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Asymptotic scaling in the two-dimensional SU„3… s model at correlation length 43105
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We carry out a high-precision simulation of the two-dimensional SU~3! principal chiral model at correlation
lengthsj up to'43105, using a multigrid Monte Carlo~MGMC! algorithm. We extrapolate the finite-volume
Monte Carlo data to infinite volume using finite-size-scaling theory, and we discuss carefully the systematic
and statistical errors in this extrapolation. We then compare the extrapolated data to the renormalization-group
predictions. Forj*103 we observe good asymptotic scaling in the bare coupling; atj'43105 the nonper-
turbative constant is within 2–3% of its predicted limiting value.@S0556-2821~96!50114-1#
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A key tenet of modern elementary-particle physics is
asymptotic freedom of four-dimensional non-Abelian gau
theories @1#. However, the nonperturbative validity o
asymptotic freedom has been questioned@2#, and numerical
studies of lattice gauge theory have thus far failed to de
asymptotic scaling in the bare coupling@3#. Even in the sim-
pler case of two-dimensional nonlinears models @4#, nu-
merical simulations at correlation lengthsj;10–100 have
often shown discrepancies of order 10–50% from asympt
scaling. In a recent paper@5# we employed a finite-size
scaling extrapolation method@6–9# to carry simulations in
the O~3! s model to correlation lengthsj'105; the discrep-
ancy from asymptotic scaling decreased from'25% to
'4%. In the present Rapid Communication we apply a si
lar technique to the SU~3! principal chiral model, reaching
correlation lengths j'43105 with errors &2%. For
j*103 we observe good asymptotic scaling in the bare
rameterb; moreover, atj'43105 the nonperturbative ratio
jobserved/j theor , 3-loop is within 2–3% of the predicted limiting
value.

We study the lattice s model taking values in
the group SU(N), with nearest-neighbor actio
H(U)52b( Re tr(Ux

†Uy). Perturbative renormalization
group computations predict that the infinite-volume corre
tion lengthsj (exp) andj (2) @10# behave as

j#~b!5Cj# e
4pb/NS 4pb

N D 21/2F11
a1
b

1
a2
b2 1••• G ~1!

asb→`. Three-loop perturbation theory yields@12#
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The nonperturbative constantCj(exp) has been computed us-
ing the thermodynamic Bethe ansatz@13#:

Cj~exp!5
Ae

16Ap

p/N

sin~p/N!
expS 2p

N222

2N2 D . ~3!

The nonperturbative constantCj(2) is unknown, but Monte
Carlo studies indicate thatCj(2) /Cj(exp) lies between
'0.985 and 1 for all N>2 @14#; for N53 it is
0.98760.002 @12#. Monte Carlo studies@16–18,12# of the
SU~3! model up toj'35 have failed to observe asymptotic
scaling~1!; the discrepancy from Eqs.~1!–~3! is of the order
of 10–20 %.

Our extrapolation method@8# is based on the finite-size-
scaling~FSS! ansatz

O~b,sL!

O~b,L !
5FO@j~b,L !/L;s#1O~j2v,L2v!, ~4!

whereO is any long-distance observable,s is a fixed scale
factor ~heres52), L is the linear lattice size,FO is a uni-
versal function, andv is a correction-to-scaling exponent.
We make Monte Carlo runs at numerous pairs (b,L) and
(b,sL); we then plotO(b,sL)/O(b,L) versusj(b,L)/L,
using those points satisfying bothj(b,L)> some value
jmin andL> some valueLmin . If all these points fall with
good accuracy on a single curve, we choose a smooth fitting
functionFO . Then, using the functionsFj andFO , we ex-
trapolate the pair (j,O) successively fromL→sL→s2L
→•••→`. See@8# for how to calculate statistical error bars
on the extrapolated values.

We have chosen to use functionsFO of the form
R1252 © 1996 The American Physical Society
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FO~x!511a1e
21/x1a2e

22/x1•••1ane
2n/x. ~5!

We increasen until the x2 of the fit becomes essentially
constant; the resultingx2 value provides a check on the sys
tematic errors arising from corrections to scaling and/or fro
inadequacies of the form~5!. The discrepancies between th
-
m
e

extrapolated values from differentL at the sameb can also
be subjected to ax2 test. Further details on the method can
be found in@8,5#.

We simulated the two-dimensional SU~3! s model using
an XY-embedding multigrid Monte Carlo~MGMC! algo-
rithm @19#. We ran on latticesL58, 16, 32, 64, 128, 256 at
184 different pairs (b,L) in the range 1.65<b<4.35 ~cor-
responding to 5&j`&43105). Each run was between
43105 and 53106 iterations, and the total CPU time was
one year on a Cray C-90@20#. The raw data will appear in
@21#.

Our FSS data cover the range 0.08&x[j(L)/L&1.12,
and we found tentatively that forO5j a thirteenth-order fit
~5! is indicated~see Table I!. There are significant correc-
tions to scaling in the regionsx&0.84 ~respectively, 0.64,
0.52, 0.14! when L58 ~respectively, 16, 32, 64!: see the
deviations plotted in Fig. 1. We therefore investigated sy
tematically thex2 of the fits, allowing different cuts inx for
different values ofL: see again Table I. A reasonablex2 is
obtained whenn>13 andxmin>(0.80,0.70,0.60,0.14,0) for
L5(8,16,32,64,128). Our preferred fit isn513 and
xmin5(`,0.90,0.65,0.14,0): see Fig. 2, where we compa
also with the perturbative prediction

Fj~x;s!5sF12
aw0lns

2
x222a2Sw1lns

2
1
w0
2 ln2s

8 D x24

1O~x26!G ~6!

valid for x@1, wherea52N/(N221), w05N/(8p) and
w15N2/(128p2).

FIG. 3. j`,estimate(`,0.90,0.65)
(2) /j`,theor

(exp) versusb. Error bars are one
standard deviation~statistical error only!. There are four versions of
j`,theor
(exp) : standard perturbation theory in 1/b gives points1 ~2-
loop! and 3 ~3-loop!; ‘‘improved’’ perturbation theory in 12E
gives pointsh ~2-loop! andL ~3-loop!. Dotted line is the Monte
Carlo predictionCj(2) /Cj(exp)50.98760.002@12#.
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TABLE I. Degrees of freedom~DF!, x2, x2/DF and confidence level for thenth-order fit ~5! of
j(b,2L)/j(b,L) versusj(b,L)/L. The indicatedxmin values apply toL58, 16, 32, respectively; we always
takexmin50.14, 0 forL564, 128. Our preferred fit is shown initalics; other good fits are shown inboldface;
bad fits are shown in roman.

xmin n511 n512 n513 n514 n515

~0.50,0.40,0! 180 718.80 179 626.60 178 560.20 177 558.60 176 558.30
3.99 0.0% 3.50 0.0% 3.15 0.0% 3.16 0.0% 3.17 0.0%

(`,0.40,0) 154 673.80 153 566.30 152 533.00 151 532.10 150 531.80
4.38 0.0% 3.70 0.0% 3.51 0.0% 3.52 0.0% 3.55 0.0%

(`,`,0) 108 236.00 107 172.40 106 154.80 105 154.70 104 153.40
2.19 0.0% 1.61 0.0% 1.46 0.1% 1.47 0.1% 1.48 0.1%

~0.70,0.55,0.45! 162 288.30 161 219.20 160 183.00 159 182.50 158 182.30
1.78 0.0% 1.36 0.2% 1.14 10.3% 1.15 9.8% 1.15 9.0%

~0.75,0.60,0.50! 150 222.40 149 172.20 148 129.90 147 129.80 146 129.80
1.48 0.0% 1.16 9.4% 0.88 85.6% 0.88 84.3% 0.89 82.9%

~0.80,0.70,0.60! 129 173.90 128 135.00 127 96.30 126 96.28 125 94.31
1.35 0.5% 1.05 32.0% 0.76 98.1% 0.76 97.7% 0.75 98.1%

~0.95,0.85,0.60! 111 150.30 110 107.20 109 77.62 108 77.62 107 75.67
1.35 0.8% 0.97 55.8% 0.71 99.0% 0.72 98.8% 0.71 99.1%

~1.00,0.90,0.60! 105 139.20 104 100.90 103 70.74 102 70.73 101 67.50
1.33 1.4% 0.97 56.7% 0.69 99.4% 0.69 99.2% 0.67 99.6%

(`,0.90,0.65) 92 130.00 91 77.01 90 60.85 89 58.66 88 58.31
1.41 0.6% 0.85 85.2% 0.68 99.2% 0.66 99.5% 0.66 99.4%

(`,`,0.65) 78 96.09 77 56.51 76 49.55 75 46.63 74 45.94
1.23 8.1% 0.73 96.2% 0.65 99.2% 0.62 99.6% 0.62 99.6%

(`,`,`) 52 55.85 51 25.23 50 25.17 49 24.11 48 24.10
1.07 33.2% 0.49 99.9% 0.50 99.9% 0.49 99.9% 0.50 99.8%
e-

atic
in
The extrapolated valuesj`
(2) from different lattice sizes at

the sameb are consistent within statistical errors: only on
of the 58b values has ax2 too large at the 5% level, and
summing all b values we havex2564.28 ~103 DF,
level 5 99.9%!.

In Table II we show the extrapolated valuesj`
(2) from our
e
preferred fit and some alternative fits. The deviations b
tween the different fits~if larger than the statistical errors!
can serve as a rough estimate of the remaining system
errors due to corrections to scaling. The statistical errors
our preferred fit are of the order of 0.5%~respectively, 0.9%,
1.1%, 1.3%, 1.5%! at j`'102 ~respectively, 103, 104, 105,
n

7)
TABLE II. Estimated correlation lengthsj`
(2) as a function ofb, from various extrapolations. Error bar is one standard deviatio

~statistical errors only!. All extrapolations uses52 andn513. The indicatedxmin values apply toL58, 16, 32, respectively; we always take
xmin50.14, 0 forL564, 128. Our preferred fit is shown initalic; other good fits are shown inboldface; bad fits are shown in roman.

xmin b51.80 b52.00 b52.20 b52.40 b52.60 b52.85 b53.00 b53.15

~0.70,0.55,0.45! 10.455~0.022! 24.903~0.066! 57.13~0.17! 129.68~0.41! 290.5~1.0! 794.9~3.2! 1460 ~6! 2687 ~11!
~0.75,0.60,0.50! 10.454~0.022! 24.886~0.071! 57.50~0.18! 130.83~0.43! 293.0~1.1! 801.7~3.4! 1473 ~6! 2709 ~12!
„0.80,0.70,0.60… 10.450„0.021… 24.875„0.073… 57.41„0.22… 130.93„0.64… 293.6„1.6… 805.9„5.0… 1482„9… 2727„17…
„0.95,0.85,0.60… 10.451„0.021… 24.870„0.071… 57.40„0.21… 130.93„0.63… 293.7„1.6… 806.6„6.1… 1483„12… 2749„25…
„1.00,0.90,0.60… 10.450„0.022… 24.872„0.069… 57.40„0.21… 130.94„0.63… 293.6„1.6… 806.8„5.9… 1484„12… 2749„25…
(`,0.90,0.65) 10.446 (0.022) 24.859 (0.072) 57.40 (0.21) 131.00 (0.66) 295.2 (2.1) 809.6 (6.7) 1489 (13) 2761 (27)

„`,`,0.65… 10.447„0.022… 24.863„0.074… 57.40„0.22… 131.01„0.66… 295.0„2.1… 809.7„6.9… 1487„14… 2759„28…
„`,`,`… 10.454„0.022… 24.881„0.074… 57.39„0.22… 130.78„0.66… 295.6„2.3… 812.7„9.8… 1482„22… 2777„49…

xmin b53.30 b53.45 b53.60 b53.75 b53.90 b54.05 b54.20 b54.35

~0.70,0.55,0.45! 4957 ~23! 9117 ~46! 16780~92! 30959~182! 56766~362! 105205~707! 196197~1396! 360864~2792!
~0.75,0.60,0.50! 4995 ~24! 9199 ~47! 16938~93! 31258~185! 57265~366! 106093~736! 197949~1419! 363905~2880!
„0.80,0.70,0.60… 5032„32… 9268„62… 17066„118… 31492„239… 57687„456… 106807„878… 199117„1690… 366159„3309…
„0.95,0.85,0.60… 5109„49… 9411„92… 17359„178… 32059„346… 58748„650… 108781„1237… 202868„2360… 372553„4392…
„1.0,0.90,0.60… 5110„51… 9365„99… 17299„196… 31816„372… 58308„702… 107789„1312… 200994„2493… 369579„4697…
(`,0.90,0.65) 5132 (55) 9407 (105) 17377 (208) 31908 (398) 58594 (766) 108952 (1452) 201796 (2817) 371706 (545

„`,`,0.65… 5125„55… 9391„110… 17389„229… 32008„463… 58804„941… 109440„1886… 204587„3779… 376704„7722…
„`,`,`… 5063„102… 9295„217… 16991„447… 30912„903… 55976„1828… 104740„3678… 192664„7358… 359299„14787…
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43105), and the systematic errors are of the same orde
smaller. The statistical errors at differentb are strongly posi-
tively correlated.

In Fig. 3 ~points1 and3) we plot j`,estimate(̀ ,0.90,0.65)
(2)

divided by the two-loop and three-loop predictions~1!–~3!
for j (exp). The discrepancy from three-loop asymptotic sc
ing, which is'13% atb52.0 (j`'25), decreases to 2–3 %
at b54.35 (j`'3.73105). For b*2.2 (j`*60) our data
are consistent with convergence to a limiting val
Cj(2) /Cj(exp)'0.99–1 with the expected 1/b2 corrections.

We can also try an ‘‘improved expansion paramete
@22,12# based on the energyE5N21^Re tr(U0

†U1)&. First we
invert the perturbative expansion@12#

E~b!512
N221

4Nb F11
N222

16Nb

1
0.075620.0634N210.01743N4

N2b2 1O~1/b3!G ~7!
r or

al-

ue

r’’

and substitute into Eq.~1!; this gives a prediction forj as a
function of 12E. For E we use the value measured on t
largest lattice~which is usuallyL5128); the statistical errors
and finite-size corrections onE are less than 531024, and
they induce an error less than 0.85% on the predictedj`
~less than 0.55% forb>2.2). The corresponding observe
predicted ratios are also shown in Fig. 3~points h and
L). The ‘‘improved’’ three-loop prediction is extremely fla
and again indicates a limiting value'0.99.

Further discussion of the conceptual basis of our anal
can be found in@5#. Details of this work, including an analy
sis of the susceptibilityx, will appear elsewhere@21#.
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