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For an exact chiral symmetry that is spontaneously broken at zero temperature, we show that, at nonzero
temperature, generally pions travel atlessthan the speed of light. This effect first appears at next-to-leading
order in an expansion around low temperature. When the chiral symmetry is approximate we obtain two
formulas, like that of Gell-Mann, Oakes, and Renner, for the static and dynamic pion masses.
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Pions are light because they are~almost! Goldstone
bosons: in QCD, quarks have an~approximate! chiral sym-
metry of SU(2)l 3SU(2)r that is spontaneously broken to
the usual isospin symmetry of SU(2)V by the dynamical gen-
eration of a quark condensate@1–3#. Notably, the pion mass
squared is proportional to the up and down quark mas
through the formula of Gell-Mann, Oakes, and Renner@4,5#.

In this paper we consider how pions propagate in a th
mal bath@6#; similar results should also hold for pions propa
gating in a Fermi sea of nucleons. In the limit of exact chir
symmetry, pions are true Goldstone modes and so massl
At zero temperature relativistic invariance then requir
pions to travel at the speed of light. Our basic point is e
ementary: since the presence of a medium provides a pr
leged rest frame, relativistic invariance no longer applie
and so typically pions travel atlessthan the speed of light.
We also derive how the formula of Gell-Mann, Oakes, an
Renner generalizes to nonzero temperature@7#. Because the
pion’s velocity is less thanc, in a medium the pion disper-
sion relation, as a function of momentum, is ‘‘flattened
from that at zero temperature. Such a flattening has be
found in a wide variety of models@8–10#, due apparently to
the detailed dynamics. Our results show that at least some
the flattening arises onvery general grounds, as a conse
quence of chiral symmetry breaking in a medium.

While we speak of pions throughout, our conclusions a
ply to Goldstone bosons in any system that is relativistica
540556-2821/96/54~5!/2989~5!/$10.00
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invariant at zero temperature. Indeed, our results for t
changes in the pion dispersion relation have exact analog
with spin waves in antiferromagnets@11,12#. We think that
our manner of derivation — in terms of the pion decay con
stants — is novel and illuminating. The detailed calculation
that we perform to demonstrate this effect in the linears
model extend and complement previous results by Itoyam
and Mueller@13#.

We begin with a heuristic derivation, in the limit of exac
chiral symmetry. At zero temperature, the matrix element
the axial vector current,Aa

m , sandwiched between the

vacuum and a pion of momentumPm5(p0,pW ) is

^0uAa
mupb~P!&5 i f pdabPm, ~1!

with a and b isospin indices. The pion decay constan
fp;93 MeV; whenever we writef p , we mean its value at
zero temperature.

At nonzero temperature, because of the presence of
medium, we expect that there aretwo distinct pion decay
constants: one for the timelike component of the curre
f p
t ,

^0uAa
0upb~P!&T5 i f p

t dabp0,

and one for the spatialfp
s ,
R2989 © 1996 The American Physical Society
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^0uAa
i upb~P!&T5 i f p

s dabpi . ~2!

Both matrix elements are computed at a temperatureT in the
imaginary time formalism. Implicitly the timelike componen
of the momentum,p0, is analytically continued from Euclid-
ean values~pions, as bosonic fields, havep052pnT for in-
tegral n) to Minkowski values,p052 iv101. In Eq. ~2!,
f p
t and f p

s are defined about zero momentum,v andp→0.
The possibility of two distinct pion decay constants

familiar from nonrelativistic systems, such as discussed
Leutwyler @12#; in this context it was recognized previously
by Kirchbach and Riska@14# and by Thorsson and Wirzba
@7#.

By assumption the chiral symmetry is exact, and on
broken spontaneously by the vacuum. Consequently, wh
the axial vector current acts nontrivially on the vacuum,
nevertheless is conserved on the pion mass shell. At z
temperature this is trivial: the divergence of the matrix el
ment in Eq.~1! is ^0u]mA

mup&; f pP
2, which vanishes when

P252v21p250, as expected for a massless, relativis
cally invariant field.

At nonzero temperature, however, the condition that t
axial vector current is conserved on the pion mass shell le
to interesting restrictions on the two pion decay constan
The divergence of the axial current in Eq.~2! vanishes when

f p
t p0

21 f p
s p250up mass shell. ~3!

At nonzero temperature each pion decay constant,fp
t and

f p
s , has a real and an imaginary part. The pion mass sh
then lies in the complex plane, atp052 iv2g. Equating the
real parts of Eq.~3! gives

v25v2p2'
Ref p

s

Ref p
t p

2. ~4!

The requirement that pions travel at less than~or equal to!
the speed of light,v<1, implies Ref p

s < Ref p
t . To obtain

this, we assume that the imaginary parts can be neglec
relative to the real parts:

Imf p
t,s! Ref p

t,s . ~5!

Physically,v<1 is most familiar: pions move through a me
dium as if it has an index of refraction greater than or equ
to 1.

The imaginary part of the mass shell is given by

g'
1

2v Ref p
t ~1 Imf p

t v22 Imf p
s p2!>0. ~6!

The requirement that pions are damped, and not antidamp
fixes g to be semipositive definite; using Eq.~4!, this then
constrains the real and imaginary parts off p

t and fp
s

Our analysis only applies to ‘‘cool’’ pions, where the
components of the pion momenta,v andp, are small relative
to the real parts off p

t and f p
s . If the chiral phase transition is

of second order atT5Tx , then asT→Tx
2 , f p

t (T) and
f p
s (T)→0 @15#, and the region in which cool pions dominat
shrinks to zero. AboutTx , over large distances the behavio
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of pions ~and thes meson! is controlled by an O~4! critical
point, as appropriate for two massless flavors.

Assuming that the imaginary parts offp
t and f p

s are non-
zero at zero momentum, from Eq.~6! the damping rate van-
ishes linearly about zero momentum,g;p asp→0. This is
consistent with Goldstone’s theorem@1#: at zero momentum,
the complete inverse pion propagator must vanish, includi
both the real and the imaginary parts. Ifg;p, then the
imaginary part of the pion self energy, ImP(P) in Eq. ~10!,
and so the complete inverse pion propagatorD21(P), van-
ishes;p2 asp→0. This implies that even when pions are
damped, about zero momentum they still dominate the co
relation functions of axial vector currents.

In a nonlinears model, the first contribution to the damp-
ing rate appears at two-loop order@16–18#. Using a virial
expansion, such as Eq.~2.4! of Ref. @17#, we estimate that
about zero momentum in the chiral limit,g;p(T4/ f p

4 ). In
the linears model considered below, the damping rate van
ishes exponentially, Eq.~27!, but this is special to the kine-
matics at one-loop order in this model@19#.

To make our conclusions rigorous, and to extend them
an approximate chiral symmetry, we follow Shore and Ven
eziano@3# by using a chiral Ward identity of QCD. Take two
flavors of quarks, each with a~current! quark mass5m. A
chiral Ward identity between the form factors and the prop
gators of the quark composite operatorf5

a5̂ i q̄ tag5q is @3#

]m^0uAa
muf5

b&T1^q̄q&T^0uT*f5
af5

bu0&T
2152mdab, ~7!

where^q̄q&T is the quark condensate and^0uT*f5
af5

bu0&T
21

the inverse propagator for thef5
a field. As usual, this chiral

Ward identity has the same structure as at zero temperatu
except that now thermal expectation values enter. Assum
thatf5 is directly proportional to the pion field,

pa5bf5
a . ~8!

The normalization constant ‘‘b’’ is a function of both tem-
perature and momentum. The temperature dependence
lows from our analysis, while we neglect any momentum
dependence. As discussed by Shore and Veneziano@3#, drop-
ping this momentum dependence is equivalent to the us
assumptions which give the partial conservation of the ax
vector current.

Using Eqs.~2! and~8! in Eq. ~7!, the chiral Ward identity
becomes

2b~ f p
t p0

21 f p
s p2!1b2^q̄q&TDp

21~P!52m. ~9!

For the inverse pion propagatorDp
21(P) we take

Dp
21~P!5p0

21v2p21mp
22 i ImP~P!. ~10!

Similar forms of the pion propagator have appeared prev
ously @8–10#; for us this form is motivated by the need to
satisfy the chiral Ward identity.

Reference@3# requires that the pion field is canonically
normalized, so the coefficient ofp0

2 in the pion propagator
must be unity. We allow for a pion velocity which is less
than 1 by introducing the velocity ‘‘v.’’ Since the quark
massmÞ0, we introduce a pion mass,mp . Lastly, we in-
troduce an imaginary part of the pion self-energy
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ImP(P), which is a function of momentum. This form o
the propagator should be valid in an expansion about z
momentum.

The chiral Ward identity shows that the assumption us
to derive Eq.~3! is correct: in the chiral limit,m50, the
divergence of the axial vector current vanishes on the p
mass shell, as defined by the conditionDp

21(P)50. Since
the chiral Ward identity holds for arbitrary~small! momen-
tum, however, we can derive several identities by match
the coefficients ofp0

2, p2, and 1, for both the real and imagi
nary parts.

Equating the terms;p0
2 fixes the constant of proportion

ality between the quark operator and the pion field to be

b5
Ref p

t

^q̄q&T
. ~11!

Since both terms on the right-hand side of Eq.~11! change
with temperature, so does the factor ‘‘b.’’ Matching the
terms;p2 fixes the velocity as in Eq.~4!. Lastly, matching
the imaginary parts in~9! gives ImP(P)52vg, with g as
in Eq. ~6!.

Away from the chiral limit, we match the real parts a
zero momentum,p05p50, to obtain the generalization o
the relation of Gell-Mann, Oakes, and Renner to nonze
temperature:

mp
25

2m^q̄q&T
~ Ref p

t !2
. ~12!

This is the same expression as Dashen@5# found at zero
temperature, except that instead offp , at nonzero tempera-
ture the real part off p

t enters. A relation such as Eq.~12! was
obtained by Thorsson and Wirzba@7#; they did not recog-
nize, however, that in generalfp

t has an imaginary part, and
so wrote justfp

t instead of Refp
t .

The pion mass in Eq.~12! is the dynamic pion mass
defined as the position of the singularity in the pion prop
gator in the complexp0 plane atp50. Alternately, we can
introduce the static pion mass, as the position of the sin
larity in the pion propagator forp050 in the complexp
plane. From the form of the pion propagato
mp
static5mp /v, and so by Eqs.~4! and ~12! this is just

~mp
static!25

2m^q̄q&T
Ref p

s Ref p
t . ~13!

Obviously,v<1 implies that

mp
static>mp . ~14!

We now consider where these effects first appear in
expansion about zero temperature. Using either a nonlin
@20# or a linear@21# s model, to leading order inT2/ f p

2 ,

f p
t ~T!5 f p

s ~T!5S 12
T2

12f p
2 D f p . ~15!

Hence to leading order in low temperature, pions move at
speed of light and are undamped. This was established
Dey, Eletsky, and Ioffe@22#, who showed that to;T2/ f p
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the thermal average of the two point function of either vect
or axial vector currents is directly proportional to a linea
combination of those at zero temperature. Since these
point functions are Lorentz covariant at zero temperatu
they remain so to;T2/ f p

2 .
Thus the first place where the effects which we are d

cussing can enter is at next-to-leading order,;T4 @23#. The
pion damping rate@16# and self-energy@17,18# have been
computed to;T4/ f p

4 in a nonlinears model. In particular,
Schenk@17,18# computed the pion self-energy not in the ch
ral limit, but using physically reasonable approximation
His results imply that forT5150 MeV,v;0.87 @24#.

Instead of computing to two-loop order in a nonlinears
model, to illustrate the effect we calculate, in weak couplin
to one-loop order in a linears model. In Euclidean space
time the Lagrangian is

L5
1

2
~]mf!22

m2

2
f21

l

4
~f2!22hs, ~16!

wheref5(s,pW ) is an O~4! isovector field. We introduce a
background magnetic fieldh which is proportional to the
current quark massm. For h50, the vacuum expectation
value of the s is s05Am2/l, where we then shift
s→s01s; for two flavors, fp5s0.

We compute terms of order;T4/( f p
2ms

2). There are
many terms of order;T4/ f p

4 , at both one- and two-loop
order. In weak coupling, however, thes meson is light rela-
tive to f p , ms

252l f p
2 Thus in weak coupling, which we

assume, the terms of order;T4/ f p
4 are smaller by;l than

those computed. Conversely, in the limit of strong couplin
ms→`, the only terms are those;T4/ f p

4 .
The diagrams for the pion self-energy have been co

puted to ;T4/( f p
2ms

2) by Itoyama and Mueller@13#;
f p
t 5 f p

s has been computed to;T2/ f p
2 by Bochkarev and

Kapusta@21#, so all we have to do is extend the calculatio
of fp

t and f p
s to this order. Consequently, we merely sketc

the simplest way of performing the calculations. For the re
parts, the terms of interest arise from diagrams involving
virtual s and ap in a loop, such as

I~P!5trK
1

K2
„~P2K !21ms

2
…

, ~17!

where trK5T(n52`
1` *d3k/(2p)3. To ;T2, it suffices to ap-

proximate this integral by its value at zero momentum, n
glecting theK dependence in thes propagator, so Eq.~17!
becomes

I~P!;
1

ms
2 trK

1

K2;
1

ms
2

T2

12
. ~18!

In the integral we have ignored apparent ultraviolet dive
gences to concentrate on the term;T2. Of course renormal-
ization is taken care of as usual at zero temperature.

To compute terms of;T4, it is necessary to expand th
integral in Eq.~17! to ;P2, including both terms;P2 and
terms;PmPn. In addition to the integral in Eq.~18!, we also
need
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trK
KmKn

K2 ;~dmn24nmnn!
p2T4

90
, ~19!

wherenm5(1,0W ).
The imaginary part of expressions cannot be extracted

easily. We evaluate the imaginary part only near the pio
mass shell, which is forv;p. In this region, the only con-
tribution to the imaginary part of Eq.~18! is from

ImI~P!5E d3k

~2p!3
p~n12n2!

4E1E2
d~v1E12E2!. ~20!

In this expressionE15k is the energy of the pion,
E25A(p2k)21ms

2 is the energy of thes, andn15n(E1),
n25n(E2) are the corresponding Bose-Einstein distributio
functions. This result can be obtained in various ways, su
as following@25#. In all there are four possibled functions in
energy which contribute to ImI(P). Forv;p!T only that
in Eq. ~20! contributes, and corresponds to Landau dampin
In this region, thed function requires

k5
ms
2

2~v1pcosu!
. ~21!

We assume thatk@ms , and then expand the energies ac
cordingly; this is justified, since from Eq.~21!, when
ms@v,p, thenk@ms . The result for the imaginary part is

ImI~P!uv;p!ms
;

1

16p
expS 2

ms
2

4pTD . ~22!

Because the fields being scattered have large momentum,
Bose-Einstein distribution functions are essentially Boltz
mann, which generates the exponential suppression seen
Eq. ~22!.

These integrals are sufficient to reproduce the results
Ref. @13# for the pion self-energy. To evaluate the corre
sponding terms for the pion structure constants, we need
axial vector current in the linears model:

Am
a5~s01s!]mpa2pa]ms. ~23!

The diagrams which contribute at one-loop order tofp
t and

f p
s are given in Fig.~5! of @21#. In addition to the pion self-
energy, there is a contribution from as-p loop at the vertex
for Aa

m These contributions can be evaluated expanding i
tegrals like Eq.~17! and using Eq.~19!. For the imaginary
parts, we need the integrals

trK
k0

K2
„~P2K !21ms

2
…

uv;p!ms

;
i

16p Sms
2

4p
1TDexpS 2

ms
2

4pTD ~24!

and
so
n

n
ch
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trK
ki

K2
„~P2K !21ms

2
…

uv;p!ms

;
pi

16pp Sms
2

4p
2TDexpS 2

ms
2

4pTD . ~25!

The results of the computations are as follows. At on
loop order the quantity

t15
T2

12f p
2 ~26!

typically enters. To the order we work, we also need

t25
p2

45

T4

f p
2ms

2 ,

t35
1

32p

ms
4

f p
2p2

expS 2
ms
2

4pTD . ~27!

Then at weak coupling in the linears model, to
;T4/( f p

2ms
2),

f p
t ;~12t113t21 i t 3! f p ,

fp
s ;~12t125t22 i t 3! f p . ~28!

By Eq. ~4! the pion velocity is

v2;128t2 , ~29!

while from Eq.~6! the pion mass shell is

ip0;vp2 ipt3 . ~30!

Including the one-loop self-energy computed to this orde
the pion propagator is

ZpD21~P!uv;p!ms
;~11t116t2!p0

21~11t122t2!p
2

1mp
2 ~113t1/2!22ip2t3 . ~31!

To ensure thatD21(P) has canonical normalization we in-
troduce a factor for wave-function renormalization of th
pion:

Zp;11t116t2 . ~32!

It is elementary to check that the zero of Eq.~31! agrees
with Eq. ~30!. We have included the results to leading orde
in the external fieldh, when the pion mass is nonzero. As
suming that the quark condensate is proportional to t
vacuum expectation value of thes field,

^q̄q&T;s0~T!;s0~0!~123t1/2!, ~33!

we also verify our generalization of the formula of Gell
Mann, Oakes, and Renner in Eq.~12! for the dynamic pion
mass:

mp
2 ~T!;mp

2 ~11t1/226t2!. ~34!

We conclude with some general comments. First, whi
the effects computed at low temperature~26!–~34! are small,
that does not mean that they remain so for temperatures
physical interest, as seen in the results of@8–10#. Secondly,
the form of the inverse propagator in Eq.~10! applies not just
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to Goldstone bosons, but to any scalar field at nonzero te
perature. For example, in numerical simulations on the l
tice in Euclidean spacetime, typically what is measured
only the static mass, not the dynamic.

Finally, we note that the coefficient ofv221 in Eq. ~29!
is proportional to the free energy density for pion
5p2T4/30. ~It would be interesting to know what the analo
gous coefficient is for the nonlinears model in the chiral
limit.! This and other examples@26# hint of a general rela-
tion, valid for all temperatures, where the deviation of th
m-
at-
is

s,
-

e

velocity squared from unity is proportional to the free energ
density@6#.
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