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For an exact chiral symmetry that is spontaneously broken at zero temperature, we show that, at nonzero
temperature, generally pions travellassthan the speed of light. This effect first appears at next-to-leading
order in an expansion around low temperature. When the chiral symmetry is approximate we obtain two
formulas, like that of Gell-Mann, Oakes, and Renner, for the static and dynamic pion masses.
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Pions are light because they afalmos) Goldstone invariant at zero temperature. Indeed, our results for the
bosons: in QCD, quarks have éapproximatg chiral sym-  changes in the pion dispersion relation have exact analogies
metry of SU(2) X SU(2), that is spontaneously broken to with spin waves in antiferromagnefs1,12. We think that
the usual isospin symmetry of SU(2Dy the dynamical gen- our manner of derivation — in terms of the pion decay con-
eration of a quark condensdte—3]. Notably, the pion mass Stants — is novel and illuminating. The detailed calculations
squared is proportional to the up and down quark massdiat we perform to demonstrate th|s_ effect in the linear
through the formula of Gell-Mann, Oakes, and Rer{ieH]. model extend and complement previous results by Itoyama

In this paper we consider how pions propagate in a ther@"d Mueller[13].

mal bath[6]; similar results should also hold for pions propa- h_Wf begin W'th: heuristic derlvanon,rl]n the I|m|t IOf exact f
gating in a Fermi sea of nucleons. In the limit of exact chirgChiral symmetry. At zero temperature, the matrix element o

; u .
symmetry, pions are true Goldstone modes and so massleé@fa axial vector currentAz, sandwiched between the

At zero temperature relativistic invariance then requiresvacuum and a pion of momentuRt*=(p°,p) is

pions to travel at the speed of light. Our basic point is el-

ementary: since the presence of a medium provides a privi- (O|A¥|7P(P))=if ,62%0P~, (1)
leged rest frame, relativistic invariance no longer applies,

and so typically pions travel déssthan the speed of light. \vith a and b isospin indices. The pion decay constant
We also derive how the formula of Gell-Mann, Oakes, and¢ —~93 MeV: whenever we writd . we mean its value at
Renner generalizes to nonzero temperafifie Because the g temperziture. i

pion’s velocity is less thaw, in a medium the pion disper- At nonzero temperature, because of the presence of the
sion relation, as a function of momentum, is “flattened” . odium. we expect that there aneo distinct pion decay

from that at zero temperature. Such a flattening has beegynstants: one for the timelike component of the current
found in a wide variety of model8-10], due apparently to

the detailed dynamics. Our results show that at least some of"’
the flattening arises omery general grounds, as a conse-
guence of chiral symmetry breaking in a medium.

While we speak of pions throughout, our conclusions ap-
ply to Goldstone bosons in any system that is relativisticallyand one for the spatidf ,

(0|AY 7°(P))r=if!.62°p°,
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<O|AL| Wb(p)>T:if§T53bpi, 2) of pions(and thec meson is controlled by an @) critical
point, as appropriate for two massless flavors.
Both matrix elements are computed at a temperalurethe Assuming that the imaginary parts 8 andfS are non-

imaginary time formalism. Implicitly the timelike component zero at zero momentum, from E() the damping rate van-
of the momentump?®, is analytically continued from Euclid- ishes linearly about zero momentumys-p asp—0. This is
ean valuegpions, as bosonic fields, hap@=2#nT for in-  consistent with Goldstone’s theordi: at zero momentum,
tegraln) to Minkowski values,p’=—iw+07. In Eq.(2), the complete inverse pion propagator must vanish, including
f! andf$ are defined about zero momentua.andp—0. both the real and the imaginary parts. ¥#~p, then the
The possibility of two distinct pion decay constants isimaginary part of the pion self energy, IifP) in Eq. (10),
familiar from nonrelativistic systems, such as discussed byand so the complete inverse pion propagator'(P), van-
Leutwyler[12]; in this context it was recognized previously ishes~p? asp—0. This implies that even when pions are
by Kirchbach and Risk&14] and by Thorsson and Wirzba damped, about zero momentum they still dominate the cor-
[7]. relation functions of axial vector currents.
By assumption the chiral symmetry is exact, and only In a nonlinearc model, the first contribution to the damp-
broken spontaneously by the vacuum. Consequently, whiléng rate appears at two-loop ordgt6-18. Using a virial
the axial vector current acts nontrivially on the vacuum, itexpansion, such as E{2.4) of Ref.[17], we estimate that
nevertheless is conserved on the pion mass shell. At zebout zero momentum in the chiral limiy~ p(T4/ffT). In
temperature this is trivial: the divergence of the matrix ele-the linearo model considered below, the damping rate van-
ment in Eq.(1) is (0] d,A*|m)~f P2, which vanishes when ishes exponentially, Eq27), but this is special to the kine-
P2=— w?+p®=0, as expected for a massless, relativisti-matics at one-loop order in this modél9].
cally invariant field. To make our conclusions rigorous, and to extend them to
At nonzero temperature, however, the condition that thean approximate chiral symmetry, we follow Shore and Ven-
axial vector current is conserved on the pion mass shell leadaziano[3] by using a chiral Ward identity of QCD. Take two
to interesting restrictions on the two pion decay constantsflavors of quarks, each with @urren} quark mass=m. A
The divergence of the axial current in Eg) vanishes when chiral Ward identity between the form factors and the propa-
gators of the quark composite operathf=iqt®ysq is [3]

d,(O|A%| 2y 1+ (qa)r(0| T* p220)7 ' =2ma%°, (7)

At nonzero temperature each pion decay consténtand . 2 bl 1

S has a real and an imaginary part. The pion mass shellhere{ad)r is the quark condaeqsate aka|7* ¢5¢s|0)

then lies in the complex plane, pf= —iw— y. Equating the the inverse propagator for thgg field. As usual, this chiral

real parts of Eq(3) gives Ward identity has the same structure as at zero temperature,
except that now thermal expectation values enter. Assume

Ref$ that ¢5 is directly proportional to the pion field,

2 4
Re P @ Y (®)

ftwp(2)+ fipzz Ol mmass shelf 3

w?=0p2p?~

The requirement that pions travel at less tifanequal t9 ~ The normalization constantld” is a function of both tem-
the speed of lighty<1, implies Ré>< Ref'! . To obtain  perature and momentum. The temperature dependence fol-
this, we assume that the imaginary parts can be neglectddws from our analysis, while we neglect any momentum

relative to the real parts: dependence. As discussed by Shore and VeneZ&indrop-
ping this momentum dependence is equivalent to the usual
Imft7;5< Refi'f. (5) assumptions which give the partial conservation of the axial

vector current.
Physically,u <1 is most familiar: pions move through a me-  Using Egs.(2) and(8) in Eq. (7), the chiral Ward identity
dium as if it has an index of refraction greater than or equabecomes

to 1. .
The imaginary part of the mass shell is given by —b(f,p5+f5p?) +bXqa)rA, (P)=2m. 9
For the inverse pion propagatAr;l(P) we take
Y~ 5 Ref! (+ Imf! w2— Imf3p?)=0. (6)
@ RS AZYP)=p2+v2p2+m2—i ImII(P). (10

The requirement that pions are damped, and not antidampegimijar forms of the pion propagator have appeared previ-
fixes y to be semipositive definite; using E@), this then ously [8-10]; for us this form is motivated by the need to
constrains the real and imaginary partsfbfand f$ satisfy the chiral Ward identity.

Our analysis only applies to “cool” pions, where the  Reference 3] requires that the pion field is canonically
components of the pion momentaandp, are small relative  normalized, so the coefficient gf in the pion propagator
to the real parts ofﬁT andf? . If the chiral phase transition is myst be unity. We allow for a pion velocity which is less
of second order aff=T,, then asT—T,, f.(T) and than 1 by introducing the velocity ¢.” Since the quark
f°(T)—0 [15], and the region in which cool pions dominate massm=0, we introduce a pion masg),. Lastly, we in-
shrinks to zero. AbouT,, over large distances the behavior troduce an imaginary part of the pion self-energy,
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ImII(P), which is a function of momentum. This form of the thermal average of the two point function of either vector
the propagator should be valid in an expansion about zerr axial vector currents is directly proportional to a linear
momentum. combination of those at zero temperature. Since these two
The chiral Ward identity shows that the assumption usedPoint functions are Lorentz covariant at zero temperature,
to derive Eq.(3) is correct: in the chiral limitm=0, the they remain so to-T2/f2.
divergence of the axial vector current vanishes on the pion Thus the first place where the effects which we are dis-
mass shell, as defined by the conditiaql(P)zo. Since cussing can enter is at next-to-leading ordef;* [23]. The
the chiral Ward identity holds for arbitratismal) momen- ~ pion damping ratd16] and self-energyf17,18 have been
tum, however, we can derive several identities by matchingomputed to~T#/f% in a nonlinears model. In particular,
the coefficients op3, p?, and 1, for both the real and imagi- SchenK17,18 computed the pion self-energy not in the chi-

nary parts. ral limit, but using physically reasonable approximations.
Equating the terms- p3 fixes the constant of proportion- His results imply that foT=150 MeV,v~0.87[24].
ality between the quark operator and the pion field to be Instead of computing to two-loop order in a nonlinear
model, to illustrate the effect we calculate, in weak coupling,
Ref! to one-loop order in a lineas- model. In Euclidean space

b= -——. 11 i ian i

QT 11 time the Lagrangian is
Since both terms on the right-hand side of Efjl) change
with temperature, so does the factob.” Matching the
terms~ p? fixes the velocity as in Eq4). Lastly, matching
the imaginary parts i9) gives IMI(P)=2wy, with y 8 \yhere p= (o, w) is an G4) isovector field. We introduce a
in Eq. (6). o background magnetic fielth which is proportional to the

Away from the chiral limit, we match the real parts at o rent quark massn. For h=0, the vacuum expectation

zero momentumpo=p=0, to obtain the generalization of | .1 \a of the o is on=uZN. where we then shift
the relation of Gell-Mann, Oakes, and Renner to nonzer%_ﬂaoﬂf. for two flavgrs f'u: 0’0

temperature: We compute terms of orderT*/(f2m2). There are
— 4,54
2_2m<qq>T many terms of order-T"/f”, at both one- and two-loop

M= Ref0)?

1 w? A
L=5(0,8)= 5 #%+ 2 (#7—ho, (19

(12)  order. In weak coupling, however, themeson is light rela-

tive to f,,, m2=2\f2 Thus in weak coupling, which we
This is the same expression as DasliBhfound at zero —assume, the terms of orderT#/f7, are smaller by~\ than
temperature, except that insteadfgf, at nonzero tempera- those computed. Conversely, in the limit of strong coupling,
ture the real part of'_enters. A relation such as Eq2) was  M,—, the only terms are those T4,

obtained by Thorsson and Wirzh#]; they did not recog- The diagrams 2for2the pion self-energy have been com-
nize, however, that in gener8), has an imaginary part, and puted to ~T%(f2m7) by Itoyama and Mueller[13];
so wrote justf! instead of Ré' . f' =fS has been computed te T%/f2 by Bochkarev and

The pion mass in Eq(12) is the dynamic pion mass, Kapusta[21], so all we have to do is extend the calculation
defined as the position of the singularity in the pion propa-of f}. and f to this order. Consequently, we merely sketch
gator in the complexp, plane atp=0. Alternately, we can the simplest way of performing the calculations. For the real
introduce the static pion mass, as the position of the singuparts, the terms of interest arise from diagrams involving a
larity in the pion propagator fopy=0 in the complexp  virtual o and a= in a loop, such as
plane. From the form of the pion propagator,
m3®%=m_/v, and so by Eqs4) and(12) this is just

(P)= 1
(mStatiC)2= 2m<qq>T (13)
" Ref> Ref’, where tg=T=!“__[d3k/(27)3. To ~T2, it suffices to ap-
) o proximate this integral by its value at zero momentum, ne-
Obviously,u<1 implies that glecting theK dependence in the propagator, so Eq17)
mirtatica m. . (14) becomes

2

We now consider where these effects first appear in an I(P)~ itr iwiT_ (18)
expansion about zero temperature. Using either a nonlinear m2 KK? m?2 12’

[20] or a linear[21] o model, to leading order i/f2,
5 In the integral we have ignored apparent ultraviolet diver-

)f (15 gences to concentrate on the teriT2. Of course renormal-

fffw " ization is taken care of as usual at zero temperature.
To compute terms of-T#, it is necessary to expand the

Hence to leading order in low temperature, pions move at théntegral in Eq.(17) to ~P?, including both terms- P? and
speed of light and are undamped. This was established kgrms~ P#P”. In addition to the integral in Eq18), we also
Dey, Eletsky, and loff§22], who showed that te-T?/f2,  need

fL(T>=fi<T>=(1—



R2992 ROBERT D. PISARSKI AND MICHEL TYTGAT 54

tre KK (s aann L 19 t K
rKW_N( —4n~n ) 90 y ( ) rKKZ((P_K)2+m§)|w~p<mO_
- i 2
wheren*=(1,0). ~ L(f"—T exp( _ e . (25
The imaginary part of expressions cannot be extracted so 16pm\4p 4pT

easily. We evaluate the imaginary part only near the pion The resyits of the computations are as follows. At one-
mass shell, which is fow~p. In this region, the only con- loop order the quantity

tribution to the imaginary part of Eq18) is from

T2
d%k  m(n;—ny,) T 26
ImI(P)=f >3 g, O@tEi—Ep). (20
(2m) 1E2 typically enters. To the order we work, we also need
In this expressionE;=k is the energy of the pion, t:W_Z T
E,=\/(p—k)2+m? is the energy of ther, andn,;=n(E;), 245 f2m2’

n,=n(E,) are the corresponding Bose-Einstein distribution 4 )

functions. This result can be obtained in various ways, such t :i iexp< My ) 27
as following[25]. In all there are four possiblé functions in 3 327 fpr2 4pT)”

energy which contribute to I#{P). For o~ p<T only that i _ i

in Eq. (20) contributes, and corresponds to Landau dampingl Nén at weak coupling in the linear model, to

In this region, thes function requires ~T4(f2m?),
- fl~(1—t,+3t,+itg)f .,
K= 2w+ pcosh) @) £~ (1—t;=5tp—ita)f,,. (28

) By Eq. (4) the pion velocity is
We assume that>m,, and then expand the energies ac-
cordingly; this is justified, since from Eq(21), when v2~1-8t,, (29

m,> w,p, thenk>m, . The result for the imaginary part is while from Eq.(6) the pion mass shell is

ip’~vp—ipts. (30)

ImZ(P)| = p( i
m op<m ~ = expl —
P=Ms 16 4pT Including the one-loop self-energy computed to this order,
the pion propagator is
Because the fields being scattered have large momentum, the 1 ’ )
Bose-Einstein distribution functions are essentially Boltz- Z8 (P)|o-p<m, ~(1+t1+6t)pg+(1+1t;—2tp)p

gqan(r;,z)which generates the exponential suppression seen in +m727(1+3t1/2)—2ip2t3. (31)

These integrals are sufficient to reproduce the results of, ensure thatr ~1(P) has canonical normalization we in-
Ref. [13] for the pion self-energy. To evaluate the corre-yqquce a factor for wave-function renormalization of the
sponding terms for the pion structure constants, we need ﬂ}ﬁon:

axial vector current in the linear model:

. (22

Z,~1+1t;+6t,. (32)

AL =(oot0)d,m?~ 7%, 0. (23 It is elementary to check that the zero of E81) agrees
with Eqg. (30). We have included the results to leading order
The diagrams which contribute at one-loop ordefffoand  in the external fielch, when the pion mass is nonzero. As-
fS are given in Fig(5) of [21]. In addition to the pion self- suming that the quark condensate is proportional to the
energy, there is a contribution fromea loop at the vertex vacuum expectation value of thefield,

for A4 These contributions can be evaluated expanding in-

tegrals like Eq.(17) and using Eq(19). For the imaginary (aa)7~0o(T) =~ o(0)(1=31/2), (33
parts, we need the integrals we also verify our generalization of the formula of Gell-
Mann, Oakes, and Renner in Ed.2) for the dynamic pion
kO | mass:
trK 2\ lo~p<
KZ(P—K)Z2+m2) e ~P<my m2(T) ~m2(1+t,/2—6t,). (34)
i 2 2 We conclude with some general comments. First, while
~— |47 exp( — _) (24) the effects computed at low temperat(2€)—(34) are small,
167\ 4p 4pT that does not mean that they remain so for temperatures of

physical interest, as seen in the result§®£10]. Secondly,
and the form of the inverse propagator in E0) applies not just
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to Goldstone bosons, but to any scalar field at nonzero temvelocity squared from unity is proportional to the free energy

perature. For example, in numerical simulations on the latdensity[6].

tice in Euclidean spacetime, typically what is measured is

only the static mass, not the dynamic. We thank R. Brout for enlightenment on ferromagnets,
Finally, we note that the coefficient of —1 in Eq. (29 G. Castillo and S. Chakravarty for the same on antiferro-

is proportional to the free energy density for pions, magnets, K. Scharnhorst for bringing REZ6] to our atten-

= 72T#/30. (It would be interesting to know what the analo- tion, A. Schenk for discussions on his work, and M. Creutz

gous coefficient is for the nonlinear model in the chiral for comments. This work was supported by a U.S. DOE

limit.) This and other exampld26] hint of a general rela- grant at Brookhaven National Laboratory, No. DE-AC02-

tion, valid for all temperatures, where the deviation of the76CH00016.
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