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Asymptotic scaling in the two-dimensional SY3) o model at correlation length 4x 10°
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We carry out a high-precision simulation of the two-dimensional3grincipal chiral model at correlation
lengths¢ up to~4x 10°, using a multigrid Monte Carl@MGMC) algorithm. We extrapolate the finite-volume
Monte Carlo data to infinite volume using finite-size-scaling theory, and we discuss carefully the systematic
and statistical errors in this extrapolation. We then compare the extrapolated data to the renormalization-group
predictions. Forg=10® we observe good asymptotic scaling in the bare coupling~ad4 x 10° the nonper-
turbative constant is within 2—3 % of its predicted limiting val(80556-282(96)50114-1

PACS numbsgfs): 11.10.Hi, 05.70.Jk, 11.10.Jj, 11.15.Ha

A key tenet of modern elementary-particle physics is the a;=—0.12101%+0.7258481 1 —1.17809N 3. (2)
asymptotic freedom of four-dimensional non-Abelian gauge
theories [1]. However, the nonperturbative validity of .
asymptotic freedom has been questiofigil and numerical ~The nonperturbative constafte) has been computed us-
studies of lattice gauge theory have thus far failed to detedd the thermodynamic Bethe ans{ia]:
asymptotic scaling in the bare couplif@]. Even in the sim-

pler case of two-dimensional nonlinear models[4], nu- 2_

LasE : . Je  @IN N?—2
merical simulations at correlation lengtl§s-10-100 have Ceen=—"—= S5 XQ — T2 |- ©)]
often shown discrepancies of order 10—50% from asymptotic 16y sin(m/N) 2N

scaling. In a recent papdb] we employed a finite-size-
scaling extrapolation methof—9] to carry simulations in
the O3) o model to correlation length&~ 10°; the discrep-
ancy from asymptotic scaling decreased freaR5% to
~4%. In the present Rapid Communication we apply a simi

lar technique to the S@3) principal chiral model, reaching SU(3) model up toé~35 have failed to observe asymptotic

correlation lengths é~4x10° with errors <2%. For : _ : ey

£=10° we observe good asymptotic scaling in the bare pa_scallng(l), the discrepancy from Eqél)—~(3) is of the order
. . "Zof 10—20 %.

rameterp; moreover, at~4x 10° the nonperturbative ratio

195 : S Our extrapolation methofB] is based on the finite-size-
&observed Etheor , 3-100p IS Within 2—3 % of the predicted limiting scaling(FS9 ansatz

The nonperturbative constafly(2) is unknown, but Monte
Carlo studies indicate thatCyz2)/Cyexp lies between
~0.985 and 1 for allN=2 [14]; for N=3 it is
'0.987-0.002[12]. Monte Carlo studie$16—18,12 of the

value.

We study the lattice 0 model taking values in
the group SUN), with nearest-neighbor action O(B,sL) o
H(U)=—B= Re tr(UJU,). Perturbative renormalization- WZFO[&B’L)/L?SHO@ L7 4

group computations predict that the infinite-volume correla-

tion lengths¢®® and ¢ [10] behave as
where O is any long-distance observabkejs a fixed scale

4np —y a factor (here§=2), L is.the linear Ifittice sizelfo is a uni-
g#(ﬁ)zcg# e4wﬁ/N(_) 2[1+ I } (1)  versal function, andv» is a correction-to-scaling exponent.
N We make Monte Carlo runs at numerous paigsL() and
(B,sL); we then plotO(B,sL)/O(B,L) versusé(B,L)/L,
as B—. Three-loop perturbation theory yiel@i$2] using those points satisfying botf(B,L)= some value
&min @and L= some valuel ;,. If all these points fall with
good accuracy on a single curve, we choose a smooth fitting

*Electronic addresfinternej: function F,. Then, using the functions, andF,, we ex-
MANA@MAFALDA.PHYSICS.NYU.EDU trapolate the pair §,0) successively fromL—sL—s?L

TElectronic addreséinterne: —-..—0, See[8] for how to calculate statistical error bars
PELISSET@SUNTHPIL.DIFL.UNIPLIT on the extrapolated values.

*Electronic addreséinternel: SOKAL@NYU.EDU We have chosen to use functioRg, of the form

0556-2821/96/5¢)/12524)/$10.00 54 R1252 © 1996 The American Physical Society



54 ASYMPTOTIC SCALING IN THE TWO-DIMENSIONAL ... R1253

0.01 T T T 1 T T T T T T T

0.00

¢(RL)/¢(L) — fit

-0.01

70402vll\\l\‘\ \‘\ \‘
0.2 0.4 0.6 0.8 1.0

¢(L)/L
FIG. 1. Deviation of points from fit to F, with s=2, n=13,
Xmin=(%,%,2,0.14,0). Symbols indicate L=8(-F), 16(3%),
32(+). Error bars are one standard deviation. Curves near zero in-

dicate statistical error bars (+ one standard deviation) on the func-
tion F(x).

Fo(X)=1+ae” x a,e” 2y 4 ane” n/x. (5)
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FIG. 3. &2 cimate.0.90,0.65' £ theor VETSUSS. Error bars are one
standard deviatiofstatistical error only. There are four versions of
&8P, standard perturbation theory inAl/gives points+ (2-
loop) and X (3-loop); “improved” perturbation theory in +E
gives pointsC] (2-loop and ¢ (3-loop). Dotted line is the Monte
Carlo predictionC(2) / C sexp=0.987+0.002[12].

extrapolated values from differeht at the same8 can also
be subjected to & test. Further details on the method can

We increasen until the x? of the fit becomes essentially be found in[8,5].

constant; the resulting? value provides a check on the sys-

We simulated the two-dimensional 8) ¢ model using

tematic errors arising from corrections to scaling and/or froman XY-embedding multigrid Monte CarldMGMC) algo-
inadequacies of the forrfb). The discrepancies between the rithm [19]. We ran on lattices =8, 16, 32, 64, 128, 256 at

¢(2L)/¢(L)

0.0 0.5 1.0
&(L)/L

FIG. 2. &(B,2L)/ &(B,L) versus &(B,L)/L. Symbols indicate
L=8(F), 16(3&), 32 (+), 64 (X), 128 (O). Error bars are one
standard deviation. Solid curve is a thirteenth-order fit in Eq. (5),
with x . =(,0.90,0.65,0.14,0) for L=1(8,16,32,64,128). Dashed
curve is the perturbative prediction (6).

184 different pairs 8,L) in the range 1.65 B3<4.35(cor-
responding to 5¢,<4x10°). Each run was between
4x10° and 5x1C° iterations, and the total CPU time was
one year on a Cray C-9(20]. The raw data will appear in
[21].

Our FSS data cover the range G08=¢(L)/L=<1.12,
and we found tentatively that faP= ¢ a thirteenth-order fit
(5) is indicated(see Table ). There are significant correc-
tions to scaling in the regions=<0.84 (respectively, 0.64,
0.52, 0.14 when L=8 (respectively, 16, 32, 64 see the
deviations plotted in Fig. 1. We therefore investigated sys-
tematically they? of the fits, allowing different cuts ix for
different values ol : see again Table I. A reasonakyé is
obtained whem=13 andx,,=(0.80,0.70,0.60,0.14,0) for
L=(8,16,32,64,128). Our preferred fit i:H=13 and
Xmin= (©°,0.90,0.65,0.14,0): see Fig. 2, where we compare
also with the perturbative prediction

awplns _,

X

wylns w3 In%s .
-a X

+
2 8

Fex;s)=s|1

+0(x~9) (6)

valid for x>1, wherea=2N/(N?-1), wo=N/(8) and
w;=N?/(12872).
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TABLE |. Degrees of freedom(DF), x?, x?/DF and confidence level for thath-order fit (5) of
&(B,2L)/1&(B,L) versusé(B,L)/L. The indicated,,, values apply td.=8, 16, 32, respectively; we always
takexn="0.14, 0 forL= 64, 128. Our preferred fit is shown ftalics; other good fits are shown boldface
bad fits are shown in roman.

Xmin n=11 n=12 n=13 n=14 n=15
(0.50,0.40,0 180 718.80 179 626.60 178 560.20 177 558.60 176 558.30
3.99 0.0% 3.50 0.0% 3.15 0.0% 3.16 0.0% 3.17 0.0%
(=,0.40,0) 154 673.80 153 566.30 152 533.00 151 532.10 150 531.80
4.38 0.0% 3.70 0.0% 3.51 0.0% 3.52 0.0% 3.55 0.0%
(o0,,0) 108 236.00 107 172.40 106 154.80 105 154.70 104 153.40
2.19 0.0% 1.61 0.0% 1.46 0.1% 1.47 0.1% 1.48 0.1%
(0.70,0.55,0.4p 162 288.30 161 219.20 160 183.00 159 182.50 158 182.30
1.78 0.0% 1.36 0.2% 1.14 10.3% 1.15 9.8% 1.15 9.0%
(0.75,0.60,0.5D 150 222.40 149 172.20 148 129.90 147 129.80 146 129.80
1.48 0.0% 1.16 9.4% 0.88 85.6% 0.88 84.3% 0.89 82.9%
(0.80,0.70,0.6D 129 173.90 128 135.00 127 96.30 126 96.28 125 94.31
1.35 0.5% 1.0532.0% 0.76 98.1% 0.76 97.7% 0.75 98.1%
(0.95,0.85,0.6D 111 150.30 110 107.20 109 77.62 108 77.62 107 75.67
1.35 0.8% 0.97 55.8%  0.71 99.0% 0.72 98.8% 0.71 99.1%
(1.00,0.90,0.6D 105 139.20 104 100.90 103 70.74 102 70.73 101 67.50
1.33 1.4% 0.97 56.7%  0.69 99.4% 0.69 99.2% 0.67 99.6%
(2,0.90,0.65) 92 130.00 91 77.01 90 60.85 89 58.66 88 58.31
1.41 0.6% 0.8585.2%  0.68 99.2% 0.66 99.5% 0.66 99.4%
(o0,%,0.65) 78 96.09 77 56.51 76 49.55 75 46.63 74 45.94
1.23 8.1% 0.7396.2%  0.65 99.2% 0.62 99.6% 0.62 99.6%
(o0,00,) 52 55.85 51 25.23 50 25.17 49 24.11 48 24.10
1.07 33.2% 0.49 99.9% 0.50 99.9% 0.49 99.9% 0.50 99.8%

The extrapolated valued? from different lattice sizes at preferred fit and some alternative fits. The deviations be-
the sameB are consistent within statistical errors: only one tween the different fitgif larger than the statistical errors
of the 5838 values has &? too large at the 5% level, and can serve as a rough estimate of the remaining systematic

summing all 8 values we havey?=64.28 (103 DF,
level = 99.9%.
In Table Il we show the extrapolated valugg’ from our

TABLE 11

errors due to corrections to scaling. The statistical errors in
our preferred fit are of the order of 0.5Fespectively, 0.9%,
1.1%, 1.3%, 1.5%at &,.~10? (respectively, 18, 10¢, 10,

Estimated correlation length§? as a function ofg, from various extrapolations. Error bar is one standard deviation

(statistical errors only All extrapolations use=2 andn=13. The indicated,, values apply td.=8, 16, 32, respectively; we always take
Xmin=0.14, 0 forL=64, 128. Our preferred fit is shown italic; other good fits are shown inoldface bad fits are shown in roman.

Xmin =180 $=2.00 B=2.20 $=2.40 £=2.60 5=2.85 =3.00 5=3.15
(0.70,0.55,0.45 10.455(0.022 24.903(0.066 57.13(0.17 129.68(0.41) 290.5(1.00  794.9(3.2 1460 (6) 2687(11)
(0.75,0.60,0.50 10.454(0.022 24.886(0.07) 57.50(0.18 130.83(0.43 293.0(1.))  801.7(3.9 1473(6) 2709(12)
(0.80,0.70,0.6p 10.450(0.02) 24.875(0.073 57.41(0.29 130.93(0.64 293.6(1.6)  805.9(5.0 1482 (9) 2727(17)
(0.95,0.85,0.6p 10.451(0.02) 24.870(0.07) 57.40(0.21) 130.93(0.63 293.7(1.6)  806.6(6.1) 1483(12) 2749(25)
(1.00,0.90,0.6p 10.450(0.022 24.872(0.069 57.40(0.21) 130.94(0.69 293.6(1.6)  806.8(5.9 1484(12) 2749(25)
(,0.90,0.65)  10.446 (0.022) 24.859 (0.072) 57.40 (0.21) 131.00 (0.66) 295.2 (2.1)  809.6 (6.7) 1489 (13) 2761 (27)
(00,%,0.65) 10.447(0.022 24.863(0.074 57.40(0.22 131.01(0.66 295.0(2.1)  809.7(6.9) 1487 (14) 2759(28)

(00,00, 10.454(0.022 24.881(0.074 57.39(0.22 130.78(0.66 295.6(2.3  812.7(9.8 1482 (22) 2777(49)

Xmin 5=3.30 B=3.45 5=3.60 B=3.75 5=3.90 B=4.05 B=4.20 B=4.35
(0.70,0.55,0.45 4957(23) 9117 (46) 16780(92)  30959(182 56766(362  105205(707)  196197(1396 360864(2792
(0.75,0.60,0.50 4995 (24) 9199(47) 16938(93) 31258(185  57265(366  106093(736)  197949(1419 363905(2880
(0.80,0.70,0.6p 5032(32) 9268(62) 17066(118 31492(239 57687(456 106807(878  199117(1690 366159(3309
(0.95,0.85,0.6p 5109(49) 9411(92) 17359(178 32059(346) 58748(650 108781(1237) 202868(2360 372553(4392
(1.0,0.90,0.6p 5110(51) 9365(99) 17299(196 31816(372 58308(702 107789(1312) 200994(2493 369579(4697)
(,0.90,0.65) 5132 (55) 9407 (105) 17377 (208) 31908 (398) 58594 (766) 108952 (1452) 201796 (2817) 371706 (5457)
(00,2,0.65 5125(55) 9391(110 17389(229 32008(463  58804(941)  109440(1889 204587(3779 376704(7722
(c0,0,00 5063 (102 9295(217) 16991(447) 30912(9039  55976(1828 104740(3679 192664(7359 359299(14787%
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4x10°), and the systematic errors are of the same order oand substitute into Eq1); this gives a prediction fo¢ as a
smaller. The statistical errors at differe@tare strongly posi- function of 1—E. For E we use the value measured on the
tively correlated. largest latticgwhich is usuallyL. = 128); the statistical errors
) ' ) o . >y
In Fig. 3 (points + and X) we plot §§o Lsﬁmate@ 0.90,0.65) and finite-size corrections of are less than 810 “, and

divided by the two-loop and three-loop predictiofis—(3) they induce an error less than 0.85% on the predicted
for £ The discrepancy from three-loop asymptotic scal-(less_ than 0.55% fop=2.2). The c_orregspond_mg observed/
ing, which is~13% atB=2.0 (¢..~25), decreases to 2-3 % Prédicted ratios are also shown in Fig. (oints [J and

at B=4.35 (£.~3.7x 10F). For B=2.2 (£.=60) our data O). The_ |r_’nproved th(eg-_loop prediction is extremely flat,
are consistent with convergence to a limiting valueand agam ”?d'cate.s a limiting vali20.99. . .
Ce@/Cyexp~0.99-1 with the expected 47 corrections. Further discussion of the conceptual basis of our analysis

We can also try an “improved expansion parameter”cfan be found i5]. Details of this work, including an analy-

[22,17] based on the energy= N~ (Retr(U1U)). First we sis of the susceptibility, will appear elsewherf21].

invert the perturbative expansigfh2] A.P. would like to thank New York University for hospi-
5 5 tality while some of this work was being carried out. These
E(B)—1- N"—1 14 N°-2 computations were performed on the Cray C-90 at the Pitts-
AN 16NB burgh Supercomputing Center and on the IBM SP2 cluster at

) 4 the Cornell Theory Center. The authors’ research was sup-
. 0-0756-0.063"+0.0174% +o(1g%| (7 Ported by NSF Grants No. DMS-9200719 and No. PHY-
N%pB? 9520978.
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