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New effective Feynman-like rules for the multi-Regge QCD asymptotics
of inclusive multijet production
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New effective Feynman-like rules are defined for inclusive multijet cross sections in the multi-Regge
regime. The solution of the Balitskii-Fadin-Kuraev-Lipatov~BFKL! equation is used as a starting point. The
resulting rules involve conformal weight and rapidity as a momentum and a coordinate, respectively, and ar
translation invariant in the coordinates. We use the effective rules to calculate ultrahigh-energy asymptotics o
inclusive multijet production. The dependence on the parton densities occurs only in the overall normalizatio
of the asymptotic cross sections.@S0556-2821~96!50113-X#

PACS number~s!: 13.87.Ce, 12.38.Cy, 13.85.Hd
id

a

u

s

io
th
r

r
e

e

o
e

u

,

st
d

of
r-

e
e
d

e

t
rs
The Balitskii-Fadin-Kuraev-Lipatov~BFKL! Pomeron
@1,2# lies on the border of the known territory of perturbativ
QCD. It may give access to a new physics of parton liqu
@3# and it has inspired unexpected theoretical developme
@4#, but it first requires experimental justification. A natur
place to look for that is in inclusive jet production in high
energy hadron collisions@5–15#. The main problems are~i!
to define selection criteria for the events that would ens
the applicability of the BFKL analysis@16# and ~ii ! to man-
age the complexity of the BFKL asymptotics for the cro
sections. We deal here with the second problem. Namely,
give a new representation for the asymptotic cross sect
by means of effective Feynman-like rules. They factorize
full expressions for the asymptotic cross sections into ve
ces and propagators of an effective theory. A crucial prope
of the presented rules is that they include propagators co
sponding to the parton distributions. That allows one to tr
systematically integrations over parameters of untagged m
forward or backward jets that are indispensable to calcu
tions of quantities measurable with the detectors of limit
acceptance@14#.

We illustrate the use of the effective rules in a calculati
of the ultrahigh-energy asymptotic behavior of the cross s
tions. We begin by defining kinematic regime. We consid
the inclusive differential cross section ofN-jet production at
a fixed scale of large~with respect to the hadronic scale!
transverse momenta and very large~much larger than the
transverse momenta! total energy of colliding hadrons. The
invariant mass of any jet pair is also supposed to be m
larger than the transverse momenta. This is known as
multi-Regge regime. As discussed in@14#, the cross section
in this regime is a sum of terms each of which is, crude
speaking, a product of BFKL Pomerons:
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dsN
sum5dsN1E S dV f

ds f1N

dV f
1
dsN1b

dVb
dVbD

1E dV f

ds f1N1b

dV fdVb
Vb , ~1!

wheredsN
sum is the differential cross section on the phase

space ofN massless partons~jets for us are descendants of
massless partons!, dV f (b) is the differential volume of the
most forward~backward! jet phase space, and, for example
ds f1N is the cross section on the phase space ofN tagged
jets plus the untagged most forward jet of an event. The fir
term of the sum comes from events with the most forwar
and backward jets both among the tagged jets~and it is ab-
sent in the case ofN51).

We will describe simple rules to write downdsN of Eq.
~1!. To this end consider the simplest representative case
N53. ds3 integrated over the phase space of the most fo
ward jet is„see Eq.~9! of Ref. @14#…

EdV f

ds f12

dV f
5dV2

aSCA

k2'
2

aSCA

k3'
2

2aSCA

p2 E
x2

1

dx1FA~x1 ,m1
2!

3E
m1

x1As d2k1'
k1'
2 E d2q' f

BFKL
„k1' ,q' ,y1~x1 ,k1'!…

3 f BFKL~q'1k2' ,k3' ,y!FB~x3 ,m2
2!, ~2!

wheredV25dx2dx3d
2k2'd

2k3' .
Let us explain the notations and meaning of Eq.~2!. The

differential cross section of three jets integrated over th
phase space of the most forward jet is on the left-hand sid
~lhs! of the equation. The same integration in the right-han
side ~rhs! is over the longitudinal (x1) and transverse (k1')
momenta of the most forward jet. Longitudinal momenta ar
normalized to the half of the total energy and thusx1 is the
fraction of the hadron momentum carried by the parton tha
scattered to produce the most forward jet. As such it ente
also as a variable of the effective parton distribution function
R725 © 1996 The American Physical Society
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R726 54VICTOR T. KIM AND GRIGORII B. PIVOVAROV
FA @17# of the hadronA. Another variable on whichFA,B
depend is the factorization scalem1,2 ~one can take
m1,25m;min$ki'%). dV2 is the differential volume of the
phase space of the two jets~all jets but the most forward of
the set f12) while xi and ki' are their longitudinal and
transverse momenta, respectively. The most remarkable
jects in the rhs aref BFKL. They describe correlations betwee
transverse momenta oft-channel Reggeized gluons@1# emit-
ted from a pair of tagged jets nearest in rapidity space,
depend on the rapidity intervals

y1~x1 ,k1'!5 ln~x1k1'/x2k2'! , y5 ln~x2x3s/k2'k3'!
~3!

spanned by the jet pairs~in the above formulas it is suppose
that the middle jet 2 is in the forward direction;s is the
squared total energy of the collision!. The superscript BFKL
is to recall thatfBFKL is the solution of the Balitskii-Fadin-
Kuraev-Lipatov equation@1#. The fBFKL depending ony1 is
called in Ref.@14# the adjacent~to the hadronA) Pomeron,
while that depending ony is the inner Pomeron~it is devel-
oped between the tagged jets!. The solution for the BFKL
equation has the integral representation@1#

f BFKL~k1' ,k2' ,y!

5 (
n52`

` E
2`

`

dnxn,n~k1'!eyv~n,n!xn,n* ~k2'!, ~4!

where the asterisk means complex conjugation,
ob-
n

nd

d

xn,n~k'!5 ~k'
2 !21/21 ineinw/2p ~5!

are Lipatov’s eigenfunctions, and

v~n,n!5
2aSCA

p Fc~1!2RecS unu11

2
1 in D G

are Lipatov’s eigenvalues. Herec is the logarithmic deriva-
tive of the EulerG function. The summation in Eq.~4! runs
over conformal spin indicesn and the integration is over
conformal dimension d5122in. Combinations h51
1n/22 in, h̄512n/22 in are known as conformal
weights.

Here we should comment on the present status of ou
basic formulas in Eqs.~1! and~2!. They are similar to one of
the formulas of the naive parton model prior to the proofs of
the QCD factorization theorems~see for review Ref.@18#!.
The recent phenomenological estimations of the applicability
of the formulas such as Eqs.~1! and ~2! see, e.g., Ref.@19#,
and the attempt to prove the relevant factorization in Ref.
@20#.

From now on we start to restructureds f12 from Eq. ~2!.
First, one can integrate out the transverse momentumq' of
the t-channel Reggeized gluon. To this end, the following
formula may be used:
E d2q'

q'
2 xn,n* ~q'!xm,l~q'1k'!5pxn,n* ~k'!xm,l~k'!

3
i um2nu2umu1unu

um2nu
2

2 i ~l2n1 i e!

GS um2nu
2

112 i ~l2n! D
GS um2nu

2
111 i ~l2n! D

GS umu11

2
1 il D

GS umu11

2
2 il D

GS unu11

2
2 in D

GS unu11

2
1 in D , ~6!
a

n
d

where i e takes care of the singularity atm2n5l2n50.
The result of this transverse momentum integration is
integral representation fords f12 . Next, we rewrite it in new
variables for jet momenta and momenta of incoming hadro
A andB. To parametrize the light-cone components of ha
ron momentapA

1 ,pB
2 ,s5pA

1pB
2 we take

x0
15 ln~pA

1/m! , x4
252 ln~pB

2/m! , ~7!

and to parametrize jet four-momentaki , i51,2,3,

xi
15 ln~ki

1/m! ,

xi
252 ln~ki

2/m! , ~8!

where ki65ki06ki3 are the light-cone components ofki
( i51 corresponds to the most forward jet above!. A virtue of
n

s
-

these variables is that the cross section is invariant under
translationsxi

1→xi
11a, xi

2→xi
21a:

sds3

p4 )
i51

3

dxi
1dxi

2
dw i

2p

5S aSCA

2p2 D 3(
n

(
m

E dnE dl@GA~x0
12x1

1 ;m!

3G~x1
12x2

1 ;2n,2n!G~x2
12x3

1 ;2m,2l!#

3@Uw1
~x1

12x1
2 ;n,n!Rw2

~m2n,l2n!

3Dw3
~x3

12x3
2 ;2m,2l!#G~x1

22x2
2 ;n,n!

3G~x2
22x3

2 ;m,l!GB~x3
22x4

2 ;m!], ~9!
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whereds3 stands fords f12 of Eq. ~2!, w i is the azimuthal
angle of thei th jet, and an explicit form of the ‘‘propaga
tors’’ GA,B , G, U, R, andD is

GA,B~x;m!5u~x!FA,B~e2x,m2!,

G~x;n,n!5u~x!expF2 ixS n1 i
11v~n,n!

2 D G ,

Uw~x;n,n!5u~x!i unueinw

GS unu11

2
2 in D

GS unu11

2
1 in D ,

Rw~n,n!5
i unueinw

unu
2

2 i ~n1 i e!

GS unu
2

112 in D
GS unu

2
111 in D ,

Dw~x;n,n!5~21! unuUw~x;n,n!. ~10!

Note the role ofu functions from Eq.~10! in Eq. ~9!: they
provide the right ordering of the components of the hadr
and jet momenta (xA,i

1 andxB,i
2 decrease with an increment i

i , and transverse momenta of the most forward or backw
jets are larger than the factorization scalem); the same or-
dering is seen in the limits of integration overx1 and k1'
from Eq. ~2!.

We now consider the rhs of Eq.~9! as corresponding to a
graph of Fig. 1. Namely, the first factor (aSCA /2p2)3 may
be redistributed among the vertices of the graph; summat
over n,m and integrations overn,l correspond to an inte-
gration over loop momenta. Each momentum has a disc
(n or m) and a continuous (n or l) component; the first
expression in square brackets corresponds to the left-h
side vertical line of the graph and the last to the right o
FactorsU andD of the middle square bracket correspond
the up and down border rungs of the ladder graph resp
tively andR to the middle rung. Note also that the lines
the graph are oriented and the sign of ‘‘momentum’’ va
ables of the propagators depend on the direction of the
mentum flow.

FIG. 1. Diagrammatic representation of 3-jet cross sections3 .
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The next step is to note that one obtains a more symmetr
representation for the Feynman-like rhs of Eq.~9! if one
replaces loop momentum integrations by equivalent integra
tions over additionalx andw variables per vertex. To this
end, one multiplies the propagators of Eq.~10! by exponen-
tials of products of the additional variables and momenta i
such a way that the additional integrations provide momen
tum conservation at the vertices. The momentum integration
may then be performed independently for each ‘‘propaga
tor’’; this will define the propagators in the ‘‘coordinate’’
representation. In this way one arrives at diagrams whos
vertices are parametrized by twox variables and an azi-
muthal angle. One may equally look at the resulting Feyn
man rules in the momentum representation. Each momentu
will consist of a discrete variable and two continuous vari
ables.

We now describe the Feynman-like rules in the momen
tum representation for the graph of Fig. 2 and then defin
dsN in terms of the analytic expression corresponding
to the graph. Each vertex of the graph of Fig. 2 gives
factor AaSCA /2p2. Each momentum comprises two
continuous and one discrete variables@for example,
kA,i5(k1

A,i ,k2
A,i ,nA,i)#. Momenta flowing along the arrows

are calculated with momentum conservation at the vertice
as linear combinations of the external and the loop moment
There are lines of six types:GA , GB , G, U, D, andR. Each
line gives the following factor depending on its momentum
and, for the ladder rungs, on the azimuthal anglesw i of the
corresponding jets:

GA,B~k!5gA,B~k1!, ~11!

G~k!5
1

2p i

1

k22k11 i
11v~n,k2!

2
2 i e

, ~12!

Uw~k!5
1

2p i

21

k11 i e
einw1 iu~n,k2!, ~13!

Dw~k!5
1

2p i

21

k11 i e
einw1 id~n,k2!, ~14!

FIG. 2. Graph corresponding to theN-jet cross sectionsN .
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Rw~k!5d~k1!
1

unu/22 i ~k21 i e!
einw1 ir ~n,k2!, ~15!

where

gA,B~k!5E dx

2p
eikxu~x!FA,B~e2x,m2!, ~16!

iu~n,k!5 i
p

2
unu1 ln

GS unu11

2
2 ik D

GS unu11

2
1 ik D , ~17!

id~n,k!52 i
p

2
unu1 ln

GS unu11

2
2 ik D

GS unu11

2
1 ik D , ~18!

ir ~n,k!5 i
p

2
unu1 ln

GS unu
2

112 ik D
GS unu

2
111 ik D . ~19!

The product is integrated over the loop momenta with
measure

FIG. 3. The graph giving leading contribution to the asympto
inclusive single-jet production cross section.
e

(
n52`

` E
2`

`

dl1E
2`

`

dl2 . ~20!

The result of the integration is multiplied by

dS (
i50

N

k1
A,i2(

i50

N

k1
B,i D . ~21!

The final result is a function that we will denote as

I N~kA,0, . . . ,kA,N;kB,1, . . . ,kB,N11;w1 , . . . ,wN!

5I N~kA;kB;w!. ~22!

This completes the description of the Feynman rules.
The cross section in terms ofI N(k

A,kB,w) is

sdsN

p4 )
i51

N

dxi
1dxi

2
dw i

2p

5E S )
i50

N

dk1
A,ie2 ik1

A,i xi
1D

3S )
i51

N11

dk1
B,ieik1

B,i xi
2D I N0 ~kA;kB;w!, ~23!

where I N
0 is I N at k2

A,i5k2
B,i5nA,i5nB,i50 and the energy

variable of the collisions is connected withx0
1 ,xN11

2 by

s5m2ex0
1

2xN11
2

@see Eq.~7!#.
To illustrate the use of the above rules let us calculate the

asymptotic inclusive single-jet cross section at high energy.
The leading contribution comes from events with the un-
tagged most forward and most backward jets:

sds1
sum

p4dx1dx2d
w

2p

'E dxf
1dxf

2
dw f

2p

3
sds3

p4dxf
1dxf

2d
w f

2p
dx1dx2

dw

2p
dxb

1dxb
2
dwb

2p

3dxb
1dxb

2
dwb

2p
. ~24!

Then the use of the above rules gives~see Fig. 3!

ic
sds1
sum

p4dx1dx2d
w

2p

'S aSCA

2p2 D 3 i

~2p!6
E dkAdqAe2 ikAxA

1
2 iqAx1

dkBdqBeik
BxB

2
1 iqBx2

d2l Ad2l B

3F gA~kA!
1

S l 1A2 l 2
A2kA1 i

11v~0,l 2
A!

2
2 i e D S l 2A2 l 1

A1 i
11v~0,l 2

A!

2
2 i e D G @A→B#

3
exp@ iu~0,l 2

A!1 id~0,l 2
B!1 ir ~0,2 l 2

A2 l 2
B!#

~ l 1
A1 i e!~ l 1

B1 i e!~ l 2
A1 l 2

B2 i e!
d~kA1qA2 l 1

A2 l 1
B!d~kA1qA2kB2qB!, ~25!
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where the second expression in square brackets is obta
from the first one by the substitutionA→B and we took into
account the fact thatv(0,k) is an even function. As

s5m2exA
1

2xB
2

, we are interested in the limitxA
1→`,

xB
2→2`. To calculate it, we first integrate outqA,qB by
means of thed functions, then take the residues
kA5 l 1

A2 l 2
A1 i @11v(0,l 2

A)/2#, kB5 l 1
B2 l 2

B1 i @11v(0,l 2
B)/

2# ~only these poles contribute to the asymptotic limit!, then
at l 1

A5 l 2
A1 i @11v(0,l 2

A)/2#, l 1
B5 l 2

B1 i @11v(0,l 2
B)/2#, and

finally take the remaining integrations overl 2
A ,l 2

B in the
saddle-point approximation~the saddle point isl 2

A5 l 2
B50).

The net result is

sds1
sum

p4dx1dx2dw/2p

'S aSCA

2p2 D 3eaP~xA
1

2xB
2

!MA~aP ,m
2!MB~aP ,m

2!

~2paP!2A14aSCAz~3!~xA
12xB

2!
, ~26!

where

aP5114~aSCA/p!ln2 ~27!

is the BFKL Pomeron intercept@2# and

MA,B~aP ,m
2!5E

0

1

dxxaP21FA,B~x,m2! ~28!

are moments of the parton distribution functions.
Note that the asymptotic cross section is independen

the jet parameters and depends on the parton distribu
functions only by an overall normalization factor. One m
assess the usefulness of the above representation of the
.

ned
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sections trying to reproduce without it the asymptotic of E
~26! by integration over parameters of most forward or bac
ward jets of the corresponding cross sections from Re
@5,9# where the single-jet production was considered und
fixed parameters of most forward or backward jets. This i
tegration changes the dependence of the asymptotic cr
section of Refs.@5,9# on the parameters of the tagged jet.

The moments of Eq.~28! will enter also the asymptotics
of the inclusive multijet cross section. This may be obtaine
along the same lines as the single-jet asymptotic limit of E
~26!. We will present this elsewhere.

The use of the above rules for the inclusive dijet produ
tion reproduces the results of Ref.@14#. In particular, one
may obtain a diagrammatic representation for the BFK
structure functions of Ref.@14#.

We would like to stress that presented effective Feynma
like rules for description of inclusive cross sections a
complementary to the effective field theory of interactin
Reggeized and physical gluons~Ref. @21#! that describes
‘‘exclusive’’ processes. However, exact relation of our effec
tive rules and effective theory of Ref.@21# requires further
study.

To sum up, we introduced new effective Feynman-lik
rules for inclusive multijet cross sections in the multi-Regg
regime, and used them to calculate an ultrahigh-ener
asymptotic limit of single-jet production.

We thank I.F. Ginzburg, L.N. Lipatov, A.H. Mueller,
V.A. Rubakov, and A.A. Vorobyov for stimulating discus-
sions and comments. V.T.K. is indebted to M.G. Albrow an
T. Lee for valuable discussions. This work was supported
part by the Russian Foundation for Basic Research Grant N
96-02-16717.
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