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Pure glue QCD is formulated on a (211)-dimensional transverse lattice, using discrete light-front quanti-
zation. The transverse component of the gauge fields is taken to be compact, but in a linearized approximation
with an effective potential. The~rest-frame! QQ̄ potential is evaluated numerically using Lanzcos matrix
diagonalization. We first discuss the strong coupling limit analytically and then present numerical results
beyond the strong coupling limit. The physical origin of confinement on a transverse lattice depends on the
orientation of the external charges: For longitudinally separated charges, confinement arises from the instan-
taneous Coulomb interaction and for transversely separated quarks a string of link-fields forms. In the general
case one obtains a superposition of both effects. Despite the asymmetry in the microscopic mechanism, already
a very simple ansatz for the effective link-field potential provides an almost rotationally invariantQQ̄ poten-
tial. The momentum carried by the glue depends strongly on the orientation of the external charges, which
might have observable consequences.@S0556-2821~97!00602-4#

PACS number~s!: 12.38.Gc

I. INTRODUCTION

Light-cone coordinates@1# are the natural coordinates for
describing high-energy scattering@2–5#. The immense
wealth of data on nucleon and nucleus structure functions
thus strongly motivates one to understand QCD on the light
cone. The transverse lattice formulation of QCD@6–9# is a
particularly promising approach towards this goal. Among
the most appealing features of this approach to light-front
QCD is that confinement emerges naturally in the limit of
large lattice spacing@6,10#.

In the transverse lattice formulation, the transverse space
directions are discretized, while the longitudinal@i.e., the
x6[(x06x3)/A2# directions are kept continuous~Fig. 1!.
While this seems to be a natural procedure when quantizing
on the light front, the procedure is obviously not manifestly
rotationally invariant and one might ask oneself whether ro-
tationally invariance is recovered in the continuum limit
@11#. This issue becomes even more relevant, when one con-
siders ‘‘practical’’ calculations~in contrast to the infinitely
complicated continuum limit!, i.e., calculations where the
lattice spacing is not necessarily infinitesimally small be-
cause of numerical limitations or where one makes approxi-
mations on top of the discretization.

In this paper, we will consider one specific observable,
namely the rest-frame potential energy of an~infinitely
heavy! QQ̄ pair coupled to the gluon system. As has been
shown in Ref.@13#, this observable can be extracted from a
light-front Hamiltonian by considering aQQ̄ pair which
moves with uniform velocity and where the separation be-
tween the quark and the antiquark is kept fixed~the corre-
sponding formalism is briefly summarized in Appendix A!.

After setting the general formalism, we will proceed to
calculate theQQ̄ potential away from the strong coupling
limit. The main issues there are to find out whether linear
confinement persists and whether rotationally invariance for
the potential is being restored.

II. THE HAMILTONIAN

The light-front Hamiltonian for compact QCD on a trans-
verse lattice has been introduced in Ref.@6#. For pure glue
QCD in 211 dimensions one finds

P25cg(
n
E dx2E dy2:tr@Jn~x

2!ux22y2uJn~y2!#:

1Veff~U !, ~2.1!

where

Jn5Un
†]JUn2Un11

† ]JUn11 ~2.2!

andUn are the link fields, which are quantized matrix fields
and satisfy the usual commutation relations. Ideally, one
would like to work withUnPSU(N), but in practice this is
very complicated@9# so in practice one may prefer to work
with an unconstrained complex matrix field and instead add
an effective constraint termVeff(U) to the light-front ~LF!
Hamiltonian. In the case ofN→`, in the classical limit,
Veff(U) can be taken of the form

FIG. 1. Space-time view of a transverse lattice.

PHYSICAL REVIEW D 15 JANUARY 1997VOLUME 55, NUMBER 2

550556-2821/97/55~2!/1001~12!/$10.00 1001 © 1997 The American Physical Society



Veff
cl ~U !5c2(

n
tr:@Un

†Un#:1c4(
n

tr:@Un
†UnUn

†Un#:,

~2.3!

where c2522c4 and c4→`, which provides an effective
potential that is minimized forUnPU(N). In the N→`
limit, the difference between U(N) and SU(N) is irrelevant
and Eq.~2.3! is thus suitable for enforcing the SU(N) con-
straint in the classical limit. One might be tempted to try a
similar ansatz for the LF quantized case. There are several
reasons why a different form for the effective potential is
more useful. First, if one still attempts to work with an ef-
fective potential of the above form then physical states
would necessarily look extremely complicated, which has to
do with the fact that the above ansatz for the effective po-
tential corresponds to working close to the continuum limit.
Thus even if the ansatz in Eq.~2.3! would work in principle,
it would most likely not be very practical.

However, since a ‘‘Mexican hat’’ potential corresponds to
a situation where one is working with the false vacuum, it is
questionable whether a physical situation where a particle
runs at the bottom of a Mexican hat can be described at all
by a LF Hamiltonian, using degrees of freedom expanded
around the origin.

For these two reasons, it makes more sense not to con-
siderUn as thebare link field, but instead think of it as some
kind of blockedor smearedvariable. The blocking has sev-
eral consequences. First, the SU(N) constraint gets relaxed
which reflects itself in the fact that the effective potential is
no longer just a narrow valley@12#. Second, using smeared
variables, it might be easier to cover large physical distances
with only few degrees of freedom. The price one has to pay
for these advantages is that the effective potential gets more
complex and in general more terms are necessary than shown
in Eq. ~2.3!. In Ref. @24# an attempt has been made to fit the
effective potential to the glueball spectrum by making an
ansatz which includes all operators up to dimension four.
Since this work is a first study of the rest-frameQQ̄ potential
and, as we will discuss below, theQQ̄ potential turns out to
be rather insensitive to terms of dimension greater than two
in Veff(U), we will instead only consider a much simpler
ansatz in the following and keep only the quadratic term

Veff~U !'c2tr~U
†U !. ~2.4!

III. NUMERICAL PROCEDURE AND RESULTS

Once one has made an ansatz for the Hamiltonian, one
needs to find approximate solutions. In this work, we will
employ discrete light-cone quantization~DLCQ! @14# for this
purpose, i.e., on each link the gauge fieldUn will be ex-
panded in a plane wave basis of complex matrix fields. For
simplicity, zero-mode degrees of freedom will be omitted in
this procedure, but we impose a color singlet constraint at
each site:

Qnuphys&[E dx2Jn~x
2!uphys&50, ~3.1!

which is known to result after eliminating zero-mode degrees
of freedom in the limit of a large longitudinal interval@15#.1

In the largeN limit, the color singlet constraint is easily
satisfied by using a basis of states that can be written as
traces over color indices. This has been shown in Ref.@6#
and will be used in this paper.

To some extent, one can justify the omission of zero
modes in the sense of Refs.@16–21# by formulating the
theory in terms of an effective light-front Hamiltonian,
where high-energy degrees of freedom have been integrated
out. While this procedure certainly takes care of some of the
zero-mode dynamics, it is not clear whether this allows one
to completely omit zero modes as dynamical degrees of free-
dom. Therefore, one should regard the omission of zero
modes~as dynamical degrees of freedom! in this paper as an
ad hocapproximation which is applied to make the problem
simpler. Including dynamical zero modes is one of the many
possible improvements that one could consider as an exten-
sion of this work@22#.

In principle, there can be an arbitrary number of gluon
quanta on each of the links of the transverse lattice. The only
constraint is the above-mentioned color singlet requirement
on each site. In order to simplify the numerical calculation,
we will first calculate theQQ̄ potential under the~ad hoc!
approximation that each link contains at most one gluon
quantum. In combination with the color singlet requirement
this implies that aQQ̄ pair separated byN transverse links
will be connected by exactlyN gluons—one on each link in
between.2 The reason for doing this approximation is that it
allows one to illustrate the confinement mechanism on the
LF more clearly. Further below we will show results that do
not make use of this approximation.

The physical meaning of theone gluon per linkapproxi-
mation is as follows: In the limit of large gluon masses
~5large lattice spacings! aQQ̄ pair is connected by a static
~no fluctuations! chain of gluons. As the gluon mass gets
smaller, the string starts fluctuating. Fluctuations where the
string moves longitudinally with respect to the straight line
connecting theQQ̄ pair correspond to excitations which do
not change the number of link fields. Those are included in
the above approximation. Fluctuations which are excluded in
the above approximation are the ones where the string gets
deformed transversely so strongly that it winds forth and
back in the transverse direction. If one wants an exact solu-
tion to QCD, all fluctuations must be included. However, as
a first step beyond the~static! heavy gluon limit, it makes
sense to include only the ‘‘motion’’ of the gluons first but
not creation and annihilation of additional gluons. Note that
if one were to work close to the continuum limit then such an
approximation would not make sense. However, since we
consider theU ’s as blocked variables, which correspond to

1Note that even though this has been shown only for
(111)-dimensional gauge theories in Ref.@15#, the result can be
used here since QCD on a transverse lattice is formally equivalent
to a large number of coupled (111)-dimensional field theories.
2Without this approximation, this would be the minimal configu-

ration, i.e., any physical state subject to the color singlet constraint
at each site will have at least this number of gluons.
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rather rigid degrees of freedom, it is not completely unrea-
sonable to assume that pair creation is suppressed in ground
state configurations.

The general formalism for calculating the~rest-frame!
QQ̄ potential within the light-front framework has been dis-
cussed in detail in Ref.@13# and the reader in strongly en-
couraged to consult these works for details. In the following
we will only present the explicit integral equations that one
obtains for the coupledQQ̄-gluesystem. If the quark and the
anti-quark are on the same site, with longitudinal separation
x2, the calculation is trivial since the ‘‘integral equation’’
collapses into one single equation:

P25G2
p

2
ux2u, ~3.2!

whereG25g2N/2p. g carries dimensions of mass. The fac-
tor N arises from traces over matrices. The naive continuum
limit is related to the coupling constantg0 in the Lagrangian
of (211)-dimensional QCD (QCD211) via g

2}g0
2/a, where

a is the transverse lattice spacing, which is why the coupling
has this unusual dimension. As has been shown in Ref.@13#,
x2 is related to the longitudinal separation of theQQ̄ pair in
its rest framexL via

xL5x2v1, ~3.3!

wherevm is the velocity vector of theQQ̄ pair. Similarly,
P2 is related to the potential interaction energy between the
quark and the antiquark~again in their rest frame! through
the relation@13#

V~xL ,x'!5P2v1, ~3.4!

i.e., for zero transverse separation one obtains

V~xL,0!5G2
p

2
uxLu. ~3.5!

As soon as theQQ̄ pair is separated by at least one trans-
verse site, the result is less trivial. For example, when the
transverse separation is one lattice spacing, one obtains an
integral equation for the wave function of the~one! gluon
connecting theQQ̄ pair

P2c~k1!5S k1

2v12 1
m2

2k1Dc~k1!1G2E
0

`

dq1

3
~q11k1!@c~k1!2c~q1!ei ~k

12q1!x2/2#

2Ak1q1~q12k1!2

1G2E
0

`

dq1

3
~q11k1!@c~k1!2c~q1!ei ~q

12k1!x2/2#

2Ak1q1~q12k1!2
,

~3.6!

where the two interaction terms arise from the Coulomb cou-
pling of the gluon to the quark and antiquark, respectively.
Equations~3.3! and ~3.4! also hold here. The exponential
‘‘form factors’’ in the interaction terms arise since the quark
and antiquark are displaced in the longitudinal direction. The
coefficientm2 is proportional toc2 in the normal ordered
effective potential. We renamed it because in Eq.~3.6! its
physical meaning as an effective mass for the link field be-
comes apparent.

In the continuum~i.e., when one solves this integral equa-
tion exactly! the resultingV(xL ,x') is independent of the
velocity v1. Note that this is not the case when one uses
DLCQ to solve the integral equation. This point will be dis-
cussed below.

For a separation of two sites the integral equation for the
two gluons between the charges reads

P2c~k1
1 ,k2

1!5S k111k2
1

2v12 1
m2

2k1
1 1

m2

2k2
1Dc~k1

1 ,k2
1!1G2E

0

`

dq1
~q11k1

1!@c~k1
1 ,k2

1!2c~q1,k2
1!ei ~k1

1
2q1!x2/2#

2Ak11q1~q12k1
1!2

1G2E
0

`

dq1
~q11k2

1!@c~k1
1 ,k2

1!2c~k1
1 ,q1!ei ~q

12k2
1

!x2/2#

2Ak21q1~q12k2
1!2

1G2E
0

k1
1

1k2
1

dq1
~q11k1

1!~k1
112k2

12q1!

4Ak11k21q1~k1
11k2

12q1!

@c~k1
1 ,k2

1!2c~q1,k2
1!#

~q12k1
1!2

1G2
p

4Ak1k2
c~k1

1 ,k2
1!.

~3.7!

The three interaction terms in Eq.~3.7! arise from the interaction of the first gluon with the quark, the second gluon with the
antiquark, and the interaction between the two gluons, respectively.

The generalization of these expressions to more than two links is straightforward but the resulting expressions are very
lengthy and will be omitted here.

Note that we used the ‘‘Coulomb trick’’@25# in Eqs.~3.6! and ~3.7! by adding and subtracting analytically a term in the
interaction. This results in an interaction that vanishes for constant wave functions—which is close to the actual shape—and
thus numerical convergence is improved considerably:
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E
0

1 dy

~x2y!2 H ~x1y!~22x2y!

Axy~12x!~12y!
c~y!24c~x!J 5E

0

1 dy

~x2y!2 H ~x1y!~22x2y!

Axy~12x!~12y!
@c~y!2c~x!#J 2

pc~x!

Ax~12x!
1

4c~x!

x~12x!
,

~3.8!

as well as

E
0

` dy

~x2y!2 H ~x1y!

Axy
c~y!22c~x!J 5E

0

` dy

~x2y!2 H ~x1y!

Axy
@c~y!2c~x!#J 1

2c~x!

x
, ~3.9!

Even though these integral equations will be solved below
in their fully relativistic form, it is very instructive to con-
sider various approximations thereof—particularly the limit
m2→`. Making a nonrelativistic expansion around the mini-
mum of the kinetic terms one finds, for the~rest frame! po-
tential energy for an arbitrary configuration with gluon~rest
frame! positions atx1 , . . . ,xn'

,

V5n'm1G2
p

2 FU2 xL
2

2x1U1Uxn'
2
xL
2 U

1 (
i51

n'21

uxi2xi11uG . ~3.10!

Clearly, this expression is minimized for2xL/2,x1
,•••,xn'

,xL/2 with a minimum value

V~xL ,x'!5n'm1G2
p

2
uxLu. ~3.11!

For largem this is theQQ̄ potential in the rest frame of the
pair, which thus exhibits linear confinement@13#. Since the
lattice spacing has not yet been fixed, we are free to choose

a5
2m

pG2 , ~3.12!

which renders the longitudinal and the transverse string ten-
sion equal to each other. Nevertheless,V in Eq. ~3.11! is still
not rotationally invariant: for example, forxL5x'5x one
finds V(x,x)52V(0,x). For a rotationally invariant linear
potential the result would have beenV(x,x)5A2V(0,x).

Such a result is familiar from the strong coupling limit in
Euclidean or Hamiltonian lattice QCD, where one obtains
exactly the same square shaped equipotential lines. Of
course, once one no longer restricts oneself to the strong
coupling limit, the quantum mechanical fluctuations tend to
restore rotationally invariance.

This is also what happens here. To see this, let us consider
aQQ̄ pair separated by one transverse lattice unit. When the
~rest frame! positions of the quark and the antiquark are both
at xL50 then the gluon in between them experiences a po-
tential energy equal to

Valigned~x1!5G2pux1u. ~3.13!

In contrast, when the positions of the quark and the anti-
quark are at6xL/2Þ0 the potential energy which the gluon
in between them experiences is

Vdisplaced~x1!5
G2p

2 FU2 xL
2

2x1U1U xL2 2x1UG

5H G2pux1u for ux1u.
uxLu
2

,

G2p
uxLu
2

for ux1u,
uxLu
2

.

~3.14!

The violation of rotationally invariance in the largem limit
manifests itself through the fact that the minimum of the
potential ~with respect tox1) for the displaced case is too
high compared to the aligned case.

The crucial point is~see Fig. 2! that the valley of the
potential in the displaced case@Eq. ~3.14!# is wider than the
valley of the potential in the aligned case@Eq. ~3.13!#. There-
fore, corrections due to the quantum mechanical zero-point
energy tend to increase the energy more strongly in the
aligned case than in the displaced case. In a sense, quantum
mechanical corrections work in the right direction to help
restore rotational invariance.

Even though this simple quantum mechanical argument is
very useful in order to understand the physics of the restora-
tion of rotational invariance, we will not attempt to make it
quantitative since we will now make a fully relativistic cal-
culation, where we actually solve light-front integral equa-
tions for these systems, Eqs.~3.6!, ~3.7!, and the generaliza-
tion to more sites.

As we have seen above, the mass term plays an important
role in setting the scale for the transverse string tension. In
fact, given the string tensions, one obtainsa5m/s for
largem2. Thus, if one wants to be close to the continuum
limit, one should try to makem2 as small as possible. It turns
out that belowm250, the spectrum becomes tachyonic@23#,
i.e.,m250 is the smallest meaningful value. As we will see
below, the string tension in lattice units~i.e., also the lattice
spacing in physical units! remains finite atm250. Since
m250 is thus the closest we can get to the continuum limit
within our approximation, we will focus only on this value.
We should also emphasize at this point that while smaller
values ofm imply smaller lattice spacings, it will not be
sufficient to just makea small enough in order to reach the
continuum limit. Simultaneously, one will have to determine
the higher order terms in the effective potential as we dis-
cussed above. Nevertheless it is true that, for a given effec-
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tive potential, decreasing the mass term corresponds to
smaller lattice spacings so that it is in general desirable to
work with a small mass term.

In order to fix the scales, we first determine the transverse
string tension. There are two possibilities to determine this
observable. One is to consider theQQ̄ potential for large
separations of the pair. The other is to consider a torus ge-
ometry, where the energy of glueball states which ‘‘wrap
around’’ the torus is equal to the string tension times the
circumference of the circle@24#. Even though the latter
method cannot be used to calculate theQQ̄ potential or to
calculate the string tension in any direction other than the
transverse direction, it turns out to converge faster than cal-
culations of theQQ̄ potential. Therefore, ‘‘wrap-around
glueballs’’ were used to fix the string tension in this work.

In the calculation of the glueball masses, we used DLCQ
@14# with antiperiodic boundary conditions, because the con-
vergence in the DLCQ parameterK is faster than with peri-
odic boundary conditions. Finally, the masses of ‘‘wrap-
around glueballs’’ were calculated for a fixed size of the
periodic lattice as a function of the DLCQ parameterK and
the results were extrapolated toK→` ~Fig. 3!.

The transverse string tension~in lattice! was then ex-
tracted by considering the resulting extrapolated masses of
these states as a function of the number of lattice spacings.
Note that, as the nearly equidistant spacing in Fig. 3 indi-
cates, already for only a few lattice spacings, the mass of
these states depends almost exactly linearly on the number of
transverse lattice spacings, which allows one the easily ex-
tract the transverse string tension from these data. The fitted
result is

M ~n!
G

;
n→`

ns'a'n~1.3060.03!, ~3.15!

where we introduced the transverse string tension and the
transverse lattice spacing. If one denotes the longitudinal
string tension bysL , one finds@Eq. ~3.5!#

sL5G2
p

2
~3.16!

and if one furthermore imposessL5
!

s'5s one finds for the
transverse lattice spacing in physical units

a5
def limn→`@M ~n!/n#

s'

'
1

G
~0.8360.02!. ~3.17!

Having related the longitudinal and transverse scales, we are
now in a position to explore theQQ̄ potential. Note that even
though the ‘‘wrap-around glueballs’’ are quite useful in the
determination of the purely transverse string tension, they
cannot be used to determine the string tension for any direc-
tion other than the transverse direction and they also cannot
be used to determine theQQ̄ potential for finite separations.
TheQQ̄ potential will therefore be determined by using the
fixed charges formalism outlined above. Nevertheless,
since—as we will see below—the determination of the string
tension from theQQ̄ potential through the fixed charges for-
malism is less accurate than the method using wrap-around
glueballs, we will still use the latter method to fix the scales
in the following calculation.

In the calculation of theQQ̄ potential we proceeded as
follows: For a given longitudinal separationx2 and a given
velocity v1, the DLCQ Hamiltonian~for a given number of
transverse sites! was constructed with a cutoff on the total
longitudinal momentum of the gluon string.3 Since the mo-
menta are discrete,v1 provides an infrared cutoff in the
following sense: the peak of the wave function, will be at
momenta of orderk1'v1G. That is, only ifv1G is large in

3In contrast to DLCQ calculations of glueball masses, the momen-
tum is not conserved here since arbitrary momenta can be trans-
ferred to and from the external charges.

FIG. 2. Potential energy of a gluon between an externalQQ̄ pair
separated by one link in the~fictitious! nonrelativistic limit:~a! for
Q and Q̄ at the same longitudinal position,~b! for Q and Q̄ dis-
placed in the longitudinal direction byxL52/G.

FIG. 3. Ground state energy of winding modes for several trans-
verse sizesn' of the lattice as a function of the inverse DLCQ
parameterK. The shaded bands correspond to theK→` extrapo-
lated results for the ground state energies. The width of the bands
reflects systematic uncertainties in the extrapolation.
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integer units, one will not be affected by the cutoff. Thus one
must perform a careful extrapolation,4 where one sends both
the UV cutoff, but also the velocityv1 to infinity. The actual
numerical work was based on DLCQ with antiperiodic
boundary conditions on the link fields. The ground state en-
ergies and wave functions for the resulting DLCQ Hamilto-
nians were determined using a Lanzcos algorithm@26#. The
resultingQQ̄ potential is shown in Fig. 4.

Even though not all points on Fig. 4 lie on the same
smooth curve, there is still a significant improvement com-
pared to the largem limit ~3.11!, where values for
V(xL ,x') would fill the whole area within the two dashed
lines in Fig. 4. The residual anisotropy is mostly due to the
use of an oversimplified effective potential@Eq. ~2.4!# but
also due to the~ad hoc! suppression of higher Fock compo-
nents~see also the results below obtained without Fock space
truncation!. Nevertheless, the restoration of rotational invari-
ance is quite impressive as a contour plot for the same data
as in Fig. 4 shows~Fig. 5!.

The lines of the constant potential turn out to be almost
circles. The slight anisotropy of the data in Fig. 4 results in a
slight ellipsoidal distortion in Fig. 5. Note that the ellipsoidal
shape in Fig. 5 doesnotmean that the string tension in the
longitudinal and transverse directions are different. In fact
they are the same by construction, i.e., by the choice for the

lattice unit. What is going on here is that, while
V(xL,0)5G2(p/2)uxLu in the approximation chosen in this
work, the potential in the transverse direction satisfies

V(0,x') →
x'→`

G2(p/2)ux'u1c, which has the same string
tension in the longitudinal and transverse direction but which
results in equipotential lines that look like ellipses.

IV. THE MOMENTUM CARRIED BY THE GLUE

Even though the calculations presented in this paper are
still very crude, the approximate rotational invariance of the
QQ̄ potential is very encouraging so that we proceed to in-
vestigate other physical observables. We picked the gluon
distribution in theseQQ̄ systems since one of the main mo-
tivations to study light-front QCD in the first place is the
direct access to parton distributions measured in deep inelas-
tic scattering. In particular, we will focus on the~light-front!
momentum carried by the gluon component.

Before we proceed, we should caution the reader that the
results must be interpreted with care: Since we work with

4This must be done very carefully because the peak of the wave
function moves as one changesv1.

FIG. 4. QQ̄ potential vsr , where r 25x'
21xL

2 , as extracted
from the light-front Hamiltonian in the approximation where only
one gluon per link is allowed. The error bars reflect the uncertain-
ties arising from the extrapolation to the continuum limit in the
DLCQ calculation. The transverse scale was fixed from the masses
of ‘‘wrap-around glueballs.’’ The fact that not all points lie on the
same smooth curve reflects the residual anisotropy due to the Fock
space truncation and the use of an oversimplified effective potential.
For comparison, the two dashed lines give the range of values one
would obtain in the largem limit, V}uxLu1ux'u. Dots, crosses,
diamonds, squares, and circles correspond ton'50,1,2,3,4, respec-
tively.

FIG. 5. ~a! Contour plot for theQQ̄ potential vsx' andxL in the
approximation where we keep only one gluon per link. For com-
parison, the contour plot for theQQ̄ potential in the largem ~strong
coupling! limit (V}uxLu1ux'u) is shown in~b!.
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finite and large lattice spacing, the ‘‘gluons’’ are not point-
like ‘‘current gluons’’ and thus the distribution functions
should be considered as distribution functions of some kind
of ‘‘constituent gluons.’’ Nevertheless, the results might be
helpful in obtaining some intuitive insight about the parton
structure at lowQ2.

Obviously, when the external charges are sitting on the
same site, there are no gluons within the approximation con-
sidered in this paper and thus the gluons carry zero momen-
tum for such a configuration. The other extreme is when the
charges are separated only transversely, in which case one
can derive an exact result.

Consider Eq.~3.6! for x250:

P2c~k1!5S k1

2v12 1
m2

2k1Dc~k1!

1G2E
0

`

dq1
~q11k1!@c~k1!2c~q1!#

2Ak1q1~q12k1!2

1G2E
0

`

dq1
~q11k1!@c~k1!2c~q1!#

2Ak1q1~q12k1!2
.

~4.1!

On the one hand~see Appendix A! one knows that

P25
^V&
v1 , ~4.2!

where^V& is the expectation value for potential~rest-frame!
energy in this configuration. On the other hand, from the
Feynman-Hellman theorem for variations ofP2 with respect
to v1 in Eq. ~4.1! one finds

d

dv1 P252
1

v13E
0

`

dk1uc~k1!u2k1. ~4.3!

Combining these two results, one thus finds the remarkably
simple result~valid for QQ̄ pairs that are separated only
transversely!

Pglue
1 [E

0

`

dk1uc~k1!u2k15^V&v1 ~4.4!

which states that the momentum carried by the gluons is
proportional to the energy in the gluon field. Applying the
same reasoning to Eq.~3.7! ~again forx250), one obtains
similarly

Pglue
1 [E

0

`

dk1
1dk2

1uc~k1
1 ,k2

1!u2~k1
11k2

1!5^V&v1,

~4.5!

which has the same simple interpretation as Eq.~4.4!. The
generalization to more than two links is straightforward and
obvious:

Pglue
1 [E

0

`

dk1
1
•••dkn

1uc~k1
1 , . . . ,kn

1!u2~k1
11•••1kn

1!

5^V&v1. ~4.6!

Note that similar sum rules have been derived elsewhere@27#
and they are not limited to the Fock space truncated version.

In the general case, where bothxL andx' are nonzero, we
were not able to find a generalization of Eq.~4.6!. However,
we can easily use the numerically obtained states from the
calculation of the ground state energy and just ‘‘measure’’
the momentum carried by the glue. The result is shown in
Fig. 6.

First of all, one notices that the momentum carried by the
gluons increases as the transverse separation increases. This
result is intuitively obvious and happens forxL50 in a way
that is consistent with Eq.~4.6!. A much less obvious result
is that, for fixedn' , the momentum carried by the gluons
decreasesfor increasing longitudinal separation. This result
is at first counterintuitive because the energy in the gluon
field increases when one increasesxL for fixed n' . How-
ever, this apparent paradox gets resolved when one recalls
that only transverse components of the electric field contrib-
ute to the momentum of the state in the infinite momentum
frame @28#. Assuming~for simplicity! that theQQ̄ pair is
connected by a straight gluon string, it is obvious that the
transverse component decreases as the string gets rotated into
the longitudinal direction. This also explains why the mo-
mentum carried by the gluons depends not only on the sepa-
ration of theQQ̄ pair but also on its orientation. As an ide-
alized case, it is instructive to assume that theQQ̄ pair is
connected by a straight string, i.e., the electric field lines are
parallel to theQQ̄ axis ~which has an angle with the longi-
tudinal direction that we will denote byQ. If uEW u is the field
strength in the string thenuEW'u5uEW usinQ. In Ref. @28# it has
been shown that the momentum carried by the gauge bosons
is proportional to the volume integral ofEW'

2 i.e., one would
expect

FIG. 6. Momentum carried by the gluons for external charges
that are separated byn'51, . . . ,4lattice spacings as a function of
the longitudinal~rest-frame! separation of the external charges. The
results are obtained in the one-gluon-per-link approximation. For
n'50 the gluons carry no momentum in this approximation.
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Pglue
1 /v1}rsin2Q5x'sinQ5

x'
2

Ax'
21xL

2
, ~4.7!

which qualitatively explains the decrease ofPglue
1 for fixed

x' with increasingxL .
The qualitative conclusion that one can take from these

results is that for heavyQQ̄ systems, such asJ/c or upsilon
mesons, it is quite natural that the gluons carry a fraction

xglue[
Pglue

1

Ptotal
1 5c

^V&
MQQ̄

~4.8!

of a hadron’s momentum, wherec is a ‘‘geometry factor,’’
which is of the order 1.

V. INCLUDING HIGHER FOCK COMPONENTS

Even though the results in Sec. III are already amazingly
close to being rotationally invariant, they have a serious
flaw: they were obtained after anad hoc truncation of the
Fock space to the minimal component (<1 quanta per link!.
While this provided us with a very intuitive and numerically
acceptable ‘‘quantum mechanical’’ approach to the gluon
distribution, it gives rise to results that are still very close to
the strong coupling limit: in fact, even though the fields may
fluctuate longitudinally~which distinguishes the above va-
lence approximation from the strict strong coupling limit!
QED and QCD still give identical static potentials at this
level. One might thus be sceptical about the results
obtained—especially about the linearly risingQQ̄ potential.
In this section, we will provide evidence that the results ob-
tained for theQQ̄ potential donot depend very much on the
valence approximation.

The main difference between the results in this section
and the results in the previous section is that we allowed for
one additional link-antilink pair in the string state. Computer
storage and the algorithm that we were using~Lanzcos,
where we stored all nonzero matrix elements and their ad-
dresses in order to keep the code fast! did not allow us to go
beyond one additional pair while at the same time being able
to extrapolate to the continuum limit for two or more links.
However, our calculations with one additional pair showed
that this component of the wave function is already very
strongly suppressed compared to the valence component so
that we do not expect significant changes of the result by
going to even higher Fock components. Also, we should
point out that with just one additional pair there is a differ-
ence between QED and QCD.

The effective potential was taken to be the same as the
one we used for the valence calculation, namely just a qua-
dratic term and we did the calculations with the ‘‘mass’’ at
the first-order critical point. We should emphasize that add-
ing higher order terms to the effective potential only affects
the calculation through higher Fock components. Therefore
~unless the coefficients of the higher order terms are taken to
be very large to invalidate the perturbative argument! we
expect theQQ̄ potential to be rather insensitive to such
higher order terms. This is in sharp contrast to glueball cal-
culations where even the ground state spectrum depends
strongly on the higher order terms@24#. The rest of the cal-

culational procedure strongly resembled the calculation in
the previous section. Because of limitations of our algorithm,
we had to restrict ourselves to three or less lattice sites.

The most important result was that higher Fock compo-
nents in the ground state of the string had a norm of typically
only a few percent, with the resulting energy shifts slightly
larger but still of the same order of magnitude. In fact, this
justifies the truncation to only one pair. The results for the
QQ̄ potential and the momentum carried by the glue are
shown in Figs. 7 and 8, respectively.

The first thing that one notes when one compares Fig. 4
and Fig. 7 is an increase in the size of the error bars. This is
because we had to limit ourselves to smaller values of the
longitudinal momentum and the systematic uncertainties
from the extrapolation increased. Another obvious observa-
tion is that by including an additional pair the result gets
even closer to being rotationally invariant. We find that very
encouraging for future calculations. Apart from that, the only
difference between the calculations with and without the
extra pair is a renormalization of the string tension in
lattice units @a'51.14s21/2 compared to a'(valence)
51.04s21/2#.

The momentum carried by the glue no longer has to van-
ish for a QQ̄ pair that is oriented longitudinally~Fig. 8!.
Nevertheless, the numerical result is very small, which re-
flects the small admixture from higher Fock components. In
fact, similar to the potential, there is only very little change
for the momentum carried by the glue when one compares
calculations with~Fig. 8! and without~Fig. 6! link-antilink
pairs.

Overall, we found only a small change in the results for
the ground state of the string as we allowed for higher Fock
components. We find this a very encouraging result since it
may allow one to construct models for quarkonia that have a
similar truncation in the Fock space.

VI. SUMMARY AND OUTLOOK

We have presented analytical and numerical calculations
for the rest-frameQQ̄ potential in QCD on a transverse lat-

FIG. 7. Contour plot for theQQ̄ potential vsx' andxL in the
approximation where we allow for up to one additional link-antilink
pair.
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tice using light-front quantization. The rest-frameQQ̄ poten-
tial was obtained by considering the invariant mass of a
heavyQQ̄ pair that moves with constant velocity and fixed
separation.

First we showed analytically, that one obtains a linear
potential~both in the longitudinal as well as in the transverse
direction! in the limit of large transverse lattice spacings.
This limit is similar to the strong coupling limit in Hamil-
tonian or Euclidean lattice QCD. The confinement mecha-
nism for QCD in LF gauge in this limit depends on the
orientation of the external charges: In the longitudinal direc-
tion, confinement arises from the instantaneous interaction
which appears when the unphysical component of the gluon
field is eliminated by solving the LF gauge analog of the
Poisson equation. This component of the gluon field is also
unphysical in the sense that it carries no momentum in the
infinite momentum frame. Thus, for a purely longitudinally
separatedQQ̄ pair the gluon field carries no momentum at
all in the limit of large transverse lattice spacings—even
though there is potential energy in the gluon field. For trans-
versely separated charges, a completely different confine-
ment mechanism is at work for large transverse lattice spac-
ings: gauge invariance demands that theQQ̄ pair is
connected by a string of gauge-link field.5 The ‘‘strong cou-
pling limit’’ in Hamiltonian QCD corresponds on a trans-
verse lattice to the limit, where the Lagrangian for the gluon
link contains a large mass and thus the ground state energy
of a gluon configuration is obtained by counting links. To-
gether with the instantaneous interaction between quarks and
adjacent link fields as well as among adjacent link fields, one
thus obtains a square shaped linear potential—a result that is

familiar from the strong coupling limit. Note that the link
fields carry momentum in the infinite momentum frame, i.e.,
for transversely separatedQQ̄ pairs, the gluons do carry a
sizable fraction of the total momentum.

Even though such an extreme asymmetry—no momentum
carried by the gluons for purely longitudinal separations—is
the result of the strong coupling limit, it is actually quite
natural and physical that there is such an asymmetry depend-
ing on the orientation. This effect occurs already in QED
@28# and arises from the fact that the component of the
~color! electric which is transverse to the boost direction
transforms differently from the component parallel to it. In
particular, the parallel component does not contribute to the
Pointing vector in the infinite momentum frame. For this
reason, and because of the difference in the field distribution
between QED and QCD~dipole versus string! we expect a
stronger orientational dependence of the gluon momentum in
QCD than in QED.

In the next step we performed numerical calculations of
the QQ̄ potential. First we showed results where we trun-
cated the Fock space to not more than one quantum of the
link field for each transverse link. Otherwise, the link fields
were treated fully dynamical and were allowed to move
freely in the longitudinal direction. There was only a first-
order transition as a function of the link field mass, i.e., while
the transverse lattice spacing in physical units decreased with
the mass term, it did not approach zero at the critical point.
Nevertheless, the numerically obtainedQQ̄ potential at the
critical point was almost rotationally invariant. The reason
for the first-order critical point was most likely our oversim-
plified choice of the effective link field potentialVeff(U).

Even though the numerical precision was only limited, we
then showed that the qualitative results change only little
when we allowed for excited Fock space components. This is
very important, since only upon inclusion of higher Fock
components is there a difference between QED and QCD.
The unimportance of higher Fock components in the ground
state of the string is presumably partly responsible for the
approximate rotational invariance of our results. The reason
is that in general one would not expect rotational invariance
on a coarse lattice unless one includes the full effective po-
tential for the link fields — from which we kept only the
quadratic term. Those terms that we omitted contribute only
to matrix elements that include higher Fock components.
Therefore, if higher Fock components are not important for
theQQ̄ potential then the higher order terms inVeff(U) can-
not be important either.6 For tests of rotational invariance
that are sensitive to the higher order terms inVeff(U) one
must therefore study other observables, such as glueball
spectra@24#.

The numerical results, both with and without truncation of
the Fock space, confirmed the strong dependence of the mo-
mentum carried by the glue on the orientation of the external

5Even if one is not dogmatic about gauge invariance, infrared
divergences, that occur otherwise, practically enforce this condition.

6Note that this argument is not fully complete since we have not
verified that the higher Fock components are unimportant for the
ground state of the string after the higher order terms are included
in Veff(U).

FIG. 8. Momentum carried by the gluons for external charges
that are separated byn'50, . . . ,3lattice spacings as a function of
the longitudinal~rest-frame! separation of the external charges. The
results are obtained in the one-gluon-per-link approximation plus
one additional pair.
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pair. This might have observable consequences for heavy
quarkonia with nonzero orbital angular momentum.

There are many extensions of this work that one could
think of, such as studying excited states of the string or using
Monte Carlo algorithms for obtaining the eigenstates and
eigenvalues of the LF Hamiltonian. Excited states would be
interesting both for theoretical but also for phenomenological
reasons. On the theoretical side, since higher Fock compo-
nents play a stronger role in the excited states of the string,
they would allow probing the relevance of the higher order
terms inVeff(U) for rotational invariance and could thus be
used to help fix those constants. From the phenomenological
point of view, the excited states of the string are interesting
because of their connection to hybrid states. Employing
Monte Carlo algorithms@30# when studying the transverse
lattice might be a useful option since that would allow one to
include many more Fock components than otherwise. Re-
peating the calculations in 311 dimensions is an obvious
extension of this work@31#. One possibility in this direction,
which we are currently exploring, is to repeat the minimal
Fock space truncation and to fit the plaquette interaction term
such that approximate rotational invariance in all 3 spatial
directions is achieved. Then one can use this gluonic inter-
action to investigate the physics of the ground and excited
states of heavy quarkonia.
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APPENDIX A: HOW TO MEASURE THE REST-FRAME
QQ̄ POTENTIAL IN A LIGHT-FRONT CALCULATION

In this appendix,7 a scheme is developed which allows
one to extract theQQ̄ potential, i.e., the quantity which cor-
responds to the potential between two infinitely heavy quarks
in a rest frame, from a light-front calculation.8 There are
several reasons to study this observable in the light-front
~LF! framework.

The LF formalism lacks manifest rotationally invariance.
Therefore, if one starts with awrong LF Hamiltonian for
QCD, the resultV(RW ) depends on the orientation ofRW with
respect to the three-axis.9 A measurement ofV(RW ) thus pro-
vides a direct probe of rotationally invariance in a physical
observable.

This sensitivity ofV(RW ) to rotationally symmetry can
then be exploited in the renormalization procedure to help
determine noncovariant counter terms.

And, most importantly,V(RW ) in QCD is very well known
over a large range of distances from the spectroscopy of

heavyQQ̄ mesons as well as from nonperturbative Euclid-
ean lattice calculations~at least in the absence of dynamical
quarks—but it is easy to make the same approximation in a
LF framework!.

Before we embark on deriving the effective LF Hamil-
tonian for two infinitely heavy sources, it is instructive to
understand physically what it means to have two fixed
sources ‘‘at rest’’10 from the LF point of view. As should be
clear from Fig. 9,fixed chargesin a conventional framecor-
respond tocharges that move with constant velocityon the
LF (v15v251/A2 in the example in Fig. 9!. Furthermore,
if the longitudinal separation isDx3 in the rest frame, the
charges have fixed separationDx25A2Dx3 in the longitu-
dinal LF direction. In the more general case, where the
charges are moving with constant four-velocityvm, where

vW'50 in the rest frame, one obtainsDx25Dx3/v1.
The transverse separation is the same on the LF as it is in

a rest-frame description. Therefore, in order to understand
the LF physics of charges that are fixed in a conventional
frame with separationRW 5(R1,R2,R3), we must first under-
stand how to describe a ‘‘dumbbell,’’ with ends separated by
(Dx1,Dx2,Dx2)5(R1,R2,R3/v1), that moves with constant
velocity v1.

1. One heavy quark on the LF

A pair of sources, moving both with the same constant
velocity vm, can also be interpreted~and treated! asone ex-
tended sourcemoving with constant velocityvm ~for sim-
plicity, we will keep vW'50W ). This is reminiscent of heavy
quarks and thus, as a warmup exercise, it is very instructive
to consider one~pointlike! heavy quark on the LF first~see
also Refs.@13,29#!.

For simplicity, we will first take the heavy quark limit for
the canonical Hamiltonian, which can be written in the form

PB
25

Mb
21kWb'

2

2pb
1 1PHL

2 1PLL
2 , ~A1!

7See also Ref.@13#.
8Even though the body of this paper in on (211)-dimensional

QCD, we keep the discussion in this section independent of the
number of transverse space-time dimensions.
9We use the notationA65A75(A06A3)/A2, AW'5(A1,A2).

10Here we mean ‘‘at rest’’ for a conventional observer, i.e., in an
equal time frame.

FIG. 9. World lines for two charges with longitudinal separation
Dx3 in the rest frame.
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whereB represents the hadron,b is the heavy quark,PHL
2

contains the interactions between heavy (b) and light de-
grees of freedom, andPLL

2 contains all terms involving light
degrees of freedom only. The heavy quark limit is obtained
by making an expansion in inverse powers of theb-quark
mass. For this purpose we write

pb
15PB

12pL
15MBv

12pL
1 , ~A2!

wherepL
1 is defined to be the sum of the longitudinal~LF!

momenta of all light degrees of freedom. For the~total! LF
energy we write on the LHS of Eq.~A1!

PB
25MBv

25
MB

2v1 5
Mb1dE

2v1 , ~A3!

wheredE[MB2Mb is the ‘‘binding energy’’ of the hadron.
After inserting Eqs.~A2! and~A3! into Eq.~A1! and expand-
ing one obtains

Mb1dE

2v1 5
Mb

21kWb'
2

2~MBv
12pL

1!
1PHL

2 1PLL
2

5
Mb

21kWb'
2

2~Mbv
11dEv12pL

1!
1PHL

2 1PLL
2

5
Mb

2v1 2
dE

2v1 1
pL

1

2v12 1OS 1

Mb
D1PHL

2 1PLL
2 .

~A4!

Note that we have assumed that the transverse momentum of
the heavy quark is small compared to its mass, which is
justified in a frame where the transverse velocity of the
heavy hadron vanishes. The term proportional toMb cancels
between the LHS and the RHS of Eq.~A4! and we are left
with

dE

v1 5
pL

1

2v12 1O~1/Mb!1PHL
2 1PLL

2 . ~A5!

The brown muckHamiltonianPLL
2 is the same as for light-

light systems and will not be discussed here. The interaction
term between the heavy quark and the brown muck (PHL

2 ) is
more tedious but straightforward. For example, heavy quark
pair creation terms~via instantaneous gluons! are propor-
tional to 1/(pb1

1 1pb2
1 )2}1/Mb

2 and can thus be neglected.

Similarly, pair creation of heavy quarks from virtual gluons
is also suppressed by at least one power ofMb . This also
justifies our omission of states containing more than one
heavy quark from the start. Other terms that vanish inPHL

2

include interactions that involveinstantaneous exchangesof
heavy quarks, which are typically proportional to the inverse
p1 of the exchanged quark and thus of the orderO(Mb

21).
Up to this point, all interaction terms that we have consid-
ered vanish in the heavy quark limit. The more interesting
ones are of course those terms which survive. The simplest
ones are the instantaneous gluon exchange interactions with
light quarks or gluons, which are, respectively,VQq

}(pq
12pq8

1)22 andVQg}(pg
11pg8

1)(pg
12pg8

1)22 and re-
main unchanged in the limitMb→`. Terms which involve

instantaneous gluon exchange and are off diagonal in the
brown muck Fock space behave in the same way.

The quark gluon vertex simplifies considerably. For finite
quark mass one has for the matrix element for the emission
of a gluon with momentumk, polarization i , and colora
between quarks of momentump1 andp2:

PQQg
2 52 igTaH 2 kik1 2

sW'pW 2'2 iM b

p2
1 s i2s i

sW'pW 1'1 iM b

p1
1 J ,

~A6!

where spinors as well as creation and/or destruction opera-
tors have been omitted for simplicity. In the heavy quark
limit @note 1/p1

121/p2
15O(Mb

22)# the spin dependent terms
drop out and one finds in the heavy quark limit

PQQg
2 522igTa

ki

k1 . ~A7!

The spin of the heavy quark thus decouples completely, giv-
ing rise to the well-known SU(2Nf) symmetry in heavy
quark systems.

APPENDIX B: TWO HEAVY SOURCES

As we discussed above, two heavy sources at fixed sepa-
ration can formally be treated as one extended heavy
source.11 Therefore, the LF Hamiltonian for two sources is
the same as for one source with two minor modifications.

All vertices involving a heavy source get modified ac-
cording to the rule (Ô stands for any operator acting on the
brown muck!

$x†8Tax3Ô%1H.c.

→$@xQ
† 8TaxQFR~q!2x

Q̄

†
TaxQ̄8FR~2q!#3Ô%1H.c.,

~B1!

wherex stands for the operator acting on the color degrees
of freedom of the heavy quark/antiquark. The ‘‘form factor’’

FR~q!5expF i2 S q1R3

v1 2RW'qW'D G ~B2!

arises from acting with the~kinematic! displacement opera-
tor on the position of the heavy quark and/or antiquark~shift-
ing it from x250, xW'50W' to x256R3/2v1, xW'56RW'/2)
andq is thenetmomentum transferred to the brown muck.
This rule holds irrespective of the number of gluons involved
in this process. Note thatÔ ~brown muck! is the same for one
or two heavy sources.

There is a static potential between the two heavy quarks.
In the continuum, the canonical Hamiltonian yields
PHH

2 5g2xQ
† 8TaxQx

Q̄

†
TaxQ̄8d (2)(RW')uR3uv1. In general,

there will be a more complicated dependence onRW which has
to be determined by demanding self-consistency. For ex-
ample, singularities arising from exchange of gluons with

11Just think of a dumbbell.
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low q1 between the two sources should cancel~nonpertur-
batively! with the IR behavior of the instantaneous potential
in PHH

2 @20#.

Using Eq.~A5!, V(RW ) can thus be extracted as follows:
~1! For a givenRW and v1, write down the effective LF
Hamiltonian for the heavy pair interacting with the brown
muck @including the form factors Eq.~B2! and including all
the counterterms and counterterm functions which would
also appear in a ‘‘heavy-light’’ system!. ~2! The lowest ei-
genvaluedE(1) from Eq. ~A5!, i.e., the QCD ground state in

the presence of the two heavy sources, is then equal to

V(RW ).
The heavy quark potential thus calculated is equivalent to

the potential which a lattice theorist would extract from an
asymmetric rectangular Wilson loop. Since there is plenty of
‘‘quenched’’ lattice data around, it would make sense to omit
light quarks completely in a first approach and to focus on
the pure glue part of the brown muck. However, the formal-
ism described above is so general that one could also use it
in a LF calculation that includes~dynamical! light quarks.
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