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A quantum-kinetic formalism is developed to study the dynamical interplay of quantum and statistical-
kinetic properties of nonequilibrium multiparton systems produced in high-energy QCD processes. The ap-
proach provides the means to follow the quantum dynamics in both space-time and energy-momentum, starting
from an arbitrary initial configuration of high-momentum quarks and gluons. Using a generalized functional
integral representation and adopting the “closed-time-path” Green function techniques, a self-consistent set of
equations of motions is obtained: a Ginzburg-Landau equation for a possible color background field, and
Dyson-Schwinger equations for the two-point functions of the gluon and quark fields. By exploiting the
“two-scale nature” of light-cone-dominated QCD processes, i.e., the separation between the quantum scale
that specifies the range of short-distance quantum fluctuations, and the kinetic scale that characterizes the range
of statistical binary interactions, the quantum field equations of motion are converted into a corresponding set
of “renormalization equations” and “transport equations.” The former describe renormalization and dissipa-
tion effects through the evolution of the spectral density of individual, dressed partons, whereas the latter
determine the statistical occurrence of scattering processes among these dressed partons. The renormalization
equations and the transport equations are coupled, and, hence, must be solved self-consistently. This amounts
to evolving the multiparton system, from a specified initial configuration, in time and full seven-dimensional
phase space, constrained by the Heisenberg uncertainty principle. This quantum-kinetic description provides a
probabilistic interpretation and is, therefore, of important practical value for the solution of the dynamical
equations of motion, suggesting, for instance, the possibility of simulating the multiparticle dynamics with
Monte Carlo methodq.S0556-282(196)01113-7

PACS numbgs): 12.38.Aw, 12.38.Cy, 13.38.Mh

[. INTRODUCTION elastic lepton-nucleon scattering, or nondiffractive hadronic
collisions, or the description of formation, evolution, and
In this paper | attempt to formulate an approach towards dreeze-out of a quark-gluon plasma in ultrarelativistic heavy-
fundamental and consistent description of the statisticalon collisions, or the study of the dynamics of the QCD
properties of nonequilibrium quantum systems produced ifPhase transition from the deconfined, high-temperature par-
high-energy QCD processes, which allows us to follow thefonic phase to a low-temperature hadronic phase with the
quantum dynamics in time and complete phase space startifjnultaneous breakdown of chiral symmetry and the conden-
from an initial configuration. It provides a flexible frame- Sation of gluons and quarks in the vacuum, as it occurred
work for a systematic analysis of typical problems associate§Uring the early evolution of the Universe.

with the quantum dynamics of such systems, including, e.g.,h Ir;fthﬁ present papekr IIWi" cor?fine myze(ljf to tlhe first stage,
multiparticle transport phenomena of gluons, quarks, and.c ''9N-€Nergy quark-giuon phase, and develop a quantum-

hadrons, or critical dynamics of phase-transition phenomenametlc formalism that allows one to describe both the dissi-

and spontaneous symmetry breaking, or quantum dissi atioﬁ)a'{ive and dispersive dynamics of a multiparton system in
P S Sy y bréaking, or quan Palioflaal time. This description is exclusively based on the fun-
entropy generation, and multiparticle production.

ifically. the | . imed q damental QCD Lagrangian and its firmly established prin-
More specifically, the intentions are aimed towards aciples. The second stage, the parton-hadron conversion and

practically appliqable description of the space-time evolutiorbhase transition, on the other hand, requires supplementary
of a general initial system of gluons and quarks, charactersnenomenological input to model the details of the confine-
ized by some large energy or momentum scale, that expandg,ent mechanism that are not known at pregait Such a
diffuses, and dissipates according to the self- and mutugdhenomenological approach to the real-time dynamics of
interactions, and eventually converts dynamically into eX-parton-hadron conversion that models the transition within
cited hadronic matter and a final state hadron system by an effective field theory description has been proposed re-
“phase transition.” This scenario frames a wide class ofcently in Ref.[2]. It is preferable, however, to keep the fun-
QCD processes of both fundamental and phenomenologicalamental description of the first stage distinct from the less
interest. For instance, the evolution of parton showers in theinderstood phenomenological aspects of the second stage,
mechanism of parton-hadron conversion in elementary highand, therefore, | will address the latter in a separate paper.
energy processee{ e~ annihilation into hadrons, deep in- In general, the study of a high-energy multiparticle sys-
tem and its quantum dynamics involves three essential as-
pects: first, the aspect of space-time, geometry, and the struc-
“Electronic address: klaus@suryall.cern.ch ture of the vacuum; second, the quantum field aspect of the
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particle excitations; and third, the statistical aspect of theiphase-space densities, involving a simultaneous specification
interactions. These three elements are generally intercomf momentum space and space-time, because at sufficiently
nected in a nontrivial way by their overall dynamical depen-high energy the momentum scalp of the individual par-
dence. Therefore, in order to formulate a quantum descripticles’ quantum fluctuations and the scale of space-time
tion of the complex nonequilibrium dynamics, one needs tovariations of the system of particles satigfpAr>1, con-
find a quantum-statistical and kinetic formulation of field sistent with the uncertainty principle.
theory that unifies the three aspects self-consistently. With With this physical input and utilizing the aforementioned
this paper | take steps towards this goal by combining thre¢heoretical tools, the analysis proceeds as follows. In the first
corresponding theoretical methods, namely, first,dlosed-  step, covered in Sec. Il, | obtain, starting from the QCD
time-path(CTP) formalism [3—9] (for treating initial value Lagrangian, the CTP generating functional for the gluon and
problems of irreversible systemssecond, thenonlocal quark Green functions, being defined on a closed-time con-
source theory{10-19 (for incorporating quantum fluctua- tour and incorporating initial state correlations. From the as-
tions), and third,transport theorybased on Wigner function sociated effective action, one gets the quantum-dynamical
techniqued13-13 (for a kinetic description of inhomoge- equations of motion, which are the CTP version of the
neous nonequilibrium systemsln principle, a dynamical Ginzburg-Landau equation and the Dyson-Schwinger equa-
theory of nonequilibrium multiparticle systems such as thetions. In the second step, described in Sec. lll, | make the
above mentioned should be described by an exact quanturtransition from a quantum field description to kinetic theory,
kinetic theory of QCD. Over the past ten years, elaboratdy exploiting the two-scale nature of light cone dominance,
works[16—18 have put great effort into deriving a general and, moreover, choosing a ghost-free axial gauge for the
QCD transport theory rigorously from first principles. Unfor- gluon fields. As a result one obtains from the Dyson-
tunately, due to a number of unresolved problems arisingschwinger equations a set of kinetic equations consisting of
from the complexities of the non-Abelian gauge structure ofa renormalization equatiorthat describes the quantum dy-
QCD, the derived gauge-covariant formalism remains amamics in terms of short-distance self-interactions of gluons
academic theory up to date. It is of little practical value,and quarks, plus &ansport equatiorthat describes the ki-
unless it is boiled down to the quasiclassical limit by a seriesqietic dynamics of relaxation and collision processes in terms
of approximations yielding a mean-field description, which,of the statistical interactions of the renormalized, dynami-
however, cannot describe the production of physical particlesally dressed partons among one another. The renormaliza-
and their spectra. tion equation and the transport equations are coupled, and
| am less ambitious here in what concerns the generalitthence must be solved self-consistently. This amounts to
and instead put emphasis on applicability to realistic physicaévolving the system under consideration from its initial con-
situations, in particular to the type of light-cone-dominatedfiguration simultaneously in position and momentum space,
processes that | classified above. This class of high-energyonstrained by the Heisenberg uncertainty principle. Finally,
processes allows a clear distinction between a short-distan@ec. IV closes with some concluding remarks, and the Ap-
guantum field theoretical scale and a larger distanceendixes summarize, for each of the above aspects, the tech-
statistical-kinetic scale. When described in a reference framnical details which are only indicated in the text.
in which the particles move at close to the speed of light, the The main findings can be summarized as follows. The
effects of time dilation and Lorentz contraction separate thelynamics of high-energy multiparton systems can, under rea-
intrinsic quantum motion of the individual particles from the sonable conditions, be described in a semiclassical manner:
statistical correlations among them. On the one hand, ththe partons can be considered as dressed quanta with a dy-
guantum dynamics is determined by the self-interactions ohamical substructure and a corresponding form factor arising
the bare quanta, and by the possible presence of a coherdntm the self-interactions. The space-time evolution of a sys-
background fieldor mean field in the Hartree-Fock sejjse tem of many such dressed partons is then governed by their
in case one desires to go beyond a description in the pungropagation along classical trajectories and mutual binary
vacuum. This requires a fully quantum theoretical analysisollisions, as determined by their density and cross sections,
including renormalization. On the other hand, the kinetic dy-and by quantum statistics. This emerging picture is of great
namics can be well described statistical-mechanically by theractical value for formulating a systematic calculation
motion of the quasiparticles which arise from the “dressing” scheme—in a sense the space-time generalization of the “jet
of the bare quanta by their self-interactions and by the backealculus”[19,20. In Sec. Il F, | outline such a scheme. One
ground field, plus the binary interactions between these quasf the greatest advantages of this kinetic description is that it
siparticles. Such a distinct description of quantum and kiprovides a probabilistic interpretation of the time evolution
netic dynamics is possible, because the quantum fluctuatioris full seven-dimensional phase space, which suggests the
are highly concentrated around the light cone, occurring abpportunity to simulate the multiparticle dynamics as se-
very short distances, and decouple to very good approximaguential Markov processes with Monte Carlo methods.
tion from the kinetic evolution which is dictated by compa-  Finally let me comment on placing this work in relation to
rably large space-time scales. As mentioned, the natural twaxisting literature.
scale separation is just the consequence of time dilation and (i) The general ideas and techniques of the CTP func-
Lorentz contraction, and is true for any light-cone-dominatedional integral formalism were originally introduced mainly
process. In fact, at asymptotic energies the quantum fluctudsy Schwingef3], Keldysh[4], Kadanoff and Baynf5], and
tions are exactly localized on the light cone, and so the deMahanthapp46], more than 30 years ago. The most exten-
coupling becomes perfect. This observation is the key to forsive review that sums up the current state of the art is prob-
mulating a quantum-kinetic description in terms of particleably the work of Chowet al, [ 7] with diverse exemplification
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of the wide class of physics applications. Further pedagogiever, | believe that it is a promising approach towards a
cally excellent presentations have been published by Calzetwell-founded and consistent description of the statistical
and Hu[8], and by Rammer and Smifl8]. In the particular ~ properties of nonequilibrium parton systems. From the phe-
field of relativistic nuclear physics, the concepts have beeflomenological perspective, it is an inevitable necessity to
pragmatically applied, e.g., by Li and McLerrf2il], and by ~ address this problem, since the experiments carried out at the
Zhang and Wilet§22]. Important contributions of funda- DESY cp collider HERA, BNL Relativistic Heavy lon Col-
mental studies have been made in recent years bjder (RHIC), and CERN Large Hadron Collid¢tHC) will
Danielewicz[23], and Mravczyisky and Heinz[24]. The  Penetrate increasingly the physics of high-density QCD,

goal of establishing a quantum kinetic theory for QCD waswhere quark-gluon transport phenomena are of fundamental

pioneered by the ambitious efforts of Elze, Gyulassy, Heinz/mPortance.

and Vasak[16-1§, which resulted in a rigidly general,
gauge-covariant formalism. However, the price to pay is an Il. FUNCTIONAL FORMALISM

intractable complexity that, without specific physics input, is  The aim is to describe the time evolution of a general
essentially of aesthetic value without much practical use. Thﬁonequilibrium quantum system consisting of an ensemble
new achievement of the present work from this perspec;iv%f quarks and gluons in phase space, starting from some
may be stated as the adaption of the general CTP formalisngs e injtial state at time,. Since | am interested in the state
applied to QCD, but with focus on situations where the mul—of the system at finite times>t,, withouta priori knowl-
tiparton dynamics is characterized by a large energy scalgdge of the asymptotic final state atoc, the usual

and can be described reliably within perturbation theory in 35 matrix formalism of quantum field theory, based iarout

physical gauge. matrix elements, cannot be applied. For initial value prob-

(i) The most related recent works from the viewpoint of |o 5 gyuch as | want to describe here, the appropriate ap-
attempting to tackle evolution of multiparton systems at h'ghproach is provided by the functional integral formalism of

energy are probably the innovative works of I\{IcLerra_n andthe in-in generating functional for the Green functions of
Venugopalan and co-workef&5], and of Makhlin[26], in  ,a1ks and gluons, also referred to esed-time-path

which the issue of calculating parton distributions in the CON{CTP) Green functions. The CPT formalism is a powerful
text of ultrarelativistic nuclear collisions is addressed. Theg aen  function formulation, originally introduced by
former authors use a classical non-Abelian field descriptio%chwinger[s] and Keldysh[4] for describing general non-
of QCD to compute coherent initial state properties of COI'equiIibrium phenomena in field theof$,7—9.. In combina-
liding large nuclei, whereas the latter focuses on a quantu, \yith the so-called nonlocal source theory and the loop
field description of final state correlations of the partiCIeSexpansion techniques developed by de Dominicis and Martin
prod_uped. Neither approach, ht_)wever, attempts to addreﬁo] and Cornwall, Jackiw, and Tombouli$1], one obtains
explicitly the space-time evolution of the multiparton en- goperajized Dyson-Schwinger equations which incorporate
semble emerging from the nuclear collision, which is theye jnitial state correlations and provide a systematic treat-
main goal of the present paper. . ._ment of the quantum correlations to any ordehinFurther-

(iii) The key elements to address the space-time evolutiop, e ‘it allows one to describe phase-transition phenomena
are provided by the Wigner function techniques, which dat€,y 4y namical symmetry breaking, issues that | will not ad-
baqk to W!gnt_ars work on transport phenoméma], and ar€  dress here, but which are of central interest when studying
reviewed in, in e.g.[14,15. Although widely exploited in e confinement dynamics, as intended to be presented else-
condgnsgd matter and plasma physics, these tools for AUaihere. In this section, | will first review the concept of the
tum kinetics of many-body systems have hardly been applieg i, generating functional and the effective action for the

to describe high-energy nonequilibrium dynamics in QCD.c1p Green functions, and then derive the dynamical equa-

New in the present work is the synthesis of quantum dynams, g of motion. For additional reading on these techniques |
ics on the basis of the renormalization group of QCD, an

L > o LT efer to the extensive review of Chaat al. [7] and to the

quaS|_part_|cIe kinetics within relativistic transport thepry. Theinstructive work of Calzetta and Hig].
combination of these two aspects forms the foundation of the
self-consistent treatment that entails a thorough consider-
ation of the renormalization problem, which is commonly
avoided in other applicationsee, however, Ref8]). The starting point is the QCD Lagrangian given in terms

(iv) The machinery of perturbative QCD for light-cone- of the gluon fieldsA% and the quark fieldgs and ¢ [which
dominated high-energy processes is nowadays well foundedye vectors in flavor space= (i, g, . .. )]
Most of the techniques used in the perturbative analysis to . .
describe the parton evolution adopt the tools developed by L[A*, )=~ 2 F,, F5"+ [ (i y,0"—M)§;
Dokshitzeret al. [27], Amati et al. [28], Mueller [29], and -~
numerous othergfor an overview, se¢30,31)). The new — sV AR Ta 1+ Ea(AY), 1
component here is the extension to incorporate a space-time
description on top of this formalism, which is commonly Where F4”= d“A;—3"AL+gsfanAFAL is the gluon field-
considered only in momentum space. strength tensor. The subscrigs b, andc label the color

It is evident that this paper attempts to join theoreticalcomponents of the gluon fields, amgl denotes the color
tools and concepts from rather different fields. Such a syneharge related t@3=g§/(47-r). TheT, are the generators of
thesis is necessarily a difficult task, and the the present inithe SU3) color group, satisfyingT,,Ty]=if apcT¢ With the
tiative should be viewed as a first step in this direction. How-structure constantk,,.. The indices andj label the color

A. Preliminaries
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components of the quark fields afd=diag(m,.my, ...). |  with the kernels of the free partd®[A#] and IOy, ]
will in the following exploit the fact that at high energies the given by
quark current massesy; can be neglected, which corre- ab L ,
sponds to the chiral limit where they are exactly zero. [D{0)un(X.¥) 1= 8aps*(x—y) O,
In general the Lagrangian equati¢h) must also include . . )
the Faddeev-Popov ghosts as independent field degrees of [Sioy(X.¥)1~ =6 8% (x—y)iy- dy, (6)

freedom. However, | will work exclusively in a class of

ghost-free gauges, namely, the so-called axial gauges whiclhere the quark current masses are set to zero here and in the
are defined by the gauge éonditi{i%ﬁ] ' following. The operatof1#” is a generalized D’Alembertian

containing the remnant of the gauge-fixing term of EL,
n,AL(X)=n-A,=0, 2) which for the gauge Eq3) with a=1 reads

wheren* is a constant four-vector in th@-x2 plane near the P nkag+n"ay
forward light cone such thhh?# 0. It may be parametrized, D=1 n-dy X
e.g., as n*=(a+b,0,0a—b), with the condition n?

=4ab<1. The associated gauge-fixing term is denoted by avith [I,=d,-d5 and d5'=d/9x*. The inverses of Eq(6)

)

function £,(A*) which | take as are the free gluon and quark Feynman propagators, i.e.,
the expectation values of the time-ordered products of the
o . . noninteracting fields  —i(TAL()ALY)) (0 and
ga(A )_ 2an2 a)\(n Aa)a (I'l Aa)- (3) _i<T(//(X)l//(y)>(0),

Herea is the gauge parameter that specifies the type of axial ab d*k B ALY

gauge. In particular, | will henceforth set=1, which is D<O)W(x,y)=f (277)4e Sab k2+ie '

known as the planar gauge. In contrast to covariant gauges

where &,(A)=—1/(2a)(d-A,)?, the class of gaugefEq. n,k,+nk,

(3)] is well known to have a number of advantagag,32. d,(K)=9,,— " nk

First, the ghost fields decouple from the gluon field and drop

out. Second, the so-called Gribov ambiguity is not present in . d*p _

this gauge. Third, the gluon propagator involves only the two Sy (x.y) = f (277)4e*'p'("*y)5ij S pHie (8)

physical transverse polarizations, which will simplify the

analysis considerably. Furthermore, it allows for a rigorous; g noteworthy that the form of the gluon propagétarises

resummation of the perturbative series at high energies ifiom the sum over the two transverse gluon polarizations,
terms of the leading logarithmic contributions and Conse'dw(k)=ES:1,28M(k,s)~sj(k,s), having the properties

guently leads to a simple probabilistic description of the perI27 32
turbative parton evolution within theémodified leading log '

approximation(MLLA ) [27,28,33 in QCD. nvk2 k-0
The classical action corresponding to H@) is repre- djj(k)z 2, k,d*"(k)=— T 0, 9
sented as n:
ILA%, g, ] =1 OT AR+ 1O, ] + 1O A, ], (4) meaning that only the two physical polarization states propa-
RARC ' AR gate, withe ,k*=0. For comparison, in the covariant Feyn-
where man gauged”’=g"”, di,=4, andk,d*"=k"#0.
In going over from the classical actipgqg. (4)] to a quan-
©) 4 1 . ab Cinw tum field formulation, the fields become Heisenberg opera-
| [A”]:f d*xd%y| — 5 AZ(IID (0)u, (XY As(Y) [ tors. Let me introduce a compact notation for the different
field degrees of freedorft®
I ATE f dxdy{ 101, (61 ()}, b i = (AR, ) = (A, g s - ),
f=g,uud.d, ... . (10)

| (O] AX, ,_=—f d*x T () A%(X) ¢ (X
(A% .41 {857, Tah0OAL () (x) The state of the system may be characterized by the Heisen-

+0sf and 9,A, a() JAE()AL(X) berg fleld operatord)H(x), _ where CI?HECDH[@] and_
x=(t,x). Its time evolution is determined by the Hamil-

+05f ancf abre A b (XA, o(X) tonianH=H© +H{" of the system §,=3/dt),

X AL (X)AL (X))}, ©)

2The apparent singularity af,,(k) atn- k= k*=0 must be dealt
with in the usuali e prescription, or by taking the principal value.
'one distinguishes further in “timelike”(“spacelike”) axial 3Since the quarks and antiquarks are treated as massless here, the
gauge ifn®>>0 (n?<0), whereas the singular casé=0 is called different quark flavors are, with respect to the strong interaction,
the “light-cone” gauge. merely copies of each other.
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HP(X)=i[H,Py(x)]-. 11) 1B(te))=> C(ND,n@, . ntN|n@® n@ . ne),
o)

Defining t=t, as the initial point for the time evolution of (20)
the system, the associated Heisenberg state vectors obey
with scalar coefficient€. Alternatively, the initial state of
|p(1))=U,(t,t0)| p(to)), (120 the system at, can be characterized by the statistical opera-

tor, or density matrix

t p(to) =18t b(to)l,  (po);y=(n"|p(to)In"),
uJ(t,to)zTexp[—if dt'd3x’ I )Pu(x')|.  (13) (22)
t

0

where

which in the Heisenberg representation is time independent,
T denotes the usual time-ordering operator, and the externfut in the interaction picture evolves with time according to
source] is understood as a sum over sources for the various A CrdnD A

 for t Fp=i[HM 5] (22
degrees of freedom. Note that the adjoilt;(t,tq) t R
=TTexr[ifEOd“x’J(x’)(DH(x’)] involves an antitemporal order- gg that
ing T'. In the absence of external sources, the state vectors ) )
are time independent(t))=|¢(to)). p(t)=S'(t,t0)p(te)S(to, 1), (23

Upon switching from the Heisenberg picture to the inter- ) _ ]

action picture, the time evolution of the corresponding inter-WhereS is defined by Eq(16). For instance, a general den-
action picture fieldd,(x) is determined by the interaction Sity matrix that describes any form of single-particle density
HamiltonianH ™ alone, distribution att, is

(?tq)|(X):i[H(im)yq)l(X)]—! (14) l}(to):NeXF{fE f dgxf %
s JQ

where®, is related to the Heisenberh field by

v +
®,(x) = S(t,t) P (x)ST(t, o), (15) XF(to,x,p)as(p,s)ag(p,s)
and evolves explicitly in time through

where() denotes the hypersurface of the initial values and
F: is a c-number function related to the single-particle

. (16 phase-space density of particle specfeat X with four-
momentump, andN is a normalization factor.

t .
S(tvtO)ET eX[{—|J‘ dt’H(lnt)(t/)
t

0

According to Eqs(12)—(16), att=t, the Heisenberg pic-
ture and the interaction picture coincidGIJH(to,i)

=®d,(to,X). Hence the interaction picture fied,(x) can be
expanded at, in terms of a Fock basis of free particle states,

B. The CTP generating functional

After these preliminaries let me turn now to describe the
time development of the multiparton state from the initial

thein basis, state.| oM =|d(to)), continuou;ly through finite interm'edi—
ate timesty<t<t.,, to some final statép®"=|¢(t..)) in
4p the remote futurésee Fig. 1 In the usualsS-matrix formal-
d\(x)= E | =z 6( p%)(27) 8(p?) ism of quantum field theory one calculates thezacuum to

t=gaq ) (27) outvacuum amplitudeZ[J]=(0"0°",, and from this,

_ _ physical quantities corresponding fo-out Smatrix ele-
x> [e"Pay(p,s)+eP>af(p,s)], (17  ments of certain operators, assuming that the Fock space of
s the asymptotiout states is the same as for timestateq Fig.

1(a)], as, e.qg., in scattering theory. In the present case, how-
[al(p, s-)]”(fi)|o> ever, the system evolves _forward_ through finite points of

P ’ time, and so the asymptotiout basis|$°") is not known
(18) before the solution to the problem. There is an arrow of time,

leading to an irreversible evolution. Moreover, in general
where thea] (a;) are the corresponding creatigdestruc- |0™)#[0°", as for instance in the case of a phase transition
tion) operators for the particle types= g,q,q with definite  or spontaneous symmetry breaking whéereand out vacua
momentump; and spins;, then!" are the occupation num- are of different natures.

1

n{'1

In®n@ o oneh=T] [1
o

bers of the particle states, and These problems can be overcome by using the CTP for-
_ _ _ malism based onn-in rather thanin-out matrix elements
ai(p;i,s)|0)= 0, n{"=(n|a;(p;,s)af(pi,s)|ni"). [7,12], but otherwise using the familiar techniques of the

(19 path integral method for quantizing the theory. Timein

generating functional is defined as the-vacuum to

Thus a general multiparton stdt¢) at timet, is given by a in-vacuum a.mplituq.eZ[J,ﬁ»]=TrEw(Of”|go>J<qo|ﬁ|O'“>J, in-
superposition of such states: cluding possible initial state correlations represented by the
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density matrixp atty, and a sum over a complete set of
statese at t,, [Fig. 1(b)]. With reference to Appendix A, @)
where the relevant concepts are reviewed and applied to the
case of QCD, | merely state here the resulting path integral @“‘
representation for thim-in or CTP generating functionalt

is given by the following path integral representation in two- i i
point source approximation: o . 1
8*t,.. to) = S (tg. 1.,) St 1)

Zp[ 3,1, KA K] = @Weld T K]

= f DA“Dy, Dif,

Xexr{i

a L aBpav_y af
+J '7[/01+ EAIL:KMVAB+¢IQK lpﬁ

I[AY o]+ ICAE+ [y,

(25) SH(t,. o) # pllg) S (g 1) S (L, to) plty)

where | introduced a shorthand notation for the integration FIG. 1. lllustration of the difference of expectation values in the

over the space-time variables to be understood in the fundn-out and thein-in formalisms, corresponding to the time-ordered
tional sense: product of field operatorga) In the usualS-matrix formalism with

a trivial (diagona) density matrixp(to) = 1 and|0™ = |0°", it suf-
fices to calculatg0°"]- - -|0"), because of the symmetry of the
time paths {y,t..) and {..,tp). (b) In the general case of a non-
trivial initial state with multiparticle correlations described by
_ 4o 14 p(to) # 1, one must account for the complete time evolution on a
PR o= fpd X dy SOOK(x,y) b(y). (26) closed time path fromt, to t, and back tot, by calculating

(0" --plo™).

Jp= fpd“x J(x) p(x),

The CTP generating functiongEq. (25)] differs from the a4 then back from,, to t, on the negative branch. Accord-
usual generating functional of QCD in two essential aspectsmg|y the generalized time-orderinGp is defined such that
First, it contains botHocal sources {,j,j) andnonlocal  any point on the negative branch is understood at a later
two-point sourcesi,k). The former represent not only the instant than any point on the positive branch. This is not
usual external source contributidg,(x), but also the local merely a mathematical trick to restore analogy with the usual
source ternK(x) for a possible dynamical background field quantum field theory, but provides the means to compute
present already at initial poitit=ty, that is,J=Je.+K, and ~ €xpectation values for physical observables at finite time in
similarly for j and j. The nonlocal source&(x,y) and contrastlto thé}m_atrl_x formalism. The |nterprfetat|on of this
k(x,y), on the other hand, represent the two-particle initi:;lldc’s‘f"d'tIme path is simple: alth.o.ugh for physical °b5.efvab'es
state correlations at=t,. Both these source contributidhs the t'me values are on the po§|t|ve branch., both po_smve and
stem from the general nontrivial density matfxto) that negative bran_ches will come into play at m_termedlate steps
defines the initial ground state. In the usual field theory for- & self-cons_lstent calculatlpn, correspondmg fo a quantum
mulation both these source terms are absent. As a consB'*N9 of positive and hegative energy SOlu“an' Thereiore,
quence, theonnectedjenerating functionaVe= —i InZp in in contrast to the usual path integral fprmulauon of quantum
Eq. (25 gives both the nonlocalonnectedGreen functions field theory, the nonlocal two-point Green func_:uons
of gluons and quarks, including initial state correlatipds- D u,(X.Y) an_d S(x,y)_ for gluons and quarks, _respectwely,
noted byD,,,(x.y), respectively,S(x,y)], as well as pos- each come in four different forms corresponding to the pos-

sible local mean fields which physically can either ariseS:ble dtlr_ne Ord%'ngsoff:++af _'l_._+’_|_ along rt]he
through nonvanishing external sources, or, in the case df°s€d time pattP, as illustrated in Fig. @). In as much as

gluons, may be generated dynamically by the system itseff€ Propagator®,,(x,y) andS(x,y) can have values and

depending on the initial conditiofigenoted in the following Y ON €ither the positive branch or the negative branch on the

by A (3)] contourP, it is convenient to represent thenx2 matrices
e G(x,y)=D,,,Swith componentss%? (a convention which

Second, the CTP functiondl is defined on &losed time holds for amy two-noint function defined alona the closed
pathin the complext plane(indicated by the subscrig®). time pathP) y two-point functi ' 9

This pathP for the time integration is illustrated in Fig(&:

the path goes forward fromy, to t,, on the positive branch, ++ Gt-
G(ny):_i<TP¢(X)¢T(Y)>E G*t Gt
“In the two-point sources approximation, the actually infinite se- GF G~
ries of nonlocah-point sources that generateparticle correlations = _ 27
is truncated beyond=2 (cf. Appendix A). G~ GF
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ty to
(b) F < < F
LN+ S+l
F F >
Z(xy) = F < > f

b R W A R PR .
(®) < F < F
b FIG. 3. Matrix representation of the CTP two-point functions:

(@ The Green functiorG(x,y), and (b) the self-energy function
y G o 2y X[G(xY)]

—
—
—
—

DL, (%Y)=—I(TA,(XA,(Y)),

t2
DZ,(%,y) = +I(A(ALX),
t t, t, D,.,(%y)=—i{(AL(0AY)),
! ! F | D, (xy) =~ I(TTALL0AL(Y)), (30

and
FIG. 2. (&) The closed time path in the compléyplane for the F — v > — i/
evolution of operator expectation values in an arbitrary initial state. S 0y) == KTy99(y)), E ()= = I g y) ),
Any point on the forward, positive brandg—t.. is understood at  S<(x,y)= —i(p(x)g(y)), ST(X,y)=—i(TT(x)y(y)).
an earlier instant than any point on the backward, negative branch (31
to.—tg. (b) The four different possible time orderings (t,) in the
arguments of the two-point Green functionsG(x,y) The CTP generating functiondk = exp({Wp), Eq.(25), is
=G(t;,X;t,,y), corresponding t&F,G~,G=<,GF. the fundamental starting point for deriving the dynamical
equations of motion for both the gluon mean fidlti and the
dressed gluon and quark propagatbr$” and S, using the
matrix representation@7)—(31). Formally, this Green func-
tion formalism on the closed time path is completely analo-
gous to the usual quantum field theory, except that all propa-
gators, self-energies, etc., are nowx22 matrices, as
diagrammatically represented in Fig. 3. Correspondingly, the
. Feynman rules remain the same, but each propagator line of
TPADIB(Y): = 0p(X0,Y0) A)B(Y) = fp(¥o ’XO)B(y)A(()%’) a Fyeynman diagram can be any of the four czmgo%ents of the
Green functions.

—
I

where (.- -)=(¢" tg|---|¢ " ,ty) denotes the vacuum ex-
pectation value, if ¢,to)=|0), or else the appropriate en-
semble average. The generalized time-ordering opefigior
is defined as

where the+ (—) sign refers to bosoffermion operators, C. The CTP effective action
and thed function with two time argumentsy Y, is defined To proceed, it is convenient to work with the CTP effec-
on the closed time patR (Fig. 2 as tive actionl'p, thetwo-particle irreducible vertex functional,

which determines the equations of motion for the physically
) relevant Green functions and the mean field, rather than with
1 if X succeeds yon the contourP, Zp or Wp of Eq. (25) which involve the source$ andK that
0 if X, precedes y on the contouiP. do not have any immediate physical interpretation. Tid>
(29 effective actiod'p is defined as the multiple Legendre trans-
form of Wp [7,8], which with respect to the two-point source
representatiori25) is given by
HenceTp coincides with the usual temporal orderifigon T p[A*,D#,S]=Wp[J*, J_,Kuu,k]_(\]ﬂ’,&uﬂﬁj_d,)
the positive brancht{—t.,) of the closed time path in Fig. o
2, but represents antitemporal orderiiﬁ@ on the negative —(%A“KMAV— YKy). (32
branch €.—tg). The notation on the right hand side ex-
presses thaG" is the usual Feynman causal propagator,Note thatI'p reduces to the usual effective action for the
GF is the corresponding anticausal propagator, &id oneparticle irreducible vertex functions in the limit of van-
(G*) is the correlation function fax,>y, (Xo<Yo). Explic-  ishing mean field\*=0 and absence of initial state correla-
itly, tions K=k=0. In the general case, one obtains

0p(X0,Y0) =
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X y
D“V( Y) = &TOrTTITeyTe
u v

w

x

=
1
1

+

= —DF—

FIG. 4. Diagrammatic representation of the Green function& ) (x,y) of the bare propagatoréi) a(o)(x,y), including the effect of
a mean field by dressing the bare propagators with a dynamical mas@j p@q{x,y), the full propagators, dressed by both local mean field
and nonlocal quantum self-interactio(@yson-Schwinger equations

field and nonlocal self-interactior(see Fig. 4. As will be-
come clear, the realdispersive part of F(PZ) contains the
B virtual loop corrections associated with the self-interactions
+i Tr[In(S@%S)—S@%SvL 1] of gluons and quarks, whereas the imaginédissipative
T @Rk Dr7 S 23 part contains the real emission, absorption, and scattering
p [A%,DH.S]. (33 processes. In other wordE{?) embodies all the interesting
The first term is of orde® and is given by the classical duantum dynamics that is connected with renormalization
action(4) [and Eq.(A9) of Appendix A] with group, entropy generation, dissipation, etc. Explicitly writing
—— — out the color indices, it is given bjsee Fig. 5]
I [Aﬂ]EI[Agvlpaiwa]|AZ=;/’-,¢/a=—i[{1=O- (34)

~ —_— -
I'p[A*,D*, S]=I[A*]— ETr[|n(D(O§D) ~DD+1]

2
The second and third terms are of ordérand correspond to (2)[:&# DA?,S]= — %j d*xdy
the gluon and quark contributions in which the bare propa- P ' ' 2

gatorsD(O) and S (8)~ are modified by the presence of a

local gluon mean field\* leading to “mean-field-dressed” XTr f d“zld“zz)\"""",a ,,Aty’:ky’,*j(zz,zl;y)
propagatorsD(O) and S(O) with an effective screening mass
w=n[A*] (see Fig. 4 In analogy with Eq(6), XD, (X,2)D% 0 (X,22) DEE(Y,X)
(D(o))'w(xay):(D(o))ﬂy(xy)/)_Mg "(x,y) 84 (x=y),
= — ~ 4 4 a —=b .
S0l (Y)=Sg1(xY) ~ E(x,)8*(x=y). (39 * f 16720727, Ty By (22.213Y)
Thus the effect of the mean field is to shift the pole in the
bare Green functionEg. (6)] by a dynamical mass function XDap(X,21)Sj (X.22) S (y.x) | (36)
M.
The last termI'® in Eq. (33) represents the sum of all
two-particle irreducible graphs of ordér?,43, ... [11], HereA,, ,» and =, are theggg andqqg vertex functions,

with full propagatorsD#” andS, dressed by both local mean respectively,
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FIG. 5. (a) Diagram of the functiod"?), Eq.(36), representing the sum of all two-particle irreducible graphs of okdet?, . . ., with
fully dressed propagato®*” and S. (b) lllustration of the self-energiebl#” and X, Egs.(42) and (43), which derive fromF(Pz) by
functional differentiation with respect ©#” andS.

aa’a” ) — aa’a” _ _ ~ ) ST B -
AL (21,253Y) Aku"fA(y 1) 8y —22)g[AM(Y)] |5D#V—(;,X):Dw}(x,y)_D(O}W(Ky)_i_nw(x,y):()’
+0(95), (39
=a y) = ij — — A or —
‘-’Ilv(zl!ZZvy) 7vTa 5:()/ 21)54()/ ZZ)Q[A#(y)] —ij 6S(ytjx) =Sfl(x,y)—S&%(X,y)+2(x,y)=0. (40)
+0(9s), (37)

. ) Here IT and 3 are 2<x2 matrices analogous to E¢27),
with A32%, and y,TJ the corresponding bare vertices, andrepresenting the proper self-energy parts of gluons and

the functiong[A*] describes the effect due to the presencequarks. They are obtained by functional differentiation of the
of the gluon mean field* as compared to free space, whereduantum contributiod™?) to the effective actiofiEq. (33)]:

g[0]=1.

,i ¥ MEy), i or? S )
i —pa—— =15 (XY), —ism——=%;(Xy).
D. The self-consistent equations of motion SDL(y. ) ® 8Sj(y.x) @1
The dynamical equations of motion for the gluon mean
field and the gluon and quark Green functions in the absencerom Eq.(36), one getgcf. Fig. 5b)],
of external sources are now as usual obtained from variation
of the effective actiod’p with respect to its variables, and v s 4o ad s pp'u  B"B'D _
setting the external sources to zero. Hence by functional dif- 1lan(X.¥)=—195| | d"zad"ZoN50 00 Ay (22,243Y)
ferentiation ofl'p in Eq. (33) with respect to the gluon mean ., o
field A* one gets the&Sinzburg-Landau equatiof84] X DA, (X,21) D (22,X)
oTp  SI[A* ADMTY 1 8[S0] " -
e _AMAY g ADi0] 150 + | d*zy 02,9, T3 B (22,223Y)
SAK(X)  SAH(X) SAK(X) 2 SAM(X)
or? X Sij(X,21)S1j/(X,22) |, (42
+ = = 0. (39
SAX(X)
a2 4, 44 a —b .
Similarly, the variation ofl'» with respect to the dressed Eij(x,y)—+|gsf d°2,d°2, 7, Tj B (22, 217Y)

propagator*” andS gives theCTP version of the Dyson- ,
Schwinger equationg35]: X D4y (X,21) S (X,22), (43
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with the ggg andqqg vertex functionsAf‘ﬁCT and=j,, re-
spectively, defined by Eq37).
The Dyson-Schwinger equatior(89) and (40) can be
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Appendix A, the truncation of this hierarchy beyond-2
assumes that the dynamics may be described to sufficient
accuracy by a possible local gluon mean field and the non-

brought into a more familiar form by employing the expres-local two-point Green functions of gluons and quarks, and

sions for the free propagatof&qg. (6)]:
[Oyx up+ BE(X,Y)IDEE(X,Y)

= abg“”é‘,&(x,y)—fpd“x’l'[f,‘,a,b,(x,x’)Dg',”b(x’.y),

DAY YOy, up+ BE(X,Y)]

= 5abg;w5‘F1>(X-Y) - J d*x’ Dﬁ a, br(X1X/)ngVb(X, Y,

(44)
and
[i 7 dx—Tiq(x.Y) 1S (X.y)
=534+ | NS00S0 )
Si (Y[ =iy dy—Tig(x.Y)]
=5y 40+ | XS4 ) (45)

wheredi = alox*, O is defined by Eq(7), the time inte-

that higher-order correlators are negligible. The resulting
CTP effective action may then be represented by a system-
atic loop expansion corresponding to an expansion in powers
of 4. Considering the pure quantum regime with zero mean
field yields a coupled set of equations of motion for the
gluon and quark propagators, which arg 2 matrices con-
taining the four possible time orderings of their arguments
x andy. The solution of these dynamical equations then
boils down to the evaluation of expectation values involving
the propagators and vertex functions, e.g., by using perturba-
tion theory[8,11].

IIl. QUANTUM KINETIC THEORY

Within the two-point source approximation to the full
theory in terms of two-point Green functions, the resulting
CTP Dyson-Schwinger equatiori44) and (45) contain the
guantum dynamics in terms of the dressed gluon and quark
propagatorsD ,, and S. Even with the neglect of higher-
order correlators, the equations of motion are nonlinear, non-
local integro-differential equations, generally not solvable in
closed form. To make progress, one needs to supply reason-
able physical input that allows one to make realistic approxi-
mations for multiparton systems of interest.

First of all, | will confine myself for the remainder of the
paper to the pure quantum dynamics of gluons and quarks,

grations on the nght hand sides are understood along thehen a gluon mean field is_absent. That is, | choose the
contourP, and the generalized, function is defined on the homogeneous initial conditioA*(x) =0 ) atty, which in the

closed time pattP (Fig. 2) as

Sp(x,Y)
+8%x—y) if x, andy, from positive branch,
={ —8*%x—y) if xo andy, from negative branch,
0 otherwise.

(46)

absence of external sources implies tA&twill remain zero
at all timest>t,:

=0, AX(x)=0. (47)

5A“( )

Consequently, in Eq33), the classical parT[K“]=O [see
also Eq.(A4) of Appendix A], andg=uq=0, so that the
mean-field propagators reduce to the bare propagators:

Let me emphasize once more the essential difference from
the usual quantum field theory: Eqd4) and(45) are matrix
equations and represent four equations, one for each of the
four correlators in EqY30) [(31)]. In the limiting case where  This step, however, is not an approximation, but merely
correlations among different partons vanish, one hasgerves as a simplification in order not to overburden the fol-
G~ =G~=0, and becaus&"=GF", one recovers the stan- lowing analysis. The more general case including a dynami-
dard Dyson-Schwinger equations in terms of the Feynmawal gluon background field causes in principle no severe ad-
propagators alone. The first equation in E@gl) [(45)], de-  ditional complexities, and will be addressed elsewhere.
scribes the change of the propagators in the argument The essential approximation now is based on the “two-
whereas the second equation describes the changefithe  scale” nature of high-energy QCD, as mentioned in the In-
adjoint propagator§adjoint T means Hermitian conjugate troduction. The dynamical evolution of a multiparton system
with simultaneous exchange of the argumgngésdiagram- can—in a reference frame where the partons move with
matic representation of these Dyson-Schwinger equations fdrighly relativistic velocities—be characterized by two differ-
the fully dressed Green functiori3,,,(x,y) and S(x,y) is  ent time (or length scales, separated by time dilation and
shown in the previous Fig. 4. Lorentz contraction effects: guantum field theoretical scale
Let me summarize the considerations of this section. Thé\r 4, and astatistical-kineticscaleAr . This is illustrated
CTP generating functional, involving initial state correla- in Fig. 6@. The quantum length scalér o, measures the
tions of the form Eq(21), described by the density matrix spatial range of quantum fluctuations associated with the par-
p att=t,, yields an infinite hierarchy af-point Green func-  tons’ self-interactions, and thus specifies the Compton wave-
tions, defined along the closed time path. As explained idength )\CE,ugql of dressed partons. These gluon emission

D(o)(x y)= D(o)(XaY)v (o)(x Y)=So(X.y). (48
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quasiparticle kinetics

AN

hydrodynamics

as a quasiparticle(ii) the kinetic scaleAr,,,
r= v measuring the range of correlations and binary
Alqua Aligin Afmac interactions between these quasiparticles, with
the “collisional” self-energies; and(iii) the
“macroscopic” scaler .., where the dynamics
can be described in terms of bulk thermodynamic
(b) tA variables or hydrodynamicgb) The quality of
w2 separation of quantum and kinetic scales is con-

%M trolled by the choice of«(r). Because the mul-
tiparticle dynamics of the system in general may

4 o .
% ¥ change the scale of separation in space-time, one
A0) may chooseu(r) variable to optimize the kinetic

description.

j i

| |

| 1

| @ | / o |

! r ! P FIG. 6. (a) Classification of the different

| @ ! scales of relevancey(i) the quantum scale

E \@ : — Arqua Of the order of the spatial extent of quan-

| ! tum fluctuations associated with the “radiative”

i ! ~Na self-energies, and defining a dressed parton state
T8

-1 n/An

Ny

and absorption processes, embodied in the self-energy, dredais be pictured as an unstable particle with a typical lifetime
up the bare propagators and allow one to describe partons asr,~1/AE. On the one hand, in the direction parallel to the
quasiparticles with finite spatial extent, but with a dynamicallight cone, the parton’s intrinsic fluctuations decouple from
substructure. This is nothing but the underlying philosophythe soft vacuum fluctuations wit;tln-v~1/k*<Arp~k*/k2
of the usual parton description in QCD. Thinetic length  [36]. On the other hand, in the transversge direction, the
scaleAr ., on the other hand, measures the range of binarpartonic fluctuations have a small spatial extent of
interactions between these quasiparticles. These scatterig, ~1/k, <1 GeV !. Therefore, on kinetic scales
processes may be described on a semiclassical level, pray,>u "1, the parton appears as a dressed particle which
vided the local density of the quasiparticles is smaller than @&an be considered quasiclassically as an extended object with
critical density where the particles begin to overlap and thea small transverse sizkr, and a comparably long lifetime
separation between gquantum and classical regimes breal§sr,—a quasiparticle. On quantum scales, however, the
down. Quantitatively, one has to require that the mean freéressed parton has a substructure, determined by its sur-
path \ ¢ of particles is large compared to the radiative cor-rounding cloud of gluons which it emits and reabsorbs due to
rections to the Compton wavelength. The crucial pointis  its quantum nature.
that with increasing energy scale the latter range becomes In this spirit | will classify the parton dynamics with re-
increasingly short range, concentrated around the light conspect to elementary and quasiparticle excitations, referring to
[see Fig. @)]. Hence, in most physical situations at high them by the termbare anddressedpartons, respectivelyi)
energies, the quantum and the kinetic scales separate to veBare partons are to be understood as pointlike, massless
good approximation, and in the asymptotic limit exactly. It is quanta in the absence of radiative self-interactions, i.e., be-
important to stress that both quantum and kinetic scales ddere renormalization(ii) dressedpartons, on the other hand,
fine the microscopic regime of a semiclassical particle deare dressed by the quantum self-interactions with their radia-
scription. It is to be distinguished from the macroscopic do-tion field, which renormalize their masses and couplings.
main of the dynamics of the bulk parton matter, In the field theoretical parton language, a dressed parton
characterized by comparably large space-time distances @fith its dynamically generated renormalized mass can be
the ordern™*3, or n/(4,n), wheren(r) is the density of describedin a frame where it moves close to the speed of
quasiparticles. In this regime the system may be describeliight) as a bare quantum which is surrounded by a virtual
by, e.g., hydrodynamical evolution, which is, however, be-cloud of other bare gluons and quark-antiquark pairs with
yond the scope of this paper. which it emits and absorbs. Hence, on kinetic space-time
To exemplify this concept, consider the simple case of acales, a dressed parton can be visualized as a quasiparticle,
parton in a Lorentz frame in which it moves with large mo- i.e., an extended object with a dynamical substructure that is
mentumk*=E+k, (k">>k?>1 GeV?) nearly with the determined by the short-distance quantum fluctuations.
speed of light along the forward light cong =t+z. The
guantum fluctuations around this parton’s classical trajectory
stem from its self-interaction with the gluon radiation field,
corresponding to gluon emissions and reabsorptions, that The realization of the two space-time scales, short-
smear out its energy over an intervAE~k?/k*. It may distance quantum and quasiclassical kinetic, allows one to

A. Definition of quantum and kinetic space-time scales
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reformulate the quantum field theoretical problem as a relathe latter are large compared to the typical space-time extent
tivistic many-body problem within kinetic theory. The key 1/q, of the scattering and radiation processes, then an inco-
element is to establish the connection between the quantuherent treatment of the binary collisions among partons, and
theoretical Green functions and the kinetic particle descripof the partons’ propagation with associated quantum fluctua-
tion in terms of parton phase-space densities. In particulatjons, is applicable. This condition may be characterized by
the aim is to describe the evolution of a multiparton en-the invariant mass scajeyq, defined such that

semble, given at timg,, with a certain spatial and a momen- s 2 s

tum distribution, by exploiting the two-scale nature of high- Q1> Mgg™ Ami - (49
energy QCD. As explained before, this requires a choice of 2 . - -
Lorentz frame, in which the quanta move very fast and the! '€ Parametefigq can be interpreted as defining the mini-
typical momentum scale of their binary interactions and asMum Virtuality of a dressed parton, or, corttalspond|ngly, its
sociated radiative processes is sufficiently large such that tH@aximum size, or Compton wavelengtg= x4 , such that
corresponding interaction times are small compared to thée applicability condition of the parton description is en-
mean free time between mutual collisions. For examplesured. Consequently, the size of each space-time cell must be
imagine a high-energy reaction has produced an initial conchosen large enough that the spread of the dressed partons’
figuration of materialized partor(s.g., a hadronic or nuclear intrinsic quantum motion is localized inside its four-
collision with \/s=100 GeV per hadron If t, denotes the dimensional volume, but smaller than the mean free path of
earliest point of time in the lab frame, when the parton dendressed partons in between scatterings. Accordingly, | define

; — ArOA3
sities have evolved to satist{pAr>1, where 1Ap mea- the cell sizeAr#*=Ar"A®r by
sures the scale of the partons’ intrinsic quantum motion and
Ar the space-time variation of the system of partons, then,

for times t>t,, an approximate incoherent treatment of, .00 A «o=0.25 GeV is the QCD renormalization scale.
guantum dynamics and kinetic evolution is justified, as ha's;:Or exar%ple, a cell sizAr=< 0.1 fm allows one to resolve
beeni ShOV.V” by McLerran an_d \(enugopa[aﬁ]. particles with energy-momenture2 GeV. One can then
W|th'th|s_phy3|cal.scen_ano n mmd., now Suppose that paracterize the kinetic space-time evolution of the system
space-time is discretized into cells, with their size choserb a velocity profile of cellsi, located around the points
intermediate between quantum and kinetic scales such th?ﬁl with a four-dimensional c’eII volume in its rest frame:
the separation between the two scales is optif8al Then H ’

the correlation betweedifferentcells will be negligible, and f 44 friO+Ar0/2 OJ’r'i+AF/2
r'eQ r r

Kgq <Ar#=pu~4(r)<Aqd, (50

only when two space-time points corresponding to the argu- Q(r;)=
ments of the propagators or self-energies lie ingamecell

will the two-point correlation contributéas explained in Ap-

pendix B. Consequently,_ in a given _c_eII, one can by Con-gacp cell carries a total momentum
struction neglect spatial inhomogeneities of the local gluon

and quark densities of the multiparton system. Within each Ngq
cell, one may therefore describe the short-distance quantum PH(r)i= > ki
dynamics analogously as in vacuum or homogenous media, =1
whereas inhomogeneities of the spatial parton distribution

and relaxation phenomena associated with binary collisionand a total invariant virtualitythe incoherent sum of parton
become apparent as one moves from cell to cell. In continuvirtualities)

ous space-time, corrections to this discretized picture can be

taken into account by a systematic expansion in terms of ) Nga )
gradients of the spatial inhomogeneities of the parton distri- Q(ri):= Zl Ki
butions[Eg. (66) below. .

In order to quantify this concept, let me clearly specify L
quantum and kinetic domains with respect to the cellulafVhere the sums are over all dressed p%ruomisllde the cell
space-time. It is important to realize that both quantum and: !-€- thgse thgg are during a time slide”=u "~ contained
kinetic scales are of dynamical, “internal” nature, i.e., de-Within A°r=x"° around space-time point,. Th% corre-
termined by the multiparton evolution itself. The classifica-SPonding local four-flow velocity isi“(r;)=P*/P". This
tion of the two scales only makes sense in the presence &ellular space-time picture is illustrated in Figay
self- and mutual interactions. However, the class of high- The validity of the above cell picture is controlled by the
energy parton systems addressed here is characterized by t&@ndition that the different scales are well separated:
corresponding “external” scales: first, the large energy scale
of the I?eactio% that produces the initial systegm of Ia?ge mo- I:)+2(ri)>Q2(ri)2/“2(ri)>A<ZJCD’ (54)
mentum partons, and second, the initial local density of par- t 3 .
tons in phase space that depends on the type of reaction. TH&1€ere  P“=(P",P",P,), P7=Po*P3;, and P,
first property implies a large characteristic momentum trans= VP1+ P3 with P™ (P ™) thelightcone momentum (energy)
fer qiz(kl— kD2 of scattering processe& k,— k;ks) and P2=p*pP — Pi , and the normalization of a cell stdte) is
radiative processek{— kjk). The second property, on the (P|P’)=2P*(27)35%(P—P’). On the basis of Eq(54)
other hand, is related to the mean free path and mean and in terms of these light-cone variables, the four-
free timer, of partons in between subsequent scatterings. Ifnomentum of a partof can be characterized by only two

0

D—Aro2 ri—Ar/2

(52

(r?,Fj)eQ(ri)

, (53
(r?,Fj)eQ(ri)
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statistical density of dressed partong of type f =g,q, with

§ ’\ P¥(ry) P+(r2)/ i the quantum theoretical spectral densiB of each dressed
@ : : P parton describing the intrinsic density of bare parton states as
Q(ry) Qry) its quantum substructure, as depicted in Figp)7
. o o Ar=p1
e T i Fi(ri K =F(ri K" K= N1, Pl @ Pr(ry kK,

...... (58
where the convolution of the statistical densky of dressed
partons at the scalasq with the spectral density?s, is
defined as the average over the local space-time volume
Q(r;) aroundr; of the densities,

: A(ry) ¢ N(r) N: QP ELJA d4r'fd_)/N
(o) N A Jawy y !
Qry) Q(r,)

09| 9| ol o

""" ; -V with Q(r)=w(r) ™%, P =P*(r), k*=xP*, z=xly
: ' : (0=z=1), and

P () Py

+ 2 dNs 2_ .2
M(rvyp vﬂgq):mé(k _,Lqu), (60)
FIG. 7. (a) lllustration of the cellular space-time picture, with y
cell size chosen intermediate between quantum and kinetic scales
such that the separation between the two scales is optimal, so that ) , k2 ' an
short-distance quantum correlation between different cells is negnpf(F.Z,k )= E P = E f 2 dk dinzdk 2 (62)
gible. (b) Representation of the partons’ phase-space densities =9 '=9.q -~ #gq

F=N®P as a convolution of the statistical density of dressed par-_l_hi nsatz d fibes the multiparton tem on the basis of
tons NV with the spectral densitf of each dressed parton, describ- S ansa escribes the muitiparton system o € basis o

ing its intrinsic density of bare parton states as its quantum sub’geatmg each mlelduaI dressed parton as a composite par-
structure. ticle of typef with a substructure of a number of bare quanta
nf of type f’, weighted locally with the total number of
variables, namely, its light-cone momenttl«rjﬁ:ij+ with dressed partond; in a space-time cell. The spectral density
fractionx; of the total cell momentum, and its off-shellness P characterizes the intrinsic structure of a dressed parton
(invariant virtuality k’=k"k; —k? =M?%(k;). Its light- state, whereas the quasiparticle densifylescribes the cor-
cone energy iS(l-_=(kj2+kl-2i)/kf':0 (k" 2>k2= kf), and relations and scatterings among those dressed partons. As

one has. therefore will become clear later, the spectral densitigscan indeed
be identified with the QCD parton structure functions. The
i =(k" k¥ = (XjP+,ka), crucial quantities that control the cellular resolution in space-

b time of the partons’ substructure are the characteristic cell

4 i s ) 1 dx size w~(r;) and the minimum resolvable virtuality

(277)4(277)5 ki=M (k)= 6=~ ~dk. (59  u2 =pu? of dressed partons in the cell, or alternatively the
i

fractional  space-time  volume  occupied, AQ/Q

The requirement Eq(54) together with Eq(50) hence trans- = u*/(Ngquqq)®, Which determines how densely a cell may
lates to the parton level d§+2> ka>,u2(fi), for all partons  be populated without the partons overlapping. Hence the va-
j within a given cell around; ; lidity of the kinetic approximation, based on the separation
of quantum and kinetic scales, is controlled by the choice of
Qz(ri)zkfz,usqa w(r;). (56) these quantities, which need not be constant but rather may

be taken as space-time dependent, i.e., variable from cell to
Since)\cz,ugql characterizes the maximum size of dressedcell chosen such that the resolution is optimal. A convenient
partons, the ratiqﬁ(ri)/ugq determines the minimum frac- choice would be, for instance,
tion of volume occupied by dressed partons in the cell. The
quantum and kinetic space-time regions can now be defined H(T)=pgq (62)

as
which | will adopt in the following for lucidity, keeping in

Arqe=[PT L u ™, Arg=[n " Agdpl. (57  mind thatuyq s not a free external parameter, but rather is to

be wunderstood as a dynamical, possibly space-time-

For largeP* andQ?, quantum and kinetic length scales dependent quantity, which in principle should be determined

are well separated and tiparton phase-space densities F self-consistently from screening effects. | will not address
may be locally represented as a convolution of the kineticthis latter issue here.
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guantum field equations of motidd4) and(45) into a set of
Q(r) s kinetic equations by first performing the Wigner transforma-
tion (65) for all Green functions and self-energies, and then
;\ taking for Eqs.(44) and (45) the sum and difference of the
f/r two adjoint equations in their transformed representation.
This procedurésee Appendix Byields two distinct equa-
tions for each of the Wigner transforni,, and S with
rather different physical interpretations, which | will refer to
as therenormalization equatiorand transport equationre-
spectively. Theenormalization equationare obtained as

k2—}g2 DA%(r k)= —d*"(K) 8,1
4 r ab(ra ) ( ) ab-+P

FIG. 8. In the cellular space-time picture, the “absolute” coor- +
dinate r labels the kinetic space-time dependen®gAr ),
whereas the “relative” coordinate measures the quantum space- (67)
time distanceO(Ar 9.

i
({TLD} )+ 7G5

N| =

1 A i
B. Wigner transformation and the kinetic equations of motion 5{7 p.S; (r,p)}s= 6ij1lp— 5([ Y- 3¢, S]-)ij

Let me proceed, referring to Appendix B for details, by 1 i
;n;;o(:?gﬁg ssir;]t;r-:;—dn;ass and relative coordinates of two + 5({2’S}+)”+ Zf_iﬂf),

r=13(x+y), s=x-y, (63) where d*?(k) is given by Eg. (8), afzar-ar, and
[A,B]_=AB—-BA, {A,B}.,=AB+BA. The transport
in terms of which one can express any two-point functionequationsare found in the form

W(x,y)=D,,,S]I1,,.%, as
[ 1
S S k-9,D% r,k =— = H'D I L MV(+)’ 68
W(X,Y)ZW r+ E,T—E):W(I’,S), (64) r ab( ) 2([ ] )ab 4gab (68)
. . 1 i
and introduce it&Vigner transform Wk k) as[13] 5{7'07r ,Sij(r,p)}+=§([y- 0.5 )

4
W(x,y)=f K e W k), i 1
(2m) _E([E,S]—)iﬁzﬁjﬂ-

W(f,k)=f d*sé sw(r,s), (65  In Egs.(67) and(68) the self-energieBl andS are explicitly
given by Egqs(42) and(43), and the operator functiogsand

i.e., one Fourier transforms with respect to the relative coors# on the right hand sides, which include the effects of spatial
dinates, the canonical conjugate to the momentknin the  inhomogeneities to first order in the gradient expansion Eq.
cell picture of space-time, the coordinatés the cell index  (66), are
that labels the kinetic space-time depende@eEAr ,),
whereas s measures the quantum space-time distance g =[ o I1#,5\D""]_ [} 1%, kD] _,
O(Argd, as illustrated in Fig. 8. In homogeneous systems,
such as the vacuum, translation invariance dictates that the G =14 8" D"}, —{o I 05D}, ,  (69)
dependence on drops out entirely, and the Wigner trans-
forms then coincide with the momentum-space Fourier trans- F=[ah3,0,S]_—[d}3,S]_,
forms of the Green functions and self-energies. In general,
spatial inhomogeneities can be systematically accounted for
by performing an expansion in terms of gradients
d,=0dlar*:

FO— (RS AS —{AS. kS . (70)

For completeness, | note that the equations for quark Green

W(r+s,5)=W(r,s)+s-d,W(r,s)+O[(s-4,)?]. (66) functions can formally also be brought into a more familiar
guadratic form, similar to the equations for the gluon Green

For quasihomogeneous or moderately inhomogeneous sys-

tems, such thas- 9, W<W, the correlations between differ-

ent cells will be small so that the propagators and self- Note thatd”=d/ok* acts on a functiorf(r,k) as the derivative

energies accordingly vary only slowly with One may then with respect to the space-time coordinate, whewas 9/ 9k* and

truncate the serie®6) after the second term, and convert the 3=/ gp* refer to the variation of four-momentum.
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functions, which exhibits the mass and drift term on the leftthe statistical kinetic dynamics, described by transport equa-
hand side of the renormalization and transport equations, raion (68), which determines the space-time variation of the
spectively: phase-space densiti€g in terms of renormalized, dressed
partons.
(pz—léz)si-(r p)=(y-p+3)8;1 +£({22 SHi)ij
47 )T Y P2 R C. The “physical representation” and strategy of solution
i 4 1 (=) Within the kinetic approximation, the goal is to obtain the
+ ZAij - gBij , best possible approximation to the complete propagators
G=D,,,S, starting from the case of noninteracting fields
1 A i with the corresponding Wigner transformed Green functions
p-d,S;(r,p)= E(y ;) 6ij1p— E([EZ,S],)” G)= D_ﬁ)”) S0+ In this “free field” case, because of trans-
lational invariance, the dependence of the Green functions
1 i is homogeneous, and the equations of motier and (68)
+ A+ g8 (71)  reduce to

2rypv — — mv, 1 . =
whereS, — 5,5, and KDY (rk)=—d""(K)1p, k-d,D)(r,k)=0,

AF=1[(y-p+3)(F I+ FH) pZS(O)(r,p)=y~pip, P9+ S0)=0, (73
H(F)=FN(y-p+3)], and the corresponding “free field” solutions of the four
R types of correlatorg,>,<,F in Egs.(27)—(31) are given by
BH=3[(y- 9 )(F )+ F7) (5,7]
D HE N (. g
i(j:( F )(y-dp)]. (72) D::O),w(r*k)
As will be seen in the following, the renormalization 1

equationg67) express the normalization conditions imposed =—d,,(k) m—ZWiF<o)g(r,k)5(k2—Méq) ,

by unitarity and renormalization group due to the quantum

self-interactions, and redefine the bare quanta in terms of (79

renormalized quasiparticles. The transport equati6Bs on
the other hand, describe the kinetic space-time evolution of D(>0);w(r'k): —2mi[—d,,(K) ][ 0(+ko) +F g o(r.,k)]
the system of quasiparticles and their binary collisions.

The kinetic approximation of trading the Green functions X 5(k2_1u‘§q)1
G(x,y) with their Wigner transform&(r,p) means in the
picture of cellular space-time trjat inside a given cell carrying D(<0)W(r,k) =—27i[—d,, (K[ 0(—ko)+F(g) o(r,k)]
the space-time coordinate=(t,r) as a labelG(r,p) equals
the translation-invariant Fourier transfornG(p) of
G(x—Y), but outside of the cell it is zero. In another cell _

r', the Wigner functiorG(r’,p’) is determined by a differ- Dfo)w(r,k)
ent translation-invarian&(p’). Hence, when looking at the L
§hort-d|stance quanturp fluctuations Wlthl_n a given spgce- =+, (K)| i — 27iF (1K) 82— w2 |,
time cell around =(r°r), one may approximate the spatial # kK2—ie g 99
distribution of partons as being homogeneous and constant

over the cell volume, and describe the short-range quantumwhered,, (k) is defined by Eq(8), and

dynamics in a translation-invariant manner. With the same

accuracy of approximation, one can neglect in the quantum F . s 2
regime binary parton collisions, provided the mean free path ~ S(0)("+P)= vaZmF(O)q(r,p)&(p ~Hgq):
)\mfz(ogngq)*l in terms of the parton-parton cross sec-

tions o4, and the local densit¥, is large compared to the > _ : 2_ .2
spatialgsqpread of th{(/—:-_cguantum fluctuations, which is typically Sio)(1P)=+27F 0)g(FP) 5(P"~ kgq),

of the order of 1L{p°. Hence the essential requirement - _ . 2
p?>\,.# can always be realized, if the particle energies are Sio)(rP)= =271 = F(0q(r,P)18(P*~ 11gq),
sufficiently large.

On the basis of these considerations, | first study the F _ . 2 2
quantum theoretical aspects embodied in the renormalization So(1P)= y-p—ie +2miF (0)q(1,P) AP 1gg)-
equations(67) to obtain the renormalized gluon and quark (75)
propagators, and from this determine the momentum depen-
dence of the phase-space densifigg, Eq.(58), associated The scalar function§ )q and F o)y are the free field ana-
with the variation of the parton structure functions. Subse{ogues of Eq(58) with the spectral densitieB; replaced by
quently, | will investigate the transport theoretical aspects ofunity,

X 8(K2= gy,
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resentation denoted t(y (5) is given by a unitary transfor-
mation 4, a 2x2 matrix with Un,=1/\/2 for
(76 MN=11.21,22 andfy,= — 1/\2:

dN
F(O)f(rvk):-/\/}(rvk)‘@l:ﬂ_d %K (f=g.,9),
ro=tk2=pu2

y Gh . &R
i.e., the phase-space densities of gluons and quarks that mea- G=UGU = ( GR GC)’ E=UteU= ( A 0 )
sure the number of noninteracting quanta in a phase-space
elementd®rd“k at a given timet=r°: It can be showri8] (79
that the functiorF o)y (F(0)q) Is real, even, and the same for \where, in subtle contrast with E77),
all four gluon(quark correlatorsD*» (S) in Egs.(74) and A oF | oo .
(75). For an ideal gas of gluons and quarks in equilibrium, Pr=+E =6~ 57’
for example, one find§ )= 1[exp(B,k*)=1] with — (+) R=gFtes=—g"—¢F
for gluons(quarks and,8=(T*1,5) in the local rest frame. —
It is important to bear in mind that the presence of the func- =&+ =--¢. (80)

tions Fq and Fq in Egs. (74) and (75 even in the “free The great advantage of this physical representation is that the

field” case is a direct consequence of the CTP formulation dependence on the partons’ phase-space denitjesnd
which incorporates initial state correlations due to a non-

F, is essentially carried by the correlation functio6§,
trivial_density matrix p(to), Eq. (21), corresponding to W%ereas the degendence o¥ the retarded and advanced func-
F(to.r,p)#0, as opposed to the usual quantum field theortions GR and G* is weak. In the free field case, this separa-
description, wherep(to)=|0)(0| and F(to,r,p) vanishes. tion of correlations is exact, as is evident from E£), such
Evidently, in this latter cas€&”=G~=0 andG =GF" at  that the retarded and advanced functions do not depend at all
all times, so that the dynamics is described by the Feynmafin Fg andF. In fact, even in the general case of interacting
propagatorsGF alone. fields, this advantageous property becomes very suggestive

More suitable for pract|ca| purposes, one may emp|oy m_when I’EWI’I'[Ing the renormalization and transport equatlons
stead of the seGF,G,G<,GF, an equivalent set of the (67) and(68) in generic form for the individual Green func-

retarded (advanced) propagatorsig@G*) plus thecorrela- tion components:
tion function G. The latter are directly connected with
physical observable quantities, and are commonly referred to

1
{G).GR-GM, = —2( k2 Z‘?VZ) (GR-G")
as thephysical representatiofi7]. The functionsGR, G*,

andGC are obtained via the relations ={o&, P} +{I',6G},, (81
GR:GF G>=G<— GI? GA:GF_G<:G>_GF [G(O:)L,GC]_:—Zik'ach
GC=GF+GF=G<+G~, 77) =[£°,6G]_+[6E,GC]_
which are most general identities that also hold in the pres- +i_ P 41T G 82
ence of interactions. Because the fourth possible linear com- 2({ Pre TG, (82)

bination GF— G~ — G~ + GF is always identically zero, the
three physical function&R, GA, andG® form a complete
alternative set that eliminates the overdetermination of the dG=ReG= ;(GR+G"), §E=Ref= 3 (ER+&H),

where

setGF,G”,G=,GF. The “free field” forms of GR, G*, and P=ImG=i(GR-GA), T'=ImE=i(R—&" (83
GC corresponding to those of Eq&4) and (75) are
J(K) 1 are the real and imaginary components of the retarded and
D{oy (1K) = k2+M| Ky’ S{oy(r, p)—w, advanced Green functions and self-energies, whereas
° GC=G +G>, &C=—(&+8&) (84)

D%W(r,k):—2m[—dW(k)][1+2F<o)g(r,k)]
X (k2= 2.) (79 are the real correlation functions and corresponding self-
Hgq)s energies. The physical significance of E¢31) and (82) is
Sto)(r.p) = =2 (- P)[1—2F (0)q(r.p)18(p?— u3). the following. Equation(81) determines the state of a
dressed parton with respect to its virtual fluctuations and real
where + (—) in the denominators corresponds to tRe emission(absorption processes, corresponding to the real
(A). Generally speaking, the retarded and advanced funand imaginary parts of the retarded and advanced self-
tions characterize the quantum nature of parton stategnergies. EquatiofB2), on the other hand, characterizes the
whereas the correlation function describes the phase-spacerrelations among different dressed parton states, and the
occupation of these states. self-energies appear here in two distinct ways. The first two
The preceding relationé/7) are generally valid for any terms on the right hand side account for scatterings between
two-point function defined on the closed time path, andquasiparticle states, i.e., dressed partons, whereas the last
hence apply not only to the free field case, but also to the fultwo terms incorporate the renormalization effects which re-
Green functionsG=D,,,S, as well as to the self-energies sult from the fact that the dressed partons between collisions
&=1I1,,,%. In matrix form, the correspondence between thedo not behave as free particles, but change their dynamical
representatiori27) in terms of G (£) and the physical rep- structure due to virtual fluctuations, as well as real emission
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and absorption of quanta. For this reasBi”®) are called and real emissioabsorption processes of its bare daughter
radiative self-energies, anéC is termed thecollisional self-  partons. The spectrum of these quantum excitations will have
energy. As shown by Kadanoff and Bay#l, the imaginary @ finite extension arounqhéq, described by the real part
parts of the retarded and advanced Green functions and se€ of the self-energy, with a widtH’, described by the
energieg83) are just the spectral densiB; giving the prob- imaginary part and being inversely proportional to the life-
ability for finding an intermediate multiparticle state in the time of the particular parton state. Hence, one may write
dressed parton, and, respectively, the decay widthde-  formally, instead of Eq(87),
scribing the dissipation of the dressed parton. The solution of
Egs. (81) and (82) can be obtained in complete analogy to I?
the detailed derivation given by Kadanoff and Bayhi. PAr,k) = 8(k?— M?(r k" k%), M2:55_jv (89)
One finds that the solution for the spectral dengithas the
same formal structure as in equilibrium, namely,
whereé€ andI” are given in terms of the real and imaginary
=APsc+APr, (85 parts of the retarded and advanced self-enerdies (83)].
This representation serves to maintain the analogy with the
describing the particle density in terms of the finite width free field case, for which one has an immediate intuition.
' and the dynamical mass ter@€ (which in the “free However, instead pf a simple mass-shell con.dlltlon, thg argu-
field” case arel’ = 6£=0, corresponding to an on-shell, clas- ment of thes function now expresses a nont_r|V|aI functional
sically stable particle On the right hand side of E¢85), the ~ dependence of the spectrumloh aanZ and, in general, on
second form exhibits the physical meaning more suggesSPace-timer. The solution of this implicit equation deter-
tively in terms of the “wave function” renormalization ™Mines the spectral density, which is the subject of Sec.
(APs) due to virtual fluctuations, and the dissipative parts!!l D- L _
(AP;) due to real emissiorfabsorptiop processes. This On%el the spectral density is known, the correlation func-
separation will prove convenient latéThe spectral density tion G~ is given by the generic expressig8|
P satisfies the sum rulgr,5]

1 dk*
1= FJ WT++P(r,k+,k2)

P K= e 5e v (T2)2

GC(r,k)=—2mi[1=2Mr k) ]®P(r k)
=—2mi[1*+ 2F(r,k)]8(K>*— M?3(r,k)), (89

1 [dk*
- FJ Ek+7}(r'k+'k2)’ 868 \yhere + (=) is for gluons (quarks. It reduces to
the free field form whenP is replaced by P,
which is an implicit consequence of unitarity, and requireseq. (87), so that G(C0)= —2mi[1+2N] 5(k2—,u§q)
that _the total light-cone momentum of the spectral density o= _ 2 7j[1+ 2F ()] F X 5(k2—,u2q) becomes an on-shell dis-
the internal bare partons must be equal to the dressed pafipution, as in Eqs(78). The theoretical basis for the previ-
tons” momentum. For example, in the “free field” case, i.e., oys more physically motivated, ansd&q. (58)] for the
in the absence of interactions, one hadPs  parton phase-space distributioisbecomes evident now: It
=o6(1-k*/P*) and APr=0 with k®=ug,, so that s the logical generalization of the free field forfigg. (78)]

P—Po) describes a single “on-shell” parton state to include renormalization effects and dissipation in terms of
s , 2 k* nontrivial spectral densities, or parton structure functions,
Proy(r. k™K =8(k" = pgqg) 8| 1= 57, (87)  which embody the underlying quantum dynamics. In this

sense the Wigner functiorts are the quantum kinetic exten-
on the “mass She”"kZZMEq, and carrying the total light- Sion of th_e clas_sical particle phase-space distributions._
cone energyk™ =P*.7 This is nothing but the fact that the FoIIowmg this strategy, | will now proceed on the basis of
presence of a pole in the Green function means the presenée factorized ansa{£q. (58)] for the gluon and quark den-
of a particle, stable if it occurs for re&?, unstable if it ~SitiesFy in terms of the quasiparticle distributioré; with
occurs for complex?, as in the Breit-Wigner formulég5).  the spectral densitieB;, i.e., the presumption that the sepa-
The generalization of Eq87) to the case of interactions, in ration between quantum and kinetic scales_allows a distinct
which, as advocated before, a dressed parton may be visudf€atment of the intrinsic quantum fluctuations of dressed
ized as a substructured particle with a fluctuating number oPartons and the kinetic correlations among them. In contrast
bare quanta intermediately present in its wave function, i40 Ed. (78), the poles of the retarded and advanced Green
straightforward. A dressed parton has now a “blurred” masgfunctions are shifted by the real and imaginary parts of the

. . . . . H R(A H H 0
shell, because its internal excitations fluctuate due to virtuafelf-energies™™, and in the expression for the correlation
functions thes function is replaced by the spectral density

P. Introducing the scalar functions faf for the gluon and
5The formula(85) holds for bothspacelike(k?<0) and timelike = for the quark self-energies through
(k?>0) momenta. Ifk? is spacelike then the imaginary paxtPy
vanishes, so thaP is purely real. On the other hand,kf is time- 142 = Sap( kukv_guvk2)ﬁ, Eij =5 p2§, (90)
like then bothAPs and AP contribute, and s@ is complex.
"Note that for the choice Eq62), the fractionz=x/y in the
defining equation fofP, Eq. (61), reduces t@=x. instead of Eq(78) one has now
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DRA(r k)= LTAL,
My ! k2(1_HR(A)) !
KA1, p)= —— P (91)

pA(1—y-pSRA)’
DS, (r,k)=—2mi[ —d,,, (K [1+2 Ny(r,k) J& Py(r k)
= —2mi[—d,,(K)][1+2Fyr.k)]
X 8(k?— MG(r,k)),
S5(r,p)=—27i (7y-pP)[ 1= 2 Ny(r,p) 1@ Py(r,p)

—2mi(y-p)[1 —2F4(r,p)18(p?— MZ(r,p)).
(92

The two-step strategy that | will follow in the next sections is

the following.
(1) In Sec. lll D, the renormalization equatio&?7) will
be solved for the retarde@dvanceyl Green functions

(Dg(lA) gg(r’k)z(D(_O}R(A))laLg_(HR(A))laLt];y
(Sria)ii (1:P) = (Sorea)ii — (Srea)ii » (93

which determine the spectral densitiggand?P, in terms of
the radiative self-energied ™ and R4

(2) In Sec. Il E the transport equations will be solved for

the correlation functions
DE4(r.K)=—Dgay[(Dioyc)arn = () ap 1D apry
Scij(r,p)= _SRii’[(S(ioic)i’j’_(EC)i’j’]SAi’j , (99

which determine the parton phase-space distributigpand
Fq by the collisional self-energidﬂﬁy and3C, in conjunc-

tion with the spectral densitieB, and P, .

D. Quantum dynamics and renormalization equations

As advocated above, when addressing renormalization e
fects and dissipative quantum dynamics, it is appropriate tQ
focus on the retarded and advanced propagators and the
imaginary parts of the self-energies, which embody the
short-distance propagation of quantum fluctuations. Further2

more, on quantum scales, one can neglect tdependence,
and thus ignore in this regime the functioigand F in Egs.
(67) and(68). Then, by performing the transformation of the
Wigner transformed Green function®,,, S and self-
energied],,, 2 to the physical representation via E@9),
one obtains simplified equations for the retardadvanceyl
functions (cf. Appendix B. The renormalization equations
reduce to the form

(k2= 3 91)Dg5" (r.k)

_d;w(k) 5ab+ %(HR(A)DR(A)-F DR(A)HR(A));aLg,

Hy-p.SIA(r,p)} =8+ § (SRASKA 4 RASRA) -
(95
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To solve the equation®5), it is suggestive in view of Eq.

(78) to parametrize the renormalized, “dressed” propagators

DEV and SR on account of their Lorentz structure [&7,28
—d**(k)

K[ 1= TTRA (1 k)]

L —duk
EAg(r,k ,Kk)5abm+ BRI

DLERA(r k) =3,

g v P
" p1-y-pSRA(r,p)]

ST (rp)=25

v-p
=Ay(r,p% kp) &ij 02=iepg
y-n

+Zq(r1p21’<p)5ij ﬁ—i_ :

where d,,,(k)=g,,—(n,k,+nk,)/(n-k) as before, the
scalar self-energy functionrd® and 3R are defined by Eq.
(90), and« implicitly accounts for the dependence®f and
A, on the coordinate, which is conjugate t&*. The func-
tion « is of the order of the large light-cone momentlrh
squared(cf. Appendix Q:

(n-k)?

2__
KL=
k n2

~k*?, n%<1.

(97)

The renormalization functionsA, (A,) account for the
modifications of the “bare” propagatof38) due to the self-
interactions embodied ifl (2). The third functionA, turns
out to be proportional ta\, (cf. Appendix Q. They are
normalized in accord with the conditig®6), such that

Agy(r,K?, Kp)|kz=ﬂsq= Aq(r,pz,xp)|pzzﬁsq= 1, (99

meaning that a gluon or quark is considered as a maximally
gressed particlein the sense of the applicability of E6)],
corresponding to the invariant scaje,,, which may be
called the dressed partons’ mass shell.

It is well known[27] that other contributions to the propa-
ators in EQ.(96), indicated by the ellipses, are strongly
suppressétin light-cone-dominated process@3— « by in-
verse powers of?. In fact, this feature is the very founda-
tion of the QCD parton description within th@nodified
leading log approximatiofMLLA ) [27,28, where the renor-
malization problem reduces to a multiplication of the bare
propagators and vertices by scalar functions. That is, as de-

8Note the benefit of the employed gauggA*=0 for the gluon
field, Eq.(3): by suitable choice of the vector* such tham?<1,
one can concentrate the short-distance quantum fluctuations to ar-
bitrary proximity around the light con@?—0, i.e., k,— >, corre-
sponding to the asymptotic limk* — . In this regime the leading
log singularities of the propagators give the dominant contributions
and the ellipses in Eqg96) and (100) can be neglected because
they do not generate leading logs.
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picted in Fig. 9, with respect to the Wigner transforms of the rua(r P1.P2.Kg)= J”LTﬁqug(Hp%,Pg,k%,Kl,Kz,Ks)
self-energies Eqg42) and (43,

+..,
Ai?;i(r;kl,kz,ks): fabcgmkvvggg(rikz,kg,kg,Kl,szKs)
vR(A) g§ d4k, !
Hf’;b (r-k):_?jWfaa’c)\up/a(_k’_k_l—k ,k) + ..y
, wherek, is understood as the momentum associated with the

XDZFRM(r k)AL (—k' k=K' k) intermediate of the three gluon virtualities, i.&,=k, , if

k?<k3<k3, etc. Analogous to Eq(98), the normalization
x DXL R (1 k—K') conditions are

qug(r ; p|2 ’ Ki)|pi2=,u5qzvggg(r;ki2 1Ki)|ki2=,u5q: 1. (101)

2 d k' R(A) ’
_gSNfJWYMT nn’ (r —k +k) ] o ) ) )
Employing these definitions in the renormalization equa-
=b QRA) tions (95) and the expressions for self-energies given by Egs.
Ennr(ZKHKKKDS KD, (99 (42) and(43), and dif?erentiating the inversg of t%e progagg-
tors DY and SR with respect to the gluon and quark
virtuality, respectively,

d*k’ p
Eff“*)(r,p):gifWyJﬁ,Sﬁ(ﬁ)(r,p—k’) Sl OIDRA(r k)], =1 - 2HR<A>(|r k),
(100

d Jd ~
o2 PISTR ] =1 - 2 52 p),
(102

one obtains the following determining equations for the mo-

mentum dependence of the scalar self-energy funcfiggs

(90)] TIR™® and SR™ to orderg? in terms of the renormal-
one can represent thgqg and ggg vertex functionsT’ ization functionsA 4 and A, (for more details, see Appendix
(A), Eq.(37), as multiplicative renormalization functions: C):

(p k' P, k' )DUTR(A)(r,kr),

J - g f dk’ frow(zm IAg(r k) a
2 R(A) _ IR St AN
k _akZH (r,k) —2 Ca(27i) (277_)4| r0—1/[2,u(r)]d7ﬂk 7) Ik’ 2 gK'?2

X[V?2 (r;kz,k'z,k"z,xk,Kk,,Kk,,)Ag(r,k")]ugg(k’,k",n)

ggag
ro+1(2u) . dAG(rp) d

sirnd [ e S

X[V3aq(riK20" 20", ki, kpr k) Ag(r,p") UGN (P p" ), (103

p’ (rotM2w) . OAg(r,p") 9

P~ SR 1, p) = — g2Ce(2mi) f f drT(p' 1) — 57— =
ap2 ’ s>k (277_)4 fo- 1(2u) (9p' 2 (9k"2

X[Vaag(rip2p 2 K2, kp kpr, ki) Ag(r K TUI(p' K",0), (104

qqg(

plus termsO(n?) which can be neglected far’<1. The o

constants Cpdap=facdfbca=NcOap, TrOap=Tr(T2-TP) JO dr7(p'7)=1, (109
=36ap, and Cgd;=(T?-T?);=[(NZ—1)2N]s; arise

from summing over color indices, ard; is the number of e.g.,7=p’exp(—p’ 7). With reference to Ref.37], where an
quark flavors. As explained in Appendix C, the time integralelaborate presentation of the time dependence of parton den-
Jd7 on the right hand sides extends over the finite time slicesities in the framework of QCD evolution is given, it suffices

u =u"Y(r) of the space-time cell around weighted by  here to note that the effect of the finite time slice integration
the function7 which satisfies Jd7 is to impose the compatibility condition on space-time
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(@)

v R(A)
I, (r,k) =

FIG. 9. The “radiative” self-energies in one-
-q+k loop approximation, Eqs(99): (a) the retarded
(advancel gluon self-energiedI®Y , and (b)

the retarded (advanceyl quark self-energies
SRA),

and energy-momentum variables as constrained by the uiis the effective local coupling strengtaveraged over a cell
certainty principle: it limits the range of virtualitids 2 such  centered around of space-time extenf)(r)=A%, and
that within the finite time intervabro=u~* only those fluc-  a(q?) =bIn(@¥A%cp)] % b=1IN.—2N;. The function
tuationsk—k'k” are resolvable that are sufficiently short A(r,z,k?) reflects the fact that in cellular space-time the rel-
living, with proper lifetime 7,=1k’ and +vy7y evant quantum fluctuations are restricted by the uncertainty
~k*/k'2<Arq. Finally, the functiong/! *'(k’,k”,n) rep-  principle, as embodied in the ¢-function term:
resent the squared matrix elements for the virtual decay prd<®=<u*=1/(Ar)?, K°<1/Ar®, with Ar®=k*/k>
cessek—k'k”. Their explicit form is given in Appendix C.  The functionsy(z,e) in Eq. (109 involve, at leading-log

In the cellular space-time picture, the momenta of partondevel, the standard Dokshitzer-Gribov-Lipatov-Altarelli-
in a given cell around are per design limited by the condi- Parisi(DGLAP) kernels[27], carrying an explicik” depen-

tion (56), such that dence arising from the dependenceosk® 2,
1-z
99 = —
p+ 2(r)>k+ 22k22,u,sq2/_1,2(r). (106) Yg (Z,E)—ZCA<1_Z+E(KI()+ 7 +2z(1 Z)),
As explained_ in Appendix C, b)_/ employing this condition Y9z, €) = 1[22+(1—z)2],
and introducing the fractional light-cone momenta of the g 2
daughter partons in the procdss-k'k”, 1+ 72
qg = - -
kl+ "+ ’)/q (Z,E) CF(1_2+ 6'(Kk))7 (111)
==, Zp=l—-z=-—F, (207
k k where in the denominators the functierappears,
T 12 "n2 _ k,2n2 k2 112
Ak’ =7 dk dK'2dz 0<k2—7—ﬁ), (108 0= 2k " k2 (12

] ) . which arises here as a consequence ofdﬁ&erm in the
the integralg103 and(104) are readily evaluated to leading onormalization equation€9d5), after Fourier transforming
log accuracy. Solving for the renormalization functiokg with respect ta ~=r°—r2, the conjugate variable df". It

andAq, and takingk,=k* ? and ky=p* 2 from Eq.(97),  ¢an pe interpreted as a manifestation of the indeterminacy

the result is(cf. Appendix Q principle, which determines space-time uncertainty of the or-
cadk'? (1 der of the cell sizeAr that is associated with the off-
Ay(r k2 k™ ) =exp — fk _f dz Ar,z,k'?) shellness of the partons. The presence @ffectively cuts
o 2 k' Jo " off small-angle gluon emission when the emitted gluon is

soft, i.e., whenzy=1-2z—0, by modifying the free gluon
Eygg(z )+ 3%z, €) propagator= 1/z4 to the form 1/¢,+ €) when k/k* ~1, that
279 N ' is, in branching processes with large space-time uncertainty.
This ensures that the two daughter partons can be resolved as
Aq(r,pz,p+ 2) individua] quaqtg only if they are separfated sufficiently by
, Arocl/k in position space, in accord with the uncertainty
*2dp'c (1 rinciple. Note thate can be neglected in the terms
=exp‘—fp | dz Nr,z,p’z)ygg(z,e)], Prneip ) k

12
p2 P " Jo

X

(109 %in (110 one could imagine, instead of th& function
6(k*—u?), a smeared-out probability distribution, e.g.,
<exp(—kiu?), by choosing a more refined form for the function
L K2 2 7 under the time integral in Eqg103 and (104). The specific
A(r K2 7)= ad (1—2)k’] 6(2——,u(r)) (110 choice is ambiguous at this level of calculatisee Ref[37] for
Y 2 k* details.

where
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x1/(zg+€) in Eq. (111) for energetic gluon emission . R A
(zg—1), but is essential in the soft regimey(~0). The Pq= ,2 Pq =1 T S™=S7],
effect of € has been show27,2§ to result in a natural =94

regularization of the infrared-divergent behavior of the
branching kernelfEq. (111)], due to destructive gluon inter-
ference which becomes complete in the limjt- 0.

the solutions ofDR?™ and SX®, and hence the solutions
[Eq. (109] of A, and A, determine the forms oP, and
As summarized in Appendix C, the renormalization func-"a: réSpectively. As has been investigated in detail by, e.g.,

tions A; are intimately related to the spectral densi Dokshitzeret al. [27], the I?yson-Schwmger integral repre-
and P, defined by Egs(61) and (85). In fact, sinceP,  sentation of the densitieB} which is summed over in Eq.
(Py) are defined as the trace over the difference of retardetl13 follows from the integration over kt (Inp? of Eq.
and advanced proagat@(f) (SRW) e, (103 and Eq.(104), respectively. These givief. Appendix

C) then the self-energiedI™M and SR®, and hence
Py= 3 PU=iTid*(DR,~DA)], (113 DR and S*A. Finally, by utilizing Eq.(113), one finds

f'=g,q that the resulting solution of the densiti@é is given by

Pl (rix,k?) =6} 8(1—x) 8(k2— ud)A¢(r; u2q k" 2)

K2 dk,2 1 ner [ X k/2
—i—A]((I’,,LJéO',l(+ > _k’zf dZ(A(I',kZ,Z)Vg ! (Z,G)Pf,,(z,klz;k’+2)Afl(",T,k'Jrz)]-

G /_qu 0

(114

Comparing this expression with Eq. (85), , 9 ) 1 ) 1 X
P=8(k*~ u?) APse+ APy, one sees now that the Sudakov K Z2Fqg(rix.k%) = fo dz A(r;k%,z) EFg( r E,Zk2>
form factorA¢ together with the real emission and absorption

probabilitiesW;=3 ./ d Ink’z_dz AP combine to play 3 EF (r;x’kz):|l—wgg(z'6)

the role of the “wave function renormalization” patPs. 29 g

and the dissipative pad Py . 2
Equation (114) has a simplephysical significanceThe T 2NiF(rxk )ng(z,e)

first term on the right hand side represents the probability to

find a dressed parton of tydein the cell around space-time _Nng(r?X'kz)ng(ny)]’

pointr as a “classical” particle, i.e., without any other glu-

ons or quarks present in its wave function or spectral density. 9 1

In accord with the normalizatiofEq. (98)], this means that it pza—szq(F;X,sz f dz Nf;pz,z)(

is propagating on shell withk?=uj.=pu?(r), where °

%Fq<r;§,zp2)

w(r) 1 is the resolution size of the cell as explained in Sec. TN
lIA. lts fraction of the cell’s light-cone energy is —Fq(r;%,p%) [Tg™(z,€)
x=k*/P*(r)=1. The probability for finding such a rare

i ; ; 2 |+ 2
quc_:tuann is suppressed _by _the fur_1ct|(mf(r,k K79, n Fg(r;x,pz)qu(Z,e)], (115
which becomes stronger with increasing gap betwpég g

andk?. The second term on the right hand side corresponds

then to the adjoint probability that the parton is actually aWhiCh are the space-time generalization of the DGLAP evo-

dressed parton with a substructure, described by the balan!: fion equation$27] that govern the momentum dependence

. o : of the parton densities. The effective branching kernels
between real and virtual emission and absorption processes

f/f!/ f/l
while localized within the cell around It is obvious that the L't = [38] are related to they; by
spectral densities of dressed partons, introduced in Sec. Il C, ( Fo )

are identical to the usualarton structure function®, i.e., r;’f”: yf’f” 1

f (116

the probability densities for finding a dressed partan an Frxl

intermediate state containing a number of bare partons A3here the uppeflowen sign in the term in parentheses is for

virtual and real fluctuations. _ gluons (quarks. It yields a suppression when the phase-
~ From Eq.(114) with Eq. (109), and using the representa- g, .q densit§, or F, becomes large, so that the emission
tion (58) of the partqn densitief; in terms of the parton processe$— f'f” have significant competition from absorp-
structure functionsP{ , follows then the final form of the tion processe$’ f”—f. In the limit F;,> 1, thedetailed bal-
renormalization equations anceis established, in accord with the Bose-Einstein and
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Fermi-Dirac statistics of the gluofguark densities. For in- nomena, in which one has only one type of equation, a gen-

stance, in thermal equilibriunlﬁgigg:(e‘E/T: 1)"% sothat eralized Boltzmann equation, that contains a local, classical

I'=y(1—e¥T), which tends to zero as the temperatdre part and a nonlocal quantum contribution, containing the
becomes large. space-time history of memory effects. In the present ap-
Equations(115 are the main result of this section. They proach, this is translated to stochastically occurritip-
emerge as a direct consequence of the renormalization equédl”), hard parton-parton scatterings, linked with the causal
tions (67) in the short-distance regime of virtual and dissipa-quantum evolution between scatteringsionlocal”), ac-
tive quantum fluctuations, and ensure unitarity conservatiogounting for renormalization and dissipation due to the pre-
locally in each space-time cell. They embody the Heisenbergiously occurred scatterings. The advantage here is, that
uncertainty principle, expressing the fact that it is impossiblevhile quantum effects are included in the multiparticle evo-
to localize soft partons in a given cell if their wavelength lution, still a local(in space and timepicture can be main-
exceeds the cell size, which sets the resolution scale. Last bt@ined, where memory effects are embodied effectively in the
not least, they account for the balance between real emissighessed partons’ structure function evolution.
and absorption processes that tends to incrésesmreasgthe To proceed, recall from Sec. Ill C, that the correlation
effective real emission rate of gluoKguarks. functions D€, and S¢ are the quantities which are deter-
mined by the transport equations of the fof@2) [explicitly
given in Appendix B, Egs(B25) and(B26)]. On account of
) i . the presumed condition$117), over kinetic space-time
_ With the dynamical structure of dresseq pa_rtons qua_”t'taécales)\mf> \., the quantum motion decouples, so that the
tively controlled by the above renormalization equationScore|ation functions are determined by the collisional self-
(_115), one is now in the position to addres; the kinetic Sp""_ceénergiesﬂﬁv and3C, in conjunction with the real parts of
time eyolutlon of the multiparticle system in terms of statis- o retarded and advanced functiofes. Eq. (82)]. This
tical binary scatterings among these dressed partons. AS €gyaans that the collisional self-energies are to be evaluated

plained in Sec. Il A, in order to obtain quasiclassical with the renormalized propagatof&q. (96)] and vertices

transport equations for the phase-space distribution functiorﬁEq (100)] which were obtained from the retarded and ad-
F=N®P, two key conditions have to be met. First, as be'vanéed self-energies before.

fore, the maximal space-time extension of relevant quantum Noting that from Eq(77) one has
fluctuations,)\c=ﬂgql, is supposed to be smaller than the

mean free path ,; between scatterings. Second, the typical DS =D> +D<, SC=S>+S< (118
four-momentum transfeq, =\[q? in the scattering of any pETRE R

two partons is required to be larger than the inverse Comptoghe transport equation®8) now read(cf. Appendix B
wavelengthh ¢ *= uyq. That is[cf. Eq. (49)],

E. Kinetic dynamics and transport equations

i
- - k-9,Day=(r.k)=— 5 (II=DA+IIRD=~D=I*
)\mf>lu~gqlv Qi>/"“§q:}\cz' (117 Pab ) 2(

The first condition ensures that the quantum evolution, taken —DRII=)%y, (119
care of by the renormalization equations, can be factorized

from the scattering processes. The second condition guarari{y- d, ,Sﬁ(r,p)}+= —([v- p,Sz],)ij

tees that the scattering is sufficiently hard, i.e., is of short - - _
range compared to the space-time extent of the scattering +(2FSMHIRST-5TEA-STN ),
partons’ intrinsic quantum motion, so that over the duration )

of the scattering, the dressed partons can be treated as “fr¥Nich can be rewritten as

zen” assemblies of bare particles that represent their instan- -

taneous quantum statghe usual sudden approximatjon k-3, D&y =(r,k)=— 3 ({II7(r,k),D=(r,k)}+
These two conditions are equivalent to the factorization as- - - v
sumption of the well-established “QCD hard scattering pic- —{I7(r,k), D7 (r, k)3 ) ey
ture” [39] for, e.g., high-energy hadron-hadron collisions,

where the colliding hadrons are described as conglomerates p~arsﬁ(r,p)= 3({27(r,p),S(r,p)}+
of bare partons in terms of their structure functions. The _ -
relation of this hard scattering picture to the present approach —{Z5(r,p),S7(r,p)}+)i; . (120

is its adoption to multiple, internetted scattering processes in
a system of stochastically colliding dressed partons, each dfhese equations correspond to what is usually termed the
them represented by its own structure function, or spectrafluasiparticle approximationin the cellular space-time pic-
density. ture, the characteristics of the statistical-kinetic evolution of
The two requirementfEq. (117)] are the crucial points, the system are, per design, insensitive to the localized fluc-
which allow one in the following to cast the kinetic evolution tuations associated with short-distance quantum dynamics
into simple, probabilistic Boltzmann-type equations, which,inside a space-time cell. To stress it more precisely, the
however, have to be solved self-consistently in conjunctiorfPace-time variation can be considered homogeneous over
with the renormalization equationd15). Here is the key the range of the Compton wavelength= ugq<u~(r), so
difference from other formulatior{§,40,41 to include quan-  that|GS(r,k)|>[\26?GC(r,p)| and the derivatives with re-
tum effects in a quasiclassical treatment of transport phespect tor on the left hand side of the original Eq$€.7) and
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(68) may be omitted. In the present context, it emerges as the The seIf-energieE[fV andX = are obtained from the gen-
logical consequence that the partons can be described @mal expressiong42) and (43), respectively. The lowest-
kinetic space-time scales as quasiparticles, with the underlysrder nonvanishing contributions are the two-loop diagrams
ing quantum motion effectively accounted for in the renor-shown in Fig. 10, which are proportional ftoandO(g2). In
malized propagators and vertices. terms of the renormalized correlatdds™ andS= one finds

gs d4k/ d4q

0= | oy i e KKK K ODEE (1K) friahrpn(—K, =G0 )
XD 2(r,= @) ferpng A pr o (= Q=K' QKD = (1, G+ K ) o) ryr o — K, — kK’ K)DA Y = (r k—K')
gS d4k, qu no'u'o oT= o'’z TV TV ’ ’
6 ) 2mfi (2mfilacac (—k,a".k=9=q",9)Dgg~(r.a)De/g (1.9 )vdb’d’b( q,—k+ag+q’,—q’.k)
/" v'z d4q ’ oo’z ’ ¢/ o=
XD a'b’ (r k— qa—q )+gsN (2 | (277) f faac up' o’( k k—k k )DCC’ (r,k )7U’Tlnsnn'(r1_q)
d’ = ’ 'z ’ ’ u'v'z ’ 4 d4k’ d4q
><7T,Tn,|,§,|(r,q+k )Dd’d (r,k") f oo s (=K', —k+k',k)D a’b’ (r,k—k')—gs 2Ns (Z’TTT(Z’TTT
X'yM ﬁSz(r,k—k’)'yVTanSJ ](I’ k’ )’yTTn] S|’n (r, k' — q)ya i ”,(r k'’ )DUT<(r,q), (121)
gs d4k, d4q O'(T = =
Elj(r p)__ J(Zﬂ_)4 (277_)4 YUTﬁ’ cc’ (r k' )f 'fe o’ p}\( 1_q1q+k )D?ff (rr_q)
><fe/f//d,)\}\,p/T;(—q—k',q,k')Dg;ﬁ(r q+k )’}/T i’ J (r p k )
4 d4k, d4q oo'= ¢ o= ’ d’ 7= ’
_gSNfJ @2m% 2m)% Tu’Dcc’ (r.k )Snn’( =) Yo Tin S (r,q+k) v T Dy (1K)
d*k’  d'g ca= A =
Xy, T J, (r p—k' )+QSJWW%THSV(Y,D—|< )Dge —(r,a)
XN\ S (1,P—K = @)y, TODZG=(r k'), (122

where N*P¥(py,p2,p3) and vAeli(p1,p2,P3,Ps) are the tons, with their substructure represented in terms of corre-
usual three-gluon and four-gluon vertices. Appendix D, sponding assemblies of bare partons, that satisfy the condi-
Eq. (D27)]. The correlation function@fy and S= are re- tion (56). Therefore the functions can also be interpreted to
lated to the phase-space densifigsandF: by employing ~measure the number of bare partons with dynamical invari-
Eqg. (92 in conjunction with the identities Eq$74)—(77), ant massekzz,uéq. Consequently, a binary collision of two

one obtains dressed partons can be described in terms of the above “hard
= (r k)= —2mi(—d,, (k) 9(ik°)+Fg(r,k)] scattering picture” as a scattering of two bare partons, one
out of each assembly, picked statistically from the instanta-

X 5(k2—MS(r,k)), neous quantum state of the two dressed partons, as given by

> _ . 0 their structure functions or spectral densities. The four-
S7(r.p)==2mi(y-p)L (= p7) = Fq(r.p)] momentum transfetqf sets hereby the probing scale, so that
X 8(p?—MZ(r,p)), (123  k?~g?. Therefore the energy spectra of partons emerging
from these scatterings are—using E88)—determined by
where the signst (—) refer to > (<).1° As repeatedly
stressed, the densiti€sare the distributions of dressed par-
s Mé(r,k*,kz))

2 (1)(0)

19t must be mentioned that E¢123 assumes a spin-symmetric
form for the quark-antiquark spinor products, which means a ne-
glect of spin-polarization effects. As shown by Ekeeal. [16], in
general the quark phase-space distribution does require at least an E=+ po(r,p)z Eo)
8X 8 matrix representation.

1+

Mﬁ(r,p*,pz)) 124




972 KLAUS GEIGER 54

W2

ab r k) =

FIG. 10. The “collisional”
self-energies in two-loop approxi-
mation, Eqgs.(121) and (122): (a)
the contributions to the gluon cor-

(b) relation functlonsH,jV and(b) the
contributions to the quark correla-
5% (e - + tion functionsX =.

where K°=1/2(k*+k™)=k*/2, p°=p*/2, and o,

Ty(r,p)= 5{27(r,p),Fq(r.p)}
==+ 2+,ugq, E(0)=+\/p +,ugq Accordingly, one can ‘ ’ "
now write — LSS(rp) Fo(rp)— 1)
w=x\Vk2+q20(q2 - u2), E==\p’+q’6(q>—p2,), and the careted self-energy functioiisand stand for
(125
M=o S st(ks)e™ (ks)IZ(r.k
and (rv )_ES=1Y28 ( 15)8 ( 15) /_LV(rY )1
Fy(r k)é(kz—qz)zi[F (r,k) 8(k°— o) - 1 — -
o Y209 3P =57 2 [U(p.S)XE(rp)u(p.s)
— R S(KO _ _
+Rr—kdlicr w)l, Fo(POSI(r-po(ps)] (129
1 - - . .
Fq(r,p)é(pz—qf)= E[Fq(r,p)ﬁ(po—E) The collision termsZy andZ,, on the right hand side of Eq.

(127 describe the balance of gain and loss of partons in a
phase-space elemedtrd“k, or d3d*p, within a time slice
aroundr,. Their explicit form is obtained as explained in

Appendix D, and emerges as the result of applying the usual
which exhibits explicitly the particle- antlpartlcle character of cutting rules[42] to the self-energies Eq¢121) and (122)

the phase-space densities. In particulgy(r, p) denotes the and averagingsumming over initial (final) spin and color

quark distribution and:q(r p) the antiquark distribution. degrees of freedortsee Fig. 11 The resulting structure of
Using the representatior{§23) for D< , S in the self- the collision terms is

energies Eqgs(122 and (121), and substltuting into Egs.

(120 gives the final form of the transport equations in the

+Fq4(r,—p)8(p°+E)], (126

oss) ain)
kinetic regime(cf. Appendix D), Zo(r,pa) = E (~ 288 ap(Pr. D) + 2 (P )] (130
K-9,Fg(r,K)=Zy4(r,K), p-dFqy(r,p)=Z4(r,p), d3p3
127 =3, a3 32E2J (2m)2E,
where
T k= 3 (r K. F(r 0}, (129 J(z e, (2™ 0" (1t P2 Ps—Pa)

— L{TI5(r k), Fy(r, k) + 1}, X{Fa(1)Fp(2)| M(ab—cd)[26(q? — uj,)
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FIG. 11. Cutting the “collisional” two-loop self-energies gives the different binary 2 collision processes, namelg) the gluon terms
99-99, 99-9d, 9g9—qg, and(b) the quark termsqg<qg, qg—qg, qgq—qa.

X[1£F(3)][1xF4(4)] Pi=P.P2.P3.P4 at space-time point=(rr). The structure

2 of the collision terms in conjunction with Eq€l27) is such
~[1xFa(D][1£Fp(2)]| M(cd—ab)] that the squared matrix elements for the various scattering
% H(Qf—ﬂéq)Fc(3)Fd(4)}- processes 12 34 (depicted in Fig. 11, and explicitly given

in Appendix D are weighted by a distribution function

F:(i) for each of the partons coming into the vertex and a
Here the notation is¢(i)=F;(r,p;) for the distribution factor[1xF; (j)] for each of the outgoing ones. Thesign
functions of the parton specids-g,q,q with four-momenta is for gluons so that (% Fg) results in a Bose enhancement,
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FIG. 12. lllustration of the “hard scattering picture,” for the evolution of a multiparton system on the basis of the coupled renormal-
ization and transport equation@) A dressed parton is described as a quasiparticle with a dynamical substructure, corresponding to an
instantaneous state consisting of a number of bare gluons and ditaresliative clougl The underlying quantum fluctuations are embodied
in the spectral densities, or parton structure functions, which are determined by the renormalization egopfidrisary collision between
two dressed partons is described as a statistically occurring “hard scattering,” determined by the local density of dressed partons, and
convoluted with their spectral densities at the “hard scattering scale” of the order of the momentum transfer. This is described by the
transport equations.

and the — sign refers to quarks and antiquarks with lustration of this is shown in Fig. 12.
(1-Fg) indicating Pauli blocking. This is a direct conse-

guence of the quantum-statistical difference between the

gluon and quark propagatofE&gs. (75 and(78)]. The fac- F. A Monte Carlo calculation scheme
tors C,p, (C.q) in front account for the identical particle ef-

-at 4 . N A practical calculation scheme to compute the evolution
fect, if incoming(outgoing partons are indistinguishable.

. . ; - of a multiparton system as governed by the coupled renor-
Equations(127) are the essential result of this section. malization and transport equations may be outlined with the

These Boltzmann-type equations are the final form of th%ollowin concrete example. Consider the collision of two
transport equations for the dressed partons with phase-space 9 pie.

densitiest. The equations have a drift term on the left hand'2'9€ nuclei with mass numbeA>_1 at uItrareIat|V|st|_c_
side and a collision term on the right hand side, which bal_center-of-mass energy. Before their contact upon collision,

ances the various processes by which a dressed parton midy¢ @Pproaching nuclei appear as two highly Lorentz-
be gained or lost in a phase-space elem#nti*p around contracted disks of coherently bound gluons and quarks with
time rO+Ar/2=r+1/(2u). They describe the dynamics of @ coherence lengthlo=1/uo, where uo=gsp, with

the multiparton system on kinetic scales, due to statisticalp. = Ngq/ (7 RZ) sets the scale of the typical spacelike par-
binary collisions, in which dressed partons appear as quasion virtuality, and hence  their characteristic transverse
particles with a dynamical substructure, which is describesize. McLerran and Venugopal@5] have shown that iA

in terms of probabilities to find a parton as a state consistings sufficiently large, the associated primeval parton distribu-
of a number of bare gluons and quarks of virtualitiestion of the nuclei before and shortly after the collision can be
k2> ,u.sq. These the underlying quantum fluctuations are em<¢alculated nonperturbatively from first principles in terms of
bodied inF=N®P through the spectral density, or parton coherent quantum fields. Their conclusion is that, as long as
structure functionP and are determined by the renormaliza- the very early generation of this parton matter distribution
tion equationg115). A scattering between two dressed par-has ApAr~1, it cannot be described by a kinetic particle
tons is therefore described as a “hard scattering” determineghicture, which requiresApAr>1. However, after a time

by the probabilities of finding in each of them a hard fluc-ty=1/u, past the nuclear contact, the parton matter has gone
tuation with kzzqf>,ugq of the order of the momentum through a decoherence stage, so that the latter condition is
transfer that sets the probing scale. This is expressed by ttsatisfied, and a kinetic description can be matched to the
collision term on the right hand side, in which the productscomplex coherent evolution of the primeval matter. In other
of F’'s involve the convolution of spectral densitieB, words, at timety, one may proceed with a probabilistic de-
weighted with the squared matrix elements. A graphical il-scription of the parton dynamics in terms of the interplay
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between coherent radiative evolution and incoherent binargvolution of a high-energy system of self- and mutually in-

interactions, as suggested in the present work. teracting gluons and quarks. The main result is a set of two
At time ty, one starts from the initial multiparton state, distinct but coupled equations that govern the time evolution

and the subsequent time evolution of the partons’ phasesf the gluon and quark Wigner functions, the quantum ana-

space densitieB 4q(t,r,p2,p) may be calculated by a Monte logues of the classical phase-space densities.

Carlo procedure, using the advocated discretization of space- (i) A renormalization equation, which describes the mo-

time with four-dimensional cells of sizar = AtA3r=p %, mentum dependence of short-distance quantum fluctuations
(|) The first Step consists in eva'uating, from the collision due to the partons’ self-interactions. It defines the state of a

kernel of the transport equatiori$27), the probabilities of ~dressed parton as a quasiparticle with a renormalized mass

scatterings among the initial partons within the time sliceand a decay width, corresponding to virtual and real emis-
Ato=pn Y(tg)=uo ' betweent, andty+At, for each cell ~ Slon and absorption processes. The solution of this equation

- , o . describes, locally in space-time, the spectral density in terms
centered around. The essential conditiofi17) provides the of bare partons that are associated with the quantum sub-

possibility of treating the scattering among partons incoher-

; ) structure of the state of a dressed parton, and determines the
ently, and requires that the impact paramétgy of any two , . . :
: . . 21 partons’ structure functions as well as their dynamical mass
scattering candidatesandb must satisfyb,,<uq ~, imply-

o for th for of th ! 3 spectrum.
ing for the momentum transfer of the scatteriny, > u5, (i) A transport equation, which describes the space-time

where . is the initial virtuality of the partons &b, set by  eyolution of the dressed partons in the kinetic quasiparticle
the coherence length of the colliding nuclei. The primaryregime by means of mutual binary collisions. It determines
parton scatteringa+b that occur withinAt, subject to this  the time dependence of the change both of the spatial density
condition change the phase-space occupation of partons ghq the energy-momentum distribution of dressed partons
t;=to+Atg in two ways: on the one hand their spatial pro- que to elastic and inelastic collisions. Accordingly, it not
file is altered due to gain and loss of deflected scatteaérs only redistributes the partons in space, but also modifies their
andb’ in the spatial cells, and on the other hand, the virtu-momentum spectrum and virtualities, which feed back into
alities are reset fronk=kj= g to ky*=Kk\?= 05, > uf. the renormalization equations.

(i) In the next step one must now calculate the quantum Loosely speaking, the renormalization equation defines
fluctuations, virtual plus real emission and absorption prothe state of dessed partons, whereas the transport equation
cesses, that are triggered by the primary scatterings and thgverns the occupation of these states. The self-consistent
change of virtualities fromk? to k’2. That is, the parton solution of the equations provides the means to trace the
structure functions need to be evolved witlfit, according  dynamical development of the multiparton system in real
to the renormalization equatiofis15), which account for the time and full seven-dimensional phase spaced3pdp?,
associated renormalization and dissipation. One then obtairspanned by position, momentum, and invariant virtuality. It
a spatial profile of new dressed partons that defines the initiuggests a probabilistic, causal description, which is predes-
condition for the further evolution, starting gt. The proce- tined for numerical evaluation by using Monte Carlo simu-
dure repeats, as before &, by evaluating the scattering lation techniques.

probabilities in the next time slicAt,=u~ (t;) between The essential steps that lead to this kinetic framework
t, andt; +Aty, now, however, subject to the modified inco- may be summarized as follows:

herence condition that for any scattering of partansndb (a) the path integral quantization of the classical action,
their impact parameter must He,,<max({Z k) %2 ie., using the CTP formalism witlin-in boundary conditions,
Qan. > Max(é k). including initial state correlations at tintg described by the

It is important to realize that the conditiofi1?) of a  density matrixp(to);
well-defined separation between quantum and kinetic scales (b) the two-point source approximation, which allows one
imposes the crucial incoherence requirement for binary scato rewrite the CTP path integral as the generating functional
terings, and allows a “hard scattering” picture, in which the for a possible color background field, and for the two-point
quantum evolution and hard scattering of evolving quant&luon and quark Green functions defined on the closed time
factorize. The condition defines the range of validity for apath betweert, andt..;
probabilistic description in terms of incoherently scattering () the derivation of the self-consistent equations of mo-
particles, and is essentially the uncertainty principle: the quation for mean field(Ginzburg-Landau equatiorand Green
siclassical picture holds only if the scattering partons may béunctions(Dyson-Schwinger equations
treated as clearly distinguishable, incoherent quasiparticles (d) the transition to kinetic theory by imposing the
of size 14/k?, meaning that at least a “formation time” of Physics-motivated well-defined separation betweergtran-
t,=1/VkZ must have passed since their previous scatteringUm scalethat specifies the range of short-distance quantum
during which their quantum structure evolves with virtuality f’luc_tuatlons.and theinetic scalethat characterizes the range
k2. A concrete example of this scheme will be presentecP_f interparticle correlations and stochastic binary interac-

elsewhere. tions; _ _ _
(e) the conversion of the Dyson-Schwinger equations for

IV. CONCLUDING REMARKS the Green _functions to the set of r.enorm.alization and trans-
port equations for the corresponding Wigner functions, on
In this paper | have attempted to lay out a foundation tothe basis of the separation of quantum and kinetic scales and
obtain from the fundamental quantum field theoretical prin-a cellular space-time picture;
ciples of QCD a self-consistent kinetic description for the (f) the calculation of the spectral density of bare partons,
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locally within the cells, from the renormalization equations, :Trz¢<oin|@>J<¢|;)|oiﬂ>J, including possible initial state
which define the state of dressed partons in terms of theigorrelations represented by the density majriatt,, and a

substructure, and the evaluation of the collision kernel of thesum over a complete set of statestt... In the Heisenberg
transport equations, which determine the statistical occumpicture it is represented by

rence of scattering processes among these dressed partons.

This quantum-kinetic framework may be extended in a R R
straightforward manner to include effects of a color back- ZP[J,P]=TV[ TPEXP(iE f pd4XJf(X)®L(X)>P},
ground field, or gluonic mean field, that acts as a classical f (A1)
background medium in which the partonic quanta evolve
(e.g., in a QCD plasma, where it may be generated due to ”\fr‘/heref _
bulk dynamics of soft gluon modgesThis option has not

f_
been considered in the present paper; however, the framg-egrifs OIL freedgm’ ?.n?dth_(AM"/_}’#) arrerzm':hgfcorre-
work incorporates this possibility by considering a nonvan-SPonding Heisenberg field operators. The synibeefers to

ishing A* instead of setting it to zero as in Sec. Ill. The the time mtggraﬂon alpng_dosgd time pathn the complex

) i ' t plane as illustrated in Fig. 2: the path goes forward from

inclusion of such a mean field would extend the set of renor; o
o : AN o to t,, on the positive branch, and then back fromto tq

malization and transport equations for the partons’ Wigne

: . : ) . on the negative branch. The generalized time-ordefipds
Iﬁgc;['%nas n t%élg?tgggﬁt;(t)i\/tgli,th;lnezzllifrgctLTc?jg Egugc I;%l]:jo:rtherefore defined such that any point on the second branch is

first, the poles of the Wigner functions would be shifted by understood at a later instant than any point on the first branch

mean-field-generated mag€A*), and second, the transporta[Cf' Egs.(28) and(29)]. Utilizing Eq. (13), Bq. (A1) can be

. . e rewritten as
equations would acquire an additional force term of Vlasov

form. aq N R
The future extensions and applications are manifold. Most Zp[ 3+ 3-,p]=Tr{U_(to,OU; (Lto)p(to)},  (A2)
important at first, | believe, is a detailed calculation for a ] N )
specific situation where the concepts and formalism prewhereJ, (J_) is the source along the positieegative
sented here may be illustrated and checked for consistenchranch of Fig. 2a). In generall . #J_, so thatZp depends
For instance, it would be desirable to study a theroal ©On two different sources. If these are set equal, one has
close to thermalparton system in this real-time description, Zp(J,J,p)=Trp, which is equal to unity in the absence of
and compare it with the well-known results in the imaginary_initial correlations, being a statement of unitarity. The de-
time formalism of finite-temperature QCD. Such a project isfivatives of Zp with respect to the sources generate the
planned to be carried out in the near future. On the otheP-point CTP Green functions
hand, the probabilistic interpretation of the real-time evolu-

g,u,u,d,d, ... specifies the gluon and quark field

tion of a rather general multiparton system offers the oppor- Glll '''''''' f” (X1, Xn)
tunity to simulate the dynamical development on the basis of A
the master equations with Monte Carlo techniques on a com- B 8"Zp[J4,J_ ,p]
puter[43]. B 5Jf1(x1)- . 6Jf”(xn)
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APPENDIX A: THE CTP FORMALISM Doty )] b (ta))= b~ () b~ (to)), Ad
AND THE TWO.POINT SOURCE H(to.X)| @™ (t0)) =~ ()|~ (to)) (A4)

GENERATING FUNCTIONAL and in the remote future att.,,

In this appendix, | review the CTP functional formalism . .
applied to the case of QCD. For additional reading concern- Oyt X) | 0(te))=e(X)| (). (A5)
ing the general techniques, | refer to the extensive literature
[3-5,7-9. In thein-in formulation of quantum field theory, Then, making use of the completeness of the eigenstates, one
mentioned in Sec. Il, the generating functional is defined asbtains from Eq(A2) the following functional integral rep-
the in-vacuum to in-vacuum amplitude Z[J,p] resentation foZp :
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R o density matrix element containing the initial state correla-
Zp[J, ,J- ,P]:f D¢ Do Do tions that may be represented by a nonlocal source functional
K as
X(¢ ™ (to)|U] (to.t)]e(t))
X( (1) Uy, (o) 7 (to)) /\/[Z>]=<<zﬁ+(to)|r3l<¢>(to)>Ee><p<iEf Kil b+ ,d>])-
~ Al2
X(6* (to)|pl " (t0)). (A6) (A1)
. . . When expanded functionally as
At this point it is convenient to represeit and — by greek
indicesa,B,v, ... and to introduce a X 2 matrixc as a 1 ,
“metric tensor,” Kilps,d_1=K'+Klp*+ EE szfﬁd)?d’fﬁ'
fI
Tap=1P=diag1,-1), a,B==, (A7)

1 el
+=> KIET gl g7 + ..., (AL3)
and similarly higher-rank tensors, 6 Fr .
Uagy= OapThys Uapys=SON@)8,584,8,5, (A8) Eq. (A11l) becomes a fgnctional of an infin_ite number of
nonlocal sourceg8], which, however, contributenly at
with the usual summation convention over repeated greek=t,, corresponding to the initial state correlations,
indicese, B3,... . With this convention one can generalize the

classical actiofEq. (4)] to account for all four field order- Zp[Jd,,d ,ﬁ]EZp[Ja,KQB, .
ings on the closed time pafh:
o _ = | I Dopsexpli| 1[¢:1+ > | IF p¢
[71=106{1-1*[¢; ] Jf,a f p{ e R
= 1O 7, pARAS T+ IO 75y ] 1 ,
e g +§2 Gk f+ ] (A14)
+ T [U g, Y AT Y U (9, AT ALAY, £’
VapysARALATAY), (A9)  where the constant terii’ has been absorbed into the nor-

. malization and the local initial state kerriéfa(x) has been
where the correspondence of the tetngith the ones of EQ.  compined with the external source terd(x), i.e.

(4) is obvious(the color indices are suppressed heAdso, I =3 4K
the following shorthand notation for the integration over the * . ¢ ¢

. . . : . The corresponding generating functional for then-
space-time variables will be used in the functional sense: P 99 g

nectedGreen functiond/Vp is defined as usual by the loga-

rithm of Zp:
J¢Ef d*xJ(x) p(X),
P Wp[J¥ KB KBy | 1=—i InZp[I* KB KBY | 1.
(A15)
PKp= fpd4Xd4Y¢(X)K(X,Y) B(y). (A10)  The functional derivatives oW, with respect to the local

sourcesJ{(x) define gluon and quark mean fielaﬁ“(x) as

Returning to the functional integrfiEq. (A6)], | now utilize the expectation values of the single field operators, which
the above conventions and exploit the fact that the first twceither can arise through nonvanishing external sources, or, in
amplitudes are just the ordinary transition matrix elements ithe case of gluons, may be generated dynamically by the
the presence o, andJ_, whereas the density matrix ele- System itself depending on the initial conditions. Similarly,
ment incorporates the initial state correlations,adt the end  the variation of Wp with respect to the nonlocal kernels
points of the closed time path. | obtain the path integral K% (x,x'),K¢7,(x,x',x"), ..., gives the the n-point
representation foZp in analogy with the usual field theory Green functionsG?f,(x,x’), Gfﬁfy,,(x,x’,x"), etc., for the
(11,12 different particle species, which are the expectation values of
products ofn field operators. On the basis of E§8.14) and
~Al @ ; @ (A15), the explicitdefinitions[11] for the mean fields and the
Zpl s - ’p]_J ]'—f'[ D¢fexp{|(l[¢>f] Green functions are given by the functional derivatives of
Wp with respect to the sourcesandK:

Mpl. (A11) W ~
= ot (A16)

+Z Jf,m“)

Here Dopf=D¢; D¢; , and | suppressed the formal pres-

ence of the Faddeev-Popov determinant associated with the SWp 1 _
gauge freedom, because for the class of ghost-free gauges —r = E(inﬁJr ¢$¢f,),
[Eq. (3)] it is equal to unity. The functionaN p] is the oK op
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oWp 1 _ ~ —p~ oWp 1 _ _
T F T /naB s~ aB Ty a By _TrinaeB a B
5K[J,;;" = 6(fo,f,,+3|fo,¢f,,+ o5 bt din), etc. SKETx,Y) = 2[|DM,,(x,y)+AM(X)AV(y)],
. - ) oWp )
Note that with these definitions, the Green functions ——=—iS*¥(x,y),
K ap(X,Y)

foﬁ,"_'f, describe the actual net change &Wp, i.e.,

5WP/6KLf,b:::-' with the “trivial” product gggfﬁ,. .. sub- Where, as a reminder, 3=+, not to be confused with color
tracted. indices, which | suppressed in this appendix.

One immediately recognizes the infinite hierarchy of the
Green functions, the complete knowledge of which would APPENDIX B: FROM QUANTUM FIELD DESCRIPTION
correspond to the full solution of the theory. Clearly, in prac- TO KINETIC THEORY
tice one must truncate this infinite series. In what follows, |

will assume that alh-point sources of orden=3 (i.e., the . ; L
kernelsK*#?, etc) are negligible and thus can be omitted. Schwinger equation$44) and (45) to the kinetic counter-

Such an approximation is justified if the higher-order corre—parts’ the renormalization equatiofé) and transport equa-

lations generated by the=3 source terms are comparably tions (68). A good separation between the quantum scale of

. short-distance fluctuations and the statistical-kinetic scale is
small and the quantum dynamics of the system can be suffj;

. . . . SO the essential requirement for recasting the quantum-
ciently well described by single-particle distributions corre- . . ;
: : i - theoretical problem, formulated in terms of the two-point
sponding to the two-point functions. In fact, this is the very

hypothesis of the parton description of QCD at large ener-Green function3(x,y), into the much simpler form of ki-

gies, where higher-order correlatiorishigher-twist” ef- netic theory, employing Wigner transforn@(r,p). In the

fects are kinematically suppressed by powers of a large moPicture of cellular space-time, constructed in Sec. Ill A, a

mentum scale Q™2 corresponding to an approximate clearly defined separation b_etween the two _scales IS con-
L . . ; trolled by the characteristic size of the space-time cells with
factorization of dominant short-distance two-point correla-

4t i
tions and larger-distance three-, faur- . , point correlations \LOIU_TiA%f'“i e, tE}e/ anosti)zs;n?s Ill;r erj(fcﬂantr:ﬁ; ﬁ;r?”ae of
associated with multiparticle effects, an approximation\'“ Kin, 5% 9 9
which becomes exact in the asymptotic lifiz7]. In this

short-distance quantum quctuatiorer,quasufl, but small
approximation the generating functiori&lq. (A14)] then ex- compared to the mean free path of the quanta between their
plicitly reads

In this appendix | explain steps that lead from the Dyson-

kinetic, statistical interactiongAr,;,. This is illustrated in
Figs. 6 and 7. Therefore the correlation between different
o cells is negligible by design, and the only relevant case is
Zp[IH],], KRV K] = eWelI" JK-"K when the points andy in the argument oG(x,y) lie in the
same cell. In the interior of each cell, one can then assume
_ f DAEDY DIex;{i(l[A“ " J] gpproximate' Franslation in\(ariance, because Iarge—distance
a”Va"Va arYarVa inhomogeneities of space-time are, by construction, not re-
solvable within the small cell volume. Thus, for each indi-
vidual cell, one can Fourier-transform the Green functions
over the cell volume, and use the common machinery of
propagator theory as for homogeneous systems, or the
vacuum. Specifically, introducing the variables

1
] o _ aBpv
IR+ | Yot ALK A

+@kaﬁ¢ﬁ) : (A17)

r=3(x+y), s=x-y, (B1)

which is the expression | stated in EQS) of Sec. I1B. e transforms the Green functiofs= D, .S with respect

Since the present interest concerns qnly cases where no €% the “relative coordinate’s, whereas the “absolute coor-
ternal sources are present, one obtains from (B47) the dinate” r serves as a cell label:

mean fields and the two-point functions for gluons and

guarks by taking into account the fact that in the absence of d*p _ X+y

external sources the establishment of a local colored mean G(x,y)=f (Zw)4e'p‘(xy)G<T,x—y)

field can only occur for the gluons, but not for quarks or

antiquarks. Because of their bosonic character the production dp

of gluons can lead to a dynamically generated coherent field = J’ 2mie PG(r,9), (B2)

acting as a background medium, whereas the production of

quarks and antiquarks occurs only in pairs and cannot yield hereG(r,p) is called the Wigner transform @(x,y), and
coherent mean field. Furthermore, a physical gluon Meadimjlarly for the self-energies(x,y)=11,,,>
~ ~ ] mv ]

field is determined by the equalify =A*=A*. Hence one

gets, from Eq(A17), using Eq.(A16), d'q . [x+y
E(X,Y):j (277)48 iq-(x y)g(T,X—Y)
P = 5VVP . 5WP . d4q s
5\]5()() —A/L(X): 5E(X) - 5] a(X) = 0, (A18) :f (277)4e q E(I’,S). (83)
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If the separation between quantum and kinetic scales were i

perfect(as in vacuum, wherdr,,==), then ther depen- d4X'f(X,X')g(X’.Y)HGXF{E(%”'ﬁgg)_aﬁf)'ﬁég))
dence would drop out and the Wigner transforms reduce to

the ordinary Fourier transform@(p) and£(q). In the case X f(r,p)g(r,p). (B8)

of moderately inhomogeneous media, meaning that the

Green functions and self-energies vary only slowly with  The gradient expansiofEq. (B4)] corresponds to keeping
and are strongly peaked aroursd=x—y, as | consider only the first two terms in the Taylor series of the exponen-

here, then one can expand the Green functionga| function, which gives the following set of conversion
G(x,y)=W(r + 3s,r —3s)=W(r,s) in a series of gradients, ryles:

W(r+s,8)=W(r,s)+s-d,W(r,s)+-- -, (B4)
f d*x f(x,x")g(x’,y)
and analogously for the self-energi@&sThe great advantage

of the Wigner transformation and the gradient expansion is i
that, on the one hand, the fundamental Dyson-Schwinger —f(r,p)g(r,p)+ E[(apf)~(arg)—(arf)~(§pg)],
equationg44) and(45) do not change their formal structure
when Wigner transformed; on the other hand, however,
within the kinetic approximation based on the gradient ex-
pansion Eq. (152)], they become algebraic differential equa-
tions rather than integro-differential equations like the origi-
nal ones. For example, when rewriting the integral terms on i
th(_a right side of Egs.(44) and (45) by substituting the h(y)g(x,y)ﬁh(r)g(r,p”E(arh).(ﬁpg),
Wigner transforms for the Green functio®&=D*",S, Eg.

(B2) and self-energieg=11#",3, Eq. (B3), and exploiting

the expansiofiEq. (B4)] up to first order, one finds for the ) 1
terms[£G=[11,,,DY or [EG=[3S: 55‘:()(13/)_’( —ip#+ Eaﬁ‘)f(r,p),

h(X)g06Y) ()G, p)= 5 (3:h)-(950),

f d4 rg ’ G ’ — d4q d4p fd4 ’ 1
X' E(X,X)G(X",y)= (27T)4 (27T)4 X o"’Lny(X,y)—> +ipl’«+§0’).:’-)f(r,p)_ (B9)
. . [ X+X
Xe*lq'(X*X )5 X—X' . .
2 ) If one applies these rules now to the Dyson-Schwinger equa-
, tions (44) and (45), which upon setting for simplicity the
Xe—ip.(x’—y)G(X y,x’—y). mean-field contributiong,=,=0, read
(B5) Oy DEHOGY) = 8260 05(X,Y)
The integrand will be significantly different from zero only if _f d*x' TT* X VD (x’
x' lies within the same cell ax andy, in which case P rab (XD (X0Y),

3(x+x")=3(x'+y)=r. Therefore Eq(B5) reduces to

Dgg(xiy)ﬁy,,up: §abg/u/5|‘;(xvy)
f d*x’ E(x,x")G(X",y)
- JPdAX,Dg,a,b’(x'x,)ngzjb(x/’y)*

d*p .
_ —ip-(x=y)
J(ZW)4{e 5(r,p)G(r,p)+A(r:p)}, (BlO)
B6
(BO) and
whereA(r,p) embodies the corrections to the ideal separa-
tion of cells. In terms of the gradient expansidgg. (B4)], - s i , ,
the first order correction which ©(%) is given by 1y xS (X,y) = 6ij Sp(X,y) + Ld X' Zi (X, X) S (X", ),
AC.p) i 9&(r,p) 9G(r,p) 1 9&(r,p) IG(r,p)
r! =3 Y . <
P=3 p, ar# 2 or# ap* =S;j(X,y)iy-dy= & 5§(x,y)+f d“x’Sik(x,x’)Ekj(x’,y),
P
i B11
= S1(06)-(3,6) ~ (3,)-(7,0)]. ®7) (B1D

one finds on the basis of the gradient expangiemn (B4)] a
In general, the convolution between two functidnandg is  set of corresponding matrix equations for the Wigner trans-
given by forms of the gluon and quark Green functions
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2 1—)2 R 3 v
—k +Z(9,—|k~(9r Dip(r.k)
- i
=0d*"(k) aplp— (TID)5p — 5[ (dl1) - (4:D)
= (0 11#7) - (kD ) 15 »
2 1(_2 : Py
DA (r )| K2+ Za7+ik- 9y
R i
=d*"(k) aplp— (DIDap= 5[ (D) (4,1T)

—(9,D)- (o I1) 14y , (B12)

and

p+ IE(;r }Sj(rvp): 5ijiP+(zS)ij + I5[((7,32)'(1%3)

‘y.

— (%) (3p9)]ij

Sij(rvp)[Y' ( p— IE';r”: 5ijiP+(SE)ij + IE[((?pS)'(ﬁrE)

— (9,9 (p2) lij» (B13

where
i 1 forF,F_, B14
P lo for >, <, (B14

recalling thatG=D*",S and the self-energie§=I1#"3,
each represent a 2 2 matrix as defined by Eq27),

G= (B15)

GF G~ & &
G< GF ! 5:(5< 5F) '

Adding the two equations dB12) [(B13)] yields the imagi-

For the quark Wigner functions the corresponding equations
read

X o
S DS (002 = 6y 3e— 5([y-2,.S1),

i
+ ({Eis}+)ij+2ﬁj !

N| -

X | |
1008y} =5 Ly p.S1 )y~ 52,51,

+ %]—'i(j“, (B19)
where
F=[h3,0S]-~[3,3,0S]-,
FH={n3,0 St —{%,08S}, . (B19)

The equationgB18) for quark propagators can be formally
brought in the same form as E@16) for the gluon propa-
gators by multiplying the first equation ofB13) by
v-(p+i/29,) 6 + 2 from the left, and the second equation
of (B13) by y-(p—i/29,) 6, + % from the right, and then
adding and subtracting the resulting equations:

2 1 2 1 1 2
p = —=dr |S(r,p)=(y-p+2)d1lp+ 5({Z%,S}1)j;
4 2
i 1
1 N 1
p'arSij(rvp):E(')"ar)éiij_E([z aS]—)ij+ZAij
+ '§B§j*> , (B20)

where the notatio ;= §;;% is employed, and

nary parts as the passage to the renormalization equations

stated in Eq(67), whereas subtracting the two equations of
(B12) [(B13)] gives the real parts as the transport equations

(68). For the gluon Wigner functions one obtains
2 1 2 wv ya% 1 1 nv
k> 707 | DA (r k)= —d*"(K) Saple+ 5 ({T1,D} )43

i
-)
+ 29

[ 1
k-9:D35(r k)= = 5 ([I1,D] )55+ 7045, (B16)

where[A,B]_=AB-BA, {A,B},=AB+BA, and

g =[ayI14, 3 D]~ [ T14, kD],

g

G ={a 15 D7} — {11, ,\D " .

g

(B17)

A =3 [(y-p+ D(F+FD)
= (FO=F)(yp+ D)),

BE=1[(y g ) (F )+ FN = (F )= FHD)(y-)].
(B21)

Due to the 22 matrix character of Eq$B16), (B18), and
(B20), the four component§,F,>,< of the Green func-
tions D#” and S and self-energie$l*” and X mix, so that
each of these equations actually represents a nontrivial
coupled set of four equations. However, as noted in Sec.
Il C, in the physical representatiofEq. (77)],

. [0 GA . (& &R

G= GR ¢/ &= A ol (B22)
one has the great advantage that the retarded and advanced
functionsGRW are determined exclusively by tiie and A
components, and only the equation @ involves a mixing
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of these. Omitting for lucidity the gradient terngsand F,

the renormalization functiona, and A, Egs. (109, and

Egs. (B16) become in the physical representation a self-finally to the evolution equations for the phase-space densi-

contained set for the retarded and advanced functions:

kZ_%aZ) /,LI/R A)(r k)
1
=—d*"(k) Sapt E[HR(A>DR(A)+ DR(A)HR(A>]§£; ,

i
E[l—IR(A)DR(A) _ DR(A)HR(A)]gtI; ,
(B23)

k-0, D4R (r k)=~

and

1
Sty RSV} = 8= 7 ([y- 4, V]

I\)II—‘

({ZFY, KM,

270, SV} =5 [y S,

RPLOE LT

(B24)

plus a set of mixed equations for the correlation functions,

(k2—3ﬁ ) D4Y=(r k)
4
(H =DA+TIRD=+D=I1"+DRIT=)~,

k-3, D&=(r k)

_ E(HEDA‘FHRDE—DEHA DRH< gé/’
(B25)
with D, =D, +D;,,, and
{7'p,3?(r,p)}+: [7 O7r,S<:| )Ij +(2° =$h+3Rs*
+SS3A+SRE ),

i{y-9.S;(r.p)}e=—([y-p.S7]-); +(Z=H+32Rs=
-ST3A-SRE ), (B26)
with Sc=S~ +S~.

APPENDIX C: THE RENORMALIZATION FUNCTIONS
AND THE SPECTRAL DENSITIES OF PARTONS

tieskFy andFg, Eq.(119. | exemplify the procedure for the
simpler case of the quark self-energy. The case of the gluon
self-energy is more elaborate, but conceptually it is com-
pletely analogous. | confine myself here to the leading log
approximation(LLA), referring to Refs[27,28 for addi-
tional reading.

The quantity of interest is hence the quark self-energy
3= 6;p?2, Eq. (90), given by Eq.(99). As explained in
Sec. Il A, when studying short-distance dynamics around the
light cone, it is appropriate and most convenient to work in
the planar axial gauga-A=0, Egs.(2) and (3), with the
constant vectom* satisfying n><1. Parametrizing it as
n“=(a+b,0,0a—b) then requiresn’=4ab<1. Without
loss of generality, one may skt=1 anda<1/4, so that the
scalar product of n with some four-vector q is
n-g=q*+aq =q" with g =qgy*g; and q'q"
=g°—q>=0?<q" 2. Let me then proceed with Eq104)
for the variation of the scalar quark self-energy function
2(r,p) of a quark with momentump and virtuality
p?<p*?2 within a given space-time cell of volume
Q(r)=Ar%A3r = 4(r) aroundr (cf. Sec. Il A):

Jd -
DZPER(A)(Y N

p’ [ro+u2
- F<2m)f(2 o J “ar1ip' 7

o~ (2p)

dAy(r,p’) 9

2 (rin2 /2 |2
X[Vaqo(r:p=p" =, K" Ky Kpry Kier)

XAg(r,k”)]Xugg(p’,k”,n) (Cy
with
2
Kp—(nnp) —p”+ S(PP-ph)=p2  (C2
and
k/l k/l
L%p' K= 2 (|0 )(y- n)+k("|0 n)(y-k") +o(n?).
(C3

Here,p is the four-momentum of the incoming quark which
branches intqp’ andk” of the outgoing quark and gluon,
respectively. Because?<1, the terms0(n?) are negligible
and will be omitted in the following.
The role of the time mtegrajl")“/(z“)d

U(2) in Eq.(C1) over
the finite time sliceu™ 1= l(r) of the space-time cell

aroundr was investigated in detail in Ref37] to which |
refer for details rather than repeating the elaborate presenta-
tion given there. For the present context it suffices to note

In the following | explain in more detail the steps that that the evolution of the parton densities during a finite time
lead from the determining equation for the retarded selfAt=1/u (rather thanAt—) is modified by the time inte-

energiesl] and, Egs.(103 and(104), to the solution for

gral fd7 weighted by the functior? which must satisfy
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o) (9 “
j dr7(p'7)=1. (C9 p2WER(A>(r,p)
0
2

Aside from this normalization condition, the functi@fis not _ 956 fl fZPZ 2 B 2
determinable from first principles, but needs to be specified 1672 ), dz 0 dp™)22(y-p)+(1-2z+22)
as physics input from plausibility arguments: to give two 5
simple examples7=p’ #(1—p'7) or T=p’exp(—p’'7). As p=(y-n) V2 L rip2p2(1-2)
shown in Ref[37], the essential effect of the time weight (n-k") qag PP

T is the imposition of the uncertainty principle which con-

strains the simultaneous use of space-time and energy- x
momentum variables for the quantum evolution of partons.

When integrated over as in Eq.(C1), it limits the range of

2 PP 2, e -2
p*=—ip" %zp 5(1-2)p

12
virtualities p’? such that within the finite time slice XA r'(l—z)(pz— p_)
Aro=pu "1 only those fluctuationp— p’ +k” are resolvable 9 z
that are sufficiently short living, such that oA (1) [z
. x% (—HO— 1). (C11)
)= y70(P) = g (9 P
mP)=77o p'2 ()’

Next one integrates ovey’?, which yields for the last two

whererg=1/p’ i_s the proper lifetime of the virtual parton, t0 ¢5tors in Eq.(C9) an “effective vertex function” under the
be understood in the averaged sense. remainingz integral:

To perform the integralEq. (C1)], the procedure is as
follows. First, due to the kinematic ordering condition
2

2 12 1,12 ; "
p“>p’5k" in the LLA, the gluon momentunk” can be g
decomposed as V= ﬁvéqg[r;pz,zpz,(l—z)pz; p*2zp*?

1 n
":(1‘2)"‘(5‘2)ﬁp”kﬁo(”z)’ (1-2p A Ag(rizp)Ari(1-2p?],  (C12

r+
7= p_+ K/-p=Kk/-n= 0. (C6)  Wwhich in the LLA has been showj27,2§ to generate the

P running of the couplingrs= g§/(47r). In the present case,
however, it is modified by the finite-time slice effect ex-
plained after Eq.(C3), which produces thed function
(y-1) 0[(zp?lp*)ro—1] as a result of the'dr 7 integral in Eq.
UP¥(p’ K',n)=22(y-p)+(1—z+22%) ——=p°. (C7)  (C3). In any case, by a nontrivial manipulatidsee, e.g.,
(n-k") [27]), Eq. (C12 can be brought into the following form,
stated here without further elaboration:

Then one can rewrite EGC3) in the form

Next, one rewrites the integration measure in Efl) as

12 ker

Z_T_E)* (C8) Viff:Aq1(r;p2)as[(1—z)p2]0(;—32r0— 1). (C13

d4p/ :gd p/ 2d k//Zd 70

where thef function accounts for the aforementioned order- . o o _ -
ing of virtualities and acts as a kinematic constraint that lim-Employing this identification, inserting the decomposition
its the integration range, such that

. P(y-n)

12 AR(A) o
|(”2$(1—Z)(p2—p7). (Cg) E (r'p)—zl(’Y'p)+22 n-p ’ (C14)
Finally, to simplify the analysis, | approximate thentegral i Eq.(C11), and solving forA, andA in the parametriza-
by [37] tion of the self-energyEq. (96)],
ro+142um) 1 p* zp?
dTT(p'T)~6<———,)=0(—I‘ - 1>, S
frol/(Z,u) Iu'(r) p 2 p+ 0 A (r p): ,\1 _ Z (r p):A (r.pZ) 22}\
(C10 TR s +s, R
(C19

whereu(r) characterizes the size of the space-time interval

of the localized quantum fluctuatiorief. Sec. Il A, Eq.

(50)]. Using the above formulas, the integration od&f  one finds the form of the quark renormalization function as
now gives stated in Sec. lll E:



Ag(r,p%p*?)

[

de/Z

f dz Ar,z,p'?) 3%z, e)]

(C16)
wheré?!
af(1-2)p®] [zp
A(r,p?,2)= — 0 (p——ﬂ(r)) (C17
and
ag B 1+2°
¥4 (2,€)=Cg 1-z+e(p )" (C18
with
o p2n2 ~ p2
e(p 2)_4(p-n)2_p72<1' (C19
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This form can be derived by formal integration of EG.11)
with respect to Ip?, and exploiting the relation between the
retarded(advancejl propagatorsSR(® (self-energiess R

and the spectral densitiéﬁ’ as given by Eq(113). The first

term on the right side of the above integral representation
describes the probability that the parton density does not
change. It is the product of a “free streaming” part times the
Sudakov form factorA¢=<1, which suppresses the free
streaming probability because of the presence of parton in-
teractions. The second term then describes the complemen-
tary probability that the parton density does actually change
locally in phase spacer (p)—(r,p’), because of real and
virtual emission and absorption processes. This second con-
tribution is proportional to the ratio of Sudakov form factors,
Ag(r,ugq, P ALY (r,p'%z,p'?).

Now, becauseF=N;®P;, Eq. (58), the variation of
F:(r,p) with the parton momentum (more precisely, with
virtuality p?) therefore reflects the parton’s changing gluon-
quark substructure as dictated by the renormalization func-
tions, Ay(q) , also called the Sudakov form factor of a gluon

By repeating the same analysis for the gluon case one OQquark) This connection betweeh; andF; emerges as fol-

tains
Ag(r K2 K" 2= exp[ f"”dkk,: dzA(rzk'Z)
x| 57 Y52, e)+ygq(z,e))} (C20
where
ygg(z,e>=2cA(1_Z+i(k+2)+ ;Z+z(1—z>),

1
Yz =5[22+(1-2)]. (C21)
The renormalization function&; (f=g,q) determine the

form of the gluon and quark structure functioﬁ’(r,p)
defined in Sec. lll A, Eq(61), as the spectral densities of the
parton phase-space distributiois(r,p), which are the

space-time generalization of the usual momentum-space par-

lows. Treating gluons and quarks on the same footing, the
differentiation ofA]?l with respect top?, the incoming par-
tons’s virtuality, yields

p —zAf Yrip?p*t?

ap
—A NP2 pt Y

i

dzAr;p22) 9 " (z,e),
(C23

where the sum ovel’ = g,q automatically fixes’ due to the

symmetry properties of the kerneié " under interchange
of f' andf” [27]. On account of the momentum sum rule
[Eq. (86)] for the parton structure functions
P(r,p)="P(r;x,p?), i.e., the momentp™=xP*(r) of all
partons in a given cell around add up to the total cell
momentumP*(r), one has

1=2

ff’

dx xP! (r;x,p?), (C24

ton densities in QCD. With reference to the excellent reviewand hence

of Dokshitzeret al.[27], | merely state here the fact that the

parton structure functior@ﬁ’(r,p) can be shown to have the
following Dyson-Schwinger integral representation:

Pl (rix,p2) =8} 8(1—x)8(p?— u2) A(r; u2q.p* 2)
p2 dp/Z
+AHr 20 A |, o

i ng

1
dz
0
net ’ X
X[A(r,pz.z)yi f (z,e)PI”(E,p’Z;p’*z)

12
fol(r,pT,p'“)]. (C22

A detailed derivation of the effective coupling function
A(r,p?,2) can be found in Ref(37].

>

ff’

dx xpza 5P| (r:x,p?)=0 (C25

and, therefore, one can rewrite EG.18) in the form

Af Yr;p2p )| P (rix,pd) + A7 Y(r;pp* D)

(9p

X

apr(rxp)}

=—A7Yr;pipt Y szﬁ(r;pz,z)
fH
" 1 ’ X
X" (z,e)EPI,,(r;E,sz). (C26

Employing Eq.(C23) then yields
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J Schwinger equation$39) and (40) in terms of the Green
A—l(r. 2 +2) 2 Pf’(r.x 2) -
tALPLP P2 e (1XP functions GF, GF, G®, and G~ and self-energies
&, &, €, and€~, whereG=D,,,Sand&=11,,,3, fol-
=AY rp2p > fdz Ar;p%2)9t Y (z,€) low immediately the corresponding equations for the re-
d " f tarded, advanced, and correlation functio®§, G*, and
1 « GC and&R, £, and &S, as given by Eq(93):
x{ P (rix, 2)——Pf,',(r;—,z H (c27 1 _ ) )
f P~ 7 z P (DR<1A))“ (r,k)Z(D(oiR(A))“ — (Irea)*”,

The final evolution equation for the parton phase-space den- sl rp)=S.t 3 D1
sities F¢(r,p) is obtained by(i) multiplying with A;, (ii) Ry (F2P) = Siojr ~ >Rea b1
convoluting the resulting equation according to Exf) with and

the local parton density(r,p), i.e., the number of dressed

partons in a given cell arourd and (iii ) accounting for the DA¥(r,k)= —Dfﬁ”,[(D&c)“’V’—(Hc)“’”,]DZ’V,
competition between real emission and reverse absorption

; ; i .
processeibiz)S], using t_he fact that the squared matrix ele Se(r,p)=—Sr[Sioic—2clSa (D2)
ments «y,~ are invariant under the reversal—bc and
bc—a. The extended result is for the quarks. It is convenient to introduce scalar and di-

mensionless self-energy functiohbands through

kziF (r;x k2)=f1dz,6(r'k2 2) EF S ~
gke 9 0 R A A II45(r k) = Sap(k#k”— g# k) TI(r k),

—%Fg(r;x,kz)}l“gg(z,e) 2ij(r:p):5ijpzi(r:p)7 (D3)

so that the propagators can be written as
+ 2N¢Fq(r;x,kA)T 3%z, €)

DAL )= Bt~ ()~
—Nng(r;x,kz)ng(z,e)], : ’ o iy
9 1 1 [ x Si(r.p)=8;(y-p) : (D4)
2 v 12) — ) - A I ! oo o
p WFq(r,x,p ) LdzA(r,p ,z)[ ZFq(r,z,zpz) otoy
and the correlation functions as
~Frim gz “2im,
Db (r,k):5ab(—dw(k));m[1+Fg],
+ Fg(r;x,pz)ng(z,e)], (C28 g
C = . . 2 —
where Slj(rvp) 5”(7 p) O’Oial[l Fq]a (D5)
= whered,,, (k) is defined in Eq(8), andF4 andF, are the
r;’f”:ﬂ’f"(l = f+ 1) (C29  phase-space densities of dressed gluons and quarks as de-
f/_

fined by Eq.(58). This separation of real and imaginary con-

i o : : . tributions uniquely determines the Green functions in terms
represents the net emission probability, bein a manifestatio} . )
b b y g of the three functionsr; () as can be shown rigoroudly].

of the principle of detailed balance between the rate of emis_—l_h | " d to the di . q ¢
sion of partonf’ from a partonf, and the rate of absorption € real parts correspond to the diSpersive and wave func-

of a quantumf’ in the phase-space proximity of partén tion renormalization piece, whereas the imaginary parts give

frgn _ _ rise to dissipation and decay. Formally,
The net ratel'y * results in a suppression whét, or F,
becomes large, and thus reflects correctly the Bose-Einstein ) A N
and Fermi-Dirac statisticé+ for gluons,— for quarks. On mo=k*(1 —Rel), Rel=z(II"+II%),
the other hand, wheRy andF, are small compared to 1, the
usual branching kernelg! " are recovered. , = N PO
m=—kImIl, Imll= E(H —11%), (D6)
APPENDIX D: DERIVATION OF DRIFT TERM AND

COLLISION KERNEL OF THE TRANSPORT EQUATIONS 2 A ~ 1 P
0o=p*(1-Rel), Rei=Z(3F+34),
This appendix explains the derivation of the transport
equationg115 and(127) that govern the kinetic, dispersive )

. ) i ~ i
dynamics of dressed gluons and quarks. First of all, one ob o1=—p2ms, Im3= E(ER_EA)'

) . D7
serves that from the matrix representation of the CTP Dyson- ©7)
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and

wzz'z(ﬁ<+ﬁ>), 02:%(i<+i>). (D8)

Next, recalling that the correlations among differently

985

f and keeping only the lowest-order contributions. The
lowest-order nonzero terms on the right hand sides of Eq.
(D13) correspond then to the Born collision terms which are
of order#,

Cy(r K)=(1 +F I~ —F4I1” + O(#%),

dressed partons determine their mutual interactions at kinetic

space-time scales, one focuses on the correlation functions

D, andS®. Noting thatD’,,=D%!, S*=S*', and employ-
ing the representation92),

DS, (r.k)=—27i[—d,(K][1+2Fyr,k)]
X 8(k?— MG(r k),

S°(r,p)=—2mi(y-p)[1 —2F4(r,p)]18(p?— M3(r,p)),
(D9)

where color indices are suppressed, Efgl)—(D8) may be
combined to write

—d*(K)D (1, k)= (mo+imy)  *Hg—Hg(mo—im) !

. T2
:_2| 2+ 2
ToT Ty

Y psc(rap):(0'0+i01)7lHq_Hq((To_iffl)fl
(D10)

where[cf. Eq. (89)]

Hg(r,k)=1+ 2F4(r,k), Hq(r,p)=1— 2F4(r,p).

(D12)
Hence, on account of EqéD1) and(D2) one finds
—d“"(k)(Dfg, "~ 119),,,= = (Hgmo— moHg)
+i(Hgm+mHy),

y-p(Sh, '=3C) == (Hqoo— 0gHg) +i(Hqo1 + oqHy).
(D12)

Then, by inserting the expressio(i37) and(D8) for 7r; and
o, one obtains

Famo— moF =2 [(L+F)II=+I1(1+F,)
—FlI” — 17 F ]

Cq,

Fqoo— 0oFq=— s [(1-F)S=+3(1—F,)
+F 37 +37F,]
=Cq, (D13)

with the self-energieﬁ2 and3= given by Egs.(121) and

Cq(r.p)=—(1 —F)S<+F3”+0(43%, (D14
whereas the lowest-order nonzero terms on the left hand
sides of Eq.(D13) result in the classical Poisson brackets
which are also of ordet,

(Fgﬂ'o_ WOFg)(rvk): _i[(ang)'(akWO)_(&kFg) (drmo)]

=—i(&wzf<r'k) (k.ang(r,k)

)22
k®=1gq

1 2 3
~ 5 9iKa- kFg(r k) | +O(A%),

(Fqoo—0oF)(r,p)=—i[(d;Fq) - (dpo0) = (9sFq) - (d;00) ]
:_.(&UO(r!p))

"\ op?

p (p'arFq(rap)

2.2
P2=ng,

1 2 3
~ 50P%: GpFo(r,p) |+ O(h),

(D15

where as beford,=d/dr*, d,=aldk*, etc., and the center
dot denotes a scalar product of four-vectors. The latter
equalities in these two equations are obtained by using the
fact that the solutions of the dressed partons’ energy spectra
Eqg. (129 are strongly peaked around momentum transfers

QP=uly, ie, ko(r,K=vVK2+pu2, and po(r.p)

= \/5 24 ,u,gq, because of the well-known QCD specific loga-
rithmic behavior of the spectral densitiesIn(a’/u5,), and
the power law form of the scattering cross sections
<alq; " (n=4).

Finally, using d,ko=d,po~0, and equating Eq9D13)
and(D15), one obtains the transport equations of Boltzmann
type, stated in Sec. Il E, Eq$120),

k'ﬁng(r,k):Ig(l',k), p'ngq(rvp):Iq(rvp)a
(D16)

where the Lorentz-invariant collision tern%s on the right
hand side are defined by

K
cg(r,k):—i(%) (1K),
kzz"@z;q
[ doo(r,p)
Colrip)= =i\ =7 — Zy(r,p). (D17
p p2= 2

9q

(122 together with Eq(D3). Finally, as argued in Sec. Il E,

the presumed clear separation of quantum and kinetic spac# Egs.(D15) and(D17), the derivatives with respect to the
time scales allows one to treat the kinetic dynamics quasivirtuality k? are to be taken atgq, which according to Egs.
classically, by expanding both sides of EQ13) in terms of  (56) and (98) defines the scale at which a dressed parton
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appears as a quasiparticle, with the renormalization and dis- oss air)

sipation effects taken into account in the spectral densities Za(r,P1)= bcd TP, 1) + I (P11

Py andPy, Eq.(114). Their form is determined by the renor-

malization equation€&l15), and therefore the parton distribu- d3p, d3ps

tionsF = A/® P contain implicitly the short-distance quantum == E CabCed 3 3
o bed (2m)°2E;) (2m)°2E3

effects. The derivatives afy ando are related to the renor-

malization functionsd 4 andA, respectively, via the corre- .
spondence of the representatiofi34) and (96), and one f(z )32E (2m)*8*(py+ P2~ P3—Pa)
finds

X{ Fa(1Fy(2)| M(ab—cd)[?0(a? — u59)

X[1£F(3)[1+F4(4)]-[1£F4(1)]

. ﬁwo(r!k) 1 2 2
"( e )kz , TAg (A ey = 1, X[1=Fy(2)]| M(cd—ab)|?
~Hgq
X 0(97 — pgg) Fe(3)Fa(4)}, (D19)
where theF (i)=F ,(p;,r) denote the distribution functions
—i(w> —AZY(r p2p* 2)| . 2 =1 of parton speciesa=a,b,c,d and corresponding four-
ap* b2 @ T momentap; = p;,P»,P3,P, at space-time point =(ror).

ng (D19 As a consequence of the representati¢D9), the squared

matrix element$M|? for the processesb« cd (which con-
tain the 2-2 kinematics, color, and spin structure, as given
below) are weighted by a distribution functidn, for each of
where the latter equality results from the normalization con- the particles c%mlng |)r/1to the interaction vg?gex and a factor
dition (98). L , , [1+F,] for each of the outgoing ones, with the sign
The explicit form of the collision integral is obtained by referring to gluons and the sign to quarks and antiquarks.
substituting the correlation functiori9) into the two-loop  Tpe factorsS,,=(1+ 8,,) "+ and S.g=(1+ 6.4~ account
expressio_ns{lZl_) and (122_) for the self-energiesﬂ andz, for the cases where the two incoming and/or outgoing par-
and then inserting those into Eqf13). Applying the stan-  tons are identical. Using the identitiés
dard cutting rule$42] to the resulting self-energies, as sym-
bolicall in Fig. i i i _
cally represented in Fig 11_, yields the different binary d,., (k)= 2 sﬂ(k,s)-s’;(k,s)
collision processeab« cd by which a parton of typa may =12
be gained or lost in a phase-space element, namely,
99-09, 99-qg, gg—9gq, gq—qg, qq—qdg. The corre- .p=2 ul =2 20
sponding collision integralg, may be compactly repre- 7P pos:El,Z ulp.s)u(p.s) poszzl'zv(p,s)v(p,s),
sented in the generic form of E¢L30): (D20)

finally, the squared matrix elements are obtained by evaluating the amplitudes illustrated in Fig. 11, squaring those, averaging
over initial colors and spins, summing over final colors and spins, and summing over quark flavors. The resulting expressions
are standard and given by

4
977 faedfebc

IM(gagb—>gcgwlz=W—52)zcolorspin (pi—pa? M (PLPLT Pa.PN" #"(P3~Ps.~ P2.P3)

gTT’f f bd
+%)\p”( P1.P1—P3.Pa)N" “(P2—Pa.— P2.Pa)

gf‘r’fdbefecd pUT ' vo puUVo ?
WK (—P1,—P2,P1Ft PN "7 (—P3—Pa4,P3,P4) TVEHed (P1,P2, —P3,—P4)| , (D21)

2Note that in contrast to the standard normalization for fermioke/p°, here the normalization is chosen commonly for both gluons and
quarksec 1/(2p°).
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4 N¢

— 9s — a
[ M(gaGo— ) *= g2 2 |uj(p4>(TikTEn-s<p2>

f color,spin

);.;f_l—:)i)?"s(pl))vi(ps)

— (P2~ P3)
+Uj(p4)(TikaEj7'8(p1)%7'8(p2)>vi(p3)

c e"(p1)e”(p2)y”
U (ppt+pa)?

+U—j(p4)(ifab°r N uvp(=P1,— P2,P1+P2) |vi(P3)]?, (D22

N¢

4
Os e*(p1)e”(ps) —
g rr——— feabpe —_ T2 T2\ —ps,— D1, . PU
|M(gaq| gbqj)| (8>< 2)(3X2)§f: colg,:spin ij (pl_p3)2 p,u.V(pl Ps P1 pS)UJ(p4)’y U|(p2)
b — y-(P2—P3)
_'TikajUj(P4)7'S(Pl)WV'S(ps)Ui(pz)
o ab— y-(P2+P1) 2
SITATR Py e (Pa) o 57 7 e (PP (D23
gt M 1
g2 2S aTaT (D) T
|M(q|Qk q]CI|)| (3><2)2f1,f2 coloEr,spin TI]Tk|uJ(p4)yMul(pl)(p1_p4)2u|(p3)7uuk(p2)

b-rb—— 1 ?

_5f1f2Ti|Tijj(p4)%Uk(pz)mu|(p3)%ui(P1) , (D24)
4 N¢
M(GG— )2 = o > | 65,80 TATEU; I R
| M(aiq—q;a)] T3X2X 21, coirepin| 1140212 T Ikuj(p4)yuui(pl)mvk(p2)7 v1(P3)

b b 1 ?

_5flf25f4f3Tileiuj(p4)7vvl(p3)mvk(p2)7vui(p1) , (D25)
_ ) 64 —

| M(0i9j—gaGb)|* =g | M(gagb—aiq|* (D26)

Here
ANPY(P1,P2,P3) =(P1—P2) "9*P+ (p2— P3)*g"+ (P3— P1)"9"”,
Vhbed(P1,P2,P3.P4) = fapel cae( 977947 = 9P79"") + f acel b 974977 — 8P79"") + f agef cad 977047 — P#97")  (D27)

are the usual three-gluon vertex function and the four-gluon vertex, respectively. The shorthand notation suppressing spinor
and polarization indicesj(p;)=u(p1,S1)., €(P2)=¢e(p2,S,), €tc., is employed, and in Eq@24) and (D25) ;- is equal
to 1 if the two quarks are of the same flavor and is zero otherwise.
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