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D-brane recoil and infrared divergences in string theory
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It is shown that there are logarithmic operators in D-brane backgrounds that lead to infrared divergen
open-string loop amplitudes. These divergences can be canceled by changing the closed-string backgr
operators that correspond to the D-brane moving with constant velocity after some instant in time, sinc
precisely such operators that give rise to the appropriate ultraviolet divergences in the closed-string c
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Duality symmetries of various types have been of gr
interest in recent times. Such symmetries may lead to
sights into nonperturbative aspects of string theory, perh
leading to contact with observed physics. This hope rest
some extent on the celebrated work of Seiberg and Wi
@1# on supersymmetric Yang-Mills theories. These symm
tries predict the existence of solitonic objects in cert
vacua that are dual to ‘‘fundamental’’ objects in the du
vacua. These solitonic objects play vital roles in a comp
understanding of low-energy physics, as in the work
Strominger @2#—it is, therefore, important to understan
their dynamical properties.

Polchinski@3# showed that Dirichlet boundary condition
in open-string theories, previously studied for possible
evance to hadronic applications of string physics, can be
terpreted as an operational definition of solitons that ca
Ramond-Ramond charge in closed-string theories. Th
boundary conditions amount to an amazingly simple ex
description of solitons~called D-branes! which are quite
complicated from the spacetime perspective, and are th
fore a good laboratory for the study of dynamical proper
of solitons in string theory@4#.

In the present work, we will use a variant of the Fischl
Susskind@5# mechanism to treat the problem of D-brane
coil. The problem of soliton recoil in field theory is alread
somewhat nontrivial, since one has to isolate the contr
tions of the Goldstone modes that arise from broken sym
tries, such as translation invariance. In string theory, it is
immediately clear how one could isolate such modes i
consistent manner, especially from an exact description
the string theory soliton@4#. The problem of soliton recoil in
string theory in a general case has been studied by Fisc
Paban, and Rozali@6#, and in following work by Kogan and
Mavromatos@7#. Our method will be much closer to Ref.@5#,
and our conclusions will differ from Refs.@6,7#. We will,
however, confirm a ‘‘postulate’’ of Kogan and Mavromat
concerning logarithmic operators@8# in soliton backgrounds
in string theory.

All the interesting elements of the problem are alrea
evident in the case of a 0-brane, which is just a particle fr
a spacetime perspective. We will even restrict ourselve
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the case of the bosonic string, since no further concept
light is shed on this problem by considering the supersym
metric strings. Of course, these solitonic objects are on
stable in supersymmetric theories, so an extension of o
calculation to such cases is definitely of interest.

The bosonic static 0-brane is described by imposing D
richlet boundary conditions on the spatial coordinates of t
string, while keeping Neumann boundary conditions on th
timelike coordinate. Thus

Xi~boundary!50, ]nX
0~boundary!50,

where ]n is the derivative normal to the boundary of the
string world sheet, and describes a 0-brane located atxi

50. Such a configuration obviously breaks translation i
variance in the spatial directions, and there are vertex ope
torsVi[r]nX

i that translate the 0-brane that correspond
Goldstone modes. These vertex operators, however, co
spond to translations of the entire world line of the 0-bran
and cannot be used directly to describe recoil. There a
infrared divergences in annulus amplitudes~which corre-
spond to an open-string loop correction to the disk amp
tude!, and we shall see that they come from operators that
rather closely related to these vertex operators.

Recall that the Fischler-Susskind mechanism@5# cancels
infrared closed-string divergences due to massless dilaton
the one-loop level with a cosmological constant on th
sphere. We are interested in an infrared divergence in
open-string channel at the annulus level, which we aim
cancel with an ultraviolet divergence in a closed-string cha
nel at the disk level.

To this end, we first calculate the annulus amplitude d
scribing the scattering of one closed-string tachyon off
0-brane. This calculation can be done in a variety of way
The simplest is perhaps the operator formulation, in whic
case we need to calculate trV(k1)DV(k2)D, with D21[L0
21, andV(ki) are the closed-string vertex operators, inte
grated across the propagating open string. This calculat
can also be formulated in the closed-string channel
^BuDV(k1)DV(k2)DuB&, whereuB& is a state in the closed-
string Fock space that imposes the appropriate bound
conditions on the end of the closed-string world sheet.
either case, these calculations are uninteresting in the
selves, as far as the oscillator parts of the contractions
concerned—they give the standardh function form of the
R3690 © 1996 The American Physical Society
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determinant of the Laplacian on the annulus. What is int
esting, is the zero-mode trace, which we discuss in det
Writing

D[E
0

1

dx xL022, L052p21N,

the zero-mode trace for a 0-brane is

E dq0

2p
^q0uexp~2 ik1

0x0!x1
22~p0!2exp~2 ik2

0x0!x2
22~p0!2uq0&.

For our purposes, the important point is the dependence
xi , since we are interested in canceling divergences t
arise fromx1→0, with x2 held fixed~and vice versa!. This is
the limit when the annulus amplitude degenerates into a d
amplitude with two open-string insertions on the bounda
The zero-mode trace gives in this limit

d~k1
01k2

0!A 1

ln~x1!
f ~x2 ,k2

0!.

This is the most important point of our calculation—th
0-brane background implies that the zero-mode trace
changed from the standard open string, which has 26 ze
mode integrals, giving a factor of ln(x1)

213. Sincex1,1,
there is an assumed analytic continuation, or ani e prescrip-
tion in performing the Gaussian integral. We shall find th
precisely the same analytic continuation is needed for
ultraviolet divergence we will find below, so the manner
which one chooses to define the Gaussian integral is irr
evant, provided it is chosen consistently.

Now, in the complete amplitude, we have, in the lim
x1→0 ~neglecting divergences due to the pathologies of t
bosonic open string that have no dependence on the
menta of the closed-string vertex operators, and hence
bearing on the problem of recoil!,

gstE
x1'0

dx1

x1A8p ln~x1!
Adisk~k1 ,k2!,

where

Adisk5^V~k1!V~k2!V
iVi&.

We have found a rather peculiar feature, the divergence
the integral overx1 is proportional toAu ln(e)u, where2ln~e!
is the large-time infrared cutoff. This must come from ope
string states that have a two-point function of the for
^f(x)f(0)&5 ln(x)/x2. The operatorsVi are garden-variety
conformal fields, not capable of such behavior. The appe
ance of logarithmic operators in string backgrounds cor
sponding to solitons was postulated by Kogan and Mav
matos@7#. We have therefore confirmed their conjecture. W
will explicitly find these operators, which have a simple ge
metric interpretation, in the following.

Getting back to the matter at hand, we wish to cancel t
divergence with a change in the closed-string backgrou
We are looking for a closed-string vertex operator that w
lead to an ultraviolet divergence in a closed-string chann
which would, therefore, be equivalent to an infrared dive
gence in an open-string channel. One might naively thi
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that one would needtwo open-string insertions, since th
coefficient of the divergence isAdisk, but here we need to
recall that the operatorsVi are very special operators, sinc
they produce infinitesimal motions of the entire 0-bra
world line. The effect of inserting any number of these o
erators can be directly shown to be the same as multiply
the amplitude with factors of the total momentum carried
the external vertex operators.~We ignore terms involving
contractions between two insertions ofVi because such term
have no external momentum dependence.! We therefore con-
sider a closed-string vertex operator of the form

Vrecoil[a iE d2z]a„f ~X
0!]aXi

…,

with f to be determined. By construction, such an opera
gives a contribution only from boundary terms on the wor
sheet~which is the disk or the upper half plane!, but it must
be regulated near the boundary because of the expecta
value of f (X0). In fact, since the tangential derivative o
Xi at the boundary vanishes, and energy is conserved at
order to which we are working, an insertion ofVrecoil is the
same as an insertion ofa iVi , but multiplied by this divergent
expectation value.

Consider f (X02c)[*(dq/2p)exp@iq(X02c)#g(q2). @We
assume thatf (X0) has been normal ordered on the spher#
We have, whenf (X02c)(z) is close to the boundary of the
upper half plane,

^ f ~X02c!~ i e/2!&5E dq

2p
g~q2!exp~2 iqc!~e!2q2.

Wheng(q2)51/q2, this gives the dependence one that we
need to cancel the divergence coming from the annulus. N
that anyc dependence is only in the nonsingular terms. It
however, considerably more illuminating to write

f ~X02c!5~X02c!Q~X02c!,

whereQ is the step function. Thus, we have derived exac
what we would naively have predicted: The deformation
the D-brane background is precisely such that the D-br
starts moving at some time with constant velocity. What
this velocity? By comparing the annulus divergence with t
disk divergence due toVrecoil, we find

a i58pA2gst~k11k2!
i .

Recall thata iX0 is the position of the soliton, and the mas
of the 0-brane is expected}1/gst, so this is exactly what we
expect in soliton recoil. One could treat this as a leadin
order determination of the mass of the 0-brane.

On simple kinematic grounds, the momentum change
the D-brane is of order 1, but the energy change isO(g).
Energy conservation is related to the appearance ofc, which
is arbitrary at the order to which we are calculating in th
Rapid Communication. As explained in slightly differen
language by Fischler, Paban, and Rozali@6#, the parameter
c characterizesdifferent conformal field theories. For calcu-
lations atO(g0), i.e., at the annulus level, any sum overc
such that the total weight is 1 gives the same answer, e
one could sum overc as limS↑`S

21*2S/2
S/2 dc. At the next
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order@9#, we expect that the measure for the sum overc will
be specified by the cancellation of divergences that lead
energy conservation. It is important to note that there is a
ways just one sum overc, for any number of insertions of
Vrecoil. These calculations are somewhat involved technica
since one must evaluate two-loop open-string amplitude
and will be given elsewhere@9#.

In summary, we have arrived at a pleasing picture
D-brane recoil: We have found logarithmic operators in th
annulus amplitude, as conjectured in Ref.@7#. We have can-
celed divergences in the disk amplitude due to insertions
Vrecoil against divergences in the annulus amplitude due
the logarithmic operators, in an ultraviolet↔infrared reversal
of the Fischler-Susskind mechanism. The form ofVrecoil we
found has a simple and manifestly correct physical meanin
The next step is to extend these computations to the phys
to
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case of the supersymmetric strings, and to compactificatio
that give rise to other finite mass D-branes. At higher orde
one can also derive energy conservation, though that like
involves including other operators, such asr]tX

0, along
with corrections toVrecoil @9#. Presumably, higher-order cor-
rections will smooth out the abrupt change in the solito
trajectory we have found at the leading order. Carrying o
the same calculation forp-branes in flat space gives no di-
vergence forp.1, and only a ln lne divergence for 1-branes,
presumably related to the properties of massless scalar fie
on the world sheet of the 1-brane.
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