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QCD inequalities, the high temperature phase of QCD, and U„1… A symmetry

Thomas D. Cohen
Department of Physics, University of Maryland, College Park, Maryland 20742

~Received 5 January 1996!

Inequalities for QCD functional integrals are used to establish that if the QCD functional integral does not
get contributions from a set of zero measure, then the high-temperature chirally restored phase of QCD is
effectively symmetric under U(Nf)3U(Nf) rather than SU(Nf)3SU(Nf). If this assumption is correct, there
are no effects due to anomalous breaking of U(1)A on correlation functions in this phase.
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One of the most important features of QCD is that it h
an approximate SU(Nf)3SU(Nf) chiral symmetry that is
spontaneously broken. For the purposes of this Rapid C
munication, it will be assumed that the symmetry is exact
more precisely, that corrections due to finite quark mas
are small and can be handled via chiral perturbation the
If one were to study QCD above some critical temperat
this symmetry would be restored. The nature of this resto
phase is of more than purely theoretical interest since
trarelativistic heavy-ion collisions are expected to lead
thermalized regions of space with a temperature aboveTc .
For simplicity in the present discussion it will be assum
thatNf52. The question of how the result depends on
number of light flavors is interesting and subtle@1,2#.

This Rapid Communication addresses the question
what can be learned about the chirally restored phase dire
from QCD via purely analytic means. If one makes cert
technical assumptions about the functional integral, one
deduce nontrivial—and rather surprising—things about
nature of this phase by exploiting QCD inequality techniqu
similar to those used by Wiengarten, Vafa, and Witten@3# in
studies of QCD atT50.

In particular it will be shown that if a certain set of ze
measure does not afflict the functional integral then, ab
Tc , the phase is effectively symmetric under U(2)3U(2) in
the sense that operators can be classified into multiplets
sociated with representations of U(2)3U(2) and that corre-
540556-2821/96/54~3!/1867~4!/$10.00
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lation functions of operators in a given multiplet are ident
cal. This means, for example, that the two-point correlati
function in thep channel is degenerate with the correlatio
function in the h8 channel. This is surprising since the
U(2)3U(2) symmetry of the QCD Lagrangian is broken b
the U(1)A anomaly to SU(2)3SU(2). Moreover, the
U(1)A anomaly is at the operator level and thus the anoma
exists independent of temperature. As stressed by ’t Ho
@4#, the anomaly may be thought of as providing a mech
nism for explicit ~as opposed to spontaneous! symmetry
breaking. Thus, it seemsa priori implausible that restoration
of chiral SU(2)3SU(2) should imply invariance under
U(2)3U(2). Indeed, in a classic early review of the subje
of instantons and the U(1)A problem, Coleman@5# asserts
precisely the viewpoint that the U(1)A symmetry remains
broken above the restoration temperature with the symme
breaking decreasing at high temperatures as a power
1/T. Moreover Meggiolaro@6# has recently constructed a
model motivated by lattice calculations of the topologic
susceptability@7# in which U(1)A remains broken above the
chiral restoration temperature.

The idea that the chirally restored phase is symmetric u
der U(2)3U(2) rather than SU(2)3SU(2) is not new.
Shuryak previously raised this possibility@8#. The present
approach is novel, however, in that it derives this result fo
mally from the QCD functional integral. Before discussin
the present derivation, it is useful to review Shuryak’s arg
R1867 © 1996 The American Physical Society
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ments. One argument is based on lattice calculations
screening masses that purport to show that aboveTc , the
p ands screening masses are degenerate~within numerical
noise! @9#. The calculated ‘‘s ’’ correlation functions only
included the quark-line connected part. However, this qua
line connected part is the entire correlator in the sca
isovector (d) channel. Thus, the lattice calculations indica
a degeneracy between thep and d screening masses. Th
p and thed do not belong to the same SU(2)3SU(2) mul-
tiplet; they do, however, belong to the same U(2)3U(2)
multiplet.

Shuryak also argues for U(2)3 U(2) restoration from the
instanton liquid model@10,11#. Recall that the solution of the
U(1)A problem requires both the U(1)A anomaly and the
contribution of nontrivial topological configurations@5#; to-
pology is necessary for the anomalous violation of U(1A
symmetry to have physical manifestations. In the instan
liquid model @10,11# instantons provide the only source fo
these configurations. As has long been known, a finite d
sity of instantons leads to chiral symmetry breaking@12#. In
the instanton liquid model, instantons also provide the o
source of SU(2)3SU(2) chiral symmetry breaking. Thus
in this model, the same mechanism is responsible both
SU(2)3SU(2) chiral symmetry breaking and for allowin
the U(1)A symmetry breaking due to the anomaly to ha
physical consequences. In such a model, if one were
phase in which SU(2)3SU(2) chiral symmetry were unbro
ken, it would follow that instanton effects are turned o
This, in turn, suggests that the anomaly will not have phy
cal effects in any of the correlation functions: all observab
will behave as though the phase is U(2)3U(2) symmetric.
The mechanism responsible for this in the model is belie
to be the condensation of instantons and anti-instantons
topologically neutral ‘‘molecules’’@13#.

The present analysis is based on properties of the Q
functional integral. The essential physics is best underst
from the quark propagator in a given gluon background fie
When the propagator is written in terms of a spectral rep
sentation, all U(1)A-violating effects come from eigenmode
in the neighborhood of zero virtuality; i.e.,l50 modes,
where the Dirac eigenequation isD” c j5 il jc j . While it is
not immediately obvious how to establish in general that
U(1)A-violating amplitudes come from the region ofl50, it
is easy to establish for given U(1)A-violating amplitudes by
studying the spectral representaton of the propagator in
context of the functional integral. Moreover, it is easy
prove that the density of states of the Euclidean Dirac op
tor, D” at l50, is zero forany gauge configurations with
boundary conditions consistent with a temperature gre
than theTc ~excluding, perhaps, a set of zero measur!.
Thus, one can show that these U(1)A violating amplitudes
vanish.

The fact that aboveTc all gauge configurations yield
vanishing density of states at zero virtuality can be seen q
transparently. The chiral condensate^q̄q& is related to the
density of states at zero averaged over gluon field confi
rations@14#: ^q̄q&52p^rA(l50)& whererA is the density
of states in a given background gluon field configuration a
angular brackets indicate averaging over the gluon field c
figurations weighted bye2SYMDet@D” 2m#. This applies to
the finite-temperature case provided the average over glu
of
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only includes configurations periodic in Euclidean time wit
a periodicity of b51/T and the fermion determinant is
evaluated for antiperiodic configurations. AboveTc ,
^^q̄q&&T50, implying that^^rA(0)&&T50 ~where the double
angular brackets indicate a thermal average!. However,
rA(l) is a density; accordingly it is positive semidefinite
~i.e., >0): rA(l)>0. Moreover the weighting function
e2SYM Det@D” 2m# is also positive semidefinite@3#. An aver-
aged quantity that is never negative cannot have an aver
of zero unless the quantity is zero for all configurations~ex-
cept, perhaps, a set of measure zero!: rA(0)50 for configu-
rations consistent with the boundary conditions forT.Tc .

Before discussing how this works out in specific cases,
is worth stressing the generality of the result. It depends on
on the fact thatrA(0) goes to zero above the phase transitio
for all configurations and that U(1)A violating amplitudes
come from modes in the neighborhood ofl50. It does not
depend on the detailed mechanism that generates a nonz
rA(0) belowTc .

To make the discussion concrete, consider the two-po
correlation function of scalar and pseudoscalar quark bili
ears. There are four distinct operators: pseudoscal
isovector, i q̄g5tq, ~the p channel!; scalar-isoscalar,q̄q
(s); pseudoscalar-isoscalar,i q̄g5q, (h8); and scalar-
isovector,q̄tq (d). These bilinears are denoted asJp , Js ,
Jh8, and Jd . The s andp form a distinct SU(2)3SU(2)
multiplet from thed andh8. Under U(2)3U(2), however,
they are all part of a single multiplet.

The thermal two-point correlation functionP(x… of two
equal-time quark bilinear operators at fixed temperature,T,
is defined by

PJ~x![^^J~x!J~0!&&T2^^J~x!&&T^^J~0!&&T , ~1!

where the double angular brackets indicate thermal avera
andJ(x)5q̄(x)Gq(x) andG is a matrix in Dirac and flavor
space. One can write this as a Euclidean functional integr

PJ~x!52
1

ZETD@A#e2SYMDet@D” 2mq#

3@ tr@SA~x,0!GSA~x,0!G#

2tr@SA~x,x!G# tr@SA~0,0!G##, ~2!

where the subscriptT indicates the finiteT boundary condi-
tions ~periodic inA); Z is the partition function;SYM is the
Euclidean action of the Yang-Mills field; the Det indicates
functional determinant with the fermion modes satisfying an
tiperiodic boundary conditions;SA(x,y) is the Euclidean
space quark propagator in the presence of a backgrou
gauge fieldA; and the traces are over color, flavor, and Dira
spaces.

A finite quark massmq is included in the previous
expression—it will be sent to zero only at the end of th
calculation. For technical reasons it is simpler to work in
box of finite volumeV ~which makes all of the modes dis-
crete! and to let the volume of the box go to infinity at the
end of the problem. The ordering of these two limits is criti
cal. One must take theV→` limit before taking the chiral
limit @15#.
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There are two distinct contributions to this function
integral: a term with a single trace and a term with tw
traces. They are the quark-line connected and quark-line
connected pieces, respectively. If the up and down qu
masses are equal~as is assumed here!, @SA(x,0),t#50, and
the connected piece of an isoscalar correlator~e.g., thes
channel! is identical to the connected piece of an isovec
correlator with the same spatial quantum numbers~e.g., the
d channel!.

The difference between thes andd correlation functions,
Ps(x)2Pd(x), is U(1)A violating. As noted above, in the
functional integral this difference comes entirely from th
quark-line disconnected piece:

Ps~x!2Pd~x!5
1

ZETD@A#e2SYMDet@D” 2mq#

3tr@SA~x,x!# tr@SA~0,0!#. ~3!

If it can be shown that above the SU(2)3 SU(2) chiral res-
toration temperature

tr@SA~x,x!#5O~mq! ~4!

for all gauge configurations consistent with th
boundary conditions, then it follows tha
tr@SA(x,x)#tr@SA(0,0)#5O(mq

2) for all gauge configurations
and thus the weighted average over gauge configurations
also beO(mq

2) from which Eq.~3! implies

Ps~x!2Pd~x!5O~mq
2!. ~5!

This in turn implies that in the chiral limit ofmq→0
Ps(x)2Pd(x)→0. That is, this U(1)A-violating matrix el-
ement vanishes.

If the validity of Eq. ~4! is established, then one ha
proven that this U(1)A violating amplitude vanishes. To be
gin use a spectral representation forSA

SA~x,y!5(
j

c j~x!c j
†~y!

il j2mq
, ~6!

where the modes are eigenmodes of the Dirac operator. F
the fact that$g5 ,D” %50, it follows that ifc j is an eigenmode
with eigenvalueil j , theng5c j is an eigenmode with eigen
value2 il j . This in turn implies

tr@SA~x,x!#5(
j

2mqc j
†~x!c j~x!

l j
21mq

2 . ~7!

It is apparent from Eq.~7! that, as advertised, in the limit o
mq→0, contributions to tr@SA(x,x)# come entirely from
modes nearl50. More significantly, given the standar
convention that the quark mass is positive, th
tr@SA(x,x)#<0 for any gauge configuration.

AboveTc , we know that chiral condensate^^q̄q&&T van-
ishes, or to be more precise is ordermq and vanishes when
the chiral limit is taken. The chiral condensate can be writ
as a functional integral
al
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Nf^^q̄q~x!&&T5
1

Z E
T
D@A#e2SYM Det@D” 2mq#tr@SA~x,x!#

52O~mq!. ~8!

At this stage, it is worth recalling thate2SYM Det@D” 2mq# is
positive semidefinite for all gauge configurations whil
tr@SA(x,x)# is negative semidefinite. Thus, the integrand i
Eq. ~8! is negative semidefinite. This means that there can
no cancellations in the integral—the only way that the inte
gral can beO(mq) is if the contributions from all gauge
configurations areO(mq) ~except perhaps from a fraction of
configurations that goes to zero in the chiral limit!. Thus Eq.
~4! has been shown to be true for all gauge configuratio
contributing to the functional integral except for contribu
tions that become a set of measure zero in the chiral lim
Assuming this set of measure zero can be safely ignored
the evaluation of Eq.~3!—an issue that will be discussed a
the end of this letter—one concludes that since Eq.~4! is true
so is Eq.~5!; thus in the chiral limit ofmq→0 theses and
d correlators are identical.

Having established this, it is immediately obvious tha
Pp(x), Ph8(x), Ps(x), and Pd(x) must all be identical
aboveTc in themq→0 limit. SU(2)3SU(2) chiral restora-
tion implies thatPp(x)5Ps(x) andPh8(x)5Pd(x), while
Eq. ~5! implies thatPd(x)5Ps(x) — all members of the
U(2)3U(2) multiplet are identical. Although from this ar-
gument it is clear thatPh8(x)5Pp(x), it is useful to dem-
onstrate this directly from functional integral inequalities a
it demonstrates a technique that is useful for studying oth
multiplets.

The functional integral for this difference can be written
as

Pp~x!2Ph8~x!5
1

ZETD@A#e2SYM Det@D” 2mq#

3tr@SA~x,x!g5#tr@SA~0,0!g5#. ~9!

The first step in proving thatPp(x)2Ph8(x) goes to zero
aboveTc is to show that

utr@SA~x,x!g5#u<utr@SA~x,x!#u ~10!

for any gauge configurations. This is easily established usi
the spectral decomposition of the propagator and the fact t
c j
†(x)(11g5)

2c j (x)>0 for anyc j . By comparing Eq.~3!
with Eq. ~9! and using Eq. ~10! and the fact that
e2SYMDet@D” 2mq# is positive semidefinite, one sees tha
uPp(x)2Ph8(x)u<uPs(x)2Pd(x)u. Since the right-hand
side of this inequality goes to zero, the left-hand side does
well, and thus the degeneracy of thep and h8 channels
above Tc has been demonstrated directly from the QC
functional integrals.

The technique used to establish thatp and h8 correla-
tion functions are identical above the phase transition b
showing that the absolute value of their difference is le
than or equal touPs2Pdu, can be immediately generalized
for other channels. In this way, one can show that vector a
pseudovector, isovector and isoscalar~i.e., thev, r, f 1, and
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a1) correlation functions are all identical aboveTc . Again
this is an identification of U~2!3U~2! symmetry since only
the r anda1 are connected by SU~2!3SU~2! chiral symme-
try. The same method allows one to show that the tensor a
pseudotensor, isoscalar and isovector correlators are iden
aboveTc .

There is a loophole in the demonstration of th
U~2!3U~2! nature of the chirally restored phase given abov
In particular, it was assumed that contributions to the fun
tional integral in Eq.~8!, which were a set of measure zero i
themq→0 limit, do not contribute to the functional integra
in Eq. ~3!. By inspection, it is clear that so long as
tr@SA(x,x)# is finite for all gauge configurations@after a
gauge invariant and SU~2!3SU~2! chiral invariant ultraviolet
regularization#, then the set of measure zero cannot effect t
functional integral in Eq.~3!. To discuss a set of measure
zero with infinite contributions it is sensible to first introduc
an infrared cutoff regulator,e wheree→0 corresponds to the
infinite volume andmq→0 limits with Vmq

3→`. The loop-
hole in the general argument is that there could be config
rations for which tr@SA(x,x)#;e21/2, which have a weight
proportional toe. In such a casê^q̄q(x)&&T;e1/2, which
vanishes in thee→0 limit while $Ps(x)2Pd(x)%;O(1).
Thus, there is apparently the possibility that the chir
condensate vanishes as the regulator goes to zero w
the U(1)A violating amplitude$Ps(x)2Pd(x)% does not. It
has been suggested recently@1,2# that spatially isolated re-
gions with a topological winding number of61 have a prob-
ability that goes asmq

Nf ~whereNf is the number of light
flavors! . Such a configuration gives rise to an isolated ze
mode that causesSA to go as 1/mq . Such a situation with
.
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Nf52 satisfies the loophole condition withmq
2 playing the

role of e.
In summary, neglecting the loophole discussed above,

has been shown directly from the QCD function integra
that aboveTc the correlation functions for quark bilinears in
a given U~2!3U~2! multiplet are identical. This indicates
that the phase is invariant under U~2!3U~2! rather than
SU~2!3SU~2!. The anomalous U(1)A breaking does not
split the U~2!3U~2! multiplets because the effects of the
anomaly occur entirely through the quark-line disconnecte
parts of correlation functions and, in themq→0 limit,
the quark-line disconnected parts contribute only due
the the modes nearl50. Above Tc the density of states
at l50 goes to zero and the anomaly ceases to play a ro
On the other hand if high-temperature QCD does in fa
have UA(1) violations then one can conclude that it mus
occur due to the loophole. This in turn allows one to con
strain the possible forms of the spectral density at high tem
peratures.
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