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We study the detailed properties ofZ2 domain walls in the deconfined high-temperature phase of the
d5211 SU~2! gauge theory. These walls are studied both by computer simulations of the lattice theory and
by one-loop perturbative calculations. The latter are carried out both in the continuum and on the lattice. We
find that leading order perturbation theory reproduces the detailed properties of these domain walls remarkably
accurately even at temperatures where the effective dimensionless expansion parameterg2/T is close to unity.
The quantities studied include the surface tension, the action density profiles, roughening, and the electric
screening mass. It is only for the last quantity that we find an exception to the precocious success of pertur-
bation theory. All this shows that, despite the presence of infrared divergences at higher orders, high-T
perturbation theory can be an accurate calculational tool.@S0556-2821~97!02802-6#

PACS number~s!: 11.10.Wx, 11.15.Ha, 11.27.1d

I. INTRODUCTION

Non-Abelian gauge theories possess many surprising as-
pects. An example is the linear confining potential present in
both the three- and four-dimensional SU(N) theories at low
temperatureT. At some finiteT there is a phase transition,
and confinement is then lost@1,2#; but this is not unexpected
because simple energy versus entropy arguments tell us that
a confining ‘‘flux tube’’ will condense into the vacuum at
some finite value of the temperature. These phenomena are
nonperturbative and have so far defied analytic, as opposed
to numerical, approaches. However, at sufficiently highT,
there would appear to be an important theoretical simplifica-
tion. All these theories are asymptotically free so that the
effective interaction on the relevant energy scale,T, should
become small at highT and the physics of the gluon plasma
should become accurately calculable in perturbation theory.
Unfortunately there are infrared divergences in higher orders
of perturbation theory, which are associated with the pertur-
bative masslessness of the magnetic gluon. Although we ex-
pect this gluon to acquire a mass through the nonperturbative
physics of the dimensionally reduced theory, this leaves
room for uncertainty about how reliable high-T perturbation
theory really is.

However, even this naive picture of gauge theories at high
T — as a weakly interacting plasma of gluons — contains
surprises. There turns out to be a symmetry associated with
the center of the group,Z(N), which is spontaneously bro-
ken at highT. Separating two differentZ(N) vacua will be a
domain wall whose properties have been calculated in per-
turbation theory forT→` @3#. However the reality of these
domain walls is controversial for a variety of reasons. First,
there are the general doubts about high-T perturbation theory
that we alluded to above. Second, all this is in the usual
Euclidean formulation of finite temperature field theories and
there is a question of what, if anything, these domain walls
might correspond to in Minkowski space time. Finally the

walls have peculiar thermodynamic properties, which be-
come more acute when one includes quarks into the theory
@4#. It is important to resolve these uncertainties not only
because of the theoretical interest of these domain walls, but
also because related structures can be associated with impor-
tant physical phenomena when one considers the standard
model in the early universe@5#.

In this paper we address the particular problem associated
with the uncertain status of perturbation theory at highT. We
shall do so by calculating the properties of the domain walls
both in perturbation theory and by a fully nonperturbative
Monte Carlo computer simulation. We shall work with the
SU~2! gauge group because the problems should not be any
different for larger groups. Moreover we shall work in 211
dimensions rather than in the more physical case of 311
dimensions. The reason is that the computational resources
needed are much less in the former case and only there can
we perform calculations with enough precision and control
to be really useful. At the same time, the origin of the infra-
red problems is similar ind5211 and ind5311, and their
severity is, if anything, greater in the lower dimensional
case.

We shall find in the calculations described below that
one-loop perturbation theory does indeed work remarkably
— even precociously — well for ourZ2 domain walls. By
implication, this provides evidence for the general applica-
bility of perturbation theory at highT.

At the same time we emphasize that we make no attempt
in this paper to address the other controversial aspects of
domain walls and so do not attempt to settle the interesting
question of their potential role in, for example, separating
bubbles of different vacua in the early universe.

We shall now outline the contents of this paper. In Sec. II
we give a heuristic introduction to domain walls and the
thermodynamics of gauge theories at high temperatures. This
will provide the general background for the more detailed
and specific calculations of the later sections. We then turn to
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the perturbative calculation, at one-loop, of the properties of
domain walls. In Sec. III we perform the calculation of the
surface tension for the continuum theory. The calculation is
by a method that easily extends to other dimensions and so,
as well as obtaining expressions ford5211, we can com-
pare with previousd5311 calculations. In order to com-
pare with our later numerical work it is useful to have similar
results for a finite value of the lattice spacinga. This calcu-
lation is carried out in Sec. IV. In Sec. V we calculate the
action density in the domain wall, as a function of the dis-
tance from the center of the wall, since this is one of the
quantities we shall later calculate numerically. In Sec. VI A
we calculate the effects of oscillations of the wall once its
length is large — the ‘‘roughening’’ of the wall, which has
been neglected in most previous studies. In Sec. VI B we
show how the finite size of the volume, in the direction or-
thogonal to the wall, affects the profile and surface tension of
the wall. This is important to understand since our numerical
work will necessarily be on lattices of a finite size. We then
turn, in Sec. VII, to a description of our simulations and the
results we obtain thereby. We begin, in Sec. VII A, by de-
scribing how we can simulate domain walls through the use
of twisted boundary conditions. In Sec. VII B we point out
that these domain walls can be viewed as ’t Hooft disorder
loops that have been squashed by the short Euclidean time
direction. Section VII C describes how we calculate the
properties of the domain wall and the electric screening
mass. Section VII D lists the large-volume raw ‘‘data’’ from
which we will eventually extract physical quantities. Section
VII E describes in detail how we control finite volume ef-
fects. This is crucial since the potential problems with per-
turbation theory are infrared ones. Finally, in Sec. VII F we
compare our numerical results with those of perturbation
theory. Section VIII contains our conclusions.

Our theoretical analysis, in Secs. III to VI, is performed
for the general case of SU(N) gauge fields in 2,d<4 di-
mensions. Our numerical results, on the other hand, are for
the particular case of SU~2! gauge fields ind5211. The
preliminary results of this study appeared in the Proceedings
of the 1994 Lattice Conference@6#. A study of the case of
SU~3! gauge fields ind5211 has recently been reported
@7#. Both the SU~2! and SU~3! results are in agreement with
our theoretical analysis. In addition both show the same large
deviation from D’Hoker’s self-consistent formula for the
Debye mass.

II. GENERAL CONSIDERATIONS

In 211 dimensions the gauge couplingg2 is dimensionful
and its value sets the mass scale for the theory. If we perform
a perturbative calculation of a quantity in which there is a
dominant momentum scaleQ then the effective expansion
parameter will clearly beg2/Q so that the theory rapidly
becomes free at short distances. So at highT the effective
expansion parameterg2/T will be small and we can expect
that we should be able to apply perturbation theory. All this
is very similar to the case in 311 dimensions. There the
coupling is dimensionless but this difference is only appar-
ent: the scale invariance is anomalous, the coupling runs and
its value only serves to set the overall mass scale~dimen-
sional transmutation!. The coupling becomes small at short

distances, so that its value at high temperatureg2(T) should
be small enough for us to apply perturbation theory. In other
ways the two theories are also similar: numerical simulations
@25# show that thed5211 theory has linear confinement, a
deconfining temperatureTc , and a glueball spectrum that are
similar in many ways to that of the theory in 311 dimen-
sions.

So we expect a hot gauge theory to be, to a very good
approximation, a plasma of free gluons, with interactions
given in terms of the small effective coupling at the ambient
temperatureT. These gluons are screened just as are photons
in a plasma of charged particles. The Debye screening mass
mD that they acquire grows withT; to lowest orderm2

D is
O(g2) so we expect, on purely dimensional grounds, that
mD;g(T)T in d5311 andmD;gT1/2 in d5211.

However, this simple picture is not the whole story. An
additional and important role is played by the centerZ(N) of
the gauge symmetry group SU(N). This subgroup has a spe-
cial status because the gluons, which transform according to
the adjoint representation, are invariant under gauge transfor-
mations that belong to the center. Since the gluons only feel
SU(N) gauge transformations modulo anyZ(N) transforma-
tion, their symmetry group is really SU(N)/Z(N). Sources in
the fundamental representation, on the other hand, are not
invariant under transformations inZ(N). Consider such a
heavy source in the usual Euclidean space-time formulation
of the high-T field theory where the Euclidean time is peri-
odic with period 1/T. As is well known the presence of such
a static heavy source leads to an extra factor of
P[(1/N) trPexp$i*A0dt% — a Polyakov loop — in the par-
tition function. In the low-T confining phasêP&50 while at
high T u^P&u.1. Since the gluons are screened, the correla-
tions are short range at highT and so if, for example,P is
close to 1 at one point, the vacuum will haveP.1 every-
where. But theZ(N) symmetry tells us that there must be
N such vacua, in each of which the physics is identical, and
which are differentiated byP being close to one of theN
complexNth roots of unity. The picking of one of these
vacua corresponds to the spontaneous breaking of the sym-
metry. That the spontaneous breaking takes place at highT
rather than at lowT is remarkable but not impossible; it is,
for example, commonplace in~self-!dual theories.

As soon as we have spontaneous symmetry breaking we
have the possibility of domain walls which will occur at the
interface between two of the vacua.~Throughout this paper
we shall call these objects ‘‘walls’’ and will speak of their
‘‘surface’’ tension, even though the interface is really a
string when we are in two spatial dimensions. This is to
avoid confusion with the confining string.! In the case of
interest to us, SU~2!, such a domain wall would separate
regions of our Euclidean space-time volume that are charac-
terized byP.11 on the one side andP.21 on the other.
One can compute the free energy density of the wall for
small coupling and one indeed finds a positive excess over
the free energy of the gluon plasma.

Thus we have a picture of the gluon plasma that parallels
that of a ferromagnetic substance below the Curie tempera-
ture: the average of the Polyakov loop, which arises from the
heavy fundamental source, being the order parameter. But
what is the analogue of the external field? Such a field is
needed in order to make the system choose a particular di-
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rection of magnetization on a macroscopic scale. Without
such an analogue one cannot trigger a thermodynamical state
where our order parameterP takes the value11 or one
where it takes the value21.

As we remarked in the Introduction, the ‘‘reality’’ of
these domain walls is controversial. Of course, the walls
have been observed@8# in (d5311) Monte Carlo simula-
tions of the theory, but this has only been for large lattice
spacings, and there have been speculations that the walls
would not survive into the continuum limit@9#. In this paper
we shall address the question of whether these domain walls
do indeed exist in the continuum limit and, more specifically,
whether high-T perturbation theory is reliable. But first, in
this section, we introduce the basic framework within which
we work.

A. Yang-Mills fields: the basic parameters

We consider a pure SU(N) gauge theory in 2 or 3 space
dimensions. We will concentrate in this subsection on the
thermodynamic quantities that one can define by enclosing
the system in a box of sizeLyLz . ~For the three-dimensional
case we add anx direction.! The Hamiltonian for this system
reads

Ĥ[
1

2ExtrS g2Ê21
1

g2
B̂2D , ~1!

where Ê is the canonical momentum forÂ and
B̂mn[]mÂn2]nÂm1 i @Âm ,Ân#. We use the standard nota-
tion for the fields asN3N matrices in the Lie algebra of the
defining representation of SU(N).

We introduce the free energyF of the system in a heat
bath at temperatureT through the Gibbs trace over the physi-
cal states of the system. By ‘‘physical’’ we mean that the
states obey the Gauss constraint

~¹Ê1 i @Â,Ê# !uc&50. ~2!

The free energy is defined by

expS 2
F

TD 5TrphysexpS 2
Ĥ

T D . ~3!

As is well known, the Gibbs trace can be related to the Feyn-
man path integral by

TrphysexpS 2
Ĥ

T D 5E DA0DAexpH 2
1

g2
S~A!J . ~4!

Here the integration overA0 implements the Gauss law, the
actionS(A) is equal to (1/4)*dxdt trFmnFmn , and the tem-
perature enters the formalism through the fact that we make
the potentials periodic in the Euclidean timet with period
1/T. The relationship~4! is fundamental in that it allows us
to calculate the free energy using the whole panoply of meth-
ods available for calculating path integrals; such as perturba-
tion theory~see Secs. III and IV! and Monte Carlo methods
~see Sec. VII!.

Throughout this paper we suppose the potentials to be
periodic in the spatial directions. However, this does not

mean that any gauge transformationL has to be periodic,
only that it should be periodic modulo an element,
zk5exp$ik(2p/N)%, of the centerZ(N) of SU(N). That this is
so is easily seen from the transformation properties of the
potential:

Am
L5L†AmL2 iL†]mL. ~5!

If sayL(Lz)5L(0)zk , then thezk will commute with all the
matrices in Eq.~5! and so will disappear from the right-hand
side, leaving the transformed potential still periodic@10#. We
shall denote such gauge transformations byL̂k . If
k5(ky ,kz) then this is a gauge transformation which is pe-
riodic up to zky in the y direction and up tozkz in the z
direction.

The interest of these extended gauge transformations lies
in two facts: they leave the Hamiltonian~1! invariant; they
serve to distinguish subspaces, in the space of physical
states, which possess a given number,ey andez , of electric
fluxes in they and z directions, respectively. Clearly this
distinction is moduloN.

The above notion of electric flux is developed in detail in
@10#. The following remarks represent no more than a heu-
ristic outline. Suppose first that we have opposite fundamen-
tal sources atx1 andx2. To make this system gauge invariant
we need to join the sources by a finite string
P exp$ i*x1

x2Âdx% running between them. Such a string opera-

tor creates the unit fundamental~electric! flux that must flow
between the sources. Suppose we are now in the purely glu-
onic system with no sources and suppose we wish to add a
unit of electric flux across the whole volume, running in the
z direction. From the above we expect that we can do so by
applying to our state the periodic string operator
trP exp$i*0

LzdzÂz%. Unlike a contractible string operator loop,
which would represent some local excitation, this operator
will clearly feel the center element of the gauge transforma-
tion L̂k if kzÞ0. Indeed it is easy to see that it will acquire a
factor ofzkz. If we create a state withn such units of electric

flux in the z direction, then it will acquire a factor of
(zkz)

n. So if we label a state with electric fluxe5(ey ,ez) by

ue&, it will be an eigenstate ofL̂k with eigenvalue
exp$ik–e(2p/N)%, ~assuming trivial transformation proper-
ties for the fluxless stateu0&). Clearly the state withN11
fluxes has the same transformation property as that with 1
unit of flux; as one would expect in a non-Abelian theory.

Since the Hamiltonian is invariant underL̂k , the energy
eigenstates can be simultaneously labeled bye and we can
define a free energyFe by restricting the Gibbs trace in Eq.
~3! to a given electric flux sector:

expS 2
Fe

T D 5TreexpS 2
Ĥ

T D . ~6!

With this definition relation~3! can be rewritten as@10#

expS 2
Fe

T D5
1

Nd21(
k
expH 2 ik–e

2p

N J Zk , ~7!

where
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Zk[TrphysexpS 2
Ĥ

T
L̂kD . ~8!

The Gibbs tracesZk in Eq. ~8! can be expressed as
‘‘twisted’’ path integrals and can be computed using Monte
Carlo methods. These path integrals have the following de-
fining property. Suppose, for example, thatk5(0,kz). Then
due to the occurrence of the transformationL̂k in Eq. ~8! one
picks up a factor of exp$ikz2p/N% in the gauge transform
relating Am(t,y,0) to Am(t,y,Lz) and Am(0,y,z) to
Am(Lt ,y,z), after going around the boundary of the box in
the z-t directions. This multivaluedness does not affect the
gluon fieldAm . In Sec. VII we will perform Monte Carlo
simulations of such a twisted partition function.

B. The two important parameters: string and surface tension

Now we are ready to give a thermodynamic characteriza-
tion of the various phases of the gauge theory, through the
behavior of the flux free energiesFe as the temperature is
varied. To obtain simple formulas we will restrict ourselves
to SU~2!, but the end results will be valid for any SU(N).
The interesting quantity is the flux free energyF01 in the
elongated direction. We want to compare it to the flux free
energyF00 and see how the difference behaves for low and
high temperatures. This is straightforward using Eq.~7! for
the flux free energies. But we still need some theoretical
input on how the twisted functionals behave. What one finds
for low T is that1

12
Z01
Z00

5C expS 2
r~T!

T
LzD , ~9!

while 12(Zky1 /Z00) is exponentially smaller for any

kyÞ0. On the other hand, for high enoughT one finds

Z015D expS 2
s~T!

T
LyDZ00 ~10!

andZky1 is exponentially smaller for anykyÞ0. TheC and

D are some pre-exponential factors. The evidence for Eqs.
~9! and~10! comes from Monte Carlo simulations, as well as
analytic Hamiltonian analyses of gauge Potts models@11#.
So one gets, for the free energy difference,

F012F00;r~T!Lz , if T is small, ~11!

F012F00;LzexpH 2
s~T!

T
LyJ if T is large. ~12!

Clearly what Eq.~11! is telling us is that at low temperatures
we are in a confining regime, where imposing unit electric
flux across the lattice costs us an energy that is proportional
to the length traversed by the flux; and the tension of this
flux ‘‘string’’ is r. So the free energy difference becomes
very large at largeLz , but is insensitive to the transverse

spatial dimensions. At some critical temperatureTc this be-
havior changes into that of Eq.~12!. The free energy differ-
ence now becomes exponentially small with the transverse
size. This behavior suggests that there is a wall, with an
energy density independent of the transverse direction, and a
total energy proportional tos. This quantity has been com-
puted in a semiclassical approximation@3,12# at very high
temperatures, where perturbation theory should apply. The
purpose of the present study is to check the validity of this
approximation using Monte Carlo methods.

The way the surface tension enters the free energy differ-
ence is through the exponential. This was first noticed by
Bhattacharyaet al. @13# and was recently discussed in a
Z(2) gauge model@14#. It is reminiscent of an energy dif-
ference induced by tunneling. As we will see in the next
section this is indeed a tunneling through a potential that
arises from quantum one-loop effects.

C. Effective action and Polyakov loops

As we have seen above, the fundamental quantity of in-
terest is the ratio of twisted path integralsZk . These are
computed by converting from the vector potentials, as inte-
gration variables, to Polyakov loops:

V~x![P expH i E
0

1/T

dtA0~ t,x!J ~13!

and by integrating out the remaining variables to get an ef-
fective action forV(x). In a suggestive notation

exp$2Seff~V!%5E DAdFV2P expH i E
0

1/T

dtA0J G
3expH 2

1

g2
S~A!J . ~14!

The reader, in looking at this equation, should keep in mind
that only the eigenvaluesl i of the loopV are gauge invari-
ant. So it is only these that should appear in thed function
constraint and inSeff . Note also the relation betweenV and
P:

P5
1

N
trV5

1

N(
i

l i . ~15!

TheSeff has been worked out@13,12,15# to two-loop order in
the d5311 case. In Sec. III we will derive the one-loop
result for anyd, and in particular for the case of interest in
this paper,d5211.

It is important to note that the effective action does not
depend on the boundary conditions if the volume is large
enough. It is also easy to see that the twistk5(0,kz) of the
previous section corresponds to the following boundary con-
ditions in the effective theory forV(y,z):

V~y,Lz!5expH ikz2p

N J V~y,0!. ~16!

With such boundary conditionsZk is given by

1The reader should keep in mind that the subscripts ofZ denote
the amount of twist in the boundary conditionsk, while the sub-
scripts ofF — the electric flux quantum numbere @see Eq.~7!#.
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Zk5E
~k!
DV exp@2Seff~V!#. ~17!

We also note that the path integral has a formal resem-
blance to that of a spin model partition function. The effec-
tive action, when evaluated in perturbation theory, will start
with a classical kinetic term. The first nonzero contribution
for constantV(x) appears at one loop. So to this order we
can write

Seff~V!5E
x
trF T

2g2
u¹Vu21Veff~V!G . ~18!

At high T the coefficient of the gradient term is large and we
can expect that the path integral will be saturated by smooth
configurations of Polyakov loops. We shall see in the next
section thatVeff reaches its minima when allN eigenvalues
of V coincide. Due to a condition detV51 there areN such
minima: VPZ(N). The order parameter distinguishing be-
tween theseN degenerate phases is the value of the Polyakov
loop P Eq. ~15!. TheZ(N) symmetry in the effective theory
of Polyakov loops is due to the existence of gauge transfor-
mations which are periodic in the Euclideant direction up to
an element ofZ(N): L(1/T)5L(0)zk . These transforma-
tions leaveS(A) invariant but multiply Polyakov loops by
zk .

In spin model language, we are in an ordered phase when
T is large. This is a phase in which the entropy of the spin
system is low. However, the spin system is, at the same time,
supposed to be describing a very hot gauge system with a
large entropy in terms of quantum states. It is this comple-
mentary feature of the spin and gauge systems, that has given
rise to a lot of confusion in the past few years. For example,
one can ask the following question: what is the meaning of a
localized surface in the spin model in terms of the gauge
model? In this paper we will not go into this question, but
take the pragmatic point of view that we just want to calcu-
late the exponent in the decay law~12! for the hot fluxes.
Nonetheless, one should bear in mind, that if one does as-
sume the existence of a well localized interface, this leads to
unusual thermodynamic properties, as we shall see below.

D. Some thermodynamic properties
of the wall in gauge theory

The study of surface effects requires a careful specifica-
tion of boundary conditions. Only when that is done can we
separate the free energy of the system into well-defined bulk
and surface free energies. Let us suppose we have in our
two-dimensional ‘‘box’’ a domain wall, separating two do-
mains. Then the free energyF will be for largeLy andLz

F5 f LyLz1sLy . ~19!

Here we assume that the size of the box is much larger than
any of the microscopic quantities in the system.

What this equation describes is simply a wall with a con-
stant free energy density in they direction, and a nontrivial
free energy profile in thez direction. When integrated over
z, this profile gives the interface tensions. This profile is
like a soliton.

In our three-dimensional SU~2! gauge theory we have a
dimensionful coupling constantg, with dimensionAmass.
The only other dimensionful quantity in our problem is the
temperatureT. We will typically work in the regime where
g2/T is a small number. So on the basis of dimensions alone
the interface tension has a simple form

s5a~g2/T!T2 ~20!

with function a positive and dimensionless. We can apply
semiclassical methods to calculatea. These methods typi-
cally give, when applied to solitons such as monopoles and
sphalerons,

Esol;
scale

coupling
~21!

for the energyEsol in terms of the scale~Higgs expectation
value!. So it is not surprising that we obtain, as described in
detail in the next section, a similar result for our profile

s5a0

T2

~g/AT!
5a0

T5/2

g
, ~22!

where a is a numerical factor of geometrical origin. The
expression~22! can be easily understood if one realizes that
the domain wall has a widthw of the order of the screening
lengthw;1/(gT1/2), carries an excess of free energy density
D f;T3 ~i.e., of the order of the average energy density in
the gluon plasma! and thats;wD f .

We are now ready for the following thermodynamical ob-
servations. First consider a droplet of radiusR of ‘‘minus’’
phase in a sea of ‘‘plus’’ phase. The free energy excess due
to the presence of this droplet equals

DF52pRs. ~23!

Now, the probability for the appearance of such a droplet is
exp$2DF/T%. From the explicit dependence ofs on T we
learn that this probability becomes exponentially small for
large T. So we find that an ordered phase prevails at high
temperature.2

The second observation is a simple consequence of the
positivity and the explicit temperature dependence of the in-
terface tension. The interface entropy equals

entropy52
]

]T
s52

5

2
a0

T3/2

g
. ~24!

So the interface entropy is negative. The thermal energy as-
sociated with the interface is also negative. However, the
free energy (5energy2T3entropy) is positive. Such a
negative interface entropy is to be expected quite generally
for models that order at high temperature: the free energy
starts togrow at the critical temperature, and consequently

2A study of discrete gauge models reveals the same phenomenon:
they can be mapped onto a two-dimensional Ising model with a
coupling; lnT for T large. That is, forT large both models start to
order.
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the entropy is negative. So the presence of the wall dimin-
ishes the entropy of the system.

III. CONTINUUM CALCULATION

In this section we calculateSeff , the surface tension and
the profile of the order parameter~Polyakov loop! of the
Z(N) wall. When the temperature is high the effective gauge
coupling becomes small and one can use perturbation theory
to calculate the effective action~18!. This has been done by
several authors@16,17# for d54. Here we derive similar re-
sults ford53. Our method is simpler and is trivially gener-
alized to arbitraryd. The lattice version of these results is
presented in Sec. IV.

We start from the partition function of the pure gauge
theory at finite temperature:

Z5E DAm expH 2
1

4g2E0
1/T

dtE
x
trFmnFmnJ

5E DA0DA expH 2
1

2g2E0
1/T

dtE
x
tr@~]0A1DA0!

2

1B2#J . ~25!

We use some obvious short-hand notations. The gauge po-
tentials: Am[ iAm

aTa and the Hermitian generators of the
SU(N) group are normalized as trTaTb5dab. The covariant
derivative is

DA0[¹A01 i @A,A0#. ~26!

Bold symbols denote vectors (d21 components!. The ex-
ception is B which is an antisymmetric tensor
@(d21)(d22)/2 components#

Bik5] iAk2]kAi1 i @Ai ,Ak#. ~27!

In contrast to@16,17# we do not begin by fixing the gauge.
First we rewrite the partition function in the form of an in-
tegral over physical fluctuations at very highT. These are the
transverse components of the vector potentialA. To achieve
this we integrate overA0 which is clearly an auxiliary field.
For every given configurationA(x,t) we can do this easily:
the integral is Gaussian. We obtain

Z5E DA det~2D2!21/2

3expH 2
1

2g2E0
1/T

dtE
x
tr@~]0A2DD22D]0A!21B2#J .

~28!

Thus far our manipulations have been exact. Now we use
the smallness ofg. In the leading order ing ~saddle point
approximation! we need to keep only terms quadratic inA in
the exponent and can neglect the pre-exponent. As expected
the effect ofA0 is to project out the longitudinal fluctuations
of A from the kinetic term in Eq.~28!. TheB2 term does not
contain them already. We see that the integral overA factor-

izes into integrals overd22 ~timesN221) transversal fluc-
tuations and a trivial infinite factor.

Each of these integrals represents a very well-known par-
tition function of the photon gas, the logarithm of which is

lnZ05~d22!ln det~2]0
22¹2!21/2

52~d22!E Vdd21k

~2p!d21 ln~12exp$2uku/T%!, ~29!

whereV is the volume of space. Thus we obtain the Stefan-
Boltzmann law for the free energy density of the hot gluon
gas~with a multiplicity of ‘‘photons’’ N221):

F52~N221!
T

V lnZ052cTd, ~30!

wherec is

c5~N221!~d22!
G~d/2!

pd/2 z~d!. ~31!

Next, we want to find the dependence of the free energy
density on the value of the Polyakov loop. To this end we
calculate the partition function~25! about a constant back-
ground fieldA0. We make a shift:A05A081A0 and integrate
overA08 . This results in simply replacing]0A with

]0A1 i @A0 ,A# ~32!

in Eq. ~28!. For a given matrixA0 there will be at least
N21 generators that commute with it~‘‘neutral’’ ! and at
mostN(N21) that do not~‘‘charged’’!. The ‘‘charges’’ are
given byqi2qj , whereqi are the eigenvalues of the matrix
A0 /(2pT). These are related to the eigenvaluesl i of the
Polyakov loopV ~13! by: l i5exp$i2pqi%. The contribution
of ‘‘neutral’’ bosons is unchanged by Eq.~32! and is still
given by Eq.~29!. The partition function of the ‘‘charged’’
gluons is given by

lnZq5~d22!ln det@2~]01 i2pqT!22¹2#21/2

52~d22!E Vdd21k

~2p!d21 ln~12exp$2uku/T1 i2pq%!,

~33!

where q5qi2qj . The periodicity inq reflects theZ(N)
symmetry.

Following @13# we chooseq15•••5qN215q/N. Only
N21 eigenvalues are independent( iqi50 and thus
qN5q/N2q. As q varies from 0 to 1 the Polyakov loop

P5
1

N
tr expH iTA0J ~34!

changes from 1 to exp(i2p/N). In the SU~2! caseq param-
etrizes the only path between the two minima of the effective
potential for the Polyakov loop. In SU~3! it parametrizes the
lowest action path@12#. It is possible that it does the same for
N.3.

With our choice ofA0 there are (N21)2 ‘‘neutral’’ glu-
ons and 2(N21) gluons with ‘‘charges’’ equal to6q. The
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free energy density as a function of the Polyakov loop order
parameter~parametrized byq) is now given by

F~q!52cTd1V~q!Td. ~35!

All the dependence onq comes from the ‘‘charged’’ gluons
and is given by the universal function

V~q!522~N21!~d22!E dd21k

~2pT!d21

3 ln@12exp~2uku/T!~12cos2pq!#

52~N21!~d22!
G~d/2!

pd/2 (
n51

`
1

nd
~12cos2pqn!.

~36!

For d54 this function is expressed via the Bernoulli poly-
nomialB4(q). For d53 only a numerical evaluation is pos-
sible.

For q varying slowly on the scale of 1/T one can use the
tree expression for the gradient term@12#. Then the free en-
ergy density reads

F~q!5
N21

N S 2pT

g
¹qD 21@V~q!2c#Td

[TdFg2

2
~¹q!21V~q!2cG , ~37!

where we defined a dimensionful parameterg

g5AN21

N
A 8p2

g2Td22. ~38!

This completes the calculation ofSeff of Sec. II C:
Seff5*xF/T.

The profile of the wall between phases withq(2`)50
and q(`)51 is given by the functionq0(z) which mini-
mizes~37! under corresponding boundary conditions. It sat-
isfies

g
dq~z!

dz
5A2V~q!. ~39!

The width of the wall is controlled byg: w;g
;1/(gTd/221). The exact solutionq0(z) for d54 is known
@12#. For d53 we solve Eq.~39! numerically. The surface
tensions is given by the integral of the excess of the free
energy density inside the wall and is proportional to the ac-
tion on the trajectoryq0(z):

s5TdE dz2V@q0~z!#5gTdE
0

1

dqA2V~q!5a0

Td/211

g
,

~40!

where we defined

a0[4pAN21

N E
0

1

dqAV~q!. ~41!

For d53 andN52 we find using Eq.~36! a055.104.

An interesting property ofd53 is that the second deriva-
tive of V(q) diverges atq50 mod1 @see Eq.~36!#. In fact,
V(q)}q2ln(1/q) rather thanq2 for small q. One can see
from Eq. ~39! that this results in a Gaussian rather than ex-
ponential falloff in the tails of the solution. This is related to
the fact that the Debye mass in the Thomas-Fermi approxi-
mation is divergent ind53 if the charged particles are mass-
less, the well-known*dk2/k2. On the other hand, D’Hoker
argued @18# that all infrared divergences in three-
dimensional QCD at finite temperatureT ~QCD3

T) are cut off
by a Debye massmD of ordergAT ln(T/g2) @see Eq.~117!#.
This means that the fast Gaussian falloff should saturate at
the exponential whenq gets small enough (2pqT!mD),
i.e., sufficiently far from the center of the wall.3 This behav-
ior of the tail does indeed occur in our Monte Carlo study
~see Sec. VII E!.

IV. LATTICE VERSION OF THE INTERFACE TENSION
CALCULATION

To compare numerical lattice data with theory requires a
lattice version of the calculation of the previous section. In
this section we develop a one-loop expression on a lattice
with Lt sites in the temperature direction and an infinite num-
ber in all space directions. Quantities computed in this sec-
tion are the effective potential, the profile of the wall, and the
surface tension. In Sec. V we calculate the expectation val-
ues of electric and magnetic plaquettes. In Sec. VI the reader
will find estimates of finite size corrections. In the dimen-
sionality we are interested in we have to go to higher loops
to get a finite Debye mass. We follow to this end the ideas of
D’Hoker @18#, which amount to a very simple prescription.

Let us first fix our notation. The continuum action of Sec.
III becomes on the lattice@19#

1

g2
Scont→bSlat5b(

p
ReF12

1

N
trUpG . ~42!

Here every plaquettep is summed over only once; in con-
trast to the continuum action where the sum overm,n in-
cluded both orders.

The lattice spacinga is related to the temperatureT by

aLt5
1

T
~43!

which follows immediately from the fact that the length of
the system in the fourth direction is 1/T.

The lattice action should become the continuum action in
the limit where the dimensionless quantityaAm becomes
very small:

UP;exp$ ia2Fm,n%. ~44!

The lattice coupling becomes, in that limit,

b

2N
5
ad24

g2
~45!

3This happens, however, beyond the applicability of our formulas
for q(z).
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or

b

2N
Lt
42d5

T42d

g2
. ~46!

This is the relation between lattice and continuum param-
eters in any number of dimensionsd. Ford54 all reference
to dimensionful properties drops out. Perturbation theory is
defined by taking the dimensionless parameterg2T42d small,
or b large at fixedLt .

First we need a definition of the surface tension on the
lattice. This can be done by taking the lattice analogues of
twisted and untwisted boxes and their corresponding parti-
tion functions. This corresponds precisely to the way we
measure the surface tension on the lattice~see Sec. VII!:

expH 2
s

T
Ld22J [

Z~ twisted!

Z~untwisted!
. ~47!

Although our aim is to study a continuum theory, all our
Monte Carlo results come from a lattice with finite lattice
spacinga. The value ofa has a meaning only in comparison
with physical length parameters. For our system there are
two such parameters: the inverse temperature 1/T and the
Debye length, or the width of the wallw. The width
w;1/(gTd/221) is large compared to 1/T for smallg. To the
order we are interested in we can neglect corrections due to
finiteness of the ratio ofw over 1/T or a. We choose large
b so that the ratiow/a is big, 10220, and we neglect cor-
rections due to its finiteness.4

However, to save computer time we choose to keep the
ratio of 1/T to a relatively small. This ratio is the number of
lattice sites in the temporal direction:Lt . To compare with
our Monte Carlo~MC! data we calculate the quantities dis-
cussed in Sec. III forany Lt to the leading order ing.

To achieve this we notice, that to the order we are work-
ing in we have a theory of free gluons interacting only with
the background. All path integrals are Gaussian and factorize
into integrals over momentum modes. We need only to sub-
stitute the lattice periodic momenta for continuum ones

ki→
2

a
sin
aki
2

[ k̂i ; ~48!

k012pqT→
2

a
sina

k012pqT

2
[ k̂0~q!. ~49!

The lattice momentum varies inside the Brillouin zone:
2p/a,ki,p/a. The componentk0 is discrete and takes
values: 2pTn, n50,1, . . . ,Lt21.

The partition function for a ‘‘charged’’ gluon normalized
by the ‘‘neutral’’ one is given by

ln
Zq
Z0

52
d22

2 H ln detF2 k̂0~q!22(
i
k̂i
2G

2 ln detS 2 k̂0
22(

i
k̂i
2D . ~50!

We use the proper time trick to calculate Eq.~50!. To sim-
plify formulas we work in lattice unitsa51. The right-hand
side ~RHS! of Eq. ~50! becomes

d22

2

V
T(k0 E

2p

p

)
i

dki
2pE0

`dt

t FexpH 2F k̂0~q!21(
i
k̂i
2G tJ

2expH 2S k̂021(
i
k̂i
2D tJ G . ~51!

To rewrite the sum overk050,2pLt , . . . ,2p(121/Lt) ~re-
member thatT51/Lt in our units! we use the Poisson sum-
mation formula, which for a functionf (k0) periodic with a
period 2p has the form

(
k050

2p~121/Lt!

f ~k0!5 (
n52`

` E
2p

p dk0
2p

eiL tnk0f ~k0!. ~52!

We substitute Eq.~52! into Eq.~51!, shift the variablek0 and
obtain, for lnZq /Z0,

d22

2

V
T (

n52`

` E
2p

p

)
m

dkm

2p E
0

`dt

t FexpH 2S k̂021 iL tnk0

2 i2pqn1(
i
k̂i
2D tJ 2expH 2S k̂021 iL tnk01(

i
k̂i
2D J G .

~53!

Integration overkm produces modified Bessel functions

I n~2t !5E
2p

p dk

2p
exp$2t cosk1 ink%, ~54!

and t can be rescaled after that. Finally, we obtain the ex-
pression which replacesV(q), Eq. ~36!, at finiteLt :

Vlat~q!52~N21!~d22!Lt
dE

0

`dt

t (
n51

`

e2dtI nLt
~ t !

3@ I 0~ t !#
d21~12cos2pqn!. ~55!

It is instructive to see how the continuum limitLt→`
~i.e., aT→0) is recovered. For largen and larget*n the
Bessel function behaves as

e2tI n~ t !'
1

A2pt
expH 2

n2

2t J and e2tI 0~ t !'
1

A2pt
. ~56!

Only larget of order (nLt)
2 will contribute to the integral in

Eq. ~55!. After rescalingt by (nLt)
2 and integrating we get

the same expression as in Eq.~36!.
The variation ofq with z can be also taken into account.

The gradient term on the lattice becomes

4We study the corrections due to the finiteness ofLz /w in Sec.
VI B.
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g2

2
@q~z11!2q~z!#2, ~57!

so that the profile Eq.~39! is replaced with

q~z11!5q~z!1A 2

g2Vlat~q!, ~58!

where, similarly to the continuum case,

g258p2
N21

N

T22d

g2
54p2

N21

N2 bLt
d22 . ~59!

The interface tension is given by an expression similar to Eq.
~40! except fora0 being replaced by its lattice version

a54pAN21

N E
0

1

dqAVlat~q!. ~60!

V. ACTION DENSITY PROFILES

An important quantity that we measure on the lattice is
the expectation value of the plaquette action. In the con-
tinuum limit this corresponds tôE21B2&, where the Euclid-
eanE is

E52]0A2DA0 . ~61!

We also measure separately the expectation values of the
plaquettes of each orientation, which correspond to^Ey

2&,
^Ez

2&, ^B2& in our d53 case.
An interesting result that we find in our Monte Carlo

study is that these expectation values display nontrivial pro-
files, correlated with the position of the domain wall. One
expects that at highT a perturbative calculation of these
quantities is possible. In this section we perform such a
calculation.5

We start again with the partition function~25! on a con-
stant backgroundA0. At high T the effective interaction is
weak and we apply a saddle point approximation. We write

Z~A!5E DAmexpH 2
1

2g2E0
1/T

dtE
x
~E21B2!J , ~62!

where we linearizeE andB:

E52]0A2 i @A0 ,A#2¹A0 ;B5¹3A. ~63!

We have already calculated the integral~62! in Sec. III:

Z~A![Z~q!5expH 2Td21E
x
@V~q!2c#J . ~64!

Now, to find the action density profiles we want to calcu-
late things like^E2& and ^B2&, where the average is under-
stood in terms of the probability distribution given by the
integrand in Eq.~62!. These averages depend onA, or q. The
easiest way to calculatêE2& is to introduce a parameter, say

e, in front of this term in the exponent, do the integral and
differentiate the logarithm of the result overe. We shall do
this shortly, but before that let us improve a bit on the for-
mula ~64!. What we need to include is the contribution of
zero point energies of the modes of the fieldsA. This con-
tribution does not depend on the temperature and is not
present in Eq.~64!, but it gives an overwhelmingly dominant
contribution to^E2& and^B2&. Indeed, this contribution is of
order (1/a)d, wherea is the lattice spacing~the UV cutoff!,
and is much larger thanTd—the thermal contribution. To see
what we are missing consider calculating^E21B2& from Eq.
~64!. For that one needs only to differentiate~the logarithm
of! the right-hand side over (1/g2). But the right-hand side
does not depend ong! This means that the quantity
^E21B2& ~which is obviously not zero! gives the sum of
zero point energies and has no thermal contribution at that
order. To make this fact explicit imagine rescalingg2 in Eq.
~64! by a factor 1/e. One can absorb this factor by rescaling
the fieldsA by Ae. This will change the measure by a factor
(Ae)(N

221)(d21)N, whereN5T21V/ad is the total number of
the lattice sites. The number (N221)(d21)N is simply the
number of nonzero modes, or nonzero eigenvalues of the
matrix of the quadratic form in the exponent~62!. Eventually
we get, instead of Eq.~64!,

Z~q!5g~N221!~d21!NexpH 2Td21E
x
@V~q!2c#J . ~65!

Using Eq.~65! we get, for anyT,

1

2g2
^E21B2&5

~N221!~d21!

2
a2d. ~66!

It means that each space component of the vectorE or the
tensorB has the average atT50 ~due to Euclidean invari-
ance!

1

2g2
^Ex

2&5
N221

d
a2d. ~67!

This is the dominant contribution and should be compared to
b(12TrUP /N) per plaquette which we measure~in our case
N52, d53). It is indeed equal to 1 in lattice units up to a
small correction. Part of this correction is the thermal effect.

To calculate the thermal part of the action density, multi-
ply only the termE2 in Eq. ~62! by a factore. Then consider
the following transformation: t85t/Ae, A085A0Ae,
T85TAe, and g825g2/Ae. In terms of new variables the
integral is the same up to a Jacobian factor and thus

Z~q!5E DAmexpH 2
1

2g2E0
1/T

dtE
x
~eE21B2!J

5S g

e1/dD ~N221!~d21!N
expH 2~AeT!d21E

x
@V~q!2c#J .

~68!

Therefore,

5Such profiles were also measured in@20#. Here, we show that at
high T one can actually calculate them analytically.
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1

2g2
^E2&5~d21!

N221

d
a2d2

d21

2
@c2V~q!#Td. ~69!

The E2 is a sum ofd21 components each contributing
equally. Using Eqs.~66! and ~69! we get also

1

2g2
^B2&5

~d21!~d22!

2

N221

d
a2d1

d21

2
@c2V~q!#Td.

~70!

Note that while (1/2g2)^E21B2& is totally due to the
vacuum zero point energy, it is (1/2g2)^B22E2& that con-
tains the thermal energy. The vacuum term in this quantity
cancels ind54, because there is the same number ofE and
B components.

So far we have neglected the variation ofq with z. This
can be easily corrected for. We need to add a term¹A0 to the
right-hand side of the linearized equation forE ~63!. Since
A0 varies withz on the scaleg5O(1/g) this term is of the
same order ing as the others in Eq.~63!. It does not fluctuate
and contributes only tôEz

2& the amount (g2/2)(]zq)
2Td,

which is equal toV(q)Td due to Eq.~39!.
Finally, we write down expressions for the plaquette ac-

tion densities in our case (N52, d53). We use lattice units:
a51, in whichT51/Lt , andb is given by Eq.~45!:

1

2g2
^B2&511@c2V~q!#

1

Lt
3 1O~1/b!;

1

2g2
^Ey

2&512
1

2
@c2V~q!#

1

Lt
3 1O~1/b!;

1

2g2
^Ez

2&512
1

2
@c23V~q!#

1

Lt
3 1O~1/b!. ~71!

The corrections of order 1/b are due to nonquadratic terms
and are beyond our approximation. However, they should be
the same for all plaquettes at that order. They cancel in, e.g.,
^B2&2^Ey

2& or ^B2&(q)2^B2&(0). Theformulas~71! are in
good agreement with our MC data~see Sec. VII!.

What do we learn from all this? One can see, for example,
that the thermal part in the fluctuations of^B2& becomes
negative at someq near 1/2, i.e., inside the wall. This means
that the^B2& becomes smaller than the contribution of the
vacuum fluctuations to that quantity.6 This is just another
side of the old puzzle with negative entropy and thermal
energy density@4,9#.

VI. FINITE SIZE CORRECTIONS

A. Roughening

Due to the long wavelength thermal fluctuations of its
shape, an interface in three spatial dimensions oscillates from
its central position by a distance which grows as the loga-
rithm of its area. This roughening also occurs in two dimen-
sions, where the effect is proportional toALy . Here we cal-

culate the effect of the roughening on our measurements of
the profile of the wall and the interface tension and show that
this effect is rather small.

The roughening is due to long wavelength fluctuations of
the shape of the interface. These fluctuations are therefore
essentially classical,vk!T. We can consider our interface in
two spatial dimensions as a classical string of lengthLy with
tension and mass per unit length equal tos. The string is a
set of free oscillators, the normal modes. The amplitudesf k
of these are the Fourier components off (y), the shape of the
string at a given instance. Each oscillator~mode! has energy
T in the heat bath~equipartition!. On the other hand, the
mean energy of such an oscillator issvk

2^ f k
2&. The mean

square of the fluctuation of the string is then

K E
0

Ly
dy f2~y!L 5K (

k
f k
2L 5(

k

T

svk
2 . ~72!

The dispersion law isvk5k. If we takeLy5` and replace
the sum with an integral it will diverge linearly, the soft
modes get out of hand ifLy does not cut them off. For finite
Ly the values of momentaq are given by the periodic bound-
ary condition~BC!:

k5
2p

L
n, n51,2,3,. . . , ~73!

wherek50 ~translational mode! is removed by our proce-
dure of shifting the center of the interface. In principle, our
string approximation will break down at some largekmax,
but the value of this UV cutoff is not essential for the long
wavelength effect we are interested in. We putkmax5`.
Thus we have

^ f 2~y!&5
2

Ly
(
n51

`
T

s

Ly
2

~2pn!2
. ~74!

The factor of 2 is because for eachn there is a cosine and a
sine mode. The sum overn can be evaluated and we get for
the mean square deviation of the wall from a straight line

Dw25^ f 2~y!&5
T

s

Ly
12
. ~75!

Let us estimate this effect in our case. Take, for example,
Lt53 andb575,

Dw5S 2
a
ALt

3

b

Ly
12

D 1/2'ALy/50, ~76!

where we used the formula~40! for s and the relation~45!.
For Ly512260 this varies from 0.5 to 1 or so, as compared
to w;17. We observe a slight variation of the width of the
wall of roughly this size in our MC data, although it is no
doubt optimistic to be applying a string formalism in a situ-
ation where the length of the wall is comparable to its width.

We conclude that roughening does not affect our esti-
mates of the profile of the wall. This effect is small, because
the wall is stiff andLy is not too large. So what we measure
numerically is really the intrinsic profile of the interface.6In other words,̂ B2&2^Ey

2& becomes negative.
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One can also calculate the correction to the interface ten-
sion from the stringlike fluctuations of the interface using the
same idea that the string is a set of oscillators in a heat bath.
A difficulty lies in the fact that unlikê f 2& which is a con-
vergent sum of̂ f k

2&, the amplitudes of the oscillators, the
sum of their free energies,2T ln(T/vk)1const, is divergent.
This divergence is ultraviolet, however, and can be sub-
tracted when computing the finite size dependence, similarly
to the Casimir effect.

Another, more illuminating way of deriving this correc-
tion is to consider theF(q) in Eq. ~37! as an effective po-
tential energy for the long wavelength classical thermal fluc-
tuations of the wall. The profileq0(z) satisfying Eq.~39! is a
minimum of F(q) for the corresponding boundary condi-
tions. The leading exponential behavior of the partition func-
tion is then

Zwall;expH 2
1

TEx@F„q0~x!…2F~0!#J 5expH 2
sLy
T J ,

~77!

where we subtracted the bulk free energy.
The pre-exponential correction to Eq.~77! is due to fluc-

tuations ofq(y,z) aroundq0(z) and is given by the determi-
nant

det8@2g2¹21V9„q0~z!…#21/2, ~78!

where the prime on ‘‘det’’ denotes the fact that we omitted
the translational mode. This mode is proportional to]zq0.
Properly normalized it produces a factorAsLy /g

2T and an
integration over the position of the center. The spectrum of
the operator in Eq.~78! can be written as

l5g2k21lm, ~79!

where k52pn/Ly and lm are the eigenvalues of
2g2]z

21V9@q0(z)#. Thel5g2k2 band attached to the zero
eigenvaluelm50, corresponds to fluctuations of the wall as
a whole. The roughening effects are due to these gapless
fluctuations. The corresponding determinant is
det8(2g2]y

2). We can regularize it in the UV by dividing it
by a similar determinant withLy5`. On dimensional
grounds,

det8~2g2]y
2!Ly

det~2g2]y
2!`

5
Ly
2

g2 3const. ~80!

Other eigenvalues are not related to the roughening and we
neglect their contribution in our estimate. Collecting all the
factors we obtain

Zwall'const3E dzA s

TLy
expH 2

sLy
T J

5const3AsLz
2

TLy
expH 2

sLy
T J . ~81!

From Eq.~81! we can read off the correction to the interface
tension7

Ds5
T

2Ly
ln
TLy
sLz

2 1O~T/Ly!. ~82!

This means that the correction toa, in the way we measure
it in our simulations~see Sec. VII!, is given by

Da5
4Lt

3/2

Ly
Ab

]

]b S DsLy
T D'2

Lt
3/2

LyAb
. ~83!

For example, atb575, Lt53 andLy;50 this correction is
only about 0.2%.

B. Finite Lz corrections

In the previous section we discussed the roughening effect
which introduces corrections of the type (lnLy)/Ly to s. In
this section we discuss another source of finite size effects,
the finiteness ofLz . There are two ways the finiteness of
Lz affects the free energy of the wall. First, there is a correc-
tion to V(q) itself because it is given by one-loop integrals
which depend onLz through the quantization of momenta
running in the loop.8 This correction should be of order
(T/Lz)

2 and is relatively small. ForLz*w this correction is
beyond our leading order ing approximation, because
(T/w)2 is of orderg2.

The second source of corrections is due to the finiteness
of Lz /w. It is obtained by calculating the action of a particle
with a ‘‘mass’’ g2 which, moving in the potential2V(q),
returns to its starting value ofq in a period of ‘‘time’’ 2Lz.
This finite size effect we estimate here and show that, for
large enough Lz , it is exponential in d.3, i.e.,
exp$2Lz/w% and Gaussian ind53, i.e., exp$2Lz

2/w2%.
So we consider a trajectory which starts at rest atq5«

and arrives atq512« precisely after a given ‘‘time’’Lz so
as to satisfy the boundary condition on the Polyakov loop.
The trajectory satisfies a Lagrange-Euler equation which can
be integrated to give~‘‘energy’’ conservation!

g2

2
~q8!22V~q!52V~«![E. ~84!

We can use it to relateLz to «:

Lz~«!5E
«

12« dq

A~2/g2!@V~q!2V~«!#
. ~85!

The action can be cast into the form

7This correction is analogous to the Luscher’s correction@21#, but
for a classical string in a thermal bath, rather than a strip~quantum
string atT50). The universal coefficient of the Coulomb correction
1/L to the free energy in Luscher’s case becomes in our case the
coefficient of the lnL correction. It is especially obvious in the
interpretation given by Stack and Stone@22#.
8There is, of course, a similar dependence onLy .
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S~«!5E
0

Lz
dzFg2

2
~q8!21V~q!G

5E
«

12«

dqA2g2@V~q!2V~«!#1V~«!Lz~«!, ~86!

which is convenient for the numerical evaluation ofS(«).
Also note, that this form is familiar in theoretical mechanics
asdS5pdq2Edt. Equations~85! and ~86! give a paramet-
ric representation ofS as a function ofLz which we use to
evaluate the correction numerically.

To find the asymptotic dependence ofS onLz one can use
the relation

dS

dLz
5V~«!, ~87!

which is a consequence ofdS5pdq2Edt, and can be also
derived explicitly from Eqs.~85! and ~86!.

Now we use the asymptotic form ofV(q) at smallq. For
d.3 it is

V~q!5bq21O~q4! ~d.3!, ~88!

whereb is a constant which depends onN andd, Eq. ~96!.
Using this form we get, from Eq.~85!,

Lz~«!52Ag2

2b
ln
1

«
1O~1!, ~d.3!. ~89!

Integrating the equation:

dS

dLz
5b«21O~«4!'const3bexpH 2A2b

g2LzJ ~d.3!,

~90!

we obtain the asymptotic form of the largeLz correction to
S:

dS;2constAbg2

2
expH 2A2b

g2LzJ ~d.3!. ~91!

For d53, however, we have

V~q!5bq2ln
1

q
1O~q2! ~d53!, ~92!

whereb is given by Eq.~97!. This leads to

Lz~«!5A8g2

b
Aln

1

«
1O~1!, ~d53! ~93!

and

dS

dLz
'const3

b2Lz
2

8g2 expH 2
bLz

2

4g2 J ~d53!. ~94!

Integrating we obtain

dS;2const3
bLz
4

expH 2
b

4g2Lz
2J ~d53!. ~95!

We see that the asymptotic form of the correction is related
to the way the tail of the wall decays, exponential ind.3
and Gaussian ind53.9

From Eq.~36! we find, forb in Eq. ~88!,

b5~2p!2~N21!~d22!
G~d/2!

pd/2 z~d22! ~d.3!;

~96!

while in d53 the value ofb defined as in Eq.~92! equals

b52p~N21! ~d53!. ~97!

To get an idea of the size of this correction in our case let
us estimate it for the case ofb5100, Lt54, Lz5120. We
get g25p2bLt5400p2'602. The exponent is
bLz

2/4g2'(Lz/50)
2'5.8 and e25.8'1/300. The pre-

exponentbLz/4'200. ThusdS;1. This should be com-
pared to

S05E
0

1

dqA2g2V~q!'50. ~98!

Thus the correctiondS/S0 is of the order of a~few! percent.
In the following section we shall evaluate these corrections,
numerically, for allLz and not just largeLz as herein.

VII. NUMERICAL SIMULATIONS OF DOMAIN WALLS

As we have seen, at high temperatures the theory appears
to have degenerate vacua which are separated by domain
walls. At asymptotic temperatures many properties of these
domain walls can be calculated in perturbation theory; in-
deed the existence of these interfaces can only be seen when
one goes beyond tree level. However, as we remarked ear-
lier, the presence of infrared divergences in higher orders has
raised doubts about the applicability of perturbation theory
and, indeed, about the actual existence of the interface. To
address these doubts we have performed accurate computer
simulations of the domain walls and have compared what we
find with the results of the perturbative calculations. These
computer simulations will be described in this section.

If we simulate the high temperature SU~2! gauge theory
in a finite but large spatial volume, with periodic boundary
conditions, then we expect some fraction of the field con-
figurations to contain bothZ(2) phases in different portions
of the torus. Such a configuration will contain domain walls
separating the two phases and in principle one could study
the domain walls by focusing on these particular field con-
figurations. However, the relative probability of such con-
figurations is very small for the temperatures of interest and
they would not be encountered in a typical Monte Carlo
calculation. So we have to use an alternative less direct
method. What we do is to impose twisted boundary condi-
tions on our system, so enforcing the existence of at least one
domain wall. This will be described in Sec. VII A. In Sec.
VII B we show how the domain wall can be interpreted as a
’t Hooft disorder loop. We then specify the physical quanti-
ties that we plan to calculate and describe the methods by

9See, however, footnote 3 and the related discussion.
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which we do so in Sec. VII C. Sec. VII D summarizes our
Monte Carlo results. Of course, it is crucial to demonstrate
that we have all finite-volume effects under control — after
all, it is infrared effects that are the potential problem here —
and this we do in Sec. VII E. Finally, in Sec. VII F, we will
take our raw ‘‘data’’ and use it to extract quantities that are
of direct physical interest in the present context and compare
them to the perturbative predictions.

A. Twisted boundary conditions

We work on lattices of sizeLy3Lz3Lt in lattice units.
The Euclidean time extent determines the temperature
aT51/Lt of the field theory. The partition function contains
the factor exp(2bS) whereb54/(ag2) and the lattice action
is as in Eq.~42!

S5(
p

F12
1

2
trUpG , ~99!

whereUp is the path ordered product of the SU~2! matrices
Ul on the linksl that form the boundary of the plaquettep.

The simplest and most usual way to introduce twisted
boundary conditions is as follows@20#. We change the above
action to a twisted actionStw by replacing trUp with
2trUp for those plaquettes in thezt plane that emanate from
the sites (y,z,t), wherez and t are fixed to some particular
values, sayz5 j andt5k, while y takes all values from 1 to
Ly ~see Fig. 1!.

The system with this altered action and with periodic
boundary conditions is equivalent to the system with the
original action but with twisted boundary conditions@23#.
This we see from the following argument. First, let us choose
labelingz of the sites so thatj5Lz , i.e., the twist is between
z5Lz andz51. Second, to include the possibility of bound-
ary conditions that are not periodic it is convenient to extend
our labeling to includez50, as well asz51, . . . ,Lz . If the
system is periodic then corresponding sites and links with
z50 andz5Lz are identified~and similarly for other direc-
tions!. Then the system with a twisted action can be viewed
as a system with the original action but with fields which are
not periodic. To be more specific they are periodic except
that for y51, . . . ,Ly and t5k the timelike link atz50 is
mapped into the negative of itself atz5Lz . This is the lattice
version of the twisted boundary conditions described in Sec.
II A.

One can move thezt position of the line of twisted
plaquettes by flipping the sign of allUl which bound these
plaquettes from one of the sides; but one cannot undo the
twist completely. It should be clear that the position of the

twist does not carry any physical significance since it can be
moved by such a redefinition of the variablesUl .

How does the twist lead to the presence of a domain wall?
To see this consider the same labeling of sites as we have
just used. With free boundary conditions the system would
spend most of the time in one of the two phases where
Polyakov loops are all near11 or all near21. With the
twisted boundary condition a Polyakov loop atz50 is
mapped onto negative of itself atz5Lz . Therefore, a homo-
geneous configuration is frustrated and the Polyakov loops
must create a nontrivial profile in thez direction to interpo-
late betweenz50 andz5Lz .

So to study the high-T properties of domain walls we
perform Monte Carlo calculations on lattices with periodic
boundary conditions but with a twisted action. How well
defined is the domain wall in practice? To answer this ques-
tion we show in Fig. 2~a! the distribution of Polyakov loops
on a typical field configuration taken from a 3038032 lat-
tice atb5100. In physical units this corresponds to a tem-
peratureT;30Tc , whereTc is the deconfining temperature.
We see that the domain wall is very well defined, with rela-
tively small fluctuations around a smooth background distri-
bution. This is in fact the highest value ofT at which we
work. The lowest value is on a 1233032 lattice atb57
corresponding toT;2Tc . There a typical field configuration
looks as in Fig. 2~b!. The fluctuations are now much larger,
but the domain wall can still be unambiguously located. So it
is clear that, for the range ofT we study, there is no ambi-
guity in identifying the domain wall.

FIG. 1. Location of the twist. The plaquettes that are indicated
will appear with a factor of21 in the twisted action.

FIG. 2. Values of Polyakov loops on typical field configurations
with a domain wall, forLt52 at ~a! b5100, ~b! b57.
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B. Domain walls as disorder loops

Before going on to the details of the calculations, we ad-
dress the following natural question. Since the twist is en-
tirely symmetric inz and t why should the ‘‘domain wall’’
separate regions inz rather than regions int? This question
can be plausibly answered, in a way that highlights the phys-
ics, by first considering the twisted system at very lowT
where the system is manifestly rotationally invariant. Here
introducing a twist introduces into the system a ’t Hooft
disorder loop@24# which is closed through the boundary in
the y direction. This loop will presumably be a flux tube
whose width will be on the order of the characteristic length
scale of the theory, which here is 1/g2. Its special property is
that it if one considers the gauge potential on a closed path
that encircles the disorder loop far from its center, then the
presence of this loop leads to the potential acquiring a gauge
transformation that goes from 1 to a nontrivial element of the
center as we go once around this closed path. So if we take a
large Wilson loop and pierce it once~or an odd number of
times! by this disorder loop, then the value of the Wilson
loop is changed by a factor of21 as compared to the value
it would possess in the absence of the disorder loop. Hence
the name ‘‘disorder loop.’’ It is clear that if the vacuum
contained a condensate of such loops, then these would be
sufficient to ensure that large Wilson loops varied as the
exponential of their area, so that we had linear confinement.
Suppose we now increaseT by reducing the extent of the
system in thet direction. Clearly at some point the time
extent will become smaller than the width of the flux tube,
the tube will become squeezed so that it extends right across
the time direction while still extending over a finite region in
the z direction. This will occur onceT is sufficiently large
compared tog2; presumably around the deconfining transi-
tion. So at high temperatures our ‘‘domain wall’’ is actually
a squeezed disorder loop that closes upon itself through the
y direction. It is indeed symmetric inz and t except for the
deformation induced by the limitedt extent. The fact that the
Polyakov loops on either side of the wall have opposite signs
is what one might expect from such a squeezed ’t Hooft
disorder loop.

We have simplified the above argument by assuming that
the disorder loops exist as definite field fluctuations in the
low-T theory. This is assuming a great deal of course.
Whether they do so exist is one of the central questions in
the still unresolved problem of color confinement. This
makes the connection between these loops and the domain
walls at highT of added interest.

C. Quantities calculated

We perform calculations on lattices with and without a
twist. The simplest and most interesting quantity we extract
is the extra actionSw associated with the presence of a do-
main wall. If both twisted and untwisted lattices are of the
same size, then

Sw5^Stw&2^Snt&, ~100!

where^Stw&, ^Snt& are the average values of the twisted and
untwisted actions, as defined in Sec. VII A. The extra action
is related to the free energy of the wall,Fw[F tw2Fnt , by

]

]b S Fw

T D5Sw , ~101!

where the derivative is taken at constant values of
Ly ,Lz ,Lt . Using this relationship we shall test the one-loop
prediction forFw .

It might appear that changing the action for a line ofLy
parallel plaquettes could introduce some additionallocal
contribution to^Stw&2^Snt& which is not related to the free
energy of the wall. That this is not so one can see by con-
sidering a system with two parallel twists. This system is
equivalent to a system without a twist after a redefinition of
variablesUl which move the twists to a single position
where they cancel each other.

In addition to making predictions for the domain wall free
energy, perturbation theory can also be used to predict the
detailed shape of the domain wall as it interpolates between
the two Z(N) vacua. In the Monte Carlo calculations the
domain wall is free to move and so if we are to obtain an
average profile, we need to shift our origin, in each Monte
Carlo generated configuration, to the center of the domain
wall. We also need to take into account the presence of the
twist, since the Polyakov loops change sign as one moves
through it. Our algorithm is as follows. Consider a single
Monte Carlo generated field configuration. First we average
Polyakov loops overy. We write this average asp(z). We
now want to identify the locationz5zc of the center of the
domain wall. This is defined operationally as follows. We
first identify the values ofz wherep(z) changes from posi-
tive to negative values~factoring out, of course, the trivial
change at the twist itself!. Clearly the number of such
changes must be odd. In practice the domain wall is very
smooth at highT—as one can see in Fig. 2 — and it is
almost always the case that there is only one place where
there is a sign change. This occurs between sites and we shift
our origin in z so that the sites where the sign changes are
labeled by z50 and z51. We now ensure that
p(z51).0 by multiplying the whole profile by21, if nec-
essary. Our range ofz is now from 2Lz/211 to 1Lz/2.
Somewhere in this range there is the twist and the value of
p(z) will flip sign there. If this occurs forz>1 then we flip
the signs ofp(z) for values ofz beyond the twist; if it occurs
for z<0 then we flip the signs forz before the twist. In this
way we obtain a wall profile withp(z>1).0 and
p(z<0),0. We can now average this profile over many
configurations to obtain an average profile. This will be sym-
metric aboutz51/2 so we can fold the profile over~with a
sign flip! so that it is defined for 1<z<Lz/2 and is positive.
This is our final averaged profile. Note that in any individual
configuration the center of the domain wall may be closer to
z50 than toz51. That is to say, our profile is ‘‘smeared’’
over distancesdz;1/2.

In rare cases a given configuration contains more than one
sign change inp(z) ~always factoring out the trivial sign
change at the twist!. The number of these sign changes is
clearly odd. There are two possibilities. One is that we have
a configuration with more than one domain wall, i.e., the one
enforced by the twist plus pairs that are genuine quantum
fluctuations. In this case we would typically expect at least
one large gap inz between the walls. The more trivial pos-
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sibility is that we might be simply seeing a large fluctuation
of the values ofp(z) near the center of the wall~where the
values are small on the average!. This would be character-
ized by very small gaps between the locations of the sign
changes. The first type of configuration, which we should not
include in our average, did not occur in any of the calcula-
tions that we include below.~It does occur if we approach
the deconfining transition or if we make the extent iny of the
lattice, and hence of the wall, sufficiently small.! The second
type of configuration we should include and we do so by
taking its center to be located in the middle sign change. In
practice these configurations are so rare that there is no vis-
ible change in any extracted quantities whether we include
them or not.

Having obtained a center for the wall from the Polyakov
loop distribution, we can also define an action profile for the
wall, and we can clearly do this separately for the different
mn components of the action.

A quite different but equally interesting quantity is the
electric screening mass,mD . This can be obtained from the
lightest massmP that couples to Polyakov loops, and hence
from the tail of the wall profile. We expect that for large
enoughz,

p~`!2p~z!}e2amPz, ~102!

wherep(`) can be obtained, either by working with very
large lattices or by performing simulations on a lattice with-
out a twist and using the average value of the Polyakov loop
obtained therein. So if we define an effective mass by

ameff~z!5 ln
p~`!2p~z21!

p~`!2p~z!
~103!

then

amP5 lim
z→`

ameff~z!. ~104!

In practice we would extractmP from meff once we were at
large enoughz that the latter had become independent ofz.
The electric screening massmD should then be given by
mP52mD ~see below!.

On a finite lattice the above needs to be altered because
we expect contributions going both ways around thez torus.
So instead of Eq.~102! we use

p~`!2p~z!}e2amPz1e2amP~Lz2z! ~105!

and alter Eq.~103! correspondingly.
Since we need to calculate the average action without a

twist, we can also calculate the screening mass on these un-
twisted field configurations. Here we follow standard tech-
niques for such mass calculations@25#. We constructpy50
sums of Polyakov loops at each value ofz and then obtain
the vacuum-subtracted correlation functionC(z12z2) as a
function of their separationz5z12z2. For large separation
z we haveC(z)}exp(2amPz). We define an effective mass
ameff(z)5 ln@C(z21)/C(z)# and we increasez until meff be-
comes independent ofz. At this point we can estimate
mP5meff . This calculation has the advantage that we can
prove thatmeff(z)>meff(`). In practice we modify this for-

malism for the periodicity inz as described above. In addi-
tion we calculate with a range of smeared Polyakov loops
and use the correlation function that minimizesmeff(z51);
in the spirit of a variational calculation. However, this turns
out not to be really necessary here, unlike the situation at
T50. As we shall see below, this method turns out to be
much more efficient for the calculation of screening masses
than using the tails of domain walls.

D. Monte Carlo simulations

Our Monte Carlo simulations were performed on a variety
of periodic lattices with and without a twist. We used a stan-
dard heat-bath update algorithm mixed with over-relaxation
steps.

The control of finite volume effects is particularly impor-
tant in these calculations since it is infrared effects that are
usually seen as being at the root of any possible breakdown
of perturbation theory at high temperatures. We have there-
fore performed extensive numerical checks of finite volume
effects and these will be described in detail in Sec. VII E. In
this section we shall confine ourselves to a presentation of
those results that have been obtained on lattices which are
sufficiently large that any finite-volume corrections are much
smaller than our~very small! statistical errors. This will, of
course, need to be demonstrated and we shall do so later.

Now, let us estimate how large the required volumes must
be in lattice units. If we use a periodicLy3Lz3Lt lattice,
this corresponds to the fields in the spatialLy3Lz volume
being at a temperatureaT51/Lt . The dimensionless inverse
couplingb, as we have seen, is related to the dimensionful
coupling g2 by b54/ag2. Thus in physical units the tem-
perature isT/g25b/4Lt and, at a fixed value ofLt , b}T.
Perturbation theory is expected to be most reliable at very
highT, so we want to study the theory for very largeb. The
characteristic length scale at highT is of the order of
1/gT1/2; the inverse of the Debye mass 1/mD and the width
of the wallw are of that order. Therefore, the spatial sizes in
units ofa must satisfy

Ly ,Lz@
1

agAT
5LtAT

g2
. ~106!

From Eq.~106! we see that for a fixed value of the tempera-
ture in physical unitsT/g2 the required volumes will be
smallest, in lattice units, forLt52 ~sinceLt51 is not sen-
sible!. Since the perturbative properties of the domain wall
can be calculated on the lattice, the minimal calculation one
might perform is to do everything atLt52. However, in this
case a is as large as possible in units of 1/T
(aT51/Lt51/2) and since there have been suggestions@9#
that high-T perturbation theory might break down asa→0
we choose to perform calculations for several values ofLt .
~This will have other advantages that will become apparent
below.! We shall cover a range of temperatures for
Lt52,3,4 and we shall perform a calculation at one reason-
ably high value ofT for the caseLt56. In this latter case
aT51/6 which is surely small enough that any breakdown of
perturbation theory, asa→0, should have become promi-
nent.
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In Table I we list the average values of the plaquette

12snt[
1
2 ^trUp& for the calculations without a twist. In

Table II we do the same for the corresponding quantity
12stw with a twist. We show the values ofb, the lattice
sizes, the number of Monte Carlo sweeps, and the average
plaquette action. In the twisted case we perform ‘‘measure-
ments’’ every Monte Carlo sweep; in the untwisted case ev-
ery four sweeps. The typical number of thermalization
sweeps prior to taking any measurements is between 25 000
and 50 000. The errors, given in brackets, are typically based
on 40 or 50 bins. In a few of the lower statistics cases we use
as few as 25 bins. The reader will note that at some values of
the parameters we have several different lattices. These arose
during the finite volume studies that will be described in
detail later on. The measurements that we list here are those
that do not suffer significant finite size corrections~and are
statistically accurate enough to be useful!. At the different
values ofLt we have chosen values ofb such that the tem-
peratures, in units ofg2, are roughly the same, although for
higherLt we are forced to cover more limited ranges ofT.
~The reader may be puzzled that in some casesb has not

been chosen exactly proportional toLt ; for the purposes of
the work in this paper no particular significance should be
attached to these choices.! If we now multiplystw2snt by the
number of plaquettes in the twisted lattice, which is the one
containing the domain wall, we obtain a value forSw and
hence, from Eq.~101!, information onFw . We shall see later
on what this comparison tells us about the accuracy of per-
turbation theory.

As described in the previous section, the lightest mass that
couples to Polyakov loops is of particular interest because it
is related to the Debye screening mass. It can be calculated
either from correlations of Polyakov loops in the system
without a twist or from the way the tail of the domain wall
merges into the vacuum once we are far enough away from
the center of the wall. In Fig. 3 we show the effective masses
as obtained by the two methods. In Fig. 3~a! we have chosen
our highest value ofT for Lt53 while in Fig. 3~b! we show
what one obtains for a medium value ofT with Lt52. We
see that in both cases the values ofameff(z) as obtained from
Polyakov loop correlations do become independent ofz at
larger z, and that these ‘‘plateaux’’ occur early enough for
the errors to be very small. Since in this casemeff(z) is
always an upper bound onmP , we can extract an accurate
estimate ofmP using the first value of the effective mass that
is, within errors, on the plateau. The effective masses ob-
tained from the domain walls are clearly consistent with be-
ing asymptotic to these mass values. However, it is equally
clear that they would give us much less accurate estimates of
mP . ~We would need to do fits with at least two masses,

TABLE I. Average plaquette on lattices without a twist.

Lt b lattice No. sweeps 12snt

2 100.0 30360 820 000 0.98998945~28!
75.0 26350 400 000 0.98664608~71!
50.0 50360 400 000 0.97995063~66!

40360 240 000 0.97994775~87!
30360 200 000 0.979994952~117!
20340 440 000 0.97995159~130!
16360 400 000 0.97994859~101!

25.0 30348 400 000 0.9597749~15!
20348 400 000 0.9597747~21!
12360 400 000 0.9597749~23!
12340 400 000 0.9597752~23!
12330 400 000 0.9597734~34!
12326 400 000 0.9597801~38!
12320 400 000 0.9597755~47!

15.0 12324 400 000 0.9326535~71!
7.0 12320 400 000 0.8533597~159!

3 112.5 40380 800 000 0.99109673~14!
75.00 30380 360 000 0.98663259~35!

30360 800 000 0.98663236~33!
30350 196 000 0.98663197~77!
24380 200 000 0.98663262~48!
18380 200 000 0.98663250~37!

37.47 18360 400 000 0.97317001~126!
18346 400 000 0.97316810~130!

22.45 18346 400 000 0.95504162~204!
10.27 18332 400 000 0.9004471~62!

4 99.97 40380 800 000 0.98997622~15!
49.95 24360 800 000 0.97989112~39!
29.91 24348 800 000 0.96631709~87!
13.81 24340 800 000 0.92634313~179!

5 62.40 303100 400 000 0.98391671~38!
37.33 30380 400 000 0.97304743~54!

6 75.00 36390 840 000 0.98662597~12!

TABLE II. Average plaquette on lattices with a twist.

Lt b lattice No. sweeps 12stw

2 100.0 30380 800 000 0.98987388~26!
75.0 26370 400 000 0.98649347~50!
50.0 50360 400 000 0.97972630~65!

30360 200 000 0.97972542~91!
20360 400 000 0.97972801~91!
16360 400 000 0.97972622~124!

25.0 30348 400 000 0.9593664~15!
20348 400 000 0.9593643~21!
12360 400 000 0.9594461~23!
12348 400 000 0.9593680~29!
12340 400 000 0.9592867~25!

15.0 12336 400 000 0.9319060~58!
7.0 12330 400 000 0.8519115~137!

12320 400 000 0.8512002~174!
3 112.5 403100 650 000 0.99106642~14!

75.00 303100 350 000 0.98659536~35!
30380 350 000 0.98658592~37!

37.47 18360 400 000 0.97307998~106!
22.45 18346 400 000 0.95488588~203!
10.27 18332 400 000 0.9000855~59!

4 99.97 403120 800 000 0.98996380~18!
49.95 24384 800 000 0.97986529~39!
29.91 24364 800 000 0.96627028~56!
13.81 24348 800 000 0.92624494~158!

24340 400 000 0.92622498~271!
6 75.00 363130 600 000 0.98662125~13!
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since there are no convenient plateaux, and so the errors on
mP would be perhaps an order of magnitude greater. More-
over the assumption that the effective masses asymptote
from below, while reasonable, introduces a difficult to quan-
tify extra systematic error.! So from now on we shall only
use the values ofmP as extracted from Polyakov loop corre-
lations. These are listed in Table III, for those lattice vol-
umes which do not suffer significant finite-volume correc-
tions.

To obtain the extra action of the domain wallSw at a
particular value ofb, we take the differencestw2snt at that
b and multiply by the number of plaquettes on the twisted
lattice, which contains the domain wall. We expect that this
extra action will be proportional to the length of the domain
wall, i.e., toLy , as long asLy is not very small.~This and the
related question of roughening will be addressed when we
discuss finite volume corrections.! So we form the quantity
Sw /Ly , which is the extra action of the wall per unit length
~in units of the lattice spacing!. If we have values of this
quantity for several values ofLy at a given value ofb and
Lt , we can average them to obtain our best overall estimate.
In Table IV we present our final averages for this quantity
and for the massamP , as obtained by averaging the values
given in Tables I–III. These will form the basic raw material
for our later comparisons with perturbation theory.

E. Finite volume corrections

We shall be using our values ofSw to test perturbation
theory. The details of theT andLt dependence will be im-
portant in this comparison. Since the size of the domain wall
varies withT, it is important that we control any finite vol-

ume corrections at all values of our parameters. Otherwise
part of theT dependence we observe might be due to such
corrections. In this section we describe in detail how we
control finite size effects. We begin with effects of finiteLz
and then consider finiteLy .

To establish how the finite periodicity in thez direction
affects the action of the domain wall, we perform numerical
calculations for a large range of values ofLz . Since these
effects may well vary with the lattice spacing, i.e., with
aT51/Lt , we perform such calculations for two different
values ofLt , but at the same value of physical temperature
T/g2. Since the finite-size corrections may differ for the con-
tributions that are leading and nonleading ing2/T, we also
perform the calculations for two different values ofT/g2 at
the same value ofLt . The parameter values and the corre-
sponding values ofSw /Ly are displayed in Table V. As we
discussed previously, see Eq.~106!, the natural scale for the
domain wall should be of the order of 1/agT1/25AbLt/2.
This is the scale that appears in perturbation theory Eqs.~38!
and ~59!, g5pAbLt. We therefore plot in Fig. 4 the values

FIG. 3. Effective masses from Polyakov loop correlations (1)
and from the tails of domain walls (L) for ~a! b5112.5 with
Lt53, ~b! b525 with Lt52.

TABLE III. Masses obtained from correlations of Polyakov
loops.

Lt b lattice amp

2 100.0 30360 0.315~7!

75.0 26350 0.352~4!

50.0 50360 0.414~5!

40360 0.418~6!

30360 0.413~6!

20340 0.409~6!

16360 0.410~5!

25.0 30360 0.526~6!

20348 0.529~6!

12360 0.529~6!

12340 0.525~7!

12330 0.520~9!

12326 0.533~9!

12320 0.522~10!
15.0 12324 0.632~8!

7.0 12320 0.771~7!

3 112.5 40380 0.2188~44!
75.00 30380 0.2586~53!

30360 0.2588~50!
30350 0.2561~109!
24380 0.2508~126!
18380 0.2511~97!

37.47 18360 0.3351~59!
18346 0.3399~66!

22.45 18346 0.395~6!

10.27 18332 0.489~4!

4 99.97 40380 0.1897~18!
49.95 24360 0.2420~19!
29.91 24348 0.2802~23!
13.81 24340 0.3411~40!

5 62.40 303100 0.177~7!

37.33 30380 0.2226~42!
6 75.00 36390 0.1541~23!
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shown in Table V against the scaled lattice lengthLz /g. We
see that to a good approximation the finite size effects are
indeed just functions of this scaled length. We also see that
the finite size effects vary from being very large to being
very small over a narrow range of values ofLz /g. Indeed,
the domain wall effectively disappears forLz /g<0.8 and
while the corrections are still large forLz /g;0.9 to 1.1, they
have become invisible, within our statistical errors by the
time Lz /g;1.35. We therefore see that the values in Tables
II–IV, which all correspond to lattices satisfying
Lz /g>1.65, are effectively forLz5`. As a final precaution

against the unexpected, we show in Table VI some further
calculations obtained for a wide range of values ofb and
T. Taking these together with the values in Tables I–III con-
firms that the pattern of finite size effects we see in Fig. 4 is
indeed characteristic of the range ofT anda covered by the
calculations in this paper.

Since the finite size effects appear to be insensitive to the
value ofT, it is interesting to ask whether they can be repro-
duced in leading order perturbation theory, which, after all,
is supposedly exact in theT5` limit. The appropriate for-
malism is that of the ‘‘ball rolling in the inverse potential’’
as described in Sec. VI. To that order the finite size effects
are functions of the scaled lengthLz /g, as can be seen from
Eqs. ~85! and ~86!. In Sec. VI B we solved the equations
analytically in the limit of largeLz /g. In this section we
solve them numerically for allLz /g, and differentLt , using
Vlat(q). We note that solution does not exist if the ‘‘time’’
2Lz after which the particle has to come back oscillating
aroundq51/2 is smaller than the period of small harmonic
oscillations around this point. This gives for the minimal
value ofLz , Lz /g5Ap/4 ln251.06~for Lt5`). This fits in
well with what we observe in Fig. 4. For largeLz the cor-
rection is exponential inLz

2 in this order. This would be
difficult to see given our finite statistical errors. Moreover we
know that in the full theory the correction must ultimately be
exponential inLz . From Fig. 4 we see that leading order
perturbation theory describes the observed finite size effects
reasonably well. We also see that our criterionLz /g>1.65

TABLE IV. The action density of the domain wall per unit
length and averaged Polyakov loop masses.

Lt b Sw /Ly amp

2 100.0 0.055474~183! 0.315~7!

75.0 0.064096~365! 0.352~4!

50.0 0.08048~22! 0.4123~25!
25.0 0.11773~38! 0.5269~27!
15.0 0.1615~20! 0.632~8!

7.0 0.2598~29! 0.771~7!

3 112.5 0.02728~18! 0.2188~44!
75.00 0.03342~30! 0.2572~32!
37.47 0.04811~76! 0.3372~44!
22.45 0.06448~119! 0.395~6!

10.27 0.1041~25! 0.489~4!

4 99.97 0.01788~34! 0.1897~18!
49.95 0.02604~56! 0.2420~19!
29.91 0.03595~80! 0.2802~23!
13.81 0.05661~119! 0.3411~40!

5 62.40 0.177~7!

37.33 0.223~4!

6 75.00 0.01104~41! 0.1541~23!

TABLE V. The action density of the domain wall as a function
of the lattice lengthLz for selected values ofb andLt .

b Lt Lz Sw /Ly

25 2 60 0.11840~101!
48 0.11722~96!
40 0.11719~71!
30 0.11792~84!
26 0.11497~77!
20 0.06947~84!

50 2 60 0.07979~36!
40 0.07877~36!
34 0.07169~35!
30 0.04981~52!
26 0.01735~44!

75 3 100 0.03340~39!
80 0.03352~32!
60 0.03239~22!
54 0.02940~35!
50 0.02354~44!
46 0.01577~44!
40 0.00640~60!

FIG. 4. Dependence of the domain wall action density on the
~scaled! length of the lattice. Plotted are the values in Table V and
the lines are the leading order perturbation theory expectation~see
text!.

TABLE VI. Some additional values of the action density of the
domain wall, for values ofLz smaller than in Table II.

Lt b Lz Sw /Ly

2 100.0 60 0.05498~18!
75.0 50 0.06391~28!
15.0 24 0.1603~14!

3 112.5 60 0.02701~16!
37.47 40 0.04863~66!

4 99.97 80 0.01688~26!
49.95 60 0.02054~58!
29.91 48 0.03557~82!
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should be a safe one to use for all values ofLt .
We now turn to the finite size effects associated with the

transverse length of the domain wallLy . If Ly is small
enough then extra domain walls will be produced as quantum
fluctuations since the main factor in the suppression of do-
main wall excitation is;exp(2bSw) and Sw}Ly . When
Ly becomes sufficiently large we expect the leading correc-
tion to be that due to roughening, as discussed in Sec. VI A.
As we see in Eq.~83! these corrections should be very small
for the parameters we use. Of course, at asymptotically large
Ly the profile of the domain wall, defined by averaging the
Polyakov loops overy, will broaden asALy . For our values
of Ly the broadening of the profile is small~see Sec. VI A!.

To find out what are the corrections at finiteLy , we have
performed calculations for a range of values ofLy . As in our
study of theLz dependence we do so for two values ofLt at
the same value ofT/g2 and for two values ofT at the same
value ofLt . These are presented in Table VII. We see that
the surface tension shows no variation withLy at, say, the
2s level except forLy54 atb525. Here there appears to be
a ;428% reduction in the tension. This compares well
with Eq. ~83! — recalling thata;6 for Lt52, although we
should certainly not expect Eq.~83! to be accurate for such
smallLy .

However, while we see that there are no significantLy
corrections to the surface tension, this is certainly not the
case for the Polyakov loop massamP . We see that not only
does this mass gap show large finite size corrections for the
smallest values ofLy , but that these corrections become no-
ticeable for values ofLy that are not so small. In fact the
pattern we see is consistent with a relative correction of the
form ;exp(2amPLy).

The extensive finite size studies we have carried out in
this section show that the potentially dangerous infrared ef-

fects are in fact under control and that the values of the
surface tension and mass gap that we shall be using in the
next section, may be regarded as having been obtained on an
infinite system.

F. Surface tension and Debye screening mass

Even without looking at the detailed numbers in our
tables, there are two properties of the domain walls that are
immediately apparent. One is that the probability of such a
wall being produced at highT is very small. The other is that
the walls have a finite width. Do these qualitative features
already teach us something?

Consider the finite width. This is significant because at
tree level a wall would have infinite width. That is to say, the
width of the wall would be}Lz , however large we made
Lz . One can easily see this by considering the minimum
action configuration that interpolates between the vacuum
with all Polyakov loops11 and the vacuum with all loops
21. The fact that the walls we generate are of a finite width,
i.e., independent ofLz onceLz is sufficiently large, is im-
plicit in the finite volume studies of the previous section.
However, it is worth showing this explicitly. We define the
width of the wallw(90%) as the distance, in lattice units,
from the value ofz where the Polyakov loop is 90% of its
asymptotic value to the point where it is of the same magni-
tude but of opposite sign. As a check that there is nothing
special about the choice of 90%, we shall also define a width
w(2/3) on the basis of 2/3 of the asymptotic value. In Fig. 5
we show howw varies withLz in two of the cases where we
have made measurements for a wide range of lattice lengths.
What we see is that the width of the wall does not change
with increasingLz onceLz.2w(90%), the wall does indeed
have a finite fixed width.

TABLE VII. Variation of the action density of the domain wall
and Polyakov loop masses with the lengthLy of the wall.

b Lt Ly Sw /Ly amp

25 2 30 0.11765~59! 0.529~3!

20 0.11820~86! 0.529~5!

12 0.1184~10! 0.529~6!

8 0.1162~15! 0.492~11!
4 0.1091~21! < 0.384~9!

50 2 50 0.08076~34! 0.396~12!
40 0.416~4!

30 0.08068~53! 0.410~10!
20 0.07991~61! 0.409~6!

16 0.08005~58! 0.386~15!
12 0.07937~64! 0.375~9!

8 0.07860~65! 0.335~8!

4 0.07870~179! 0.272~12!
75 3 120 0.03271~54!

60 0.03409~47!
30 0.03347~28!
24 0.251~13!
18 0.251~7!

12 0.03303~65! 0.218~7!

6 < 0.183~6!

FIG. 5. The width of the domain wall as a function of the length
of the lattice for~a! b575 andLt53, ~b! b525 andLt52. Widths
are calculated when the Polyakov loop attains 2/3 (L) and 9/10
(1) of its vacuum value.
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How does this width depend onT? We extractw from all
our large volume calculations~essentially those listed in
Table II! and plot the results againstg5p(bLt)

1/2 in Fig. 6.
This variable, as we have seen, determines the width of the
wall in leading order perturbation theory. As a matter of fact,
g'w(0.97) to that order in the continuum limit, i.e., for
Lt5`. We see from Fig. 6 that for each value ofLt the
width varies linearly withg, with significant deviations only
at the very lowest values ofT. The lines for differentLt are
close to each other, but do not coincide. This is what one
expects in perturbation theory, the width has to be propor-
tional to the one scale,g52p/gAT, but the constant of pro-
portionality will suffer lattice spacing corrections, i.e., will
depend onaT[1/Lt . We show in Fig. 6 the lines one gets in
perturbation theory. Clearly these are consistent.

The corrections to perturbation theory are governed by
g2/T54Lt /b. We note that forb57 at Lt52, and for the
corresponding values ofb at other values ofLt , this is
>1. It is therefore remarkable that the calculated widths de-
viate by no more than;10% from the leading-order pertur-
bative highT expectations. It would seem that not only does
perturbation theory work well where we might expect it to,

but it even works well where we have little reason to hope it
might. We shall see other instances of this later on.

The fact that wall-like quantum fluctuations are very rare
tells us that the action a wall costs is positive,Sw.0. Using
Eq. ~101! and noting that, for fixed Lt and Ly ,
]/]b;]/]T becauseb[4/ag254LtT/g

2, this tells us that

]

]T S Fw

T D5
]

]T S LyLt s~T!

T2 D>0. ~107!

Here we have used the definition of the domain wall surface
tension

Fw5aLys. ~108!

From Eq. ~107! we immediately deduce thats(T)}Td,
where d>2, ignoring possible logs. At the same time we
expect that it cannot increase faster thanT3. The perturbative
value for the exponent is, as we have seen,d52.5. So we see
that our qualitative observations already constrain the tem-
perature variation of the surface tension to lie in the interval
d52.560.5. In the quantitative comparisons below we shall
attempt to make the comparison with perturbation theory
much more precise.

Before doing so it is interesting to ask what the above
T2 bound means physically. The following is a simple heu-
ristic interpretation. LetmD be the screening mass; then the
wall will have a thicknessO(1/mD). A very crude expecta-
tion is thats}T3/mD . Now if mD grows faster thanT then
it cannot be thermally excited and the whole high-T picture
of a screened plasma breaks down. The statement thatmD
grow no faster thanT is equivalent to our bound thats
grows at least as fast asT2.

We now turn to a quantitative analysis of the results dis-
played in Table IV. We recall that the leading order pertur-
bative result is

s5
a

g
T2.5. ~109!

The important energy scale isT and the dimensionless ex-
pansion parameter on this scale isg2/T. Thus the above lead-
ing order perturbative result should become exact in the
T→` limit. Naively one might expect finite temperature cor-
rections to Eq. ~109! to be O(g2/T)—as in four
dimensions—but here ind5211 there might well be loga-
rithms and the power itself might be different. We shall see
below that this uncertainty about the functional form of the
leading corrections will limit the precision with which we
can test perturbation theory. As we have seen, Eq.~109! is
valid both in the continuum and on the lattice, except that in
the latter case the value of the constanta will receive calcu-
lable lattice spacing corrections. SinceT is the ~largest! im-
portant physical energy scale, we expect that the lattice spac-
ing corrections should depend only onaT[1/Lt . Moreover,
sincea is a dimensionless physical quantity we expect, on
quite general grounds for a pure gauge theory, that the cor-
rections should beO(a2T2)5O(1/Lt

2) for small enougha.
The detailed perturbative calculations do in fact bear out this
expectation.

From Eqs.~101!, ~108!, and~109! we obtain

FIG. 6. Widths of the domain wall~defined as in Fig. 5! plotted
againstg5p(bLt)

1/2 for ~a! Lt52, ~b! Lt53, ~c! Lt54. Lines are
corresponding perturbative predictions; the dotted lines in~c! are
for the continuum,Lt5`.
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Sw5
]

]b S Fw

T D5
aLy
8Lt

2 S g2T D 1/2 ~110!

to leading order in perturbation theory. We have calculated
the value ofa as a function ofaT[1/Lt , using lattice per-
turbation theory~60! and show a selection of these values in
Table VIII. Since the lattice spacing corrections depend on
Lt , we shall mostly examine theT dependence at fixedLt .
Indeed, we have chosen our parameters with this in mind.
However, before doing so we briefly take the alternative ap-
proach of varyingLt at fixedb. For this purpose it is useful
to rewrite Eq.~110! in the form

Sw
Ly

52
a~Lt!

b2 S Tg2D
3/2

. ~111!

Now, as we see in Table IV, it is only forb575.0 that we
have a usefully large range ofLt values. So we plot these
values ofSw /Ly againstT/g2[b/4Lt , in Fig. 7. We use
logarithmic scales so that a power dependence inT will ap-
pear as a straight line. And, indeed, the calculated values do
fall on a straight line to a good approximation. The slope
suggests a variation}T1.6 which is close to the perturbative
variation of}T1.5. To carry the comparison further we need
to take into account the fact that in addition to the predicted
T1.5 behavior, there are differentaT lattice corrections at the
different values ofLt . That is to say, the behavior predicted
by perturbation theory is}a(Lt)T

1.5 and not just the power

of T. In Fig. 7 we show the complete leading order pertur-
bative prediction and we see that its variation fits that of our
data very well. The normalization is not exactly right — but
the difference is small and is decreasing with increasingT
just as one would expect from a higher order correction in
g2/T. If we do indeed try to fit the data with a higher order
correction we find that anO(g2/T) correction will not work;
but

s5
a

g
T2.5F110.13S g2T D 0.5G ~112!

fits perfectly well. The precise power of the correction is not
to be taken too seriously of course; it may be an effective
power that partially simulates the effects of logarithms in our
limited range ofT/g2 ~this range being roughly 3 to 10!.

We conclude from the above comparison that at tempera-
turesT/g2>3 the T dependence ofs is very close to the
perturbative expectation ofT2.5; indeed what we find is
;T2.6. Moreover, this slight difference almost entirely dis-
appears when we include the perturbatively calculatedaT
corrections toa. The remnant discrepancy, a few percent,
decreases asT increases and so is consistent with being a
higher order perturbative correction, as, for example, in Eq.
~112!. Unfortunately the fact that we do not know the precise
functional form of this correction, prevents us from carrying
out the quantitative comparison any further than this.

We turn now to consider the bulk of our calculations. We
shall consider theT dependence at fixed values of
Lt[1/aT, so that the lattice spacing corrections do not vary
with T. At the same time, by performing calculations for
several values ofaT we can see whether the perturbative
predictions show any sign of failing as one approaches the
continuum limit. To compare our results to the perturbative
prediction we define a quantityaeff by

aeff5
b2

2 S g2T D 3/2SwLy . ~113!

As we see from Eq.~111!, to leading order in perturbation
theory aeff(Lt)5a(Lt). In Fig. 8 we display our Monte
Carlo results foraeff as a function ofg

2/T. The perturbative
value ofa is also shown, as a horizontal broken line, in each
case. We observe that the calculated surface tension indeed
approaches the perturbative value asT increases. At the
highest values ofT the discrepancy is no more than a few
percent. Our data is clearly compatible with the leading per-
turbative result being exact in theT→` limit.

In Fig. 9 we plot the ratioaeff /a for all our data. We see
that to a good approximation it is a function only ofg2/T.
This supports the idea that the small differences we see be-
tween the full and perturbative surface tensions are in fact
due to higher order corrections ing2/T. We note that these
higher order corrections are small over our whole range of
T. Indeed, even forg2/T;1.1 the correction is only about
25% of the leading term. Recall that this temperature corre-
sponds to only about twice the deconfining temperature. It is
quite extraordinary that lowest order perturbation theory
should still be so accurate at such low temperatures.

If we knew the functional form of the leading correction,
we would attempt to extrapolate our ‘‘measured’’ values to

TABLE VIII. Perturbative values of the constant,a, in the in-
terface tension.

Lt a

2 6.024
3 5.655
4 5.409
5 5.284
6 5.221
8 5.165
10 5.142
20 5.113
` 5.104

FIG. 7. Action density of the domain wall (L) for Lt52,3,6 at
b575. The line is a fit~see text!. Also shown are the perturbative
values (1) for Lt52,3,4,5,6.
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T5`. Unfortunately we do not. Ind5311 we would ex-
pect the correction to be simply}g2/T. However, in
d5211 there are infrared logarithms which may also resum
into a power ofg2/T. So it seems reasonable that the correc-
tion should be some effective power ofg2/T that lies be-
tween 0.5 and 1 in our range ofT. If we fit our data with a
form

s5
a

g
T2.5F11cS g2T D «G ~114!

then we find that while«51 is excluded, powers near
«50.65 work perfectly well, as we see in Fig. 10. The inter-
cepts of these fits are compatible with the leading order per-
turbative predictions.

The final question in this context is whether there is any
sign that this agreement with perturbation theory breaks
down as we approach the continuum limit. The above de-
tailed comparisons have involved reducing the lattice spac-
ing by a factor of 2, i.e., fromaT51/2 to aT51/4. As we
see in Figs. 8 and 9 there is no sign of any lattice spacing

FIG. 8. The interface tension~with the factorT2.5/g removed!;
numerical values (L) compared to leading order perturbation
theory ~dashed lines!.

FIG. 9. Ratio of numerical and perturbative interface tensions
versus the high-T expansion parameterg2/T.

FIG. 10. Trial extrapolations to theT5` limit of the calculated
interface tensions.
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dependence other than that calculable in perturbation theory.
To go further we also calculated the surface tension with
aT51/Lt51/6 at b575. In Fig. 11 we show the value of
aeff /a(Lt) for this Lt56 point as well as for otherLt values
at approximately the same temperature~using
T/g25b/4Lt). Note that since theT dependence of this
quantity is very weak, as we have seen in Fig. 8, it is not
important to getT exactly the same at different values of
Lt . Note also that this is a reasonably high value ofT at
which to perform such a test: the deviations from leading
order perturbation theory are only at the 7% level or so. We
see from Fig. 11 that there is no significant deviation from
perturbation theory with decreasinga even down to
aT51/6. It therefore seems extremely unlikely that thecon-
tinuumsurface tension will not be equally well described by
perturbation theory.

So far we have focused on the surface tension of the do-
main wall. However, perturbation theory also makes predic-
tions for more detailed aspects of the domain wall, such as
its profile. In Fig. 12 we show how these predictions com-
pare with our Monte Carlo calculated Polyakov loop profiles

for several parameter values. We see very good agreement
with the main discrepancy arising from the fact that the
vacuum values of Polyakov loops are61 in leading order
perturbation theory. This is primarily an artifact arising from
the fact that^u&50 does not mean that̂cosu&51. A less
trivial, but almost invisible difference is that the approach to
the vacuum at large distances is Gaussian for perturbation
theory, but exponential in the full theory.

In Fig. 13 we show some typical examples of profiles of
different components of the action density. Again there is
very good agreement with perturbation theory.

We turn now to the Debye screening mass,mD . When we
expand the trace of the Polyakov loop the first nontrivial
term is ;A0

2 so that we expect correlations of Polyakov
loops to receive contributions from the exchange of pairs of
screened electric gluons. However, as emphasized by@26#, at
higher order in the couplingg2/T they also receive contribu-
tions from the magnetic gluon and larger numbers of gluons
of both kinds. The question naturally arises, which kind of
contribution are we seeing when we extract the masses dis-
played in Table III? If we expand the normalized correlation
functionC(z) of Polyakov loop operatorsP in energy eigen-
states

C~z!

C~0!
5(

n
cnexp~2Enz! ~115!

then the coefficientscn are just the amplitudes squared

cn5u^vacuPun&u2 ~116!

with normalization(cn51. From our above discussion we
expectcn to be largest for the state with two screened elec-
tric gluons. Of course, for large enoughz, the correlation
function will be dominated by the lightest energyEmin irre-
spective of the value ofcn ~as long as it is nonzero!, and so
we need to check whether the masses we have listed in Table
III do indeed correspond to states for whichcn is large. In
Table IX we list the overlapscn for the states whose masses
are listed in Table III. We provide both the overlap onto the
best smeared Polyakov loop operator and the overlap onto
the simple, unsmeared Polyakov loop operator. We do so for
the extreme values ofT at each value ofLt . We see that in

FIG. 11. Ratio, at fixedT, of numerical and~leading order!
perturbative interface tensions for decreasing lattice spacing
(a[1/LtT).

FIG. 12. Profile of the Polyakov loop within the domain wall
~centered atz50); numerical values~solid lines! and perturbation
theory ~dashed lines!.

FIG. 13. Vacuum-subtracted local action densities within the
domain wall; numerical calculations atb599.97 andLt54, com-
pared with perturbation theory~lines!.
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all cases the normalized matrix element squared is>79%.
Given that we expect the magnetic gluon, etc., contributions
to receive relative suppressions that are powers ofg2/T,
which is ;0.1 at our highestb values, it is clear that the
masses we have obtained belong to states that have no such
suppression. We therefore claim that we can read offmD
from Table III usingamD50.5amP .

As we have already seen, the Debye screening mass is
infinite at one loop, due to an infrared divergence. These
divergences go away if we use nonzero gluon masses in the
diagrams and so one can try to do a self-consistent calcula-
tion for the massmD . This has been done by D’Hoker@18#
who obtains

mD
25

g2T

p F lnS T

mD
D211OS 1

@ ln~T/mD!#zD , ~117!

wherez.0. We see from Eq.~117! thatmD /g
2 is a function

only of T/g2. Naively we would, of course, have expected
mD;gAT since, as we have seen, that is the scale for the
domain wall. And indeed this is the leadingT dependence in
Eq. ~117!, up to a weakly varying logarithm. However, the
correction term is down only by logarithms and so we might
not be surprised to find the comparison with perturbation
theory not as good as for the properties of the domain wall,
where the corrections are powers ofg2/T.

In Fig. 14 we plot our masses againstT/g2. What we
actually choose to plot ismD

2/g2T since that way we factor
out the supposedly dominantg2T factor and so expose the
remaining variation more clearly. We also show the leading

perturbative prediction as obtained from the first term of Eq.
~117!. The first observation is that the dominant variation of
mD is indeed;gT1/2. However, there is a substantial addi-
tional variation which is too strong to be due to corrections
that are higher order ing2/T. Indeed if we try a fit of the
form

mD
25g2TFc01c1S g2T D «G ~118!

we find that it simply does not work, even if we remove the
lowestT point from the fit. Indeed, as we see, this additional
T variation is quite similar to that obtained from Eq.~117!.
However, the normalization is completely off. Even allowing
for the Lt dependence in our values ofmD , there is a dis-
crepancy of about a factor of 3 with perturbation theory.
Since the corrections in Eq.~117! are only logarithmic we
cannot, of course, claim a contradiction with perturbation
theory. However, it is worrying that there is no trend towards
a reduction of the discrepancy even at our highest values of
T, where 1/ln(T/g2);0.4. This is in stark contrast to other
properties of the domain wall where we found the correc-
tions to leading order perturbation theory to be small even
for g2/T;1.

VIII. CONCLUSIONS

In this paper we have carried out extensive perturbative
and Monte Carlo calculations of the high-T domain walls
which are associated with the spontaneous breaking of a
Z(N) symmetry in SU(N) gauge theories. As we argued,
these walls can be viewed as ’t Hooft disorder loops which
become squeezed once the extent in Euclidean time becomes
small enough, as it does at high enoughT. Our purpose has
been to test high-T perturbation theory and to establish
whether these unusual objects do really exist in the Euclid-
ean continuum theory. In order to be able to obtain numerical
results of sufficient accuracy to be convincing, we have
worked with the simplest theory that one may consider as
realistic in this context, the SU~2! gauge theory in 211 di-
mensions.

This kind of calculation is difficult for several reasons.
First, the potential problems are infrared and it is therefore
crucial to make sure that the volumes used are large enough.
This means not only doing detailed numerical finite-size
studies, but also calculating the appropriate finite-volume
corrections in perturbation theory. For example, in this paper
we have shown how one can calculate the effects of rough-
ening on these domain walls. Second, one-loop perturbation
theory becomes exact, at best, only in the limitT→`. Now
at fixedaT the size of the lattice will grow asT1/2, in lattice
units, simply because the width of the wall isO(1/T1/2) in
d5211. This makes it difficult to simultaneously get close
to the continuum limit, whereaT is small, and to reach very
high values ofT. For this reason we have performed the
perturbative calculations not only for the continuum theory
but also for the lattice theory. In this way we can directly
compare perturbation theory to the full nonperturbative re-
sults one gets from Monte Carlo simulations.

In practice we have carried out simulations for tempera-
tures as high as;30Tc , whereTc is the deconfining tem-

TABLE IX. Overlaps of Polyakov loop operators onto the states
coresponding to our values ofmp .

Lt b Obest OBl51

2 100.0 0.88 0.81
25.0 0.93 0.82
7.0 0.98 0.90

3 112.5 0.84 0.79
10.27 0.98 0.89

4 99.97 0.92 0.81
13.81 0.97 0.86

6 75.00 0.89 0.80

FIG. 14. Numerically calculated values of the Debye mass,
compared to D’Hoker’s self-consistent perturbative prediction.
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perature, and for lattice spacings as small as 1/6T. ~This
comparison with 1/T is appropriate, sinceT is the largest
important physical energy scale in the problem.! At the high-
est values ofT our numerically obtained values of the sur-
face tension agree with the perturbative predictions at the
percent level and this is so at all our values ofa. Moreover,
there is agreement at the 25% level or so, even at tempera-
tures as low asg2/T;1. When we look at the variation with
a, over the rangea51/2T to 1/6T, we again find excellent
agreement with perturbation theory, with not the slightest
hint of any anomaly developing asa→0.

At the same time we have obtained perturbative predic-
tions for the more detailed properties of the wall, such as the
action density profile. These calculations agree very well
with our simulations. These profiles are interesting in them-
selves and show, for example, that^B22E2& — the thermal
energy~in Euclidean space! — becomes negative inside the
wall ~see Sec. V!.

The only quantity where we fail to find agreement with
perturbation theory is for the Debye screening mass. How-
ever, here the perturbative calculations are not straightfor-
ward and the corrections are expected to be a power of

1/ln(T/g2) and not ofg2/T. So there is no good reason to read
too much significance into this particular discrepancy.

Our conclusion is that these high-T domain walls are
present in the Euclidean theory, exactly as predicted by per-
turbation theory, both on the lattice and in the continuum.
Since these walls are quantum rather than semiclassical ob-
jects, they provide a severe testing ground for high-T pertur-
bation theory. Its success here lends strong support to the
usual pragmatic assumption that perturbation theory reliably
describes gauge theories at high temperatures.
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