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Calculating the Qapotential in (24 1)-dimensional light-front QCD
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Pure glue QCD is formulated on a {21)-dimensional transverse lattice, using discrete light-front quanti-
zation. The transverse component of the gauge fields is taken to be compact, but in a linearized approximation
with an effective potential. Thérest-frame¢ QQ potential is evaluated numerically using Lanzcos matrix
diagonalization. We first discuss the strong coupling limit analytically and then present numerical results
beyond the strong coupling limit. The physical origin of confinement on a transverse lattice depends on the
orientation of the external charges: For longitudinally separated charges, confinement arises from the instan-
taneous Coulomb interaction and for transversely separated quarks a string of link-fields forms. In the general
case one obtains a superposition of both effects. Despite the asymmetry in the microscopic mechanism, already
a very simple ansatz for the effective link-field potential provides an almost rotationally inv@@moten-
tial. The momentum carried by the glue depends strongly on the orientation of the external charges, which
might have observable consequen¢&f556-282(97)00602-4

PACS numbe(s): 12.38.Gc

I. INTRODUCTION II. THE HAMILTONIAN

. . . The light-front Hamiltonian for compact QCD on a trans-
Light-cone coordinatefl] are the natural coordinates for verse lattice has been introduced in Réf. For pure glue

describing high-energy scatterinf2—5]. The immense QCD in 2+1 dimensions one finds
wealth of data on nucleon and nucleus structure functions

thus strongly motivates one to understand QCD on the light
cone. The transverse lattice formulation of QQ{&®-9] is a p-— Jd _f dv I (x ) x— —v=|J-(v)T:
particularly promising approach towards this goal. Among Cg; X Y IO =y T In(y )
the most appealing features of this approach to light-front

QCD is that confinement emerges naturally in the limit of +Ver(U), (2.9)
large lattice spacin6,10].
In the transverse lattice formulation, the transverse spac&here
directions are discretized, while the longitudifak., the
* (0443 et i i
x==(x"*£x")//2] directions are kept continuou§ig. 1). - -
(X)) 2] b U819, 1 3,=U}3U, Ul 13U, 2.2

While this seems to be a natural procedure when quantizing
on the light front, the procedure is obviously not manifestly
rotationally invariant and one might ask oneself whether ro-andU,, are the link fields, which are quantized matrix fields
tationally invariance is recovered in the continuum limit and satisfy the usual commutation relations. Ideally, one
[11]. This issue becomes even more relevant, when one comvould like to work withU,e SU(N), but in practice this is
siders “practical” calculationgin contrast to the infinitely very complicated9] so in practice one may prefer to work
complicated continuum limjf i.e., calculations where the with an unconstrained complex matrix field and instead add
lattice spacing is not necessarily infinitesimally small be-an effective constraint terio(U) to the light-front(LF)
cause of numerical limitations or where one makes approxiHamiltonian. In the case oN—c, in the classical limit,
mations on top of the discretization. Ver(U) can be taken of the form

In this paper, we will consider one specific observable,
namely the rest-frame potential energy of &nfinitely
heavy QQ pair coupled to the gluon system. As has been
shown in Ref[13], this observable can be extracted from a
light-front Hamiltonian by considering &Q pair which
moves with uniform velocity and where the separation be-
tween the quark and the antiquark is kept fix#te corre- ‘
sponding formalism is briefly summarized in Appendix A

After setting the general formalism, we will proceed to
calculate theQQ potential away from the strong coupling
limit. The main issues there are to find out whether linear
confinement persists and whether rotationally invariance for
the potential is being restored. FIG. 1. Space-time view of a transverse lattice.
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o R - N which is known to result after eliminating zero-mode degrees
Veﬁ(U)202; tr[U U] +C4; tri[UU,UpURT, of freedom in the limit of a large longitudinal intervigd5].*
(2.3 In the largeN limit, the color singlet constraint is easily
satisfied by using a basis of states that can be written as
traces over color indices. This has been shown in R&f.
where c,= —2c, and c,—, which provides an effective and will be used in this paper.
potential that is minimized fol,eU(N). In the N—o To some extent, one can justify the omission of zero
limit, the diffe_rence bet_vveen W) and S_U(\I) is irrelevant  odes in the sense of Refil6-21 by formulating the
and Eq.(2.3) is thus suitable for enforcing the SNf con-  heory in terms of an effective light-front Hamiltonian,

straint in the classical limit. One might be tempted to try a,,pare high-energy degrees of freedom have been integrated

similar ansatz for' the LF quantized case. There are Severgyt while this procedure certainly takes care of some of the
reasons why a different form for the effective potential IS aro-mode dynamics, it is not clear whether this allows one

more useful. First, if one still attempts to work with an ef- : .

) . : to completely omit zero modes as dynamical degrees of free-
fective potential of the above form then physical statesdom Therefore. one should regard the omission of zero
would necessarily look extremely complicated, which has to” ’ 9

do with the fact that the above ansatz for the effective po—mOdeS(aS dynamical degrees of freedpm this paper as an

tential corresponds to working close to the continuum limit.2d hocapproximation which is applied to make the problem

Thus even if the ansatz in E(@.3) would work in principle, simpler. Including dynamical zero modes is one of the many
it would most likely not be very practical. possible improvements that one could consider as an exten-

However, since a “Mexican hat” potential corresponds to Sion of this work[22]. _
a situation where one is working with the false vacuum, itis N principle, there can be an arbitrary number of gluon
questionable whether a physical situation where a particlduanta on each of the links of the transverse lattice. The only
runs at the bottom of a Mexican hat can be described at affonstraint is the above-mentioned color singlet requirement
by a LF Hamiltonian, using degrees of freedom expande®n €ach site. In order to simplify the numerical calculation,
around the origin. we will first calculate theQQ potential under théad hog

For these two reasons, it makes more sense not to copproximation that each link contains at most one gluon
siderU, as thebarelink field, but instead think of it as some quantum. In combination with the color singlet requirement
kind of blockedor smearedvariable. The blocking has sev- this implies that &QQ pair separated biN transverse links
eral consequences. First, the $lJ(constraint gets relaxed will be connected by exactlil gluons—one on each link in
which reflects itself in the fact that the effective potential isbetweerf. The reason for doing this approximation is that it
no longer just a narrow vallejl2]. Second, using smeared allows one to illustrate the confinement mechanism on the
variables, it might be easier to cover large physical distancesF more clearly. Further below we will show results that do
with only few degrees of freedom. The price one has to payot make use of this approximation.
for these advantages is that the effective potential gets more The physical meaning of thene gluon per linkapproxi-
complex and in general more terms are necessary than showmation is as follows: In the limit of large gluon masses
in Eq. (2.3). In Ref.[24] an attempt has been made to fit the (=|arge lattice spacingsa QQ pair is connected by a static
effective potential to the glueball spectrum by making an(no fluctuationy chain of gluons. As the gluon mass gets
ansatz which includes all operators up to dimension foursmaller, the string starts fluctuating. Fluctuations where the
Since this work is a first study of the rest-frai@&) potential ~ string moves longitudinally with respect to the straight line

and, as we will discuss below, tli2Q potential turns out to connecting theQ Q pair correspond to excitations which do
be rather insensitive to terms of dimension greater than twamot change the number of link fields. Those are included in
in Vg4(U), we will instead only consider a much simpler the above approximation. Fluctuations which are excluded in
ansatz in the following and keep only the quadratic term the above approximation are the ones where the string gets
deformed transversely so strongly that it winds forth and
back in the transverse direction. If one wants an exact solu-
tion to QCD, all fluctuations must be included. However, as
a first step beyond théstatio heavy gluon limit, it makes
sense to include only the “motion” of the gluons first but
ll. NUMERICAL PROCEDURE AND RESULTS not creation and annihilation of additional gluons. Note that

Once one has made an ansatz for the Hamiltonian, onione were to work close to the continuum limit then such an
needs to find approximate solutions. In this work, we will @Pproximation would not make sense. However, since we
employ discrete light-cone quantizati@bLCQ) [14] for this ~ consider thel’s as blocked variables, which correspond to
purpose, i.e., on each link the gauge fiélg will be ex-
panded in a plane wave basis of complex matrix fields. For
simplicity, zero-mode degrees of freedom will be omitted in ‘Note that even though this has been shown only for

this procedure, but we impose a color singlet constraint a1+ 1)-dimensional gauge theories in RgL5], the result can be
each site: used here since QCD on a transverse lattice is formally equivalent

to a large number of coupled {11)-dimensional field theories.

2Without this approximation, this would be the minimal configu-
ration, i.e., any physical state subject to the color singlet constraint
at each site will have at least this number of gluons.

Ver(U)=cotr(UTU). (2.4

Qphys= [ 3,00 s =0, @1
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rather rigid degrees of freedom, it is not completely unreaAs soon as th€QQ pair is separated by at least one trans-

sonable to assume that pair creation is suppressed in groungrse site, the result is less trivial. For example, when the

state configurations. transverse separation is one lattice spacing, one obtains an
_The general formalism for calculating theest-fram¢ integral equation for the wave function of tliene gluon

QQ potential within the light-front framework has been dis- connecting theQ Q pair

cussed in detail in Ref13] and the reader in strongly en-

couraged to consult these works for details. In the following n 5 .

we will only present the explicit integral equations that onep- (k)= (_+2+m_+) lﬂ(k+)+G2J dq*

obtains for the couple® Q-glue system. If the quark and the 2v 2k 0

anti-quark are on the same site, with longitudinal separation

(k*— 12

X", the calculation is trivial since the “integral equation” (q KOk ) = g(g el a2
collapses into one single equation: 2vk gt (gt —k*)?

7T o

“=G%- x|, (3.2 +sz dg*

2 0
whereG?=g?N/2. g carries dimensions of mass. The fac- (q FKO[ (k) —g(qh)ela K xrz)
tor N arises from traces over matrices. The naive continuum —_ T ,
limit is related to the coupling constagg in the Lagrangian 2Vk"a"(q" —k")
of (2+ 1)-dimensional QCD (QCBR, ) via g? ocgola where (3.6

a is the transverse lattice spacing, which is why the coupling

has this unusual dimension. As has been shown in[R8f,  \yhere the two interaction terms arise from the Coulomb cou-
X~ is related to the longitudinal separation of Q& pair in  pling of the gluon to the quark and antiquark, respectively.
its rest framex,_ via Equations(3.3 and (3.4) also hold here. The exponential
- . “form factors” in the interaction terms arise since the quark
XA=Xv, (33 and antiquark are displaced in the longitudinal direction. The
coefficientm? is proportional toc, in the normal ordered
effective potential. We renamed it because in E6) its
physwal meaning as an effective mass for the link field be-
comes apparent.
In the continuunti.e., when one solves this integral equa-

wherev* is the velocity vector of th&Q pair. Similarly,

P~ is related to the potential interaction energy between the
guark and the antiquartagain in their rest framethrough
the relation[13]

V(x,,x,)=P 0™, (3.4  tion exactly the resultingV(x_,X, ) is independent of the
velocity v *. Note that this is not the case when one uses
i.e., for zero transverse separation one obtains DLCQ to solve the integral equation. This point will be dis-
cussed below.
™ For a separation of two sites the integral equation for the
V(x,00=G? 2 [x|. (3.5 P gral &g

two gluons between the charges reads

2 m2

ki +ki m (" +kOLpky ki) — (gt kg )eitka —ax 72
2

P~ (K kg z(—+ ) ki Ky +GZJ dg*
l;b( 1 2) U+2 2k1 2k2 w( 1 2 2\/qu+(0|+_|(1-)2

(q++k2 (ki k3 )— (ki ,q7)e'd ok 2]

f 2\k3a(a* —kj)?
e

Ky +ky (q +k1 )(k1+2k2 ah) [lﬂ(kfak;)_l/f(q+'k;)]

+G?
4\/|<+|<2+q+(|<*+k+ q) (a"—ki)?

(I:+ Z‘i')
I VI:l :2¢ , .
(3.;}

The three interaction terms in E.7) arise from the interaction of the first gluon with the quark, the second gluon with the
antiquark, and the interaction between the two gluons, respectively.

The generalization of these expressions to more than two links is straightforward but the resulting expressions are very
lengthy and will be omitted here.

Note that we used the “Coulomb trick[25] in Egs.(3.6) and(3.7) by adding and subtracting analytically a term in the
interaction. This results in an interaction that vanishes for constant wave functions—which is close to the actual shape—and
thus numerical convergence is improved considerably:
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tody | (x+y)(2—x-y) _ [t dy | (Xty)(2—x—y) B mPx) | Ad(x)
fo(X—y)z[\/xy(l—x)(l—y)‘//(y) 4‘/'()()}_ O(X—Y)Z{\/xy(l—x)(l—y)[l/j(y) '/I(X)]] \/x(l—x)+X(1—X)’
(3.9
as well as
= dy | (xty) _ (7 dy [ (xty) B 24(x)
LW[ Wy "b(y)_w(x)]_foW{—Jx—y [¥(y) ¢(X)]]+ o (3.9

Even though these integral equations will be solved belown contrast, when the positions of the quark and the anti-
in their fully relativistic form, it is very instructive to con- quark are at-x,/2#0 the potential energy which the gluon
sider various approximations thereof—particularly the limitin between them experiences is
m?— . Making a nonrelativistic expansion around the mini-

mum of the kinetic terms one finds, for tleest frame po- G?m XL XL
tential energy for an arbitrary configuration with glutest ViisplaceX1) = ——| |~ 5 ~Xa| T| 5 ~X
frame positions atxq, . .. Xn, s
2 |XL|
G?m|x,| for |x1|>7,
| x X _
V=nm+G2=| |- = —x,|+|x, — = = x| x| (3.14
2117 2 T , Ix 1
G 777 for |X1|<T.

n -1
+ I:El X —Xi 11

: (3.10

Clearly, this expression is minimized for-x /2<x;
<.+ <Xp <X_/2 with @ minimum value

(3.1)

o
V(x,_,xl)=an+GZE|x|_|.

For largem this is theQapotential in the rest frame of the
pair, which thus exhibits linear confinemdri3]. Since the

The violation of rotationally invariance in the large limit
manifests itself through the fact that the minimum of the
potential (with respect tox;) for the displaced case is too
high compared to the aligned case.

The crucial point is(see Fig. 2 that the valley of the
potential in the displaced ca$Eq. (3.14)] is wider than the
valley of the potential in the aligned caldeq. (3.13]. There-
fore, corrections due to the quantum mechanical zero-point
energy tend to increase the energy more strongly in the
aligned case than in the displaced case. In a sense, quantum
mechanical corrections work in the right direction to help
restore rotational invariance.

lattice SpaCing has not yet been fixed, we are free to choose Even though this Simp|e quantum mechanical argument is

2m

e

a (3.12

very useful in order to understand the physics of the restora-
tion of rotational invariance, we will not attempt to make it
quantitative since we will now make a fully relativistic cal-
culation, where we actually solve light-front integral equa-
tions for these systems, Ed8.6), (3.7), and the generaliza-

which renders the longitudinal and the transverse string tef;o 1 +9 more sites.

sion equal to each other. Neverthelegsn Eq. (3.1)) is still
not rotationally invariant: for example, for,=x, =x one
finds V(x,x)=2V(0x). For a rotationally invariant linear
potential the result would have betfx,x) = 2V(0x).

As we have seen above, the mass term plays an important
role in setting the scale for the transverse string tension. In
fact, given the string tensioo, one obtainsa=m/o for
large m?. Thus, if one wants to be close to the continuum

Such a result is familiar from the strong coupling limitin |yt one should try to maken? as small as possible. It turns
Euclidean or Hamiltonian lattice QCD, vyhere one _obtamsout that belowm?=0, the spectrum becomes tachyof2e],
exactly the same square shaped equipotential lines. Qfe m2—0 is the smallest meaningful value. As we will see
course, once one no longer restricts oneself to the stronge|q,y, the string tension in lattice unitse., also the lattice
coupling limit, the quantum mechanical fluctuations tend tospacing in physical unijsremains finite atm?=0. Since

restore rotationally invariance. _ _ m?=0 is thus the closest we can get to the continuum limit
This is also what happens here. To see this, let us considgfisin our approximation, we will focus only on this value.

aQQ pair separated by one transverse lattice unit. When thgye should also emphasize at this point that while smaller
(rest frame positions of the guark and the antiquark are bothyglyes ofm imply smaller lattice spacings, it will not be
atx_ =0 then the gluon in between them experiences a pogyfficient to just makex small enough in order to reach the

tential energy equal to continuum limit. Simultaneously, one will have to determine

the higher order terms in the effective potential as we dis-

Vaiigned X1) = G2 7rXy|. cussed above. Nevertheless it is true that, for a given effec-

(3.13
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FIG. 2. Potential energy of a gluon between an exte@@lpair

I ene n an exte 20 e s -
separated by one link in thctitious) nonrelativistic limit: (a) for 0.0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
Q and Q at the same longitudinal positioh) for Q and Q dis- 1/K

placed in the longitudinal direction by =2/G.

tive potential, decreasing the mass term corresponds to FIG'.S' Ground state energy ofwindi.ng modes f.or several trans-
smaller lattice spacings so that it is in general desirable tg€rS€ Sizesi of the lattice as a function of the inverse DLCQ
work with a small mass term. parameteK. The shaded bands correspond to khe>« extrapo-

In order to fix the scales. we first determine the transverslated results for the ground state energies. The width of the bands
. . ’ L . .?eﬂects systematic uncertainties in the extrapolation.
string tension. There are two possibilities to determine this
observable. One is to consider tEQ potential for large |
separations of the pair. The other is to consider a torus geand if one furthermore imposes = o, = o one finds for the
ometry, where the energy of glueball states which “wraptransverse lattice spacing in physical units
around” the torus is equal to the string tension times the
circumference of the circld24]. Even though the latter
method cannot be used to calculate @& potential or to
calculate the string tension in any direction other than the
transverse direction, it turns out to converge faster than cal-
culations of theQQ potential. Therefore, “wrap-around Having related the longitudinal and transverse scales, we are
glueballs” were used to fix the string tension in this work. now in a position to explore th®Q potential. Note that even

In the calculation of the glueball masses, we used DLCQ@hough the “wrap-around glueballs” are quite useful in the
[14] with antiperiodic boundary conditions, because the condetermination of the purely transverse string tension, they
vergence in the DLCQ parametsris faster than with peri- cannot be used to determine the string tension for any direc-
odic boundary conditions. Finally, the masses of “wrap-tion other than the transverse direction and they also cannot
around glueballs” were calculated for a fixed size of thebe used to determine thgQ potential for finite separations.
periodic lattice as a function of the DLCQ parameiteand  The QQ potential will therefore be determined by using the
the results were extrapolated Ko—< (Fig. 3). fixed charges formalism outlined above. Nevertheless,

The transverse string tensidin lattice) was then ex-  since—as we will see below—the determination of the string
tracted by considering the resulting extrapolated masses @énsjon from theéQ Q potential through the fixed charges for-
these states as a function of the number of lattice spacinggalism is less accurate than the method using wrap-around

Note that, as the nearly equidistant spacing in Fig. 3 indigjyeballs, we will still use the latter method to fix the scales
cates, already for only a few lattice spacings, the mass o, the following calculation.

these states depends almost exactly linearly on the number of
transverse lattice spacings, which allows one the easily ex
tract the transverse string tension from these data. The fitt

def lim,_.[M(n)/n] 1
a= —— ———~(083:002. (317

o

In the calculation of theQGpotential we proceeded as
llows: For a given longitudinal separation and a given
locity v *, the DLCQ Hamiltoniar(for a given number of

result is transverse sitgswas constructed with a cutoff on the total
M(n) longitudinal momentum of the gluon striigSince the mo-
G n.no1a=n(1.30+0.03, (3.19  menta are discretey " provides an infrared cutoff in the

following sense: the peak of the wave function, will be at
where we introduced the transverse string tension and th@omenta of ordek*~v*G. That is, only ifv * G is large in
transverse lattice spacing. If one denotes the longitudinal
string tension by, , one findg Eq. (3.5)]
3In contrast to DLCQ calculations of glueball masses, the momen-
(3.16 tum is not conserved here since arbitrary momenta can be trans-
2 ferred to and from the external charges.

a
O'L:GZ_



1006 M. BURKARDT AND B. KLINDWORTH 55

5 Q)

| I

|
. X
1 _| L
> 3 Ao L
Ax -7 -
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06— — - X,
00 05 10 15 20 25 30 35 40
G b)
3 | | |
FIG. 4. QQ potential vsr, where r2=x?+x?, as extracted 5 L
from the light-front Hamiltonian in the approximation where only
one gluon per link is allowed. The error bars reflect the uncertain- 1 B
ties arising from the extrapolation to the continuum limit in the
DLCQ calculation. The transverse scale was fixed from the masses N |
of “wrap-around glueballs.” The fact that not all points lie on the L
same smooth curve reflects the residual anisotropy due to the Fock
space truncation and the use of an oversimplified effective potential. -1 B
For comparison, the two dashed lines give the range of values one
would obtain in the largam limit, V|x |+|x,|. Dots, crosses, —21 g B
diamonds, squares, and circles correspona, te 0,1,2,3,4, respec-
tively. -3 1 1 T f f
-3 -2 -1 0 1 2 3
integer units, one will not be affected by the cutoff. Thus one X 1

must perform a careful extrapolatidiwyhere one sends both
the UV cutoff, but also the velocity* to infinity. The actuall
numerical work was based on DLCQ with antiperiodic
boundary conditions on the link fields. The ground state en
ergies and wave functions for the resulting DLCQ Hamilto-
nians were determined using a Lanzcos algorif2@]. The
resultingQQ potential is shown in Fig. 4. _ ) _ ) _ .
Even though not all points on Fig. 4 lie on the samelattice unit. What is going on here is that, while

s . = o
smooth curve, there is still a significant improvement com-Y(XL,0)=G*(7/2)|x.| in the approximation chosen in this
pared to the largem limit (3.11), where values for work, the potential in the transverse direction satisfies

X| —©

lines in Fig. 4. The residual anisotropy is mostly due to theiensjon in the longitudinal and transverse direction but which
use of an oversimplified effective potentigq. (2.4] but  resyits in equipotential lines that look like ellipses.
also due to théad hog suppression of higher Fock compo-

nents(see also the results below obtained without Fock space

FIG. 5. (a) Contour plot for theQ Q potential vsx; andx, in the
approximation where we keep only one gluon per link. For com-
barison, the contour plot for th@ Q potential in the largen (strong
coupling limit (Ve|x|+|x,]) is shown in(b).

truncation. Nevertheless, the restoration of rotational invari- V. THE MOMENTUM CARRIED BY THE GLUE
ance is quite impressive as a contour plot for the same data . o
as in Fig. 4 showsgFig. 5). Even though the calculations presented in this paper are

The lines of the constant potential turn out to be almosstill very crude, the approximate rotational invariance of the
circles. The slight anisotropy of the data in Fig. 4 results in 8QQ potential is very encouraging so that we proceed to in-
slight ellipsoidal distortion in Fig. 5. Note that the ellipsoidal vestigate other physical observables. We picked the gluon
shape in Fig. 5 doesot mean that the string tension in the distribution in these€Q Q systems since one of the main mo-
longitudinal and transverse directions are different. In factivations to study light-front QCD in the first place is the
they are the same by construction, i.e., by the choice for théirect access to parton distributions measured in deep inelas-

tic scattering. In particular, we will focus on tiikght-front)
momentum carried by the gluon component.
“This must be done very carefully because the peak of the wave Before we proceed, we should caution the reader that the
function moves as one changes. results must be interpreted with care: Since we work with
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finite and large lattice spacing, the “gluons” are not point- 6
like “current gluons” and thus the distribution functions
should be considered as distribution functions of some kind °
of “constituent gluons.” Nevertheless, the results might be 5 oy
helpful in obtaining some intuitive insight about the parton o
structure at lowQ?. " .

Obviously, when the external charges are sitting on the  +_
same site, there are no gluons within the approximation con-  Q °o3
sidered in this paper and thus the gluons carry zero momen- 2 37 c
tum for such a configuration. The other extreme is when the +Q:° h
charges are separated only transversely, in which case one 5| )
can derive an exact result. *

Consider Eq(3.6) for x™ =0: o

+ m2 ! ° 1 o]
Plﬁ(k+):(m+T)¢/(k+) . . |
) (@ K0k — i(a )] 00 05 10 15 20 25 30 35
+G? f dg* X G
0 2 k+q+(q+_k+)2
v2 [ aqr O I I e coparaed iy . datice spacings as  function of
20k (@ k)7 L pone

the longitudinal(rest-frame separation of the external charges. The
4.1 results are obtained in the one-gluon-per-link approximation. For
n, =0 the gluons carry no momentum in this approximation.
On the one handsee Appendix Aone knows that

(V) Note that similar sum rules have been derived elsewf#fe
=—0, (4.2 and they are not limited to the Fock space truncated version.
In the general case, where bothandx, are nonzero, we
where(V) is the expectation value for potentiaest-framg ~ Were not able to find a generalization of £4.6). However,
energy in this configuration. On the other hand, from theVe can easily use the numerically obtained states from the
Feynman-Hellman theorem for variationsRf with respect ~ calculation of the ground state energy and just “measure”

P =——
v

tov* in Eq. (4.1 one finds the momentum carried by the glue. The result is shown in
Fig. 6.
d b 1 mdk+ e 4.3 First of all, one notices that the momentum carried by the
do* 03, |9 (DK (43 gluons increases as the transverse separation increases. This

result is intuitively obvious and happens for=0 in a way
Combining these two results, one thus finds the remarkablyhat is consistent with Eq4.6). A much less obvious result
simple result(valid for QQ pairs that are separated only is that, for fixedn, , the momentum carried by the gluons

transversely decreasedor increasing longitudinal separation. This result
is at first counterintuitive because the energy in the gluon
P;rlueEJ' dk* |k H)|2k T =(V)o * (4.4 field increases when one increasgsfor fixed n, . How-
0 ever, this apparent paradox gets resolved when one recalls

. _ ‘that only transverse components of the electric field contrib-
which states that the momentum carried by the gluons igite to the momentum of the state in the infinite momentum
proportional tp the energy in the gluoin field. Applylng the fame [28]. Assuming (for simplicity) that the QQ pair is
same reasoning to E¢3.7) (again forx™=0), one obtains connected by a straight gluon string, it is obvious that the

similarly transverse component decreases as the string gets rotated into
m the longitudinal direction. This also explains why the mo-
P;uesf dky dky (k) k3 )[%(ky +ks)=(V)v ™, mentum carried by the gluons depends not only on the sepa-
0 Al

4 ration of theQQ pair but also on its orientation. As an ide-

alized case, it is instructive to assume that @@ pair is
which has the same simple interpretation as @). The connected by a straight string, i.e., the electric field lines are

gengralization to more than two links is Straightforward andpara||e| to theQQ axis (Wh|Ch has an ang|e with the |0ngi-
obvious: tudinal direction that we will denote b§. If |E| is the field
- strength in the string thelE, |=|E|sin®. In Ref.[28] it has
PJuueEf dky - - -dky (ks , - k)P Ky been shown that the momentum carried by the gauge bosons
° is proportional to the volume integral éf i.e., one would
=(V)v™. (4.6)  expect
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2
X
P Ju T orsifO=x, sind = ————, 4.7 6
which qualitatively explains the decrease I?J;Ue for fixed 5 @
X, with increasingx, . Ii@
The qualitative conclusion that one can take from these 4 @
results is that for heav@) Q systems, such a¥ ¢ or upsilon Q o
mesons, it is quite natural that the gluons carry a fraction > 3 6 :
P ;flue (V) ) < -
Xgue= 5+ =C Mo (4.8
Protal QQ S

of a hadron’s momentum, whereis a “geometry factor,”
which is of the order 1.

00 05 10 15 20 25 30 35 40
rG

V. INCLUDING HIGHER FOCK COMPONENTS

Even though the results in Sec. Il are already amazingly
ot . o Ao ot o e FI. 7. Comout pot for 12 ptntl vr. a1 the
Fock space to the minimal componert { quanta per link approxmatlon where we allow for up to one additional link-antilink
While this provided us with a very intuitive and numerically P
acceptable “quantum mechanical” approach to the gluorculational procedure strongly resembled the calculation in
distribution, it gives rise to results that are still very close tothe previous section. Because of limitations of our algorithm,
the strong coupling limit: in fact, even though the fields maywe had to restrict ourselves to three or less lattice sites.
fluctuate longitudinally(which distinguishes the above va-  The most important result was that higher Fock compo-
lence approximation from the strict strong coupling limit nents in the ground state of the string had a norm of typically
QED and QCD still give identical static potentials at this only a few percent, with the resulting energy shifts slightly
level. One might thus be sceptical about the resultdarger but still of the same order of magnitude. In fact, this
obtained—especially about the linearly risig potential. 1ustifies the truncation to only one pair. The results for the
In this section, we will provide evidence that the results ob-QQ potential and the momentum carried by the glue are

: : shown in Figs. 7 and 8, respectively.
Li&iiéogégfgx?mpaoﬁtgg“al donotdepend very much on the The first thing that one notes when one compares Fig. 4

Th in diff bet the results in thi i and Fig. 7 is an increase in the size of the error bars. This is
€ main diiference between the resufts S Seclion o -ause we had to limit ourselves to smaller values of the

and the results in the previous section is that we allowed o[, it dinal momentum and the systematic uncertainties
one additional Iink—antili.nk pair in the string stat.e. Computergom the extrapolation increased. Another obvious observa-
storage and the algorithm that we were usifi@nzcos, +on js that by including an additional pair the result gets
where we stored all nonzero matrix elements and their adayen closer to being rotationally invariant. We find that very
dresses in order to keep the code faitl not allow us to go  encouraging for future calculations. Apart from that, the only
beyond one additional pair while at the same time being ablgjifference between the calculations with and without the
to extrapolate to the continuum limit for two or more links. extra pair is a renormalization of the string tension in

However, our calculations with one additional pair showedlattice units [a, =1.140~*? compared to a, (valence)

that this component of the wave function is already very=1.040" 2.

strongly suppressed compared to the valence component so The momentum carried by the glue no longer has to van-

that we do not expect significant changes of the result bysh for a QQ pair that is oriented longitudinallyFig. 8).

going to even higher Fock components. Also, we shouldNevertheless, the numerical result is very small, which re-

point out that with just one additional pair there is a differ- flects the small admixture from higher Fock components. In

ence between QED and QCD. fact, similar to the potential, there is only very little change
The effective potential was taken to be the same as théor the momentum carried by the glue when one compares

one we used for the valence calculation, namely just a quasalculations with(Fig. 8 and without(Fig. 6) link-antilink

dratic term and we did the calculations with the “mass” at pairs.

the first-order critical point. We should emphasize that add- Overall, we found only a small change in the results for

ing higher order terms to the effective potential only affectsthe ground state of the string as we allowed for higher Fock

the calculation through higher Fock components. Therefor€omponents. We find this a very encouraging result since it

(unless the coefficients of the higher order terms are taken t8/2Y allow one to construct models for quarkonia that have a

be very large to invalidate the perturbative argumeme  SiMilar truncation in the Fock space.

expect theQQ potential to be rather insensitive to such VI. SUMMARY AND OUTLOOK

higher order terms. This is in sharp contrast to glueball cal-

culations where even the ground state spectrum depends We have presented analytical and numerical calculations

strongly on the higher order ternj24]. The rest of the cal- for the rest-frameQ Q potential in QCD on a transverse lat-
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6 : : . familiar from the strong coupling limit. Note that the link
fields carry momentum in the infinite momentum frame, i.e.,
for transversely separatedQ pairs, the gluons do carry a
sizable fraction of the total momentum.

Even though such an extreme asymmetry—no momentum
4¢ carried by the gluons for purely longitudinal separations—is
o the result of the strong coupling limit, it is actually quite
natural and physical that there is such an asymmetry depend-
ing on the orientation. This effect occurs already in QED
[28] and arises from the fact that the component of the
o (color) electric which is transverse to the boost direction
transforms differently from the component parallel to it. In
1t <1 ] particular, the parallel component does not contribute to the
Pointing vector in the infinite momentum frame. For this
' ) o reason, and because of the difference in the field distribution
Ovo 05 10 15 20 25 30 35 between QED and QCIdipole versus stringwe expect a

stronger orientational dependence of the gluon momentum in
x.G QCD than in QED.
In the next step we performed numerical calculations of

FIG. 8. Momentum carried by the gluons for external chargesthe QQ potential. First we showed results where we trun-
that are separated by =0, . .. ,3lattice spacings as a function of cated the Fock space to not more than one quantum of the
the longitudinal(rest-frame separation of the external charges. The |jnk field for each transverse link. Otherwise, the link fields
results are obtair!ed in the one-gluon-per-link approximation pIu§Nere treated fully dynamical and were allowed to move
one additional pair. freely in the longitudinal direction. There was only a first-
order transition as a function of the link field mass, i.e., while

tice using light-front quantization. The rest-fraiQ&® poten- ¢ yransverse lattice spacing in physical units decreased with

tial Was_obtqlned by con5|d.er|ng the |nvar|ar.1t mass. of &he mass term, it did not approach zero at the critical point.
heavyQQ pair that moves with constant velocity and fixed Nevertheless, the numerically obtain€d) potential at the

separation. o . . ; :
First we showed analytically, that one obtains a Iinearcrmcal point was almost rotationally invariant. The reason

potential(both in the longitudinal as well as in the transversefol.rf.th de f'r:St.'ord?rtﬁ r|t|cf? ! ﬁplntly\/ii.”ﬁSt Iltkelifac;ur Sver3|m—
direction in the limit of large transverse lattice spacings.pl ied choice of the effective link field potentidder(U).

This limit is similar to the strong coupling limit in Hamil- _ Even though the numerical precision was only limited, we
tonian or Euclidean lattice QCD. The confinement mechathen showed that the qualitative results change only little
nism for QCD in LF gauge in this limit depends on the When_we allowed _for excited Fock space components. This is
orientation of the external charges: In the longitudinal direc-Very important, since only upon inclusion of higher Fock
tion, confinement arises from the instantaneous interactiofomponents is there a difference between QED and QCD.
which appears when the unphysical component of the gluofhe unimportance of higher Fock components in the ground
field is eliminated by solving the LF gauge analog of thestate of the string is presumably partly responsible for the
Poisson equation. This component of the gluon field is als@pproximate rotational invariance of our results. The reason
unphysical in the sense that it carries no momentum in thés that in general one would not expect rotational invariance
infinite momentum frame. Thus, for a purely longitudinally on a coarse lattice unless one includes the full effective po-
separated) Q pair the gluon field carries no momentum at tential for the link fields — from which we kept only the
all in the limit of large transverse lattice spacings—evenquadratic term. Those terms that we omitted contribute only
though there is potential energy in the gluon field. For transto matrix elements that include higher Fock components.
versely separated charges, a completely different confineFherefore, if higher Fock components are not important for
ment mechanism is at work for large transverse lattice spaahe QQ potential then the higher order terms\igz(U) can-
ings: gauge invariance demands that tQEQ pair is not be important eithet.For tests of rotational invariance
connected by a string of gauge-link fieldthe “strong cou-  that are sensitive to the higher order termsVig(U) one
pling limit” in Hamiltonian QCD corresponds on a trans- must therefore study other observables, such as glueball
verse lattice to the limit, where the Lagrangian for the gluonspectra 24].
link contains a large mass and thus the ground state energy The numerical results, both with and without truncation of
of a gluon configuration is obtained by counting links. To-the Fock space, confirmed the strong dependence of the mo-
gether with the instantaneous interaction between quarks amdentum carried by the glue on the orientation of the external
adjacent link fields as well as among adjacent link fields, one
thus obtains a square shaped linear potential—a result thatis—
®Note that this argument is not fully complete since we have not
verified that the higher Fock components are unimportant for the
SEven if one is not dogmatic about gauge invariance, infraredground state of the string after the higher order terms are included
divergences, that occur otherwise, practically enforce this conditionin V¢g(U).

+ +
P glue/ Gv
©
S
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pair. This might have observable consequences for heavy
guarkonia with nonzero orbital angular momentum.

There are many extensions of this work that one could
think of, such as studying excited states of the string or using
Monte Carlo algorithms for obtaining the eigenstates and

N /

eigenvalues of the LF Hamiltonian. Excited states would be 2~ _ gO4gB
interesting both for theoretical but also for phenomenological Az~ = V2
reasons. On the theoretical side, since higher Fock compo- \\

nents play a stronger role in the excited states of the string,

they would allow probing the relevance of the higher order
terms inV(U) for rotational invariance and could thus be
used to help fix those constants. From the phenomenological — Az’ z
point of view, the excited states of the string are interesting

because of their connection to hybrid states. Employing

Monte Carlo algorithmg30] when studying the transverse FIG. 9. World lines for two charges with longitudinal separation
lattice might be a useful option since that would allow one toAx3 in the rest frame.

include many more Fock components than otherwise. Re-

peating the calculations in81 dimensions is an obvious h — Il as f . i
extension of this work31]. One possibility in this direction, N€avyQQ mesons as well as from nonperturbative Euclid-

which we are currently exploring, is to repeat the minimal€a" lattice calculationgt least in the absence of dynamical

Fock space truncation and to fit the plaquette interaction terffudrks—but it is easy to make the same approximation in a
such that approximate rotational invariance in all 3 spatiah" fre}meworlﬁ. bark on deriving the effecti i
directions is achieved. Then one can use this gluonic inter- B¢fore we embark on deriving the effective LF Hamil-

action to investigate the physics of the ground and excite nian for two infjnitely heavy sources, it is instructive. to
states of heavy quarkonia. understand physically what it means to have two fixed

sources “at rest® from the LF point of view. As should be
clear from Fig. 9fixed chargesn a conventional frameor-
ACKNOWLEDGMENTS respond tocharges that move with constant velooity the

Paineth . s
M.B. acknowledges useful discussions with F. Antonuc--F (v =v "= 1/y2 in the example in Fig. 9 Furthermore,

cio, S. Dalley, H. J. Pirner, and B. van de Sande. This workf the longitudinal separation idx° in the rest frame, the

was supported by the D.O.E. under Contract No. DE-FGo3¢harges have fixed separatianx™ = 2Ax® in the longitu-
96ER40965 and in part by TINAF. dinal LF direction. In the more general case, where the

charges are moving with constant four-velocity, where

) v, =0 in the rest frame, one obtaidsx” =Ax%/v "
APPENDIX A: HOW TO MEASURE THE REST-FRAME The transverse separation is the same on the LF as it is in

QQ POTENTIAL IN A LIGHT-FRONT CALCULATION a rest-frame description. Therefore, in order to understand
In this appendiX, a scheme is developed which allows the LF physics of chgrges that are fixed in a conventional
one to extract th€Q potential, i.e., the quantity which cor- frame with separatioiR=(R',R? R®), we must first under-
responds to the potential between two infinitely heavy quarkstand how to describe a “dumbbell,” with ends separated by
in a rest frame, from a light-front calculatiénThere are (AX',Ax?Ax7)=(R',R?R%v™), that moves with constant
several reasons to study this observable in the Iight—fronve|00ityv+-
(LF) framework.
The LF formalism lacks manifest rotationally invariance.
Therefore, if one starts with arong LF Hamiltonian for 1. One heavy quark on the LF
QCD, the resultV(R) depends on the orientation Bf with A pair of sources, moving both with the same constant
respect to the three-axisA measurement of/(R) thus pro-  Velocity v, can also be interpretef@nd treatefiasone ex-
vides a direct probe of rotationally invariance in a physicaltended sourcenoving with constant velocity* (for sim-
observable. plicity, we will keepv, =0). This is reminiscent of heavy
This sensitivity of V(R) to rotationally symmetry can quarks and thus, as a warmup exercise, it is very instructive
then be exploited in the renormalization procedure to helg© consider onépointlike) heavy quark on the LF firsfsee
determine noncovariant counter terms. also Refs[13,29).

And, most importantly,\/(lfz) in QCD is very well known For S|m_pl|?|a/, Wﬁ W'I.I first th?kﬁ the hbeavy_quark I|rrr]1|t ]:‘or
over a large range of distances from the spectroscopy df€ canonical Hamiltonian, which can be written in the form

_ Mp+kE
; PB:2—++PHL+ PLL! (Al)
See also Ref[13]. Pb
8Even though the body of this paper in on+2)-dimensional
QCD, we keep the discussion in this section independent of the
number of transverse space-time dimensions. 1%Here we mean “at rest” for a conventional observer, i.e., in an

%We use the notatioA™=A. = (A°+A%)/\2, A, = (AL A?). equal time frame.
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where B represents the hadrob, is the heavy quarkP,
contains the interactions between heaw) @nd light de-

grees of freedom, anB | contains all terms involving light

1011

instantaneous gluon exchange and are off diagonal in the
brown muck Fock space behave in the same way.
The quark gluon vertex simplifies considerably. For finite

degrees of freedom on|y_ The heavy quark limit is Obtainecﬂuark mass one has for the matrix element for the emission

by making an expansion in inverse powers of thguark
mass. For this purpose we write

Po =Ps—P/=Mgv'—p, (A2)
wherep,” is defined to be the sum of the longitudiraF)
momenta of all light degrees of freedom. For itetal) LF
energy we write on the LHS of E¢AL)

Mg Myt oE
20T 2vt

PgZMBl)7 (A3)

whereSE=Mg— My, is the “binding energy” of the hadron.

After inserting Eqs(A2) and(A3) into Eq.(A1) and expand-
ing one obtains

M+ SE M2+ K2
= 4P P
2v 2(Mgv ™ —p)
M2+ K2
b +Pu +P

T 2(Mpo 4+ 0Ev T —p;p)

M, SE pl
20t

M) PP

(A4)

Note that we have assumed that the transverse momentum
the heavy quark is small compared to its mass, which is
justified in a frame where the transverse velocity of the

heavy hadron vanishes. The term proportiondittp cancels
between the LHS and the RHS of Ed#\4) and we are left
with

SE_ pl o
—_ = W'FO(l/Mb)'f‘ Pal+PLL-

(A5)
v

The brown muckHamiltonianP | is the same as for light-
light systems and will not be discussed here. The interaction

term between the heavy quark and the brown muk, () is

of a gluon with momentunk, polarizationi, and colora
between quarks of momentum andp,:

2k| o, P2 —iMy (o P TiMy
— = T o'-c

k™ P2 [

Pogg™— igT?

(AB)

where spinors as well as creation and/or destruction opera-
tors have been omitted for simplicity. In the heavy quark
limit [note 1p; —1/p; =O(M,, ?)] the spin dependent terms
drop out and one finds in the heavy quark limit

Poog=—219T% .

(A7)
The spin of the heavy quark thus decouples completely, giv-

ing rise to the well-known SU(8;) symmetry in heavy
quark systems.

APPENDIX B: TWO HEAVY SOURCES

As we discussed above, two heavy sources at fixed sepa-
ration can formally be treated as one extended heavy
source'! Therefore, the LF Hamiltonian for two sources is
the same as for one source with two minor modifications.

All vertices involving a heavy source get modified ac-
c?rding to the rule Q@ stands for any operator acting on the
rown muck

{x"' T2 X O} +H.c.
’ t — ~
—{[x§ TxoF r(@) — xoT?xq Fr(—a)1X O} +H.c.,
(BY)

where y stands for the operator acting on the color degrees
of freedom of the heavy quark/antiquark. The “form factor”

R3S
U—+_RJ_qJ.) (B2

FR<q>=exp['§

more tedious but straightforward. For example, heavy quark

pair creation termgvia instantaneous gluonsre propor-

tional to 1/(pp + pgz)zocl/Mﬁ and can thus be neglected.
Similarly, pair creation of heavy quarks from virtual gluons

is also suppressed by at least one poweMgf. This also

heavy quark from the start. Other terms that vanist®ip
include interactions that involvimstantaneous exchange$

heavy quarks, which are typically proportional to the inverse

p* of the exchanged quark and thus of the or@aéMgl).

Up to this point, all interaction terms that we have consi

arises from acting with théinematig displacement opera-

tor on the position of the heavy quark and/or antiquatkft-

ing it fromx =0,x, =0, tox =*R¥2v*, x, = +R,/2)
andq is the netmomentum transferred to the brown muck.

justifies our omission of states containing more than on(;rhIS rule holds irrespective of the number of gluons involved

in this process. Note th&@ (brown muckis the same for one
or two heavy sources.

There is a static potential between the two heavy quarks.
In the continuum, the canonical Hamiltonian yields

- ’ t — S
d-Prn=9%x6 TxoxoTxa SA(R)IR®v*. In general,

ered vanish in the heavy quark limit. The more interestingthere will be a more complicated dependencéiamhich has
ones are of course those terms which survive. The simplesd be determined by demanding self-consistency. For ex-
ones are the instantaneous gluon exchange interactions widtinple, singularities arising from exchange of gluons with

light quarks or gluons, which are, respectivelyqg,
x(pg —Pg ) "Z andVogx(py +pg ) (Pg —Pg") "2 and re-
main unchanged in the limil,—o. Terms which involve

1just think of a dumbbell.



1012

low g* between the two sources should canganpertur-
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the presence of the two heavy sources, is then equal to

batively) with the IR behavior of the instantaneous potentialy/(R).

in P, [20].

The heavy quark potential thus calculated is equivalent to

Using Eq.(A5), V(R) can thus be extracted as follows: the potential which a lattice theorist would extract from an

(1) For a givenli andv ™, write down the effective LF

asymmetric rectangular Wilson loop. Since there is plenty of

Hamiltonian for the heavy pair interacting with the brown “quenched” lattice data around, it would make sense to omit

muck [including the form factors EqB2) and including all

light quarks completely in a first approach and to focus on

the counterterms and counterterm functions which wouldhe pure glue part of the brown muck. However, the formal-

also appear in a “heavy-light” system(2) The lowest ei-

ism described above is so general that one could also use it

genvaluesE™) from Eq.(A5), i.e., the QCD ground state in in a LF calculation that include@lynamica) light quarks.
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