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Inequalities for QCD functional integrals are used to establish that if the QCD functional integral does not
get contributions from a set of zero measure, then the high-temperature chirally restored phase of QCD is
effectively symmetric under U{;) X U(N;) rather than SU{;) X SU(N;). If this assumption is correct, there
are no effects due to anomalous breaking of U(1dn correlation functions in this phase.
[S0556-282(96)50115-3

PACS numbsgs): 12.38.Aw, 11.10.Wx, 11.30.Rd, 12.38.Mh

One of the most important features of QCD is that it hadlation functions of operators in a given multiplet are identi-
an approximate SU\;) X SU(N¢) chiral symmetry that is cal. This means, for example, that the two-point correlation
spontaneously broken. For the purposes of this Rapid Confunction in thesr channel is degenerate with the correlation
munication, it will be assumed that the symmetry is exact orfunction in the ' channel. This is surprising since the
more precisely, that corrections due to finite quark masses(2)x U(2) symmetry of the QCD Lagrangian is broken by
are small and can be handled via chiral perturbation theorythe U(1), anomaly to SU(2XSU(2). Moreover, the
If one were to study QCD above some critical temperaturaJ(1), anomaly is at the operator level and thus the anomaly
this symmetry would be restored. The nature of this restoreéxists independent of temperature. As stressed by 't Hooft
phase is of more than purely theoretical interest since ulf4], the anomaly may be thought of as providing a mecha-
trarelativistic heavy-ion collisions are expected to lead tonism for explicit (as opposed to spontanepusymmetry
thermalized regions of space with a temperature abique breaking. Thus, it seens priori implausible that restoration
For simplicity in the present discussion it will be assumedof chiral SU(2)<SU(2) should imply invariance under
that N;=2. The question of how the result depends on theU(2)X U(2). Indeed, in a classic early review of the subject
number of light flavors is interesting and subile2]. of instantons and the U(})problem, Coleman5] asserts

This Rapid Communication addresses the question oprecisely the viewpoint that the U(1)symmetry remains
what can be learned about the chirally restored phase directlyroken above the restoration temperature with the symmetry
from QCD via purely analytic means. If one makes certainbreaking decreasing at high temperatures as a power of
technical assumptions about the functional integral, one cab/T. Moreover Meggiolarg[6] has recently constructed a
deduce nontrivial—and rather surprising—things about themodel motivated by lattice calculations of the topological
nature of this phase by exploiting QCD inequality techniquessusceptabilityf 7] in which U(1), remains broken above the
similar to those used by Wiengarten, Vafa, and Wiftghin chiral restoration temperature.
studies of QCD aff=0. The idea that the chirally restored phase is symmetric un-

In particular it will be shown that if a certain set of zero der U(2)xU(2) rather than SU(2¥SU(2) is not new.
measure does not afflict the functional integral then, abov&huryak previously raised this possibilif$]. The present
T., the phase is effectively symmetric under Ug)(2) in  approach is novel, however, in that it derives this result for-
the sense that operators can be classified into multiplets amally from the QCD functional integral. Before discussing
sociated with representations of U(Y(2) and that corre- the present derivation, it is useful to review Shuryak’s argu-
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ments. One argument is based on lattice calculations afnly includes configurations periodic in Euclidean time with
screening masses that purport to show that abbvethe a periodicity of B=1/T and the fermion determinant is
m and o screening masses are degenefati¢hin numerical  evaluated for antiperiodic configurations. Aboveé.,
noise [9]. The calculated & correlation functions only  {{qq))r=0, implying that({pA(0)))+=0 (where the double
included the guark-line connected part. However, this quarkangular brackets indicate a thermal avejagdowever,
line connected part is the entire correlator in the scalarpa(\) is a density; accordingly it is positive semidefinite
isovector ) channel. Thus, the lattice calculations indicate(i.e., =0): pa(A\)=0. Moreover the weighting function
a degeneracy between the and 6 screening masses. The e > Def D —m] is also positive semidefinitg]. An aver-
7 and thes do not belong to the same SU(2BU(2) mul-  aged quantity that is never negative cannot have an average
tiplet; they do, however, belong to the same UX2)(2)  of zero unless the quantity is zero for all configuratides-
multiplet. cept, perhaps, a set of measure zepa(0)=0 for configu-

Shuryak also argues for U(X) U(2) restoration from the rations consistent with the boundary conditions Tor T...
instanton liquid mod€]10,11]. Recall that the solution of the Before discussing how this works out in specific cases, it
U(1)4 problem requires both the U(A)anomaly and the is worth stressing the generality of the result. It depends only
contribution of nontrivial topological configuratios]; to-  on the fact thap(0) goes to zero above the phase transition
pology is necessary for the anomalous violation of (1) for all configurations and that U(})violating amplitudes
symmetry to have physical manifestations. In the instantortome from modes in the neighborhood)of 0. It does not
liquid model[10,1]] instantons provide the only source for depend on the detailed mechanism that generates a nonzero
these configurations. As has long been known, a finite denp,(0) belowT,.
sity of instantons leads to chiral symmetry breakjtg]. In To make the discussion concrete, consider the two-point
the instanton liquid model, instantons also provide the onlycorrelation function of scalar and pseudoscalar quark bilin-
source of SU(2XSU(2) chiral symmetry breaking. Thus, ears. There are four distinct operators: pseudoscalar-
in this model, the same mechanism is responsible both fasovector, iqys7rq, (the 7 channel; scalar-isoscalargq
SU(2)x SU(2) chiral symmetry breaking and for allowing (¢); pseudoscalar-isoscalangysq, (7'); and scalar-
the U(1), symmetry breaking due to the anomaly to haveisovector,qrq (8). These bilinears are denoted &s, J,,,
physical consequences. In such a model, if one were in &a,,, andJs. The o and 7 form a distinct SU(2X SU(2)
phase in which SU(2% SU(2) chiral symmetry were unbro- multiplet from theé and »'. Under U(2)X U(2), however,
ken, it would follow that instanton effects are turned off. they are all part of a single multiplet.
This, in turn, suggests that the anomaly will not have physi- The thermal two-point correlation functioid (x) of two
cal effects in any of the correlation functions: all observablesequal-time quark bilinear operators at fixed temperatlie,
will behave as though the phase is UgY(2) symmetric. is defined by
The mechanism responsible for this in the model is believed
to be the condensation of instantons and anti-instantons into I15(x)={{I(x)I(0)))t— ({I(X))){(I(0)))7, (1)
topologically neutral “molecules’[13].

The present analysis is based on properties of the QCRyhere the double angular brackets indicate thermal average
functional integral. The essential physics is best understoogind J(x) =q(x)I'q(x) andI is a matrix in Dirac and flavor

from the quark propagator in a given gluon background fieldspace. One can write this as a Euclidean functional integral:
When the propagator is written in terms of a spectral repre-

sentation, all U(1)-violating effects come from eigenmodes 1

in the neighborhood of zero virtuality; i.eA=0 modes, HJ(X)=—ZJ D[A]e‘SYMDet[ID—mq]

where the Dirac eigenequation By;=i\;y;. While it is T

not immediately obvious how to establish in general that all X[t Sa(x,0) T Sa(x,0)T']
U(1),-violating amplitudes come from the region)£ 0, it

is easy to establish for given U(4-violating amplitudes by =t Sa(x,x)I"] tr[ Sa(0,0)I']], 2

studying the spectral representaton of the propagator in the
context of the functional integral. Moreover, it is easy towhere the subscripl indicates the finitel boundary condi-
prove that the density of states of the Euclidean Dirac operaions (periodic inA); Z is the partition functionSyy, is the
tor, D at A\=0, is zero forany gauge configurations with Euclidean action of the Yang-Mills field; the Det indicates a
boundary conditions consistent with a temperature greatedunctional determinant with the fermion modes satisfying an-
than the T, (excluding, perhaps, a set of zero meagure tiperiodic boundary conditionsSa(x,y) is the Euclidean
Thus, one can show that these UfIyiolating amplitudes space quark propagator in the presence of a background
vanish. gauge fieldA; and the traces are over color, flavor, and Dirac
The fact that abovd . all gauge configurations yield a spaces.
vanishing density of states at zero virtuality can be seen quite A finite quark massm, is included in the previous
transparently. The chiral condensdigq) is related to the expression—it will be sent to zero only at the end of the
density of states at zero averaged over gluon field configuealculation. For technical reasons it is simpler to work in a
rations[14]: (qq)=— m{pa(A=0)) wherep, is the density box of finite volumeV (which makes all of the modes dis-
of states in a given background gluon field configuration anctrete and to let the volume of the box go to infinity at the
angular brackets indicate averaging over the gluon field conend of the problem. The ordering of these two limits is criti-
figurations weighted bye  SmDe{ D —m]. This applies to cal. One must take th&—o limit before taking the chiral
the finite-temperature case provided the average over gluotisnit [15].



54 QCD INEQUALITIES, THE HIGH TEMPERATURE ... R1869
There are two distinct contributions to this functional - 1

integral: a term with a single trace and a term with two Ni((qd(x)))r=> j D[Ale™ 5™ Def D — mj]tr[ Sa(x,%) ]

traces. They are the quark-line connected and quark-line dis- T

connected pieces, respectively. If the up and down quark =—-0(my). (8)

masses are equéds is assumed herd S,(x,0),7]=0, and

the connected piece of an isoscalar correld®g., theo At this stage, it is worth recalling that S De{ D —m,] is

channel is identical to the connected piece of an isoveCtorpositive semidefinite for all gauge configurationg while

correlator with the same spatial quantum numbiers., the s, (x x)] is negative semidefinite. Thus, the integrand in

6 channe). _ _ Eq. (8) is negative semidefinite. This means that there can be
The difference between the and§ correlation functions, g cancellations in the integral—the only way that the inte-

IT,(x) —I4(x), is U(1), violating. As noted above, in the g can beO(m,) is if the contributions from all gauge
functional integral this difference comes entirely from theconfigurations ar®©(my,) (except perhaps from a fraction of

quark-line disconnected piece: configurations that goes to zero in the chiral limfhus Eq.
. (4) has been shown to be true for all gauge configurations
_ _ ~Sym _ contributing to the functional integral except for contribu-
o) = I5(x) ZLD[A]G De{ D —mg] tions that become a set of measure zero in the chiral limit.

Assuming this set of measure zero can be safely ignored in
X[ Sa(x,x)] tr[Sa(0,0)]. (3 the evaluation of Eq(3)—an issue that will be discussed at
the end of this letter—one concludes that since (Bhis true
If it can be shown that above the SU(2)SU(2) chiral res-  so is Eq.(5); thus in the chiral limit ofmy—0 theseo and

toration temperature é correlators are identical.
Having established this, it is immediately obvious that
tr[ Sa(x,x)]=0(mg) 4 I(x), I1,(x), 1,(x), and II15(x) must all be identical

aboveT, in themy— 0 limit. SU(2)X SU(2) chiral restora-
for all gauge configurations consistent with the tion implies thatll ,(x) =1II,(x) andIl,, (x)=1II4(x), while
boundary conditions, then it follows that Eq. (5) implies thatIT(x)=1II,(x) — all members of the
tr[SA(x,x)]tr[SA(O,O)]:O(mg) for all gauge configurations U(2)xU(2) multiplet are identical. Although from this ar-
and thus the weighted average over gauge configurations wijument it is clear thall,,(x)=1II,(x), it is useful to dem-

also beO(mé) from which Eq.(3) implies onstrate this directly from functional integral inequalities as
it demonstrates a technique that is useful for studying other
I1,(x) — T () = O(mj). (5 ~ multiplets. o j
The functional integral for this difference can be written

This in turn implies that in the chiral limit ofm,—0 2%

IT,(x)—ITI5(X)—0. That is, this U(1)-violating matrix el-
ement vanishes.

If the validity of Eq. (4) is established, then one has
proven that this U(1) violating amplitude vanishes. To be-

1
IT7(x)—IL,, (x)= ZJTD[A]e*SYM Def D —mg]

gin use a spectral representation 8 XU Sa(X,X) ys]tr[Sa(0,0) y5].  (9)
b (X) ¢ (y) The first step in proving thall .(x)—1I,.(x) goes to zero
Salxy)= >, :)\—rjn (6)  aboveT, is to show that !
] i~ a
[tr[ Sa(X,X) ¥5]| < [tr[ Sa(X,X) ]| (10

where the modes are eigenmodes of the Dirac operator. From
the fact thaf ys,0} =0, it follows that if ; is an eigenmode
with eigenvalug A, thenysy; is an eigenmode with eigen-
value —i\;. This in turn implies

for any gauge configurations. This is easily established using
the spectral decomposition of the propagator and the fact that
sz-T(x)(l+ ‘}/5)2(//]-(X)20 for any ¢;. By comparing Eq(3)
m w_f(x) (%) with Eg. (9) and using Eq.(100 and the fact that
— ) e SmDefD—m,] is positive semidefinite, one sees that
Aj+mg ITT,(x) —I1, ()| <|TI,(x) =TI 5(x)|. Since the right-hand
side of this inequality goes to zero, the left-hand side does as
It is apparent from Eq(7) that, as advertised, in the limit of well, and thus the degeneracy of the and »’ channels
my,—0, contributions to fiSy(x,x)] come entirely from above T, has been demonstrated directly from the QCD
modes nearn=0. More significantly, given the standard functional integrals.
convention that the quark mass is positive, then The technique used to establish thatand »' correla-
tr[ Sa(x,x)]=<0 for any gauge configuration. tion functions are identical above the phase transition by
Above T, we know that chiral condensatégq))t van-  showing that the absolute value of their difference is less
ishes, or to be more precise is ordey and vanishes when than or equal tdIl,—1II4, can be immediately generalized
the chiral limit is taken. The chiral condensate can be writterfor other channels. In this way, one can show that vector and
as a functional integral pseudovector, isovector and isoscdlee., thew, p, 4, and

tr[sA(x,x>]=§
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a,) correlation functions are all identical aboWfe. Again  N;=2 satisfies the loophole condition Withcz1 playing the
this is an identification of (2)xU(2) symmetry since only role of e. _ . _
the p anda, are connected by SB)xSU(2) chiral symme- In summary, neglecting the loophole discussed above, it

try. The same method allows one to show that the tensor aritfs been shown directly from the QCD function integral

pseudotensor, isoscalar and isovector correlators are identic&at aboveT; the correlation functions for quark bilinears in
aboveT a given U2)xXU(2) multiplet are identical. This indicates
..

There is a loophole in the demonstration of thethat the phase is invariant under(2yxU(2) rather than

. . SU(2)XSU(2). The anomalous U(1) breaking does not
U(2)xU(2) nature of the chirally restored phase given above,Split the U2)xU(2) multiplets because the effects of the

In particular, it was assumed that contributions to the func'anomaly occur entirely through the quark-line disconnected

tional integral in Eq(8), which were a set of measure zero in parts of correlation functions and, in the,—0 limit,
themy— 0 limit, do not contribute to the functional integral the quark-line disconnected parts contribute only due to
in Eqg. (3). By inspection, it is clear that so long as the the modes neax=0. Above T, the density of states
tr[ Sa(x,x)] is finite for all gauge configurationgafter a  at A=0 goes to zero and the anomaly ceases to play a role.
gauge invariant and SB) X SU(2) chiral invariant ultraviolet On the other hand if high-temperature QCD does in fact
regularization, then the set of measure zero cannot effect thdhave U(1) violations then one can conclude that it must
functional integral in Eq(3). To discuss a set of measure occur due to the loophole. This in turn allows one to con-
zero with infinite contributions it is sensible to first introduce strain the possible forms of the spectral density at high tem-
an infrared cutoff regulatok wheree—0 corresponds to the peratures.

infinite volume andm,—0 limits with Vmg—e. The loop- The author thanks V. Soni and W. Melnitchouk for use-
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condensate vanishes as the regulator goes to zero Whirﬁis work was done during a visit to the Department of
the U(1), violating amplitude{I1,(x) —I15(x)} does not. It ppysics and the Institute for Nuclear Theory at the Uni-
has been suggested receritly2] that spatially isolated re- ersity of Washington; their kind hospitality is gratefully
gions with atopologlcNaI winding number df1 have a prob- acknowledged. This work was supported in part by U.S.
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