/N)}, of the centeZ(N) of SU(N). That this is

where it takes the value 1. so is easily seen from the transformation properties of the
As we remarked in the Introduction, the “reality” of potential:

these domain walls is controversial. Of course, the walls

have been observd®] in (d=3+1) Monte Carlo simula- AﬁzATAMA—iAT&MA. (5)

tions of the theory, but this has only been for large lattice

spacings, and there have been speculations that the walksay A(L,)=A(0)z,, then thez, will commute with all the

would not survive into the continuum limi©]. In this paper ~matrices in Eq(5) and so will disappear from the right-hand

we shall address the question of whether these domain walgjde, leaving the transformed potential still periodi€]. We

do indeed exist in the continuum limit and, more specifically,shall denote such gauge transformations By,. If

whether hight perturbation theory is reliable. But first, in k=(k,,k,) then this is a gauge transformation which is pe-

this section, we introduce the basic framework within whichriodic up to Z, in the y direction and up taz in the z

we work. direction.
The interest of these extended gauge transformations lies
A. Yang-Mills fields: the basic parameters in two facts: they leave the Hamiltonig) invariant; they
serve to distinguish subspaces, in the space of physical
States, which possess a given numlegrande,, of electric
guxes in they and z directions, respectively. Clearly this
istinction is modulaN.

The above notion of electric flux is developed in detail in
[10]. The following remarks represent no more than a heu-
ristic outline. Suppose first that we have opposite fundamen-

- 1. tal sources at; andx,. To make this system gauge invariant
9°E>+ ?Bz), (' we need to join the sources by a finite string

P exp{ifiiAdx} running between them. Such a string opera-

We consider a pure SB{) gauge theory in 2 or 3 space
dimensions. We will concentrate in this subsection on th
thermodynamic quantities that one can define by enclosin
the system in a box of siZeyL ,. (For the three-dimensional
case we add ax direction) The Hamiltonian for this system

reads
A=3[
= E Xtr

where E is the canonical momentum forA and tor creates the unit fundamentalectrig flux that must flow

Bmn=mAn— dnAm+i[Am,As]. We use the standard nota- beMeen the sources. Suppose we are now in thg purely glu-
tion for the fields ad\x N matrices in the Lie algebra of the Onic system with no sources and suppose we wish to add a
defining representation of SMJ. unit of electric flux across the whole volume, running in the
We introduce the free enerdy of the system in a heat Z direction. From the above we expect that we can do so by
bath at temperatur® through the Gibbs trace over the physi- @8PPlying to our state the periodic string operator

. oL, 5 . . .
cal states of the system. By “physical” we mean that the trP explif,dzA}. Unlike a contractible string operator loop,

states obey the Gauss constraint which would represent some local excitation, this operator
L will clearly feel the center element of the gauge transforma-
(VE+i[AE])|¢)=0. (2)  tion A, if k,#0. Indeed it is easy to see that it will acquire a

factor ofzkz. If we create a state with such units of electric

flux in the z direction, then it will acquire a factor of
F " (zkz)”. So if we label a state with electric flie= (e, ,e,) by

eXp( - ) =Trphysexp( - T)' (3 |e), it will be an eigenstate ofA, with eigenvalue
explik-e(27/N)}, (assuming trivial transformation proper-

As is well known, the Gibbs trace can be related to the Feynti€s for the fluxless statf)). Clearly the state witiN-+1

man path integral by fluxes has the same transformation property as that with 1

unit of flux; as one would expect in a non-Abelian theory.

H 1 Since the Hamiltonian is invariant unddy, the energy

Trony€Xp — 5| = f DAgDAexp, — ;S(A) . (4  eigenstates can be simultaneously labeleccland we can
define a free energlf, by restricting the Gibbs trace in Eq.

Here the integration ovek, implements the Gauss law, the (3) 10 @ given electric flux sector:

actionS(A) is equal to (1/4fdxdt trF ,,F ., and the tem- F i

perature enters the formalism through the fact that we make exp( _ _6> =Tr exp( _ _)_ (6)

the potentials periodic in the Euclidean timewith period T € T

1/T. The relationshig4) is fundamental in that it allows us ) o ) )

to calculate the free energy using the whole panoply of methWith this definition relation3) can be rewritten ag10]

ods available for calculating path integrals; such as perturba- . 1 5

tion theory(see Secs. Il and IVand Monte Carlo methods _ el o 77

(see Sec.yVI)I. exr{ T ) B N_C"_l§k: ex Ik'eﬁ]zk’ @)
Throughout this paper we suppose the potentials to be

periodic in the spatial directions. However, this does notwhere

The free energy is defined by

T
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H .

spatial dimensions. At some critical temperattitethis be-
ZkE Trphy@X — ?A

. (8)  havior changes into that of E¢L2). The free energy differ-
ence now becomes exponentially small with the transverse
size. This behavior suggests that there is a wall, with an

The Gibbs tracesZ, in Eq. (8) can be expressed as = walhy
“twisted” path integrals and can be computed using Monte€nergy density independent of the transverse direction, and a
otal energy proportional te-. This quantity has been com-

Carlo methods. These path integrals have the following det , | ; > Y ¢
fining property. Suppose, for example, thkat (0k,). Then puted in a semiclassical approximatif®,12] at very high

s temperatures, where perturbation theory should apply. The
due to the occurrence of the transformatignin Eq. (8) one . L .
picks up a factor of exjik,2m/N} in the gaugeqtr(ar)15form purpose of the present study is to check the validity of this

i approximation using Monte Carlo methods.
XJ |6(1th9 :)\Hgft)(/aro ) oitn0 aArgEJtn)é It_ﬁ)e bzﬂidgrﬂ(g;}/ tﬁ)e btc?x in The way the surface tension enters the free energy differ-
plt0Y.2), 8 going : y ence is through the exponential. This was first noticed by
the z-t directions. This multivaluedness does not affect th hattacharyaet al. [13] and was recently discussed in a
gluon fieldA,. In Sec. VII we will perform Monte Carlo y ] y

. . ; - : Z(2) gauge mode]14]. It is reminiscent of an energy dif-
simulations of such a twisted partition function. ference induced by tunneling. As we will see in the next

_ _ i section this is indeed a tunneling through a potential that
B. The two important parameters: string and surface tension arises from quantum one-loop effects.

Now we are ready to give a thermodynamic characteriza-
tion of the various phases of the gauge theory, through the C. Effective action and Polyakov loops
behavior of the flux free energids, as the temperature is
varied. To obtain simple formulas we will restrict ourselves
to SU(2), but the end results will be valid for any SNJ.
The interesting quantity is the flux free energy; in the
elongated direction. We want to compare it to the flux freed
energyF o and see how the difference behaves for low and T
high temperatures. This is straightforward using Ef).for Q(x)=P exp{ if thO(t,x)} (13
the flux free energies. But we still need some theoretical 0

input on how the twisted functionals behave. What one finds ) ) o ]
for low T is that and by integrating out the remaining variables to get an ef-

fective action for€)(x). In a suggestive notation
z T
1_ﬂ'zc ex%_MLz), (9)

ur
Zoo T Q-P exp[i thOH
0
while 1_(Zky1/ZOO) is exponentially smaller for any
. . 1
ky#0. On the other hand, for high enoug@hone finds Xexp{ _ ?S(A)}. (14)

o(T)
Zo=D ex;{ T by The reader, in looking at this equation, should keep in mind
that only the eigenvalues; of the loop() are gauge invari-
andZz, , is exponentially smaller for anlg,#0. TheC and  ant. So it is only these that should appear in shiainction
D are some pre-exponential factors. The evidence for Eqsonstraint and irS.;. Note also the relation betwedh and
(9) and(10) comes from Monte Carlo simulations, as well as P:
analytic Hamiltonian analyses of gauge Potts mod&ls.

So one gets, for the free energy difference, 1 1
g ¥ P=Ntrﬂ=ﬁ2 Ai. (15)

Foi—Foo~p(T)L,, if T issmall, 11 |

As we have seen above, the fundamental quantity of in-
terest is the ratio of twisted path integralg. These are
computed by converting from the vector potentials, as inte-
ration variables, to Polyakov loops:

expl — Ser(Q)} = f DAS

Zyo (10

o(T) The Sy has been worked o(i13,12,15 to two-loop order in
Foi— Foo~Lzexp|’ - ?Ly] if T islarge. (12 the d=3+1 case. In Sec. lll we will derive the one-loop
result for anyd, and in particular for the case of interest in

Clearly what Eq(11) is telling us is that at low temperatures th'? paper;d:2+1. hat the effecti ion d
we are in a confining regime, where imposing unit electric t |sd|mporrt]antbto n(;)te that (tj_(_a € e_?tl\r/]e actllon qesi not
flux across the lattice costs us an energy that is proportiond€Pend on the boundary conditions if the volume is large

to the length traversed by the flux; and the tension of thisenoth' It is also easy to see that the tist(0k,) of the

flux “string” is o. So the free eneray difference becomesprevious section corresponds to the following boundary con-
g P g9y ditions in the effective theory fof)(y,z):

very large at largd_,, but is insensitive to the transverse

2
Q(y,L,)=exp ik,— 1 Q(y,0). 16
The reader should keep in mind that the subscriptg ofenote L2 p|’ ‘N } v.0 19

the amount of twist in the boundary conditioks while the sub-
scripts ofF — the electric flux quantum number{see Eq(7)]. With such boundary conditions, is given by
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In our three-dimensional SB) gauge theory we have a
Z= j(k)DQ exl — Ser(2)]. (17 dimensionful coupling constarg, with dimensionmass.
The only other dimensionful quantity in our problem is the

We also note that the path integral has a formal resemt@mperaturel. We will typically work in the regime where
blance to that of a spin model partition function. The effec-g°/T is a small number. So on the basis of dimensions alone
tive action, when evaluated in perturbation theory, will startthe interface tension has a simple form
with a classical kinetic term. The first nonzero contribution s 5
for constant()(x) appears at one loop. So to this order we o=a(g/m)T (20)

can write with function a positive and dimensionless. We can apply

semiclassical methods to calculaee These methods typi-

S.i(Q)= f tr[lz|VQ|2+Veff(*Q) i (18)  cally give, when applied to solitons such as monopoles and
x 129 sphalerons,

At high T the coefficient of the gradient term is large and we scale
can expect that the path integral will be saturated by smooth Esor~ coupling (21)
configurations of Polyakov loops. We shall see in the next

section thalV reaches its minima when aN eigenvalues  for the energyE,,, in terms of the scal¢Higgs expectation
of () coincide. Due to a condition det=1 there areN such  yajue. So it is not surprising that we obtain, as described in

minima: () € Z(N). The order parameter distinguishing be- detail in the next section, a similar result for our profile
tween thes®\ degenerate phases is the value of the Polyakov

loop P Eq. (15). TheZ(N) symmetry in the effective theory T2 T5/2
of Polyakov loops is due to the existence of gauge transfor- o=ag——=ag—, (22
mations which are periodic in the Euclidetdirection up to (9/\T) 9

an element ofZ(N): A(1/T)=A(0)z,. These transforma-
tions leaveS(A) invariant but multiply Polyakov loops by
Z

where o is a numerical factor of geometrical origin. The
expression(22) can be easily understood if one realizes that
We domain wall has a widtiv of the order of the screening
e 1/ B .
nlengthw~ 1/(gTY?), carries an excess of free energy density
é&f~T3 (i.e., of the order of the average energy density in

In spin model language, we are in an ordered phase wh
T is large. This is a phase in which the entropy of the spi
system is low. However, the spin system is, at the same tim
supposed to be describing a very hot gauge system with T:;‘e gluon plasm)aagd ]Ehat(;~fw”Af._ h q ical ob
large entropy in terms of quantum states. It is this comple- V& are now ready for the following thermodynamical ob-

mentary feature of the spin and gauge systems, that has givéffTvations. First consider a droplet of radRf “minus”

rise to a lot of confusion in the past few years. For examplephase in a sea of pl_us phase. The free energy excess due
one can ask the following question: what is the meaning of 40 the presence of this droplet equals

localized surface in the spin model in terms of the gauge
model? In this paper we will not go into this question, but
take the pragmatic point of view that we just want to calcu-
late the exponent in the decay la@2) for the hot fluxes.
Nonetheless, one should bear in mind, that if one does a

AF=2mRo. (23

Now, the probability for the appearance of such a droplet is
exp{—AF/T}. From the explicit dependence of on T we
Yearn that this probability becomes exponentially small for
?arge T. So we find that an ordered phase prevails at high
temperaturé.

The second observation is a simple consequence of the
D. Some thermodynamic properties positivity and the explicit temperature dependence of the in-

of the wall in gauge theory terface tension. The interface entropy equals

The study of surface effects requires a careful specifica- 32
tion of boundary conditions. Only when_that is done_ can we entropy= — i(r: _ an T_ (24)
separate the free energy of the system into well-defined bulk aT 27 g
and surface free energies. Let us suppose we have in our ) ) .
two-dimensional “box” a domain wall, separating two do- SO the interface entropy is negative. The thermal energy as-

unusual thermodynamic properties, as we shall see below.

mains. Then the free ener@y will be for largeL, andL, sociated with the interface is also negative. However, the
free energy €energy-TXentropy) is positive. Such a
F=fL,L,+oL,. (19 negative interface entropy is to be expected quite generally

for models that order at high temperature: the free energy
Here we assume that the size of the box is much larger thastarts togrow at the critical temperature, and consequently
any of the microscopic quantities in the system.

What this equation describes is simply a wall with a con-

stant free energy density in thedirection, and a nontrivial ~ 2A study of discrete gauge models reveals the same phenomenon:
free energy profile in the direction. When integrated over they can be mapped onto a two-dimensional Ising model with a
z, this profile gives the interface tensien This profile is  coupling~InT for T large. That is, fofT large both models start to
like a soliton. order.
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the entropy is negative. So the presence of the wall diminizes into integrals oved— 2 (timesN?—1) transversal fluc-

ishes the entropy of the system.

IIl. CONTINUUM CALCULATION

In this section we calculat8., the surface tension and
the profile of the order parametéPolyakov loop of the

Z(N) wall. When the temperature is high the effective gauge
coupling becomes small and one can use perturbation theory

to calculate the effective actiaii8). This has been done by
several authorgl6,17 for d=4. Here we derive similar re-
sults ford=3. Our method is simpler and is trivially gener-

tuations and a trivial infinite factor.
Each of these integrals represents a very well-known par-
tition function of the photon gas, the logarithm of which is

InZy=(d—2)In dei — 93— V?)~ 12
Vd4~ 1k
——(d-2) [ rin(1-exp~[KIT)), @9
(27)
whereV is the volume of space. Thus we obtain the Stefan-
Boltzmann law for the free energy density of the hot gluon

alized to arbitraryd. The lattice version of these results is 9as(with a multiplicity of “photons” N?—1):

presented in Sec. IV.

We start from the partition function of the pure gauge

theory at finite temperature:
1 (ur
Z:f DA, ex —4—92fo dtfxtrFWF,”
1 (ur
=j DADA ex ——Zf dtftr[(aoAJrDAo)z
29 0 X

+ 82]] . (25)

We use some obvious short-hand notations. The gauge p
tentials: AMEiA‘j‘LTa and the Hermitian generators of the

SU(N) group are normalized asT#T?= 62°. The covariant
derivative is
Bold symbols denote vectorsl{-1 components The ex-
ception is B which is an antisymmetric tensor
[(d—1)(d—2)/2 componenits
Bik=diAk— A Ti[A ALl (27

In contrast td 16,17 we do not begin by fixing the gauge.
First we rewrite the partition function in the form of an in-
tegral over physical fluctuations at very hihThese are the
transverse components of the vector poterialo achieve
this we integrate ovef, which is clearly an auxiliary field.

For every given configuratioA(x,t) we can do this easily:
the integral is Gaussian. We obtain

z=f DA de(—D?) "2

1 1T
Xexp{ - —Zf dtJ’tr[(ﬁoA— DD 2DdyA)%+B?]}.
29 0 X

(28)

-
f=—(N2—1)9|nzo=—ch, (30)
wherec is
) I'(d/2)
¢=(N"=1)(d=2) —gr— {(d). (32)

Next, we want to find the dependence of the free energy
density on the value of the Polyakov loop. To this end we
calculate the partition functiof25) about a constant back-
ground fieldA,. We make a shiftA,=Aj+ A, and integrate
overAj. This results in simply replacing,A with

o_

JoAFI[Ag,A] (32

in Eq. (28). For a given matrixAy there will be at least
N—1 generators that commute with (tneutral”) and at
mostN(N— 1) that do not(“charged”). The “charges” are
given byq;—q;, whereq; are the eigenvalues of the matrix
Ay/(27T). These are related to the eigenvalugsof the
Polyakov loopQ) (13) by: \;=exgi2mq;}. The contribution
of “neutral” bosons is unchanged by E¢32) and is still
given by Eq.(29). The partition function of the “charged”
gluons is given by

InZy=(d—2)In def — (Jp+i2mqT)2— V2]~ 12

Yd9-1k ,
:—(d—Z)f (2—77)d,—1ln(1—exp[—|k|/T+|27Tq}),
(33

where g=q;—q;. The periodicity inq reflects theZ(N)
symmetry.

Following [13] we chooseq;="--=qyn-1=0/N. Only
N—1 eigenvalues are independem®;q;=0 and thus
gn=0/N—g. As g varies from 0 to 1 the Polyakov loop
1 [ A
Ntr exp Ao

p= (34)

Thus far our manipulations have been exact. Now we usehanges from 1 to exifz#/N). In the SU2) caseq param-

the smallness of. In the leading order irg (saddle point
approximation we need to keep only terms quadraticdinn

etrizes the only path between the two minima of the effective
potential for the Polyakov loop. In SB) it parametrizes the

the exponent and can neglect the pre-exponent. As expectéalvest action pathl2]. It is possible that it does the same for

the effect ofA, is to project out the longitudinal fluctuations
of A from the kinetic term in Eq(28). The B? term does not
contain them already. We see that the integral dvésictor-

N>3.
With our choice ofA, there are KN—1)? “neutral” glu-
ons and 2K —1) gluons with “charges” equal ta-q. The
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free energy density as a function of the Polyakov loop order

parametefparametrized byj) is now given by

Flq)=—cTI+V(q)T4. (35)

All the dependence og comes from the “charged” gluons

and is given by the universal function

dd-k
V(q)= —2(N—1)(d—2)f (2aT)e 1
XIn[1—exp(—|k|/T)(1—cos2mq)]

[(di2) < 1
=2(N—l)(d—2)—ﬂ_d72— = ﬁ(l—COSZWC]V).

(36)

For d=4 this function is expressed via the Bernoulli poly-
nomial B,(q). Ford=3 only a numerical evaluation is pos-

sible.

For q varying slowly on the scale of T/one can use the

tree expression for the gradient tefd®]. Then the free en-
ergy density reads

N-—1/2aT_ |2 §
HA)=—|—va) HIV(@)—c]T
g
,),2
=T 5 (Va)*+V(a)—c|, (37
where we defined a dimensionful paramejer
N-1 [ 8#°
Y=NN Vgzrez (38)
This completes the calculation of,; of Sec. IlC:

Sei= [ FIT.
The profile of the wall between phases wiffi—=)=0
and q(«)=1 is given by the functiorgy(z) which mini-

mizes(37) under corresponding boundary conditions. It sat-

isfies

(39

D _ g,

The width of the wall is controlled byy: w~vy
~1/(gT¥"1). The exact solutiom,(z) for d=4 is known

1053

An interesting property ofl= 3 is that the second deriva-
tive of V(q) diverges aig=0 mod1[see Eq.(36)]. In fact,
V(q)<q?In(1/q) rather thang? for small g. One can see
from Eq. (39) that this results in a Gaussian rather than ex-
ponential falloff in the tails of the solution. This is related to
the fact that the Debye mass in the Thomas-Fermi approxi-
mation is divergent inl= 3 if the charged particles are mass-
less, the well-knownf dk?/k?. On the other hand, D’Hoker
argued [18] that all infrared divergences in three-
dimensional QCD at finite temperatuTe(QCDg) are cut off

by a Debye masm, of orderg/T In(T/g?) [see Eq(117)].
This means that the fast Gaussian falloff should saturate at
the exponential whemg gets small enough 2qT<<mp),

i.e., sufficiently far from the center of the wallThis behav-

ior of the tail does indeed occur in our Monte Carlo study
(see Sec. VI E

IV. LATTICE VERSION OF THE INTERFACE TENSION
CALCULATION

To compare numerical lattice data with theory requires a
lattice version of the calculation of the previous section. In
this section we develop a one-loop expression on a lattice
with L, sites in the temperature direction and an infinite num-
ber in all space directions. Quantities computed in this sec-
tion are the effective potential, the profile of the wall, and the
surface tension. In Sec. V we calculate the expectation val-
ues of electric and magnetic plaquettes. In Sec. VI the reader
will find estimates of finite size corrections. In the dimen-
sionality we are interested in we have to go to higher loops
to get a finite Debye mass. We follow to this end the ideas of
D’Hoker [18], which amount to a very simple prescription.

Let us first fix our notation. The continuum action of Sec.
Il becomes on the latticgl9]

1 1
?Scont_’ﬁslat:ﬁzp R 1_Ntrup : (42)
Here every plaquettp is summed over only once; in con-
trast to the continuum action where the sum opgw in-

cluded both orders.
The lattice spacin@ is related to the temperatufieby

1

which follows immediately from the fact that the length of

[12]. Ford=3 we solve Eq(39) numerically. The surface ,q system in the fourth direction isTL/

tensiono is given by the integral of the excess of the free
energy density inside the wall and is proportional to the acine |imit where the dimensionless

tion on the trajectorygy(2):

1 Td/2+l
o=1¢[ d22Viau@1=* | davaViai-ao-—y—,
0
(40)
where we defined
N—1 1
aOE47T\/Tdeq\/V(q). (41

Ford=3 andN=2 we find using Eq(36) ay;=5.104.

The lattice action should become the continuum action in
quanti@A,, becomes

very small:
Up~explia®F, ,}. (44)
The lattice coupling becomes, in that limit,
,3 ad74
N~ oZ (49

3This happens, however, beyond the applicability of our formulas
for q(2).
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or z d-2 N ~

a____ - _ 2_ 2
InZO 5 (In de{ ko(Q) Ei ki }
ﬁ T4—d

4—d_ r K
Pl 0 e -3 ¢ 50

This is the relation between lattice and continuum paramWe use the proper time trick to calculate E§0). To sim-
eters in any number of dimensiodsFord=4 all reference plify formulas we work in lattice unitea= 1. The right-hand
to dimensionful properties drops out. Perturbation theory iside (RHS) of Eq. (50) becomes
defined by taking the dimensionless paramgtar*~¢ small, i2y e fod
or B8 large at fixedL,. - ™ i (~dt ) ~s

First we need a definition of the surface tension on the 2 T% fﬁﬁ Loxle 1 exp( —[ko(Q) +§i: Ki H
lattice. This can be done by taking the lattice analogues of

twisted and untwisted boxes and their corresponding parti- ~y ~y
tion functions. This corresponds precisely to the way we —exp[— k0+§i: K )t” (5D
measure the surface tension on the lat{eee Sec. VI
To rewrite the sum ovek,=0,27L;, ..., 27 (1—1/L,) (re-
o Z(twisted member thafl = 1/L, in our unity we use the Poisson sum-
exp[ ——Ld 2] =—— " (47 mation formula, which for a functiorfi(k,) periodic with a
T Z(untwisted period 27 has the form
Although our aim is to study a continuum theory, all our Zw(lEULt) F(kg) = i ™ dko ILivkof (K (52)
Monte Carlo results come from a lattice with finite lattice K=o (ko =L ) 2w € (Ko).

spacinga. The value ofa has a meaning only in comparison

with physical length parameters. For our system there argve substitute Eq52) into Eq.(51), shift the variablék, and

two such parameters: the inverse temperatufle dridid the  obtain, for Iz, /Z,,

Debye length, or the width of the walv. The width

w~1/(gT%?"1) is large compared to T/for smallg. Tothe g—2y = p[
exp —

dk, [=dt
order we are interested in we can neglect corrections due to;— T -

T

K2+iL ko

finiteness of the ratio ofv over 1T or a. We choose large e ot

B so that the ratiow/a is big, 10-20, and we neglect cor- - N N

rections due to its finiteneés. —i2mqu+ 2, kiz)t] —exp[ —| K3+iL kot 2 k?)”
However, to save computer time we choose to keep the ' '

ratio of 1/T to a relatively small. This ratio is the number of (53

lattice sites in the temporal directioh;. To compare with

our Monte Carlo(MC) data we calculate the quantities dis- Integration oveik, produces modified Bessel functions
cussed in Sec. Il fomny L; to the leading order ig.

~To achieve this we notice, that to thg order we are Wo_rk- 1. (2t)= f” %exp{Zt cok+ink}, (54)

ing in we have a theory of free gluons interacting only with —n21

the background. All path integrals are Gaussian and factorize

into integrals over momentum modes. We need only to subandt can be rescaled after that. Finally, we obtain the ex-
stitute the lattice periodic momenta for continuum ones  pression which replaceg(q), Eqg. (36), at finiteL,:

=0t
2  ak - = _ _oy 9 = —dt
ki—>gsin7'5ki; 49 Via(@)=2(N=1)(d=2)L{ | 5 V; e M, (1)
X[1(t)]9" (1 cos2mqu). (55)
ko+2mqT— gsinako%mzko(q)_ (49) It is instructive to see how the continuum limif— o

(i.e., aT—0) is recovered. For large and larget=n the
Bessel function behaves as

The lattice momentum varies inside the Brillouin zone: 2 1

—mala<k;<mw/a. The componenk, is discrete and takes -t . _ —t ~

values: 2rTn, n=0,1,...,L,—1. & () Jz_meXp[ Zt] and e o(t) J2mt’ (5

The patrtition function for a “charged” gluon normalized

by the “neutral” one is given by Only larget of order (vL,)2 will contribute to the integral in
Eq. (55). After rescalingt by (vL,)2 and integrating we get
the same expression as in Eg6).

“We study the corrections due to the finitenesdgfw in Sec. The variation ofg with z can be also taken into account.
VI B. The gradient term on the lattice becomes




2

A+ )-a@)7, (57

so that the profile Eq39) is replaced with

2
a(z+1)=q(2)+/ 7V|at(Q),

where, similarly to the continuum case,

(58

N—-1 72°¢ N-—
2 :4772 N2

N ¢?

1
v?=8m BLI"2, (59
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€, in front of this term in the exponent, do the integral and
differentiate the logarithm of the result over We shall do
this shortly, but before that let us improve a bit on the for-
mula (64). What we need to include is the contribution of
zero point energies of the modes of the fiellsThis con-
tribution does not depend on the temperature and is not
present in Eq(64), but it gives an overwhelmingly dominant
contribution to(E2) and(B?). Indeed, this contribution is of
order (1A)9, wherea is the lattice spacingthe UV cutoff),
and is much larger thafi®—the thermal contribution. To see
what we are missing consider calculatifff + B2) from Eq.
(64). For that one needs only to differentigtbe logarithm
of) the right-hand side over (4%). But the right-hand side

The interface tension is given by an expression similar to Edgoes not depend org! This means that the quantity

(40) except foraq being replaced by its lattice version

N—1 1
a=am\o- | Vi@,
0

V. ACTION DENSITY PROFILES

(60

An important quantity that we measure on the lattice is
the expectation value of the plaquette action. In the con

tinuum limit this corresponds tE2+ B2), where the Euclid-
eanE is

E= (61)

— 9pA—DA,.

We also measure separately the expectation values of the

plaquettes of each orientation, which correspond(liﬁ},
(E2), (B?) in ourd=3 case.
An interesting result that we find in our Monte Carlo

study is that these expectation values display nontrivial pro-

files, correlated with the position of the domain wall. One
expects that at higll a perturbative calculation of these
guantities is possible. In this section we perform such
calculation?

We start again with the partition functid5) on a con-
stant background\,. At high T the effective interaction is

weak and we apply a saddle point approximation. We write

1 rur
Z(A)=fDAMex ——Zf dtf(EZ+BZ) , (62
- 29 0 X
where we linearizé&E andB:
E=—3dpA—i[Ag,A]—VAy;B=VXA. (63

We have already calculated the integ@2) in Sec. Ill:

Z(A)EZ(Q)=6XP[—Td_ljx[V(Q)—C]}- (64)

Now, to find the action density profiles we want to calcu-
late things like(E?) and(B?), where the average is under-
stood in terms of the probability distribution given by the
integrand in Eq(62). These averages dependAor g. The
easiest way to calculatéE?) is to introduce a parameter, say

5Such profiles were also measured 20]. Here, we show that at
high T one can actually calculate them analytically.

(E2+B2?) (which is obviously not zefogives the sum of
zero point energies and has no thermal contribution at that
order. To make this fact explicit imagine rescaliggin Eq.

(64) by a factor 1é. One can absorb this factor by rescaling
the fieldsA by e. This will change the measure by a factor
(Vo) N D@DV \whereA/=T~1V/ad is the total number of
the lattice sites. The numbeNf—1)(d—1)A is simply the
number of nonzero modes, or nonzero eigenvalues of the
matrix of the quadratic form in the expon€i). Eventually

we get, instead of E(q64),

Z(q)= 9<N2‘1>("‘1’Ne><p{ —T“‘lfx[v(q) - c]} . (65

Using Eq.(65) we get, for anyT,

(N>~1)(d-1)
fa .

Zigz<E2+ B%)= (66)

4t means that each space component of the vetor the

tensorB has the average dt=0 (due to Euclidean invari-
ance

N2—1

—d
d .

1 2
2_92<Ex> = a (67)
This is the dominant contribution and should be compared to
B(1—-TrUp/N) per plaguette which we measuie our case
N=2,d=3). It is indeed equal to 1 in lattice units up to a
small correction. Part of this correction is the thermal effect.

To calculate the thermal part of the action density, multi-
ply only the termE? in Eq. (62) by a factore. Then consider
the following transformation: t'=t/\e, Aj=Ag\e,
T'=T\e, andg’?=g? Je. In terms of new variables the
integral is the same up to a Jacobian factor and thus

1 UT ) )
Z(q)=fDAﬂex —2—ng0 dtL(eE +B2)

(N2-1)(d— )N
:( ) p{—(ﬁT)d‘lfx[V(q)—CJ]-

ex
(68)
Therefore,

g

6173
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2_ —

1 N2—1 1 culate the effect of the roughening on our measurements of
Ez(EzF(d— D—5 a 9- 5 [c=V(q)ITL. (69  the profile of the wall and the interface tension and show that
this effect is rather small.

The roughening is due to long wavelength fluctuations of
the shape of the interface. These fluctuations are therefore
essentially classicaly,<T. We can consider our interface in

(d—1)(d—2) N2—1 d—1 two spatial dimensions as a classical string of lerigfiwith
2—92<Bz>= 5 d a 9+ > [c—V(q)]Td. tension and mass per unit length equabtoThe string is a
(70 set of free oscillators, the normal modes. The amplituges
of these are the Fourier components ©f), the shape of the
Note that while (1/82)(E2+B2) is totally due to the str?ng at a given instange. E_a_ch oscillatorode has energy
vacuum zero point energy, it is (42(B2—E2) that con- T in the heat batr{eqmpartltloq On.thtza ozther hand, the
tains the thermal energy. The vacuum term in this quantityn@an energy of such an oscillator ésvi(fi). The mean
cancels ind=4, because there is the same numbeEaind ~ Square of the fluctuation of the string is then
B components. L T

So far we have neglected the variationgpfvith z. This < f dyf2(y)> — < 2 fﬁ> :2 —. (72)
can be easily corrected for. We need to add a téAg to the 0 k k Wy
right-hand side of the linearized equation ©r(63). Since . ] ]

A, varies withz on the scaley=0(1/g) this term is of the The dispersion law is =K. If we takeL, = and replace

same order iy as the others in Eq63). It does not fluctuate the sum with an integral it will diverge linearly, the soft
and contributes only tG(Eg) the amount §2/2)(4,q)2T¢, modes get out of hand If, does_not cut them qff. For finite
which is equal tov(q)TY due to Eq.(39). L, the va_ll_Jes of momenta are given by the periodic bound-

Finally, we write down expressions for the plaquette ac-2Y condition(BC):
tion densities in our casédN(= 2, d=3). We use lattice units:

The E? is a sum ofd—1 components each contributing
equally. Using Egs(66) and (69) we get also

a=1, in whichT=1/,, andg is given by Eq.(45): k= 2_7Tn n=123 (73)
L L L 1 AL |
1 ) 1
2—92<B >:1+[C—V(Q)]F+O(1/,3); wherek=0 (translational modeis removed by our proce-
t

dure of shifting the center of the interface. In principle, our
1 1 1 string approximation will break down at some larigg,y,
E2y)=1— —[c—V +O(1/8): but the value of this UV cutoff is not essential for the long
ﬁ< y> 2[ (q)]ﬁ (1B) wavelength effect we are interested in. We jf,,—= .
Thus we have

1, 1 1 / i} ,
2_92<EZ>_1_E[C_3V(q)]L_§+O(1'B)' (71) 2 LT L

2 —
<f (y)>_ Ly = oo (277.”)2' (74)
The corrections of order B/ are due to nonquadratic terms
and are beyond our approximation. However, they should b&he factor of 2 is because for eanththere is a cosine and a
the same for all plaquettes at that order. They cancel in, e.gsine mode. The sum overcan be evaluated and we get for
(B2)—(EJ) or (B%)(q)—(B?)(0). Theformulas(71) are in  the mean square deviation of the wall from a straight line
good agreement with our MC datsee Sec. VIl

What do we learn from all this? One can see, for example, 2 e2 y
that the thermal part in the fluctuations ¢B2) becomes Aw=(f"(y))= 2 15
negative at somq near 1/2, i.e., inside the wall. This means
that the(B?) becomes smaller than the contribution of the Let us estimate this effect in our case. Take, for example,
vacuum fluctuations to that quantftyThis is just another Li=3 andB=75,
side of the old puzzle with negative entropy and thermal

energy density4,9]. 2\/L\;°‘Ly v
Aw=<— VEY ~\/L,/50, (76)

o 12
VI. FINITE SIZE CORRECTIONS

(75

where we used the formul@0) for o and the relation45).
For L,=12—-60 this varies from 0.5 to 1 or so, as compared
Due to the long wavelength thermal fluctuations of itsto w~17. We observe a slight variation of the width of the
shape, an interface in three spatial dimensions oscillates fromall of roughly this size in our MC data, although it is no
its central position by a distance which grows as the logadoubt optimistic to be applying a string formalism in a situ-
rithm of its area. This roughening also occurs in two dimen-ation where the length of the wall is comparable to its width.
sions, where the effect is proportional {/Ey. Here we cal- We conclude that roughening does not affect our esti-
mates of the profile of the wall. This effect is small, because
the wall is stiff andL, is not too large. So what we measure
®In other words{B?)—(E7) becomes negative. numerically is really the intrinsic profile of the interface.

A. Roughening
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One can also calculate the correction to the interface tenFrom Eq.(81) we can read off the correction to the interface
sion from the stringlike fluctuations of the interface using thetensiorf
same idea that the string is a set of oscillators in a heat bath.
A difficulty lies in the fact that unlike/f2) which is a con- TL,
vergent sum of f2), the amplitudes of the oscillators, the Ao= I'”ULZJFO(T/Ly)- (82
sum of their free energies; T In(T/wy)+const, is divergent. Y ‘
This divergence is ultraviolet, however, and can be SUbThis means that the correction &g in the way we measure
tracted when computing the finite size dependence, similarly[ in our simulations(see Sec. VI, is given by
to the Casimir effect. '

Another, more illuminating way of deriving this correc- a2 a2
tion is to consider theF(q) in Eqg. (37) as an effective po- Aa= ﬂ@i(“ﬂ-y) — Ly 83)
tential energy for the long wavelength classical thermal fluc- Ly B\ T Ly\/ﬁ'
tuations of the wall. The profilgy(z) satisfying Eq.(39) is a
minimum of 7(q) for the corresponding boundary condi- For example, a3=75,L,=3 andL,~50 this correction is
tions. The leading exponential behavior of the partition func-only about 0.2%.
tion is then

B. Finite L, corrections

Zwa||~exp[ - %f []—'(qo(x))—}'(o)]] =exp[ - UTLV] , In the previous section we discussed the roughening effect
x which introduces corrections of the type I(JjL, to o. In
(77 this section we discuss another source of finite size effects,
the finiteness oL,. There are two ways the finiteness of
where we subtracted the bulk free energy. L, affects the free energy of the wall. First, there is a correc-
The pre-exponential correction to E@.7) is due to fluc-  tion to V(q) itself because it is given by one-loop integrals
tuations ofq(y,z) aroundgy(z) and is given by the determi- which depend orl, through the quantization of momenta
nant running in the loog. This correction should be of order
(T/L,)? and is relatively small. Fok,=w this correction is
det[— ¥°V2+V"(qo(2))] 2, (78)  beyond our leading order iy approximation, because
(T/w)? is of orderg?.

where the prime on “det” denotes the fact that we omitted The second source of corrections is due to the finiteness
the translational mode. This mode is proportionaldg. Of. Lo/w. Itis Ob‘%“”eo! by caICL_JIating the action_of a particle
Properly normalized it produces a factdey/sz and an with a “mass” y” which, moving in the potentiat-V(q),

integration over the position of the center. The spectrum o etums to its starting value Qf in a period of “time” 2L,.
the operator in Eq(78) can be written as his finite size effect we estimate here and show that, for

large enough L,, it is exponential in d>3, i.e.,
exp{—L,/w} and Gaussian id=3, i.e., exj—L2w?).

So we consider a trajectory which starts at restate
and arrives atj=1—¢ precisely after a given “time’L, so
where k=2mn/L, and \, are the eigenvalues of as to satisfy the boundary condition on the Polyakov loop.
— 292+ V"[qo(2)]. The A= y?k? band attached to the zero The trajectory satisfies a Lagrange-Euler equation which can
eigenvaluex ,=0, corresponds to fluctuations of the wall as be integrated to givé ‘energy” conservation
a whole. The roughening effects are due to these gapless

A=y2K2+ N\ (79

2

fluctuations.  The  corresponding  determinant s Yo 2 __ _
det (— 72ﬁ§). We can regularize it in the UV by dividing it 2 (@)= V(a) V(e)=E. (84)
by a similar determinant withL,=c. On dimensional
grounds, We can use it to relatke, to ¢:

det (=Y, L2 1-e dq

Ty _ Y L,(e)= (85)
X const. 80
det— 7). 7 (80 7). Tz Vi)

Other eigenvalues are not related to the roughening and we 1he action can be cast into the form
neglect their contribution in our estimate. Collecting all the

factors we obtain
"This correction is analogous to the Luscher’s correcii], but

for a classical string in a thermal bath, rather than a stiimntum
Z o= CONSIX f dz ,iexp{ _ ‘T_LY] string atT=0). The universal coefficient of the Coulomb correction
TL, T 1/L to the free energy in Luscher’'s case becomes in our case the
coefficient of the I correction. It is especially obvious in the

ol? oL ; ; i
— consix / Zaxp — — Y1 81) m;erprete_ttlon given by Ste}ck_ and Stof&2].
TL, T There is, of course, a similar dependencelgn
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L, 2
ste)- | dz%(q')zw(q)}
1-¢

ZJ dav2y?V(q)—V(e)]+V(e)L(s), (86)

€

which is convenient for the numerical evaluation $ffe).

Also note, that this form is familiar in theoretical mechanics

asdS=pdg— Edt. Equations(85) and(86) give a paramet-
ric representation o as a function ofL, which we use to
evaluate the correction numerically.

To find the asymptotic dependence®6n L, one can use
the relation

S p—
aL, -~ V), (87)

which is a consequence dfS=pdg—Edt, and can be also
derived explicitly from Eqs(85) and (86).
Now we use the asymptotic form &f(q) at smallg. For
d>3itis
V(q)=bg?+0(q?) (d>3), (88)

whereb is a constant which depends dhandd, Eq. (96).
Using this form we get, from Eq85),

Le)=25pI=+0(1), (d>3). (89

Integrating the equation:

ds 2b
— =be?+0(e*)~constx bexp — \/ —L,{ (d>3),
dL, Y

(90

we obtain the asymptotic form of the largig correction to

S
by? 2b
58S~ —const Tex — 7Lz (d>3). (91

For d=3, however, we have
1
V(q)=bq2|na+0(q2) (d=3), (92

whereb is given by Eq.(97). This leads to

8v° 1
L(e)= \/T\/Ing—i—O(l), (d=3) (93

ds b2L2 bL?
dLZ~c0nst>< 8,2 exp — —7 (d=3). (94)

and

Integrating we obtain

bL, b ,
5S~—const><Tex _TLZ (d=3). (99

We see that the asymptotic form of the correction is related
to the way the tail of the wall decays, exponentialdir 3
and Gaussian id=3.°

From Eqg.(36) we find, forb in Eqg. (88),

, I'(di2)
b=(2m)*(N=1)(d=2) — g {(d—=2) (d>3);

(96)
while in d=3 the value ofb defined as in Eq(92) equals
b=2wx(N-1) (d=3). (97)

To get an idea of the size of this correction in our case let
us estimate it for the case @=100,L,=4, L,=120. We
get y?’=x?BL,=40072~60°. The exponent is
bL%/4y?~(L,/50)°~5.8 and e >®~1/300. The pre-
exponentbl,/4~200. Thus §S~1. This should be com-
pared to

1
So= JOdQVZVZV(Q)~50- (98)

Thus the correctiodS/S; is of the order of gfew) percent.
In the following section we shall evaluate these corrections,
numerically, for allL, and not just large., as herein.

VII. NUMERICAL SIMULATIONS OF DOMAIN WALLS

As we have seen, at high temperatures the theory appears
to have degenerate vacua which are separated by domain
walls. At asymptotic temperatures many properties of these
domain walls can be calculated in perturbation theory; in-
deed the existence of these interfaces can only be seen when
one goes beyond tree level. However, as we remarked ear-
lier, the presence of infrared divergences in higher orders has
raised doubts about the applicability of perturbation theory
and, indeed, about the actual existence of the interface. To
address these doubts we have performed accurate computer
simulations of the domain walls and have compared what we
find with the results of the perturbative calculations. These
computer simulations will be described in this section.

If we simulate the high temperature &) gauge theory
in a finite but large spatial volume, with periodic boundary
conditions, then we expect some fraction of the field con-
figurations to contain bot#(2) phases in different portions
of the torus. Such a configuration will contain domain walls
separating the two phases and in principle one could study
the domain walls by focusing on these particular field con-
figurations. However, the relative probability of such con-
figurations is very small for the temperatures of interest and
they would not be encountered in a typical Monte Carlo
calculation. So we have to use an alternative less direct
method. What we do is to impose twisted boundary condi-
tions on our system, so enforcing the existence of at least one
domain wall. This will be described in Sec. VII A. In Sec.
VII B we show how the domain wall can be interpreted as a
't Hooft disorder loop. We then specify the physical quanti-
ties that we plan to calculate and describe the methods by

9See, however, footnote 3 and the related discussion.
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FIG. 1. Location of the twist. The plaquettes that are indicated -1
will appear with a factor of~1 in the twisted action.

8

which we do so in Sec. VII C. Sec. VII D summarizes our ° 0% 50 46
Monte Carlo results. Of course, it is crucial to demonstrate
that we have all finite-volume effects under control — after
all, it is infrared effects that are the potential problem here —
and this we do in Sec. VII E. Finally, in Sec. VII F, we will
take our raw “data” and use it to extract quantities that are
of direct physical interest in the present context and compare
them to the perturbative predictions.
“'\ ,-.’t -
A T 3 /‘/,’,'g#ﬂ»

. Twisted boundary conditions 05 ')}

We work on lattices of sizé, XL, XL, in lattice units. 0
The Euclidean time extent determines the temperature -0.5
aT=1/L, of the field theory. The partition function contains
the factor expt 8S) whereB=4/(ag?) and the lattice action
is as in Eq.(42) 30 255

5%
s=> }

1
1-5try, (99
P

2

FIG. 2. Values of Polyakov loops on typical field configurations
with a domain wall, forL;=2 at(a) =100, (b) B=7.
whereU,, is the path ordered product of the &) matrices

U, on the linksl that form the boundary of the plaquefte  twist does not carry any physical significance since it can be
The simplest and most usual way to introduce twistednoved by such a redefinition of the variablgs.
boundary conditions is as followy&0]. We change the above How does the twist lead to the presence of a domain wall?
action to a twisted actior§,, by replacing tJ, with  To see this consider the same labeling of sites as we have
—trU,, for those plaquettes in thet plane that emanate from just used. With free boundary conditions the system would
the sites y¢,z,t), wherez andt are fixed to some particular spend most of the time in one of the two phases where
values, sag=|j andt=k, while y takes all values from 1 to Polyakov loops are all neat 1 or all near—1. With the
L, (see Fig. 1 twisted boundary condition a Polyakov loop a0 is
The system with this altered action and with periodic mapped onto negative of itself a&L,. Therefore, a homo-
boundary conditions is equivalent to the system with thegeneous configuration is frustrated and the Polyakov loops
original action but with twisted boundary conditiof®3]. = must create a nontrivial profile in ttedirection to interpo-
This we see from the following argument. First, let us choosdate betweerz=0 andz=L,.
labelingz of the sites so thgt=L,, i.e., the twist is between So to study the high- properties of domain walls we
z=L, andz=1. Second, to include the possibility of bound- perform Monte Carlo calculations on lattices with periodic
ary conditions that are not periodic it is convenient to extendoundary conditions but with a twisted action. How well
our labeling to include=0, as well az=1, ... L,. If the defined is the domain wall in practice? To answer this ques-
system is periodic then corresponding sites and links withion we show in Fig. 2a) the distribution of Polyakov loops
z=0 andz=L, are identified(and similarly for other direc- on a typical field configuration taken from a:3@80x 2 lat-
tions). Then the system with a twisted action can be viewedice at 3=100. In physical units this corresponds to a tem-
as a system with the original action but with fields which areperatureT ~30T., whereT. is the deconfining temperature.
not periodic. To be more specific they are periodic excepiWe see that the domain wall is very well defined, with rela-
that fory=1,... L, andt=k the timelike link atz=0 is  tively small fluctuations around a smooth background distri-
mapped into the negative of itselfat L, . This is the lattice  bution. This is in fact the highest value @f at which we
version of the twisted boundary conditions described in Seowork. The lowest value is on a 30X 2 lattice at3=7
IMA. corresponding td ~2T.. There a typical field configuration
One can move thet position of the line of twisted looks as in Fig. &). The fluctuations are now much larger,
plaquettes by flipping the sign of dll; which bound these but the domain wall can still be unambiguously located. So it
plaquettes from one of the sides; but one cannot undo this clear that, for the range af we study, there is no ambi-
twist completely. It should be clear that the position of theguity in identifying the domain wall.
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B. Domain walls as disorder loops d (Fw)
= Sw, (101

Before going on to the details of the calculations, we ad- B\ T
dress the following natural question. Since the twist is en-

tirely symmetric inz andt why should the “domain wall” o )
separate regions in rather than regions it? This question Where the derivative is taken at constant values of
can be plausibly answered, in a way that highlights the phystysLz:Lt Using this relationship we shall test the one-loop
ics, by first considering the twisted system at very Igw Prediction forF,,. _ _ ,

where the system is manifestly rotationally invariant. Here |t might appear that changing the action for a lineLqf
introducing a twist introduces into the system a 't Hooft Parallel plaquettes could introduce some additiokual
disorder loop[24] which is closed through the boundary in contribution to(Sy,) —(Sy) which is not related to the free
the y direction. This loop will presumably be a flux tube €nergy of the wall. That this is not so one can see by con-
whose width will be on the order of the characteristic lengthSidering a system with two parallel twists. This system is
scale of the theory, which here isg?! Its special property is equalent to a ;ystem without a Mlst after a redef|n|t|p_n of
that it if one considers the gauge potential on a closed pathariablesU; which move the twists to a single position
that encircles the disorder loop far from its center, then théVhere they cancel each other. _

presence of this loop leads to the potential acquiring a gauge In addition to maklng predictions for the domain WaII_free
transformation that goes from 1 to a nontrivial element of theBN€rgy, perturbation theory can also be used to predict the
center as we go once around this closed path. So if we takedgtailed shape of the domain wall as it mterpolatgs between
large Wilson loop and pierce it onder an odd number of the two Z(N)_ vacua. In the Monte Qarlo calculatlons_ the
times by this disorder loop, then the value of the Wilson domain wall is free to move and so if we are to obtain an
loop is changed by a factor of 1 as compared to the value average profile, we nged tq shift our origin, in each Montg
it would possess in the absence of the disorder loop. Hencg@rlo generated configuration, to the center of the domain
the name “disorder loop.” It is clear that if the vacuum wa}ll. W_e also need to take into account the presence of the
contained a condensate of such loops, then these would §&ist, since the Polyakov loops change sign as one moves
sufficient to ensure that large Wilson loops varied as théhrough it. Our algorithm is as follows. Consider a single
exponential of their area, so that we had linear confinemenfonte Carlo generated field configuration. First we average
Suppose we now increage by reducing the extent of the Polyakov loops ovey. We write this average as(z). We
system in thet direction. Clearly at some point the time NOW want to identify the locatiom=2z. of the center of the
extent will become smaller than the width of the flux tube,domain wall. This is defined operationally as follows. We
the tube will become squeezed so that it extends right acrod¥st identify the values oz wherep(z) changes from posi-
the time direction while still extending over a finite region in five to negative valuegfactoring out, of course, the trivial
the z direction. This will occur oncd is sufficiently large  change at the twist itself Clearly the number of such
compared tay?; presumably around the deconfining transi- changes must be odd. In practice the domain wall is very
tion. So at high temperatures our “domain wall” is actually SMooth at highT—as one can see in Fig. 2 — and it is

a squeezed disorder loop that closes upon itself through tHaMost always the case that there is only one place where
y direction. It is indeed symmetric in andt except for the there is a sign change. Thls-occurs between.snes and we shift
deformation induced by the limitedextent. The fact that the ©OUr 0Origin inz so that the sites where the sign changes are
Polyakov loops on either side of the wall have opposite signidPeled by z=0 and z=1. We now ensure that

is what one might expect from such a squeezed 't Hooft?(z=1)>0 by multiplying the whole profile by-1, if nec-
disorder loop. essary. Our range af is now fr(_)m —Lz/_2+1 to +L,/2.

We have simplified the above argument by assuming tha@omevyhere in this range there is the twist and the vglue of
the disorder loops exist as definite field fluctuations in theP(2) Will flip sign there. If this occurs foz=1 then we flip
low-T theory. This is assuming a great deal of coursehe signs op(z) for.values'ofz beyond the twist; |.f it occurs
Whether they do so exist is one of the central questions ifior Z<0 then we flip the signs far before the twist. In this
the still unresolved problem of color confinement. Thisway we obtain a wall profile withp(z=1)>0 and

makes the connection between these loops and the domaz=<0)<0. We can now average this profile over many
walls at highT of added interest. configurations to obtain an average profile. This will be sym-

metric aboutz=1/2 so we can fold the profile ovéwith a
sign flip) so that it is defined for £z=<L,/2 and is positive.
) ) ) ) This is our final averaged profile. Note that in any individual
We perform calculations on lattices with and without a configuration the center of the domain wall may be closer to
twist. The simplest and most interesting quantity we extract—( than toz=1. That is to say, our profile is “smeared”
is the extra actiors,, associated with the presence of a do-gyer distancesz~ 1/2.
main wall. If both twisted and untwisted lattices are of the | rare cases a given configuration contains more than one
same size, then sign change inp(z) (always factoring out the trivial sign
_ B change at the twigt The number of these sign changes is
Sw={Suw) = (S0 (100 clearly odd. There are two possibilities. One is that we have
a configuration with more than one domain wall, i.e., the one
where(S,,), (Syy are the average values of the twisted andenforced by the twist plus pairs that are genuine quantum
untwisted actions, as defined in Sec. VII A. The extra actiorfluctuations. In this case we would typically expect at least
is related to the free energy of the wall,,=F,—F ., by one large gap irz between the walls. The more trivial pos-

C. Quantities calculated
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sibility is that we might be simply seeing a large fluctuation malism for the periodicity ire as described above. In addi-
of the values ofp(z) near the center of the wallvhere the tion we calculate with a range of smeared Polyakov loops
values are small on the averag&his would be character- and use the correlation function that minimizagg(z=1);
ized by very small gaps between the locations of the signn the spirit of a variational calculation. However, this turns
changes. The first type of configuration, which we should nobut not to be really necessary here, unlike the situation at
include in our average, did not occur in any of the calcula-T=0. As we shall see below, this method turns out to be
tions that we include below(t does occur if we approach much more efficient for the calculation of screening masses
the deconfining transition or if we make the extenyiofthe  than using the tails of domain walls.
lattice, and hence of the wall, sufficiently smplrhe second
type of configuration we should include and we do so by
taking its center to be located in the middle sign change. In
practice these configurations are so rare that there is no vis- Our Monte Carlo simulations were performed on a variety
ible change in any extracted quantities whether we includef periodic lattices with and without a twist. We used a stan-
them or not. dard heat-bath update algorithm mixed with over-relaxation
Having obtained a center for the wall from the Polyakov steps.
loop distribution, we can also define an action profile for the  The control of finite volume effects is particularly impor-
wall, and we can clearly do this separately for the differenttant in these calculations since it is infrared effects that are
wmv components of the action. usually seen as being at the root of any possible breakdown
A quite different but equally interesting quantity is the of perturbation theory at high temperatures. We have there-
electric screening mase)p . This can be obtained from the fore performed extensive numerical checks of finite volume
lightest massnp that couples to Polyakov loops, and henceeffects and these will be described in detail in Sec. VII E. In
from the tail of the wall profile. We expect that for large this section we shall confine ourselves to a presentation of
enoughz, those results that have been obtained on lattices which are
sufficiently large that any finite-volume corrections are much
p()—p(z)=xe M, (102 smaller than oufvery smal) statistical errors. This will, of
) . ) ) course, need to be demonstrated and we shall do so later.
where p(«) can be obtained, either by working with very  Now, let us estimate how large the required volumes must
large lattices or by performing simulations on a lattice with-ye i |attice units. If we use a periodic, X L, X L, lattice,
outa twist and_ using _the average value of _the Polyakov looghig corresponds to the fields in the spatigix L, volume
obtained therein. So if we define an effective mass by pging at a temperatu@T=1/L,. The dimensionless inverse
0()—p(z—1) coupl@ng B, as we have seen, i; relateql to thg dimensionful
LA o Sl (103  couplingg® by B=4/ag’. Thus in physical units the tem-
p(*)—p(2) perature isT/g?= B/4L, and, at a fixed value df,, BxT.
Perturbation theory is expected to be most reliable at very
high T, so we want to study the theory for very largeThe
characteristic length scale at high is of the order of
1/gTY? the inverse of the Debye massrly and the width
of the wallw are of that order. Therefore, the spatial sizes in

In practice we would extraghp from mes once we were at  Units ofa must satisfy
large enouglz that the latter had become independent.of
The electric screening massp should then be given by Lo L> L —L T 108
= y k22 =LtV 52 (106)
me=2mp, (see below agyT ¢
On a finite lattice the above needs to be altered because
we expect contributions going both ways aroundzherus.

D. Monte Carlo simulations

amg(z)=In

then

amp= limamg(z). (104

Z— 0

So instead of Eq(102) we use From Eq.(106) we see that for a fixed value of the tempera-
ture in physical unitsT/g? the required volumes will be
p(®)—p(z)xe aMp?4 g~ aMp(Lz=2) (105  smallest, in lattice units, foL;=2 (sinceL;=1 is not sen-

sible). Since the perturbative properties of the domain wall

and alter Eq(103) correspondingly. can be calculated on the lattice, the minimal calculation one

Since we need to calculate the average action without aight perform is to do everything &t=2. However, in this
twist, we can also calculate the screening mass on these uoase a is as large as possible in units of T1/
twisted field configurations. Here we follow standard tech-(aT=1/L;=1/2) and since there have been suggest[@is
niques for such mass calculatiol25]. We construcpp,=0 that highT perturbation theory might break down as-0
sums of Polyakov loops at each valuezm&nd then obtain we choose to perform calculations for several valuekof
the vacuum-subtracted correlation functi@fz;—z,) as a (This will have other advantages that will become apparent
function of their separatioa=z,—z,. For large separation below) We shall cover a range of temperatures for
z we haveC(z) xexp(—amp2). We define an effective mass L;=2,3,4 and we shall perform a calculation at one reason-
amg(z) =In[C(z—1)/C(2)] and we increase until my; be-  ably high value ofT for the caseL;=6. In this latter case
comes independent aof. At this point we can estimate aT=1/6 which is surely small enough that any breakdown of
Mp=Me;. This calculation has the advantage that we carperturbation theory, aa—0, should have become promi-
prove thatmgq(z) = mgg(). In practice we modify this for- nent.
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TABLE |. Average plaquette on lattices without a twist. TABLE Il. Average plaquette on lattices with a twist.
L, B lattice No. sweeps s L, B lattice No. sweeps E
2 100.0 360 820 000 0.989989488) 2 100.0 3x 80 800 000 0.989873836)
75.0 26x50 400 000 0.986646081) 75.0 2670 400 000 0.98649345%0)
50.0 5060 400 000 0.979950686) 50.0 50< 60 400 000 0.979726365)
40X 60 240 000 0.979947187) 30X 60 200 000 0.979725421)
30X 60 200 000 0.97999495P17) 20X 60 400 000 0.9797280a1)
20x 40 440 000 0.9799515830 16X 60 400 000 0.9797262224)
16X 60 400 000 0.9799485%%01) 25.0 30<48 400 000 0.95936645)
25.0 30<48 400 000 0.95977425) 20x48 400 000 0.95936431)
20x 48 400 000 0.95977421) 12X 60 400 000 0.95944623)
12X 60 400 000 0.95977493) 12X 48 400 000 0.959368&R9)
12X40 400 000 0.95977%23) 12X40 400 000 0.95928625)
12X 30 400 000 0.95977334) 15.0 12< 36 400 000 0.93190668)
12X 26 400 000 0.95978038) 7.0 12x30 400 000 0.851911%837)
12X 20 400 000 0.95977%57) 12X 20 400 000 0.85120@274)
15.0 12<24 400 000 0.93265331) 3 112.5 40 100 650 000 0.991066424)
7.0 12x20 400 000 0.853359759 75.00 30100 350 000 0.986595885)
3 1125 4x 80 800 000 0.991096734) 30%x 80 350 000 0.986585927)
75.00 3080 360 000 0.986632535) 37.47 1860 400 000 0.9730799806)
30X 60 800 000 0.986632883) 22.45 1846 400 000 0.9548858803
30x50 196 000 0.986631977) 10.27 18& 32 400 000 0.90008%59)
24x 80 200 000 0.986632629) 4 99.97 4x 120 800 000 0.9899638D8)
18x80 200 000 0.986632587) 49.95 24X 84 800 000 0.979865239)
37.47 18<60 400 000 0.9731700126) 29.91 24X 64 800 000 0.966270286)
18x46 400 000 0.9731681030) 13.81 24X 48 800 000 0.9262449158
22.45 18<46 400 000 0.9550416204) 24X40 400 000 0.92622498371)
10.27 1832 400 000 0.90044762) 6 75.00 36<130 600 000 0.9866212E3)
4 99.97 40x 80 800 000 0.989976225)
49.95 24<60 800 000 0.9798911329) .
2991 244 48 800 000 0.966317087) been cho;en gxactly proport|0r_1al lto; fpr fche purposes of
13.81 24 40 800 000 0.9263431879) the work in this paper no particular S|gn|f|cance should be
5 62.40 30¢ 100 400 000 0.983916738) attached to these chmg)atf.we now multlply Stw ™~ Snt py the
number of plaquettes in the twisted lattice, which is the one
37.33 30<80 400000 0.973047484) containing the domain wall, we obtain a value f§; and
6 75.00 36<90 840 000 0.986625972) !

hence, from Eq(101), information onF,,. We shall see later
on what this comparison tells us about the accuracy of per-
) turbation theory.

In Table | we list the average values of the plaquette g described in the previous section, the lightest mass that
1-s,= %(trup) for the calculations without a twist. In couples to Polyakov loops is of particular interest because it
Table Il we do the same for the corresponding quantityis related to the Debye screening mass. It can be calculated
1-s,, with a twist. We show the values @8, the lattice  either from correlations of Polyakov loops in the system
sizes, the number of Monte Carlo sweeps, and the averageithout a twist or from the way the tail of the domain wall
plaguette action. In the twisted case we perform “measuremerges into the vacuum once we are far enough away from
ments” every Monte Carlo sweep; in the untwisted case evthe center of the wall. In Fig. 3 we show the effective masses
ery four sweeps. The typical number of thermalizationas obtained by the two methods. In FigaBwve have chosen
sweeps prior to taking any measurements is between 25 00fur highest value of for L;=3 while in Fig. 3b) we show
and 50 000. The errors, given in brackets, are typically basedhat one obtains for a medium value Dfwith L,=2. We
on 40 or 50 bins. In a few of the lower statistics cases we ussee that in both cases the valuesai.(z) as obtained from
as few as 25 bins. The reader will note that at some values dfolyakov loop correlations do become independent et
the parameters we have several different lattices. These arokger z, and that these “plateaux” occur early enough for
during the finite volume studies that will be described inthe errors to be very small. Since in this cawsgs(z) is
detail later on. The measurements that we list here are thosgways an upper bound amp, we can extract an accurate
that do not suffer significant finite size correctiof@d are  estimate ofmp using the first value of the effective mass that
statistically accurate enough to be usgfult the different is, within errors, on the plateau. The effective masses ob-
values ofL, we have chosen values @f such that the tem- tained from the domain walls are clearly consistent with be-
peratures, in units of?, are roughly the same, although for ing asymptotic to these mass values. However, it is equally
higherL, we are forced to cover more limited rangesTof  clear that they would give us much less accurate estimates of
(The reader may be puzzled that in some cgddsas not mp. (We would need to do fits with at least two masses,
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TABLE I1ll. Masses obtained from correlations of Polyakov
0.3 loops.
0.25 L, B lattice am,
S 0.2 2 100.0 360 0.31%7)
g 0.15 75.0 26x50 0.3524)
S o1 50.0 50< 60 0.4145)
40X 60 0.4186)
0.05 = 7 30% 60 0.4136)
0 1 1 1 1 ] I 1 1 1 20X 40 040%6)
0 5 10 15 20 25 30 35 40 45 50 16X 60 0.4105)
‘ 25.0 30<60 0.5266)
(b) 20X 48 0.5296)
0.7 — T T T T T T T 1 12X 60 0.5296)
0.6 5 § - 12X 40 0.52%7)
05 L treexz po08eT %_ 12x30 0.52@9)
= sk 0® i 12X 26 0.5339)
§ sl e® © ] 12x 20 0.52210)
S ’ ° © 15.0 1224 0.6328)
02 7 7.0 12¢20 0.7717)
0.1 F - 3 112.5 4x 80 0.218844)
0 - | N N E— | 1 75.00 30k 80 0.258653)
0 2 4 6 8 10 12 14 16 18 30X 60 0.258850)
‘ 30% 50 0.2561109)
FIG. 3. Effective masses from Polyakov loop correlatiors) ( 24X 80 0.2508126
and from the tails of domain walls{) for (a) B=112.5 with 18x80 0.251197)
L,=3, (b) B=25 with L,=2. 37.47 1860 0.335159)
18X 46 0.339966)
since there are no convenient plateaux, and so the errors on 22.45 18<46 0.39%6)
mp would be perhaps an order of magnitude greater. More- 10.27 1832 0.4844)
over the assumption that the effective masses asymptote 99.97 40x 80 0.189718)
from below, while reasonable, introduces a difficult to quan- 49.95 24<60 0.242019
tify extra systematic error.So from now on we shall only 29.91 24X 48 0.280223)
use the values ahp as extracted from Polyakov loop corre- 13.81 24 40 0.341140
lations. These are listed in Table lll, for those lattice vol-5 62.40 30x 100 0.1777)
umes which do not suffer significant finite-volume correc- 37.33 30< 80 0.222642)
tions. 6 75.00 36<90 0.154123)

To obtain the extra action of the domain wé|, at a
particular value ofg, we take the differencs,,—s,; at that

£ and multiply by the number of plaquettes on the tW'Stecjume corrections at all values of our parameters. Otherwise

lattice, which contains the domain wall. We expect that this art of theT dependence we observe miaht be due to such
extra action will be proportional to the length of the domain? b g

wall, i.e., toL,, as long a4., is not very small(This and the corrections. In this section we describe in detail how we

related question of roughening will be addressed when Wé:ontrol finite size effects. We begin with effects of finltg

discuss finite volume correctionsSo we form the quantity and then consider finite, .

S, /L, which is the extra action of the wall per unit length To establish how the finite periodicity in thedirection
(in urﬁfts of the lattice spacingIf we have values of this affects the action of the domain wall, we perform numerical

. : Iculations for a large ran f val . Since th
quantity for several values df, at a given value of3 and calculations for a large range of valueslof. Since these

L;, we can average them to obtain our best overall estimat@ffeCtS may well vary with the lattice spacing, i.e., with

In Table IV we present our final averages for this quantity\?;:els,/Lc;fLWebStegtotrrTe zﬂec\,a;ffelagfoni Zji::;:,vtce)zrglf;er;etﬂﬁe
and for the masamp, as obtained by averaging the values U pny P

2 . . - _ . B . _
given in Tables I-Ill. These will form the basic raw material T/g” Since the finite-size corrections may differ for the con

: ; : tributions that are leading and nonleadinggf/ T, we also
for our later comparisons with perturbation theory. . . ’
P P y perform the calculations for two different values Bfg? at

o . the same value of,. The parameter values and the corre-
E. Finite volume corrections sponding values 08,/L, are displayed in Table V. As we
We shall be using our values &, to test perturbation discussed previously, see H406), the natural scale for the
theory. The details of th& andL, dependence will be im- domain wall should be of the order ofalg T"?= \/BL/2.
portant in this comparison. Since the size of the domain wallThis is the scale that appears in perturbation theory &5.
varies withT, it is important that we control any finite vol- and(59), y= 7/BL,. We therefore plot in Fig. 4 the values
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TABLE IV. The action density of the domain wall per unit

length and averaged Polyakov loop masses. 014 F T T T T T ]
L, B Sw/Ly am, 0.12 - _él.? _____ & & ¢
2 100.0 0.05547483 0.3157) Ry 00[;; i o, . |
75.0 0.064096365 0.3534) S S
50.0 0.080422) 0.412325) 006 - . .
25.0 0.1177&8) 0.526927) 0.04 + -
15.0 0.161820) 0.6328) 0.02 |- + Eﬁ -
7.0 0.259829) 0.7747) 0 = 1 I !
3 112.5 0.0272898) 0.218844) 0 0.5 1 1.5 2 2.5 3
75.00 0.0334@&0) 0.257232) L./
37.47 0.0481@76) 0.337244) ) ) ]
22 45 0.06448.19) 0.3956) FIG. 4. Dependence_of the domain wall action 'den5|ty on the
10.27 0.104(25) 0.4894) (sca!ed length of the Igttlce. Plotted are t.he values in Table.V and
4 9997 0.0178@4) 0.189718) :2§t)|,mes are the leading order perturbation theory expectasiea
49.95 0.0260¢56) 0.242@19)
29.91 0.03590) 0.280223) against the unexpected, we show in Table VI some further
13.81 0.05660119 0.341140) calculations obtained for a wide range of valuesffaind
5 62.40 0.1777) T. Taking these together with the values in Tables I-IIl con-
37.33 0.2289) firms that the pattern of finite size effects we see in Fig. 4 is
6 75.00 0.0110441) 0.154123) indeed characteristic of the range blanda covered by the

calculations in this paper.
) . i Since the finite size effects appear to be insensitive to the
shown in Table V against the scaled lattice leniggthiy. We  y5ye of T, it is interesting to ask whether they can be repro-
see that to a good approximation the finite size effects argyced in leading order perturbation theory, which, after all,
indegd. just_ functions of this scaled _Iength. We also see_thap5 supposedly exact in thE=c limit. The appropriate for-
the finite size effects vary from being very large to beingmgajism is that of the “ball rolling in the inverse potential”
very small over a narrow range of valueslof/y. Indeed, 55 described in Sec. VI. To that order the finite size effects
the domain wall effectively disappears far,/y<0.8 and e functions of the scaled length/y, as can be seen from
while the corrections are still large far,/ y~0.9 to 1.1, they Egs. (85 and (86). In Sec. VIB we solved the equations
have become invisible, within our statistical errors by theanalytically in the limit of largeL,/y. In this section we
time L,/y~1.35. We therefore see that the values in Tablegglye them numerically for all,/y, and different_,, using
[I-1V, which all cprrespond to Iatt!ces satlsfylng Via(q). We note that solution does not exist if the “time”
L,/y=1.65, are effectively fo.,=. As a final precaution | after which the particle has to come back oscillating
aroundq=1/2 is smaller than the period of small harmonic
TABLE V. The action density of the domain wall as a function gscillations around this point. This gives for the minimal

of the lattice length_, for selected values g8 andL;. value ofL,, L,/y= \/71-/Tlr12=1.06 (for L,=0). This fits in
well with what we observe in Fig. 4. For larde, the cor-
P L L. Swiky rection is exponential ir_,? in this order. This would be
25 2 60 0.11840101) difficult to see given our finite statistical errors. Moreover we
48 0.1172996) know that in the full theory the correction must ultimately be
40 0.1171971) exponential inL,. From Fig. 4 we see that leading order
30 0.1179284) perturbation theory describes the observgd finite size effects
26 0.1149777) reasonably well. We also see that our criterlojf y=1.65
20 0.0694784)
50 2 60 0.0797686) TA_BLE VI. Some additional values of Fhe action density of the
40 0.0787736) domain wall, for values of , smaller than in Table II.
34 0.0716935)
30 0.0498152) L A L Sully
26 0.0173%44) 2 100.0 60 0.054988)
75 3 100 0.0334(39 75.0 50 0.0639@8)
80 0.0335232) 15.0 24 0.160@L4)
60 0.0323%®22) 3 1125 60 0.027016)
54 0.0294(35) 37.47 40 0.048636)
50 0.0235444) 4 99.97 80 0.016826)
46 0.0157744) 49.95 60 0.020548)

40 0.0064060) 29.91 48 0.035582)
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TABLE VII. Variation of the action density of the domain wall (a)
and Polyakov loop masses with the lengthof the wall. 50 T T I
B L, Ly Sw/ly am, 40 ot . .
30 - -
25 2 30 0.1176&%9) 0.5293) 3 o
20 0.1182(86) 0.5295) 0F o0 o o .
12 0.118410) 0.5296) 10 4
8 0.116215) 0.49211) 0 | | |
4 0.109121) < 0.3849) 40 60 80 100 120
50 2 50 0.080764) 0.39612) L,
40 0.4164)
30 0.0806853) 0.41010) % - (?) —
20 0.0799161) 0.4096)
16 0.0800%68) 0.38615) 15 F 4 + o+ +
12 0.0793764) 0.3759) <&
8 0.0786065) 0.3398) 8 10 oo o o o
4 0.07870179 0.27212) ,
75 3 120 0.0327(64) o il
60 0.0340¥47) 0 ] 1 1 1 !
30 0.0334728) 10 20 30 40 50 60 70
24 0.25113) L.
18 0.2517)
12 0.0330855) 0.2187) FIG. 5. The width of the domain wall as a function of the length
6 < 0.1836) of the lattice for(a) =75 andL,=3, (b) =25 andL,=2. Widths

are calculated when the Polyakov loop attains 243)(and 9/10
(+) of its vacuum value.

should be a safe one to use for all valued_pf

We now turn to the finite size effects associated with th/€CtS are in fact under control and that the values of the
transverse length of the domain wall,. If L, is smal surface tension and mass gap that we shall be using in the

enough then extra domain walls will be produced as quanturfi€Xt Section, may be regarded as having been obtained on an

fluctuations since the main factor in the suppression of do!Nfinite system.

main wall excitation is~exp(-£S,) and S,xL,. When . ‘

L, becomes sufficiently large we expect the leading correc- F. Surface tension and Debye screening mass

tion to be that due to roughening, as discussed in Sec. VIA. Even without looking at the detailed numbers in our
As we see in Eq(83) these corrections should be very small tables, there are two properties of the domain walls that are
for the parameters we use. Of course, at asymptotically larggnmediately apparent. One is that the probability of such a
L, the profile of the domain wall, defined by averaging thewall being produced at high is very small. The other is that
Polyakov loops ovey, will broaden as\/fy. For our values  the walls have a finite width. Do these qualitative features
of L, the broadening of the profile is smalee Sec. VIA  already teach us something?

To find out what are the corrections at finltg, we have Consider the finite width. This is significant because at
performed calculations for a range of valued 9t Asinour  tree level a wall would have infinite width. That is to say, the
study of theL, dependence we do so for two valueslgfat ~ width of the wall would bexL,, however large we made
the same value 6f/g? and for two values of at the same L,. One can easily see this by considering the minimum
value ofL;. These are presented in Table VII. We see thataction configuration that interpolates between the vacuum
the surface tension shows no variation with at, say, the with all Polyakov loops+1 and the vacuum with all loops
20 level except folL, =4 at3=25. Here there appears to be — 1. The fact that the walls we generate are of a finite width,
a ~4—8% reduction in the tension. This compares welli.e., independent ok, oncel, is sufficiently large, is im-
with Eq. (83) — recalling thata~6 for L,=2, although we plicit in the finite volume studies of the previous section.
should certainly not expect E¢83) to be accurate for such However, it is worth showing this explicitly. We define the
smallL, . width of the wallw(90%) as the distance, in lattice units,

However, while we see that there are no significapt from the value ofz where the Polyakov loop is 90% of its
corrections to the surface tension, this is certainly not theasymptotic value to the point where it is of the same magni-
case for the Polyakov loop maasn, . We see that not only tude but of opposite sign. As a check that there is nothing
does this mass gap show large finite size corrections for thepecial about the choice of 90%, we shall also define a width
smallest values of, but that these corrections become no-w(2/3) on the basis of 2/3 of the asymptotic value. In Fig. 5
ticeable for values ot that are not so small. In fact the we show howw varies withL, in two of the cases where we
pattern we see is consistent with a relative correction of thdénave made measurements for a wide range of lattice lengths.
form ~exp(—amplL,). What we see is that the width of the wall does not change

The extensive finite size studies we have carried out irwith increasing_, oncel ,>2w(90%), the wall does indeed
this section show that the potentially dangerous infrared efhave a finite fixed width.
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but it even works well where we have little reason to hope it

30 T T might. We shall see other instances of this later on.
The fact that wall-like quantum fluctuations are very rare
2 b s tells us that the action a wall costs is positi@po. Using
5 e Eq. (10) and noting that, for fixedL; and L,
10 J/J’/ alap~dldT becausgd=4lag®=4L,T/g?, this tells us that
e 7 (Fu)_ 2 (Lyo(D)_ "
- —| === =0.
0 L ' JT\ T ) oT\L, T2 (107
0 10 20 30
v Here we have used the definition of the domain wall surface

tension

Fyw=al,o. (108
From Eq. (107 we immediately deduce thad(T)x<T?,
where =2, ignoring possible logs. At the same time we
expect that it cannot increase faster tidnThe perturbative
value for the exponent is, as we have se&n2.5. So we see
that our qualitative observations already constrain the tem-
perature variation of the surface tension to lie in the interval

¥ 6=2.5£0.5. In the quantitative comparisons below we shall
attempt to make the comparison with perturbation theory
50 ——— () — much more precise.
Before doing so it is interesting to ask what the above
40 - T2 bound means physically. The following is a simple heu-
30 I FT ristic interpretation. Letmp be the screening mass; then the
3 L wall will have a thicknes®©(1/mp). A very crude expecta-
20 __;/'"'/ tion is thato< T3/mp . Now if mp grows faster thaf then
10 | },,«»'*"j_ it cannot be thermally excited and the whole higtpicture
Ty of a screened plasma breaks down. The statementpat

~

0
0 10 20 30 40 50 60 70

grow no faster tharrl is equivalent to our bound that
grows at least as fast ag.

We now turn to a quantitative analysis of the results dis-
played in Table IV. We recall that the leading order pertur-
bative result is

FIG. 6. Widths of the domain waldefined as in Fig. Bplotted
againsty=m(BL,)Y?for (a) L,=2, (b) L,=3, (c) L,=4. Lines are
corresponding perturbative predictions; the dotted linegcjnare
for the continuum);=. aT2.5

g

o=

(109

How does this width depend oFf? We extractv from all
our large volume calculationgessentially those listed in The important energy scale & and the dimensionless ex-
Table 1) and plot the results againgt= 7(8L,)Y?in Fig. 6.  pansion parameter on this scalg?T. Thus the above lead-
This variable, as we have seen, determines the width of thing order perturbative result should become exact in the
wall in leading order perturbation theory. As a matter of fact,T— o limit. Naively one might expect finite temperature cor-
y~w(0.97) to that order in the continuum limit, i.e., for rections to Eq. (109 to be O(g%T)—as in four
Li==. We see from Fig. 6 that for each value bf the  dimensions—but here id=2+1 there might well be loga-
width varies linearly withy, with significant deviations only rithms and the power itself might be different. We shall see
at the very lowest values &f. The lines for different., are  below that this uncertainty about the functional form of the
close to each other, but do not coincide. This is what ondeading corrections will limit the precision with which we
expects in perturbation theory, the width has to be proporean test perturbation theory. As we have seen, (EQ9) is
tional to the one scaley=2=/g+\/T, but the constant of pro- valid both in the continuum and on the lattice, except that in
portionality will suffer lattice spacing corrections, i.e., will the latter case the value of the constanwill receive calcu-
depend ormaT=1/L,. We show in Fig. 6 the lines one gets in lable lattice spacing corrections. Sintas the (largesj im-
perturbation theory. Clearly these are consistent. portant physical energy scale, we expect that the lattice spac-

The corrections to perturbation theory are governed byng corrections should depend only afi=1/L,. Moreover,
g2/ T=4L,/B. We note that for3=7 atL,=2, and for the sincea is a dimensionless physical quantity we expect, on
corresponding values oB at other values ol,, this is  quite general grounds for a pure gauge theory, that the cor-
=1. It is therefore remarkable that the calculated widths derections should b&®(a?T2)=0(1/L,?) for small enougts.
viate by no more than-10% from the leading-order pertur- The detailed perturbative calculations do in fact bear out this
bative highT expectations. It would seem that not only doesexpectation.
perturbation theory work well where we might expect it to, From Eqgs.(101), (108), and(109 we obtain
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TABLE VIII. Perturbative values of the constant, in the in-  of T. In Fig. 7 we show the complete leading order pertur-

terface tension. bative prediction and we see that its variation fits that of our
data very well. The normalization is not exactly right — but
L a the difference is small and is decreasing with increading
5 6.024 just as one would expect from a higher order correction in
3 5.655 g?/T. If we do indeed try to fit the data with a higher order
. . . 2 . . .
4 5409 correction we find that a®(g</T) correction will not work;
5 5.284 but
6 5.221 o 2\ 05
_ % 9
8 5.165 o==T 5[1+O.13(T) } (112
10 5.142 9
20 5.113 fits perfectly well. The precise power of the correction is not
o 5.104 to be taken too seriously of course; it may be an effective

power that partially simulates the effects of logarithms in our
o\ 12 limited range ofT/g? (this range being roughly 3 to 10
:a_l-y(g_) (110 We conclude from the above comparison that at tempera-
8L\ T tures T/g>=3 the T dependence ofr is very close to the
perturbative expectation of?® indeed what we find is
to leading order in perturbation theory. We have calculated-T?®. Moreover, this slight difference almost entirely dis-
the value ofa as a function ol T=1/L,, using lattice per- appears when we include the perturbatively calculaéd
turbation theory(60) and show a selection of these values incorrections toa. The remnant discrepancy, a few percent,
Table VIII. Since the lattice spacing corrections depend ordecreases a$ increases and so is consistent with being a
L;, we shall mostly examine th& dependence at fixed,.  higher order perturbative correction, as, for example, in Eq.
Indeed, we have chosen our parameters with this in mind112). Unfortunately the fact that we do not know the precise
However, before doing so we briefly take the alternative apfunctional form of this correction, prevents us from carrying
proach of varying_; at fixed 8. For this purpose it is useful out the quantitative comparison any further than this.
to rewrite Eq.(110) in the form We turn now to consider the bulk of our calculations. We
shall consider theT dependence at fixed values of
Sw a(ly) [ T\% Li=1/aT, so that the lattice spacing corrections do not vary
|__y_ ,3? 52 ' (113 with T. At the same time, by performing calculations for
several values o&T we can see whether the perturbative
Now, as we see in Table 1V, it is only fg8=75.0 that we predictions show any sign of failing as one approaches the
have a usefully large range &f, values. So we plot these continuum limit. To compare our results to the perturbative
values ofS,/L, againstT/g?=p/4L,, in Fig. 7. We use prediction we define a quantitye by
logarithmic scales so that a power dependence wall ap- 5 a2
pear as a straight line. And, indeed, the calculated values do o 213_ ﬁ
fall on a straight line to a good approximation. The slope ™ 2 L,
suggests a variation T+ which is close to the perturbative
variation of < T'5. To carry the comparison further we need As we see from Eq(111), to leading order in perturbation
to take into account the fact that in addition to the predictedheory aef(L)=a(Ly). In Fig. 8 we display our Monte
T15 behavior, there are differeafT lattice corrections at the Carlo results foray as a function o T. The perturbative

different values oL,. That is to say, the behavior predicted value ofe is also shown, as a horizontal broken line, in each
by perturbation theory is (L;) T*® and not just the power case. We observe that the calculated surface tension indeed

approaches the perturbative value Bsincreases. At the
highest values ofl the discrepancy is no more than a few

_a(FW
S\N—ﬁ T

g2

T (113

y

25 — T percent. Our data is clearly compatible with the leading per-
4 turbative result being exact in the— oo limit.
S /” 7 In Fig. 9 we plot the ratiax.«/ « for all our data. We see
235k & ] that to a good approximation it is a function only of/T.
3 i This supports the idea that the small differences we see be-
2 4k /4 - tween the full and perturbative surface tensions are in fact
A A due to higher order corrections @f/T. We note that these
45 e ' . higher order corrections are small over our whole range of
) T T. Indeed, even fog?/T~1.1 the correction is only about
1 12 14 16 18 2 22 924 25% of the leading term. Recall that this temperature corre-
In(T/g%) sponds to only about twice the deconfining temperature. It is

quite extraordinary that lowest order perturbation theory
FIG. 7. Action density of the domain walkf) for L,=2,3,6 at  Should still be so accurate at such low temperatures.
B=75. The line is a fisee text Also shown are the perturbative If we knew the functional form of the leading correction,
values () for L,=2,3,4,5,6. we would attempt to extrapolate our “measured” values to
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FIG. 8. The interface tensiofwith the factorT?%g removed;
numerical values ¢ ) compared to leading order perturbation
theory (dashed lines

T=o0. Unfortunately we do not. Il=3+1 we would ex-
pect the correction to be simplyg?/T. However, in
d=2+1 there are infrared logarithms which may also resum
into a power ofg?/T. So it seems reasonable that the correc-
tion should be some effective power gf/T that lies be-
tween 0.5 and 1 in our range ®f If we fit our data with a

form
g2 &
]

then we find that whilee=1 is excluded, powers near
£=0.65 work perfectly well, as we see in Fig. 10. The inter-
cepts of these fits are compatible with the leading order per-
turbative predictions.

The final question in this context is whether there is any
sign that this agreement with perturbation theory breaks
down as we approach the continuum limit. The above de-
tailed comparisons have involved reducing the lattice spac-
ing by a factor of 2, i.e., fromaT=1/2 toaT=1/4. As we

o
o= aTZ-E{Hc (114

1.4

1.2

o]
—

0.8

0.6

FIG. 9. Ratio of numerical and perturbative interface tensions
versus the higiF expansion paramete®/T.
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FIG. 10. Trial extrapolations to thE=« limit of the calculated
see in Figs. 8 and 9 there is no sign of any lattice spacingnterface tensions.
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FIG. 11. Ratio, at fixedT, of numerical and(leading order
perturbative interface tensions for decreasing lattice spacing

=1/LT).
(@=11.T) FIG. 13. Vacuum-subtracted local action densities within the

) ) domain wall; numerical calculations @=99.97 andL,=4, com-
dependence other than that calculable in perturbation theorygared with perturbation theorjines).

To go further we also calculated the surface tension with

aT=1/L,=1/6 at B=75. In Fig. 11 we show the value of for several parameter values. We see very good agreement
aeft/ (L) for thisL=6 point as well as for othelr; values  with the main discrepancy arising from the fact that the
at approximately the same temperaturgusing  vacuum values of Polyakov loops arel in leading order
T/g?=pB/4L,). Note that since thel dependence of this perturbation theory. This is primarily an artifact arising from
quantity is very weak, as we have seen in Fig. 8, it is nokhe fact that(¢#)=0 does not mean thacost)=1. A less
important to getT exactly the same at different values of trivial, but almost invisible difference is that the approach to
L;. Note also that this is a reasonably high valueToéit  the vacuum at large distances is Gaussian for perturbation
which to perform such a test: the deviations from leadingtheory, but exponential in the full theory.

order perturbation theory are only at the 7% level or so. We |n Fig. 13 we show some typical examples of profiles of
see from Fig. 11 that there is no significant deviation fromdifferent components of the action density. Again there is
perturbation theory with decreasing even down to very good agreement with perturbation theory.

aT=1/6. It therefore seems extremely unlikely that tiom- We turn now to the Debye screening mass,. When we
tinuumsurface tension will not be equally well described by expand the trace of the Polyakov loop the first nontrivial
perturbation theory. term is ~A,? so that we expect correlations of Polyakov

So far we have focused on the surface tension of the ddoops to receive contributions from the exchange of pairs of
main wall. However, perturbation theory also makes predicscreened electric gluons. However, as emphasizd@@lyat
tions for more detailed aspects of the domain wall, such agigher order in the coupling®/T they also receive contribu-
its profile. In Fig. 12 we show how these predictions com-tions from the magnetic gluon and larger numbers of gluons
pare with our Monte Carlo calculated Polyakov loop profilesof both kinds. The question naturally arises, which kind of

contribution are we seeing when we extract the masses dis-
played in Table III? If we expand the normalized correlation

(a) Ly=2, B=50 functionC(z) of Polyakov loop operatorB in energy eigen-
8 LU N states
0.8 -
C(z)
=06 — (—= > chexp(—Eq2) (115
= L/ l C0) 4
0217 Loy oy 4 } then the coefficients,, are just the amplitudes squared
0

. cn=|(vadP|n)|? (116

with normalizationZc,=1. From our above discussion we

1r P =] expectc, to be largest for the state with two screened elec-
08 7 T tric gluons. Of course, for large enough the correlation
= 06 . function will be dominated by the lightest energy,;, irre-
T o4k . spective of the value dof, (as long as it is nonzefpand so
02 L i we need to check whether the masses we have listed in Table
ol 4o Il do indeed correspond to states for which is large. In
0 5 10 15 20 25 30 35 40 Table IX we list the overlaps,, for the states whose masses

7 are listed in Table Ill. We provide both the overlap onto the
FIG. 12. Profile of the Polyakov loop within the domain wall best smeared Polyakov loop operator and the overlap onto
(centered az=0); numerical valuegsolid lineg and perturbation the simple, unsmeared Polyakov loop operator. We do so for
theory (dashed lings the extreme values of at each value oE;. We see that in
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TABLE IX. Overlaps of Polyakov loop operators onto the statesperturbative prediction as obtained from the first term of Eq.

coresponding to our values af, . (117). The first observation is that the dominant variation of
mp is indeed~g T2 However, there is a substantial addi-
L B Obest Opi-1 tional variation which is too strong to be due to corrections
> 100.0 0.88 0.81 that are higher order ig?/T. Indeed if we try a fit of the
25.0 0.93 0.82 form
7.0 0.98 0.90 o e
3 1125 0.84 0.79 mDZ:ng Cot+Cy gT) (118
10.27 0.98 0.89
4 99.97 0.92 0.81 . L .
13.81 097 0.86 we find that it simply does not work, even if we remove the

lowestT point from the fit. Indeed, as we see, this additional
T variation is quite similar to that obtained from Eq.17).
However, the normalization is completely off. Even allowing

all cases the normalized matrix element squareg: #9%. for the L, dependence in our values ofy, there is a dis-
Given that we expect the magnetic gluon, etc., contribution§repancy of about a factor of 3 with perturbation theory.
to receive relative suppressions that are powerg®@fr, Since the corrections in Eq117) are only logarithmic we
which is ~0.1 at our highesp values, it is clear that the cannot, of course, claim a contradiction with perturbation
masses we have obtained belong to states that have no sd@gory- However, it is worrying that there is no trend towards
suppression. We therefore claim that we can readngff & reduction of the discrepancy even at our highest values of
from Table Il usingamp=0.5amp . T, where 1/InT/g?)~0.4. This is in stark contrast to other
As we have already seen, the Debye screening mass properties of the domain wall where we found the correc-
infinite at one loop, due to an infrared divergence. ThesdOns 1o leading order perturbation theory to be small even

) . : 2

divergences go away if we use nonzero gluon masses in tHer g°/T~1.

diagrams and so one can try to do a self-consistent calcula-

tion for the massny . This has been done by D’Hokgt8] VIIl. CONCLUSIONS
who obtains

6 75.00 0.89 0.80

In this paper we have carried out extensive perturbative

and Monte Carlo calculations of the high-domain walls
, (117  which are associated with the spontaneous breaking of a
Z(N) symmetry in SUN) gauge theories. As we argued,
5. . these walls can be viewed as 't Hooft disorder loops which
where{>0. We see from Eq117) thatmp /g” is a function  pecome squeezed once the extent in Euclidean time becomes
only of T/g?. Naively we would, of course, have expected gy 4| enough, as it does at high enoughOur purpose has
mp~g\/T since, as we have seen, that is the scale for thgeen to test high perturbation theory and to establish
domain wall. And indeed this is the leadifigdependence in  \ynether these unusual objects do really exist in the Euclid-
Eq. (117, up to a weakly varying logarithm. However, the ean continuum theory. In order to be able to obtain numerical
correction term is down only by logarithms and so we mightesyits of sufficient accuracy to be convincing, we have
not be surprised to find the comparison with perturbationygrked with the simplest theory that one may consider as
theory not as good as for the properties of the domain wallyezjistic in this context, the S@) gauge theory in 21 di-
where the corrections are powersgsiT. mensions.

In Fig. 14 we plot our masses agairtg>. What we This kind of calculation is difficult for several reasons.
actually choose to plot ig,?/g°T since that way we factor First, the potential problems are infrared and it is therefore
out the supposedly dominagfT factor and so expose the crycial to make sure that the volumes used are large enough.
remaining variation more clearly. We also show the leadingrhjs means not only doing detailed numerical finite-size
studies, but also calculating the appropriate finite-volume
corrections in perturbation theory. For example, in this paper

2
Mp?=—
D o

—1+O(

( T 1
" o (in(T/mg) 2

14 Tt we have shown how one can calculate the effects of rough-
L2 o 2 1 ening on these domain walls. Second, one-loop perturbation
1k @ E= . theory becomes exact, at best, only in the lifitit-cc. Now
e ® ] L= 2 ro at fixedaT the size of the lattice will grow a$*?, in lattice
~_ 08} = Lt =3 H— ~ . . . 1/ .
2 ML J A e units, simply because the width of the wall@(1/T*?) in
06 KB & pIine d=2-+1. This makes it difficult to simultaneously get close
04 b= D’Hoker --- - to the continuum limit, wheraT is small, and to reach very
Y e | high values ofT. For this reason we have performed the
ST perturbative calculations not only for the continuum theory
0 Z | | ] L [ ] 1 . . .
0o 2 4 6 8 10 12 14 16 but also for the lattice theory. In this way we can directly
T/g? compare perturbation theory to the full nonperturbative re-

sults one gets from Monte Carlo simulations.
FIG. 14. Numerically calculated values of the Debye mass, In practice we have carried out simulations for tempera-
compared to D’Hoker’s self-consistent perturbative prediction.  tures as high as-30T., whereT, is the deconfining tem-
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perature, and for lattice spacings as small asT1/@his  1/In(T/g?) and not ofg?/T. So there is no good reason to read
comparison with 17 is appropriate, sincd is the largest too much significance into this particular discrepancy.
important physical energy scale in the problest the high- Our conclusion is that these high-domain walls are
est values ofl our numerically obtained values of the sur- present in the Euclidean theory, exactly as predicted by per-
face tension agree with the perturbative predictions at theéurbation theory, both on the lattice and in the continuum.
percent level and this is so at all our valuesaoMoreover,  Since these walls are quantum rather than semiclassical ob-
there is agreement at the 25% level or so, even at tempergects, they provide a severe testing ground for Highertur-
tures as low ag?® T~1. When we look at the variation with bation theory. Its success here lends strong support to the
a, over the range=1/2T to 1/6T, we again find excellent usual pragmatic assumption that perturbation theory reliably
agreement with perturbation theory, with not the slightestdescribes gauge theories at high temperatures.
hint of any anomaly developing as—0.
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