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New effective Feynman-like rules for the multi-Regge QCD asymptotics
of inclusive multijet production
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New effective Feynman-like rules are defined for inclusive multijet cross sections in the multi-Regge
regime. The solution of the Balitskii-Fadin-Kuraev-Lipatt®FKL) equation is used as a starting point. The
resulting rules involve conformal weight and rapidity as a momentum and a coordinate, respectively, and are
translation invariant in the coordinates. We use the effective rules to calculate ultrahigh-energy asymptotics of
inclusive multijet production. The dependence on the parton densities occurs only in the overall normalization
of the asymptotic cross sectiof$0556-282(196)50113-X

PACS numbgs): 13.87.Ce, 12.38.Cy, 13.85.Hd

The Balitskii-Fadin-Kuraev-Lipatov(BFKL) Pomeron dosin  donsp
[1,2] lies on the border of the known territory of perturbative doy™=doy+ f o g, 9%
QCD. It may give access to a new physics of parton liquids f b
[3] and it has inspired unexpected theoretical developments doi Nt
[4], but it first requires experimental justification. A natural +f dﬂfmﬂb’ @

place to look for that is in inclusive jet production in high-

energy hadron collisionf5—15|. The main problems ar@)  wheredo'™ is the differential cross section on the phase
to deﬁne SeleCtion Criteria for the events that W0u|d ensur%pace OfN mass|ess partor@tg for us are descendants Of
the applicability of the BFKL analysigl6] and (i) to man-  massless partonsdQ;, is the differential volume of the
age the complexity of the BFKL asymptotics for the crossmost forward(backward jet phase space, and, for example,
sections. We deal here with the second problem. Namely, Weo; .\ is the cross section on the phase spacél dagged
give a new representation for the asymptotic cross sectiongts plus the untagged most forward jet of an event. The first
by means of effective Feynman-like rules. They factorize theerm of the sum comes from events with the most forward
full expressions for the asymptotic cross sections into vertiand backward jets both among the tagged (atdl it is ab-
ces and propagators of an effective theory. A crucial propertgent in the case diil=1).
of the presented rules is that they include propagators corre- We will describe simple rules to write dowahory of Eq.
sponding to the parton distributions. That allows one to treafl). To this end consider the simplest representative case of
systematically integrations over parameters of untagged mo&t= 3. do3 integrated over the phase space of the most for-
forward or backward jets that are indispensable to calculaward jet is(see Eq.(9) of Ref.[14])
tions of quantities measurable with the detectors of limited g c C. 20
acceptancé14. Oiio asCp asCp 2asChp (1 2

We illustrate the use of the effective rules in a calculationfde do, 4 k3, k3 dexlFA(Xl”ul)
of the ultrahigh-energy asymptotic behavior of the cross sec-
tions. We begin by defining kinematic regime. We consider
the inclusive differential cross section Nfjet production at
a fixed scale of largéwith respect to the hadronic scale BEKL )
transverse momenta and very larguch larger than the XA + Koy Ky Y)FR(X3,13), 2
transverse momentdotal energy of colliding hadrons. The
invariant mass of any jet pair is also supposed to be muchheresz:dxlzdx3d2k2Ld2.k3L : _
larger than the transverse momenta. This is known as the L€t us explain the notations and meaning of E2). The

multi-Regge regime. As discussed|[it4], the cross section differential cross section of three jets integrated over the
in this regime is a sum of terms each of which is, crudelyphase space of the most forward jet is on the left-hand side
speaking, a product of BFKL Pomerons: (Ihs) of the equation. The same integration in the right-hand

side (rhs) is over the longitudinalX;) and transversekg )
momenta of the most forward jet. Longitudinal momenta are
normalized to the half of the total energy and thyss the
fraction of the hadron momentum carried by the parton that
*Electronic address: kim@pnpi.spb.ru scattered to produce the most forward jet. As such it enters
"Electronic address: gbpivo@ms2.inr.ac.ru also as a variable of the effective parton distribution function
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Fa [17] of the hadronA. Another variable on whichF, g

depend is the factorization scalg,;, (one can take
1= p~minfki, }). d€, is the differential volume of the
phase space of the two jetall jets but the most forward of
the setf+2) while x; and k;, are their longitudinal and
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Xn,v(kl): (kf)_l/2+ivein¢/2’ﬁ (5)

are Lipatov’s eigenfunctions, and

transverse momenta, respectively. The most remarkable ob-

jects in the rhs aré®™¥-. They describe correlations between

transverse momenta bfchannel Reggeized gluofs] emit-

ted from a pair of tagged jets nearest in rapidity space, and

depend on the rapidity intervals

Y1(X1,Ki ) =In(X1Ky IXoKa ), y=In(XoX3s/Ko,  Kg, )

spanned by the jet paifg the above formulas it is supposed
that the middle jet 2 is in the forward directios;is the
squared total energy of the collisipiThe superscript BFKL
is to recall thatfB™ L is the solution of the Balitskii-Fadin-
Kuraev-Lipatov equatiofil]. The {8\ depending ory; is
called in Ref.[14] the adjacenfto the hadrom) Pomeron,
while that depending ow is the inner Pomerofit is devel-
oped between the tagged jetIhe solution for the BFKL
equation has the integral representatfidh

f BFKL( le ’ kZL 7y)

n=-—ow

 duxn (ke )@ (), (4

where the asterisk means complex conjugation,

In|+1
z//(l)—Re(//( >

—ZaSCA +iv

w(n,v)=

are Lipatov’s eigenvalues. Heigis the logarithmic deriva-
tive of the Euler” function. The summation in Eq4) runs
over conformal spin indices and the integration is over
conformal dimension d=1—2iy. Combinations h=1
+n/2—iv, h=1—-n/2—iv are known as conformal
weights.

Here we should comment on the present status of our
basic formulas in Eqg1) and(2). They are similar to one of
the formulas of the naive parton model prior to the proofs of
the QCD factorization theorem(see for review Ref[18]).
The recent phenomenological estimations of the applicability
of the formulas such as Egfl) and (2) see, e.g., Ref19],
and the attempt to prove the relevant factorization in Ref.
[20].

From now on we start to restructuder;, , from Eq. (2).
First, one can integrate out the transverse momergurof
the t-channel Reggeized gluon. To this end, the following
formula may be used:

d’q
J' qZLX:,V(qL)Xm,)\(qL—i_kL):WX:,V(kL)Xm,)\(kL)
1
|m—n| . Im+1 In|+1
jIm=n|—|m|+|n] r > +1-i(A—v)| T 5 +in| T 2 —lv
mn —moal EERNIEE ©
5 —i(A—v+ie)l +1+i(A—v)| T 5 —iN| T +iv

whereie takes care of the singularity ahi—n=x—»=0.

these variables is that the cross section is invariant under

The result of this transverse momentum integration is anranslationsx,” —x."+a, x, —x; +a:

integral representation fato; , ,. Next, we rewrite it in new

variables for jet momenta and momenta of incoming hadrons
A andB. To parametrize the light-cone components of had-— 3

ron momentap, ,pg ,S=PaPg We take
Xo =IN(pa/p), Xz =—In(pg/n), (7
and to parametrize jet four-momerkpg, i=1,2,3,
X =In(ki"/w),
Xj =—In(kj /n), tS)

where ki~ =k;oxk;3 are the light-cone components &f
(i=1 corresponds to the most forward jet abpvevirtue of

Sd0'3

de;

4 + -_r
a |]';|;de| dXi o

C 3
azssz) > ; def dN[Ga(Xg =X i 4t)

n,—v)G(X; —Xz ;—mM,—\)]

XG(X] —X5 ;—
X[Ug (X} =X7 i, )R, (M=n,\~v)
XDy (X3 =Xz ; =M, = \)]G(X] —X; ;n,v)

(€)

X G(X; — X3 ;m,N)Gg(X3 —X4 ;)]
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FIG. 1. Diagrammatic representation of 3-jet cross seatign
wheredo; stands fordos, , of Eq. (2), ¢; is the azimuthal
angle of theith jet, and an explicit form of the “propaga-
tors” Gag, G, U, R, andD is

Ga (X )= 0(X)F (€% u?),

) 1+w(n,v))
V_HT

G(x;n,v)=0(x)exr{—ix

[n|+1 )
—lv
B = ‘nl in‘P
U, (x;n,v)=6(x)i""e ; [+ 1 ,
5 +lv
r n| .
R( ) i|“|ein‘P ?-f—l—lv
n,v)= y
’ ﬂ—i( +ie) T M+1+i
2 VY 2 v
D (x;n,»)=(—1)"U (x;n,v). (10)

Note the role off functions from Eq.(10) in Eq. (9): they

provide the right ordering of the components of the hadro
and jet momenta>(,§’i andxg ; decrease with an increment in
i, and transverse momenta of the most forward or backwar

jets are larger than the factorization scalg the same or-
dering is seen in the limits of integration over and k;
from Eq. (2).

We now consider the rhs of EQ) as corresponding to a

graph of Fig. 1. Namely, the first factor(C,/272%)° may

kot

FIG. 2. Graph corresponding to tijet cross sectiomry .

The next step is to note that one obtains a more symmetric
representation for the Feynman-like rhs of K@) if one
replaces loop momentum integrations by equivalent integra-
tions over additionak and ¢ variables per vertex. To this
end, one multiplies the propagators of Efj0) by exponen-
tials of products of the additional variables and momenta in
such a way that the additional integrations provide momen-
tum conservation at the vertices. The momentum integrations
may then be performed independently for each “propaga-
tor”; this will define the propagators in the “coordinate”
representation. In this way one arrives at diagrams whose
vertices are parametrized by two variables and an azi-
muthal angle. One may equally look at the resulting Feyn-
man rules in the momentum representation. Each momentum
will consist of a discrete variable and two continuous vari-
ables.

We now describe the Feynman-like rules in the momen-
tum representation for the graph of Fig. 2 and then define
doy in terms of the analytic expression corresponding
to the graph. Each vertex of the graph of Fig. 2 gives a
factor JasCa/27?. Each momentum comprises two
continuous and one discrete variabldfor example,
A= (KT k3" ,n™)]. Momenta flowing along the arrows
are calculated with momentum conservation at the vertices
s linear combinations of the external and the loop momenta.
here are lines of six type§&,, Gg, G, U, D, andR. Each
line gives the following factor depending on its momentum
and, for the ladder rungs, on the azimuthal angle®f the
corresponding jets:

be redistributed among the vertices of the graph; summations Cap(k)=0az(ky), (1)

over n,m and integrations over,\ correspond to an inte-

gration over loop momenta. Each momentum has a discrete G(k)= i 1 , (12)

(n or m) and a continuousy or A\) component; the first 2mi 1+o(nky)

expression in square brackets corresponds to the left-hand Kp—ky +i 2 —le

side vertical line of the graph and the last to the right one.

FactorsU andD of the middle square bracket correspond to 1 -1

the up and down border rungs of the ladder graph respec- U, (k)= TkTe'““’*'”m*kﬂ, (13

tively andR to the middle rung. Note also that the lines of m KTle

the graph are oriented and the sign of “momentum” vari-

ables of the propagators depend on the direction of the mo- D (k)= - ging+id(nky) (14)
® T ;

mentum flow.

2mi ki +ie
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-1 d|1f dl,. 20)

n——oo

«— The result of the integration is multiplied by

(g‘, k' — EN kf’i). (21)

q — 23
The final result is a function that we will denote as
In(KAO L KANKBL kBN L ey
— =In(kA KB ). (22)
IB
This completes the description of the Feynman rules.
T I8 The cross section in terms of(k*, kB, ¢) is
sdoy DA+
FIG. 3. The graph giving leading contribution to the asymptotic N d f (H dkir'e k™ )
inclusive single-jet production cross section. H ‘P' 1=0
R, (k)= 6(ky) .1 ——glnetirnke) — (15) N+ B
¢ In[/2 —i(ky+ie) ’ [T diBleka™ )|ﬁ,(kA;kB;¢), (23)
i=1
where
dx . B wherel is Iy atky'=k5'=nAT=nBi=0 and the energy
gA,B(k):fﬂe 0(x)Fap(€ 1), (160 variable of the collisions is connected withx; Xy, by
Inj+1 s=p2e’ n+1 [see Eq(7)].
r - ik) To illustrate the use of the above rules let us calculate the

(17) asymptotic inclusive single-jet cross section at high energy.

a
iu(n,k) =i [n|+IN————, ; > ;
2 In[+1 ik) The leading contribution comes from events with the un-

2 tagged most forward and most backward jets:
nj+1 sdo '™ d
_ Inl —ik) 7 ; fdxfd Xi ot
i = —j]— - @@ Ayt Av— A
id(n,k) |2|n|+ln REERE (18  m*dx*dx d27r
r 5 +ik
Sd0'3
UH_ K x 1 de dey
- ' midx{ dx; d5—dx +dx’z—dx,jdxgz—
ir(n,k):i5|n|+ln Il (19 m m m
—+1+|k) d
2 X dx;; dxg Z‘Pb (24)
The product is integrated over the loop momenta with the
measure Then the use of the above rules giese Fig. 3
sum 3 H
sdoy ~ asCa ! fdkAquefikAxX7iqAx+ddedeikangiqu_leAleB
¢ \27%] @2n)®
mtdxtdx d=—
27
X| ga(k®) - [A—B]
A 5 N
1+ w(0]5) 1+ w(0)
(IA—IA KA+ % ie)(|g\—|§\+i+2)—|e
exf[iu(0)5) +id(0)3)+ir(0,—15-15)
Hiu(0l; (0l3)+ir(0,—l5—13 ]5(kA+q 18 (KA + o KP— P, 25

(11+ie)(1T+ie)(I15+15—i€)
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where the second expression in square brackets is obtainsdctions trying to reproduce without it the asymptotic of Eq.

from the first one by the substitutich— B and we took into
account the fact thatw(0OKk) is an even function. As
s=u2e% s, we are interested in the limik} —c,
xg — —%. To calculate it, we first integrate ouf*,q® by
means of thed functions, then take the residues at
KA=11—154i[1+ w(0)5)/2], KB=1B—15+i[1+w(0)5)/
2] (only these poles contribute to the asymptotic limiben
at 10=15+i[1+w(0)5)/2], 15=18+i[1+ w(0/5)/2], and
finally take the remaining integrations ovés,|5 in the
saddle-point approximatiotthe saddle point i$5=15=0).
The net result is

Yool
mdxTdx de/2
. -
m( asCA)39““’()(’*_XB)MA(QP:MZ)MB(anMZ) 26)
27 | (2 ap)?14asCal(3) (Xi —X5)
where
(1][;: 1+4((13CA/7T)|”2 (27)
is the BFKL Pomeron intercep2] and
1
Mag(ap,u?)= fo dxx*r~1F 5 g(X, 1?) (28)

are moments of the parton distribution functions.

(26) by integration over parameters of most forward or back-
ward jets of the corresponding cross sections from Refs.
[5,9] where the single-jet production was considered under
fixed parameters of most forward or backward jets. This in-
tegration changes the dependence of the asymptotic cross
section of Refs[5,9] on the parameters of the tagged jet.

The moments of Eq28) will enter also the asymptotics
of the inclusive multijet cross section. This may be obtained
along the same lines as the single-jet asymptotic limit of Eq.
(26). We will present this elsewhere.

The use of the above rules for the inclusive dijet produc-
tion reproduces the results of R¢fl4]. In particular, one
may obtain a diagrammatic representation for the BFKL
structure functions of Refl4].

We would like to stress that presented effective Feynman
like rules for description of inclusive cross sections are
complementary to the effective field theory of interacting
Reggeized and physical gluoriRef. [21]) that describes
“exclusive” processes. However, exact relation of our effec-
tive rules and effective theory of Ref21] requires further
study.

To sum up, we introduced new effective Feynman-like
rules for inclusive multijet cross sections in the multi-Regge
regime, and used them to calculate an ultrahigh-energy
asymptotic limit of single-jet production.
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