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Quantum field kinetics of QCD: Quark-gluon transport theory
for light-cone-dominated processes
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A quantum-kinetic formalism is developed to study the dynamical interplay of quantum and statistical-
kinetic properties of nonequilibrium multiparton systems produced in high-energy QCD processes. The ap-
proach provides the means to follow the quantum dynamics in both space-time and energy-momentum, starting
from an arbitrary initial configuration of high-momentum quarks and gluons. Using a generalized functional
integral representation and adopting the ‘‘closed-time-path’’ Green function techniques, a self-consistent set of
equations of motions is obtained: a Ginzburg-Landau equation for a possible color background field, and
Dyson-Schwinger equations for the two-point functions of the gluon and quark fields. By exploiting the
‘‘two-scale nature’’ of light-cone-dominated QCD processes, i.e., the separation between the quantum scale
that specifies the range of short-distance quantum fluctuations, and the kinetic scale that characterizes the range
of statistical binary interactions, the quantum field equations of motion are converted into a corresponding set
of ‘‘renormalization equations’’ and ‘‘transport equations.’’ The former describe renormalization and dissipa-
tion effects through the evolution of the spectral density of individual, dressed partons, whereas the latter
determine the statistical occurrence of scattering processes among these dressed partons. The renormalization
equations and the transport equations are coupled, and, hence, must be solved self-consistently. This amounts
to evolving the multiparton system, from a specified initial configuration, in time and full seven-dimensional
phase space, constrained by the Heisenberg uncertainty principle. This quantum-kinetic description provides a
probabilistic interpretation and is, therefore, of important practical value for the solution of the dynamical
equations of motion, suggesting, for instance, the possibility of simulating the multiparticle dynamics with
Monte Carlo methods.@S0556-2821~96!01113-7#

PACS number~s!: 12.38.Aw, 12.38.Cy, 13.38.Mh
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I. INTRODUCTION

In this paper I attempt to formulate an approach towards
fundamental and consistent description of the statistic
properties of nonequilibrium quantum systems produced
high-energy QCD processes, which allows us to follow th
quantum dynamics in time and complete phase space start
from an initial configuration. It provides a flexible frame-
work for a systematic analysis of typical problems associate
with the quantum dynamics of such systems, including, e.g
multiparticle transport phenomena of gluons, quarks, an
hadrons, or critical dynamics of phase-transition phenomen
and spontaneous symmetry breaking, or quantum dissipatio
entropy generation, and multiparticle production.

More specifically, the intentions are aimed towards
practically applicable description of the space-time evolutio
of a general initial system of gluons and quarks, characte
ized by some large energy or momentum scale, that expan
diffuses, and dissipates according to the self- and mutu
interactions, and eventually converts dynamically into ex
cited hadronic matter and a final state hadron system by
‘‘phase transition.’’ This scenario frames a wide class o
QCD processes of both fundamental and phenomenologic
interest. For instance, the evolution of parton showers in th
mechanism of parton-hadron conversion in elementary hig
energy processes (e1e2 annihilation into hadrons, deep in-

*Electronic address: klaus@surya11.cern.ch
54556-2821/96/54~1!/949~40!/$10.00
a
al
in
e
ing

d
.,
d
a
n,

a
n
r-
ds,
al
-
a
f
al
e
h-

elastic lepton-nucleon scattering, or nondiffractive hadro
collisions!, or the description of formation, evolution, an
freeze-out of a quark-gluon plasma in ultrarelativistic heav
ion collisions, or the study of the dynamics of the QC
phase transition from the deconfined, high-temperature p
tonic phase to a low-temperature hadronic phase with
simultaneous breakdown of chiral symmetry and the cond
sation of gluons and quarks in the vacuum, as it occur
during the early evolution of the Universe.

In the present paper I will confine myself to the first stag
the high-energy quark-gluon phase, and develop a quant
kinetic formalism that allows one to describe both the dis
pative and dispersive dynamics of a multiparton system
real time. This description is exclusively based on the fu
damental QCD Lagrangian and its firmly established pr
ciples. The second stage, the parton-hadron conversion
phase transition, on the other hand, requires supplemen
phenomenological input to model the details of the confin
ment mechanism that are not known at present@1#. Such a
phenomenological approach to the real-time dynamics
parton-hadron conversion that models the transition wit
an effective field theory description has been proposed
cently in Ref.@2#. It is preferable, however, to keep the fun
damental description of the first stage distinct from the le
understood phenomenological aspects of the second s
and, therefore, I will address the latter in a separate pap

In general, the study of a high-energy multiparticle sy
tem and its quantum dynamics involves three essential
pects: first, the aspect of space-time, geometry, and the s
ture of the vacuum; second, the quantum field aspect of
949 © 1996 The American Physical Society
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950 54KLAUS GEIGER
particle excitations; and third, the statistical aspect of th
interactions. These three elements are generally interc
nected in a nontrivial way by their overall dynamical depe
dence. Therefore, in order to formulate a quantum descr
tion of the complex nonequilibrium dynamics, one needs
find a quantum-statistical and kinetic formulation of fiel
theory that unifies the three aspects self-consistently. W
this paper I take steps towards this goal by combining thr
corresponding theoretical methods, namely, first, theclosed-
time-path~CTP! formalism @3–9# ~for treating initial value
problems of irreversible systems!, second, thenonlocal
source theory@10–12# ~for incorporating quantum fluctua-
tions!, and third,transport theorybased on Wigner function
techniques@13–15# ~for a kinetic description of inhomoge-
neous nonequilibrium systems!. In principle, a dynamical
theory of nonequilibrium multiparticle systems such as t
above mentioned should be described by an exact quant
kinetic theory of QCD. Over the past ten years, elabora
works @16–18# have put great effort into deriving a genera
QCD transport theory rigorously from first principles. Unfor
tunately, due to a number of unresolved problems aris
from the complexities of the non-Abelian gauge structure
QCD, the derived gauge-covariant formalism remains
academic theory up to date. It is of little practical valu
unless it is boiled down to the quasiclassical limit by a seri
of approximations yielding a mean-field description, whic
however, cannot describe the production of physical partic
and their spectra.

I am less ambitious here in what concerns the general
and instead put emphasis on applicability to realistic physi
situations, in particular to the type of light-cone-dominate
processes that I classified above. This class of high-ene
processes allows a clear distinction between a short-dista
quantum field theoretical scale and a larger distan
statistical-kinetic scale. When described in a reference fra
in which the particles move at close to the speed of light, t
effects of time dilation and Lorentz contraction separate t
intrinsic quantum motion of the individual particles from th
statistical correlations among them. On the one hand,
quantum dynamics is determined by the self-interactions
the bare quanta, and by the possible presence of a cohe
background field~or mean field in the Hartree-Fock sense!,
in case one desires to go beyond a description in the p
vacuum. This requires a fully quantum theoretical analy
including renormalization. On the other hand, the kinetic d
namics can be well described statistical-mechanically by
motion of the quasiparticles which arise from the ‘‘dressing
of the bare quanta by their self-interactions and by the ba
ground field, plus the binary interactions between these q
siparticles. Such a distinct description of quantum and
netic dynamics is possible, because the quantum fluctuati
are highly concentrated around the light cone, occurring
very short distances, and decouple to very good approxim
tion from the kinetic evolution which is dictated by compa
rably large space-time scales. As mentioned, the natural tw
scale separation is just the consequence of time dilation
Lorentz contraction, and is true for any light-cone-dominat
process. In fact, at asymptotic energies the quantum fluct
tions are exactly localized on the light cone, and so the d
coupling becomes perfect. This observation is the key to f
mulating a quantum-kinetic description in terms of partic
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phase-space densities, involving a simultaneous specificat
of momentum space and space-time, because at sufficien
high energy the momentum scaleDp of the individual par-
ticles’ quantum fluctuations and the scaleDr of space-time
variations of the system of particles satisfyDpDr@1, con-
sistent with the uncertainty principle.

With this physical input and utilizing the aforementioned
theoretical tools, the analysis proceeds as follows. In the fir
step, covered in Sec. II, I obtain, starting from the QCD
Lagrangian, the CTP generating functional for the gluon an
quark Green functions, being defined on a closed-time co
tour and incorporating initial state correlations. From the a
sociated effective action, one gets the quantum-dynamic
equations of motion, which are the CTP version of th
Ginzburg-Landau equation and the Dyson-Schwinger equ
tions. In the second step, described in Sec. III, I make th
transition from a quantum field description to kinetic theory
by exploiting the two-scale nature of light cone dominance
and, moreover, choosing a ghost-free axial gauge for t
gluon fields. As a result one obtains from the Dyson
Schwinger equations a set of kinetic equations consisting
a renormalization equationthat describes the quantum dy-
namics in terms of short-distance self-interactions of gluon
and quarks, plus atransport equationthat describes the ki-
netic dynamics of relaxation and collision processes in term
of the statistical interactions of the renormalized, dynam
cally dressed partons among one another. The renormali
tion equation and the transport equations are coupled, a
hence must be solved self-consistently. This amounts
evolving the system under consideration from its initial con
figuration simultaneously in position and momentum spac
constrained by the Heisenberg uncertainty principle. Finall
Sec. IV closes with some concluding remarks, and the A
pendixes summarize, for each of the above aspects, the te
nical details which are only indicated in the text.

The main findings can be summarized as follows. Th
dynamics of high-energy multiparton systems can, under re
sonable conditions, be described in a semiclassical mann
the partons can be considered as dressed quanta with a
namical substructure and a corresponding form factor arisi
from the self-interactions. The space-time evolution of a sy
tem of many such dressed partons is then governed by th
propagation along classical trajectories and mutual bina
collisions, as determined by their density and cross section
and by quantum statistics. This emerging picture is of gre
practical value for formulating a systematic calculation
scheme—in a sense the space-time generalization of the ‘‘
calculus’’ @19,20#. In Sec. III F, I outline such a scheme. One
of the greatest advantages of this kinetic description is that
provides a probabilistic interpretation of the time evolution
in full seven-dimensional phase space, which suggests t
opportunity to simulate the multiparticle dynamics as se
quential Markov processes with Monte Carlo methods.

Finally let me comment on placing this work in relation to
existing literature.

~i! The general ideas and techniques of the CTP fun
tional integral formalism were originally introduced mainly
by Schwinger@3#, Keldysh@4#, Kadanoff and Baym@5#, and
Mahanthappa@6#, more than 30 years ago. The most exten
sive review that sums up the current state of the art is pro
ably the work of Chouet al., @7# with diverse exemplification
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of the wide class of physics applications. Further pedag
cally excellent presentations have been published by Cal
and Hu@8#, and by Rammer and Smith@9#. In the particular
field of relativistic nuclear physics, the concepts have b
pragmatically applied, e.g., by Li and McLerran@21#, and by
Zhang and Wilets@22#. Important contributions of funda
mental studies have been made in recent years
Danielewicz @23#, and Mrówczyńsky and Heinz@24#. The
goal of establishing a quantum kinetic theory for QCD w
pioneered by the ambitious efforts of Elze, Gyulassy, He
and Vasak@16–18#, which resulted in a rigidly genera
gauge-covariant formalism. However, the price to pay is
intractable complexity that, without specific physics input
essentially of aesthetic value without much practical use.
new achievement of the present work from this perspec
may be stated as the adaption of the general CTP forma
applied to QCD, but with focus on situations where the m
tiparton dynamics is characterized by a large energy s
and can be described reliably within perturbation theory
physical gauge.

~ii ! The most related recent works from the viewpoint
attempting to tackle evolution of multiparton systems at h
energy are probably the innovative works of McLerran a
Venugopalan and co-workers@25#, and of Makhlin@26#, in
which the issue of calculating parton distributions in the c
text of ultrarelativistic nuclear collisions is addressed. T
former authors use a classical non-Abelian field descrip
of QCD to compute coherent initial state properties of c
liding large nuclei, whereas the latter focuses on a quan
field description of final state correlations of the partic
produced. Neither approach, however, attempts to add
explicitly the space-time evolution of the multiparton e
semble emerging from the nuclear collision, which is
main goal of the present paper.

~iii ! The key elements to address the space-time evolu
are provided by the Wigner function techniques, which d
back to Wigner’s work on transport phenomena@13#, and are
reviewed in, in e.g.,@14,15#. Although widely exploited in
condensed matter and plasma physics, these tools for q
tum kinetics of many-body systems have hardly been app
to describe high-energy nonequilibrium dynamics in QC
New in the present work is the synthesis of quantum dyn
ics on the basis of the renormalization group of QCD,
quasiparticle kinetics within relativistic transport theory. T
combination of these two aspects forms the foundation o
self-consistent treatment that entails a thorough cons
ation of the renormalization problem, which is commo
avoided in other applications~see, however, Ref.@8#!.

~iv! The machinery of perturbative QCD for light-con
dominated high-energy processes is nowadays well foun
Most of the techniques used in the perturbative analysi
describe the parton evolution adopt the tools developed
Dokshitzeret al. @27#, Amati et al. @28#, Mueller @29#, and
numerous others~for an overview, see@30,31#!. The new
component here is the extension to incorporate a space
description on top of this formalism, which is common
considered only in momentum space.

It is evident that this paper attempts to join theoreti
tools and concepts from rather different fields. Such a s
thesis is necessarily a difficult task, and the the present
tiative should be viewed as a first step in this direction. Ho
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ever, I believe that it is a promising approach towards
well-founded and consistent description of the statistic
properties of nonequilibrium parton systems. From the ph
nomenological perspective, it is an inevitable necessity
address this problem, since the experiments carried out at
DESY cp collider HERA, BNL Relativistic Heavy Ion Col-
lider ~RHIC!, and CERN Large Hadron Collider~LHC! will
penetrate increasingly the physics of high-density QC
where quark-gluon transport phenomena are of fundamen
importance.

II. FUNCTIONAL FORMALISM

The aim is to describe the time evolution of a gener
nonequilibrium quantum system consisting of an ensemb
of quarks and gluons in phase space, starting from so
given initial state at timet0 . Since I am interested in the state
of the system at finite timest.t0 , without a priori knowl-
edge of the asymptotic final state att5`, the usual
S-matrix formalism of quantum field theory, based onin-out
matrix elements, cannot be applied. For initial value pro
lems such as I want to describe here, the appropriate
proach is provided by the functional integral formalism o
the in-in generating functional for the Green functions o
quarks and gluons, also referred to asclosed-time-path
~CTP! Green functions. The CPT formalism is a powerfu
Green function formulation, originally introduced by
Schwinger@3# and Keldysh@4# for describing general non-
equilibrium phenomena in field theory@5,7–9#. In combina-
tion with the so-called nonlocal source theory and the loo
expansion techniques developed by de Dominicis and Mar
@10# and Cornwall, Jackiw, and Tomboulis@11#, one obtains
generalized Dyson-Schwinger equations which incorpora
the initial state correlations and provide a systematic tre
ment of the quantum correlations to any order in\. Further-
more, it allows one to describe phase-transition phenome
and dynamical symmetry breaking, issues that I will not a
dress here, but which are of central interest when studyi
the confinement dynamics, as intended to be presented e
where. In this section, I will first review the concept of the
in-in generating functional and the effective action for th
CTP Green functions, and then derive the dynamical equ
tions of motion. For additional reading on these technique
refer to the extensive review of Chouet al. @7# and to the
instructive work of Calzetta and Hu@8#.

A. Preliminaries

The starting point is the QCD Lagrangian given in term
of the gluon fieldsAa

m and the quark fieldsc and c̄ @which
are vectors in flavor space,c[(cu ,cd , . . . )#:

L@Am,c,c̄#52 1
4 Fmn,aFa

mn1c̄ i@~ igm]m2m̂!d i j

2gsgmAa
mTa

i j #c j1ja~A
m!, ~1!

where Fa
mn5]mAa

n2]nAa
m1gsf abcAb

mAc
n is the gluon field-

strength tensor. The subscriptsa, b, and c label the color
components of the gluon fields, andgs denotes the color
charge related toas5gs

2/(4p). TheTa are the generators of
the SU~3! color group, satisfying@Ta ,Tb#5 i f abcTc with the
structure constantsf abc . The indicesi and j label the color
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components of the quark fields andm̂[diag(mu ,md , . . . ). I
will in the following exploit the fact that at high energies th
quark current massesmf can be neglected, which corre
sponds to the chiral limit where they are exactly zero.

In general the Lagrangian equation~1! must also include
the Faddeev-Popov ghosts as independent field degree
freedom. However, I will work exclusively in a class o
ghost-free gauges, namely, the so-called axial gauges, wh
are defined by the gauge condition@32#

nmAa
m~x![n•Aa50, ~2!

wherenm is a constant four-vector in thex0-x3 plane near the
forward light cone such that1 n2Þ0. It may be parametrized,
e.g., as nm5(a1b,0,0,a2b), with the condition n2

54ab!1. The associated gauge-fixing term is denoted by
function ja(A

m) which I take as

ja~A
m!52

1

2an2
]l~n•Aa!]

l~n•Aa!. ~3!

Herea is the gauge parameter that specifies the type of ax
gauge. In particular, I will henceforth seta51, which is
known as the planar gauge. In contrast to covariant gau
where ja(A)521/(2a)(]•Aa)

2, the class of gauges@Eq.
~3!# is well known to have a number of advantages@27,32#.
First, the ghost fields decouple from the gluon field and dr
out. Second, the so-called Gribov ambiguity is not present
this gauge. Third, the gluon propagator involves only the tw
physical transverse polarizations, which will simplify th
analysis considerably. Furthermore, it allows for a rigoro
resummation of the perturbative series at high energies
terms of the leading logarithmic contributions and cons
quently leads to a simple probabilistic description of the pe
turbative parton evolution within the~modified! leading log
approximation~MLLA ! @27,28,33# in QCD.

The classical action corresponding to Eq.~1! is repre-
sented as

I @Am,c,c̄#[I ~0!@Am#1I ~0!@c,c̄#1I ~ int!@Am,c,c̄#, ~4!

where

I ~0!@Am#5E d4xd4yH 2
1

2
Aa

m~x!@D ~0!mn
ab ~x,y!#21Ab

n~y!J ,
I ~0!@c,c̄#5E d4xd4y$ c̄ i~x!@S~0!

i j ~x,y!#21c j~y!%,

I ~ int!@Am,c,c̄#52E d4x$ gsgmTa
i j c̄ i~x!Aa

m~x!c j~x!

1gsf abc@]mAn,a~x!#Ab
m~x!Ac

n~x!

1gs
2f abcf ab8c8Am,b~x!An,c~x!

3Ab8
m

~x!Ac8
n

~x!%, ~5!

1One distinguishes further in ‘‘timelike’’~‘‘spacelike’’! axial
gauge ifn2.0 (n2,0), whereas the singular casen250 is called
the ‘‘light-cone’’ gauge.
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with the kernels of the free partsI (0)@Am# and I (0)@c,c̄#
given by

@D ~0!mn
ab ~x,y!#215dabd

4~x2y!hx
mn,

@S~0!
i j ~x,y!#215d i jd

4~x2y!ig•]x , ~6!

where the quark current masses are set to zero here and in the
following. The operatorhx

mn is a generalized D’Alembertian
containing the remnant of the gauge-fixing term of Eq.~1!,
which for the gauge Eq.~3! with a51 reads

hx
mn[S gmn2

nm]x
n1nn]x

m

n•]x
D hx , ~7!

with hx5]x•]x and ]x
m5]/]xm. The inverses of Eq.~6!

are the free gluon and quark Feynman propagators, i.e.,
the expectation values of the time-ordered products of the
noninteracting fields 2 i ^TAm(x)An(y)& (0) and
2 i ^Tc(x)c̄(y)& (0) ,

D ~0!mn
ab ~x,y!5E d4k

~2p!4
e2 ik•~x2y!dab

2dmn~k!

k21 i e
,

dmn~k!5gmn2
nmkn1nnkm

n•k
,

S~0!
i j ~x,y!5E d4p

~2p!4
e2 ip•~x2y!d i j

1

g•p1 i e
. ~8!

It is noteworthy that the form of the gluon propagator2 arises
from the sum over the two transverse gluon polarizations,
dmn(k)5(s51,2«m(k,s)•«n* (k,s), having the properties
@27,32#

dm
m~k!5 2, kmd

mn~k!52
nnk2

n•k
→
k2→0

0, ~9!

meaning that only the two physical polarization states propa-
gate, with«mk

m50. For comparison, in the covariant Feyn-
man gauge,dmn5gmn, dm

m54, andkmd
mn5knÞ0.

In going over from the classical action@Eq. ~4!# to a quan-
tum field formulation, the fields become Heisenberg opera-
tors. Let me introduce a compact notation for the different
field degrees of freedomf :3

f f :5~Am,c,c̄ !5~Am,cu ,c̄u ,cd ,c̄d , . . . !,

f5g,u,ū,d,d̄, . . . . ~10!

The state of the system may be characterized by the Heisen-
berg field operatorFH(x), where FH[FH@f f # and
x5(t,xW ). Its time evolution is determined by the Hamil-
tonianH5H (0)1H (int) of the system (] t[]/]t),

2The apparent singularity ofdmn(k) at n•k.k150 must be dealt
with in the usuali e prescription, or by taking the principal value.
3Since the quarks and antiquarks are treated as massless here, the

different quark flavors are, with respect to the strong interaction,
merely copies of each other.
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] tFH~x!5 i @H,FH~x!#2 . ~11!

Defining t5t0 as the initial point for the time evolution o
the system, the associated Heisenberg state vectors obe

uf~ t !&5UJ~ t,t0!uf~ t0!&, ~12!

where

UJ~ t,t0![T expF2 i E
t0

t

dt8d3x8J~x8!FH~x8!G . ~13!

T denotes the usual time-ordering operator, and the exte
sourceJ is understood as a sum over sources for the vari
degrees of freedom. Note that the adjointUJ

†(t,t0)
5T†exp@i*t0

t d4x8J(x8)FH(x8)# involves an antitemporal order

ing T†. In the absence of external sources, the state vec
are time independent:uf(t)&5uf(t0)&.

Upon switching from the Heisenberg picture to the int
action picture, the time evolution of the corresponding int
action picture fieldF I(x) is determined by the interactio
HamiltonianH ~int! alone,

] tF I~x!5 i @H ~ int!,F I~x!#2 , ~14!

whereF I is related to the HeisenbergFH field by

F I~x!5S~ t,t0!FH~x!S†~ t,t0!, ~15!

and evolves explicitly in time through

S~ t,t0![T expF2 i E
t0

t

dt8H ~ int!~ t8!G . ~16!

According to Eqs.~12!–~16!, at t5t0 the Heisenberg pic-
ture and the interaction picture coincide,FH(t0 ,xW )
5F I(t0 ,xW ). Hence the interaction picture fieldF I(x) can be
expanded att0 in terms of a Fock basis of free particle state
the in basis,

F I~x!5 (
f5g,q, q̄

E d4p

~2p!4
u~p0!~2p!d~p2!

3(
s

@e2 ip•xaf~p,s!1eip•xaf
†~p,s!#, ~17!

un~1!,n~2!, . . . ,n~`!&5)
f

)
i

1

Anf~ i !!
@af

†~pi ,si !#
nf

~ i !
u0&,

~18!

where theaf
† (af) are the corresponding creation~destruc-

tion! operators for the particle typesf5g,q,q̄ with definite
momentumpi and spinsi , thenf

( i ) are the occupation num
bers of the particle states, and

af~pi ,si !u0&5 0, nf
~ i !5^nf

~ i !uaf~pi ,si !af
†~pi ,si !unf

~ i !&.
~19!

Thus a general multiparton stateuf& at timet0 is given by a
superposition of such states:
f
y

rnal
ous

-

tors

r-
er-

s,

-

uf~ t0!&5(
n~ i !

C~n~1!,n~2!, . . . ,n~`!!un~1!,n~2!, . . . ,n~`!&,

~20!

with scalar coefficientsC. Alternatively, the initial state of
the system att0 can be characterized by the statistical opera
tor, or density matrix,

r̂~ t0!5uf~ t0!&^f~ t0!u, ~ r̂0! i j[^n~ i !ur̂~ t0!un~ j !&,
~21!

which in the Heisenberg representation is time independen
but in the interaction picture evolves with time according to

] tr̂5 i @H ~ int!,r̂ #2 , ~22!

so that

r̂~ t !5S†~ t,t0!r̂~ t0!S~ t0 ,t !, ~23!

whereS is defined by Eq.~16!. For instance, a general den-
sity matrix that describes any form of single-particle density
distribution att0 is

r̂~ t0!5N expF(
f ,s

E
V
d3xE d3p

~2p!32p0

3F f~ t0 ,xW ,p!af
†~p,s!af~p,s!G , ~24!

whereV denotes the hypersurface of the initial values an
F f is a c-number function related to the single-particle
phase-space density of particle speciesf at xW with four-
momentump, andN is a normalization factor.

B. The CTP generating functional

After these preliminaries let me turn now to describe the
time development of the multiparton state from the initia
stateuf in&5uf(t0)&, continuously through finite intermedi-
ate timest0,t,t` , to some final stateufout&5uf(t`)& in
the remote future~see Fig. 1!. In the usualS-matrix formal-
ism of quantum field theory one calculates thein-vacuum to
out-vacuum amplitudeZ@J#5^0inu0out&J , and from this,
physical quantities corresponding toin-out S-matrix ele-
ments of certain operators, assuming that the Fock space
the asymptoticout states is the same as for thein states@Fig.
1~a!#, as, e.g., in scattering theory. In the present case, how
ever, the system evolves forward through finite points o
time, and so the asymptoticout basis ufout& is not known
before the solution to the problem. There is an arrow of time
leading to an irreversible evolution. Moreover, in genera
u0in&Þu0out&, as for instance in the case of a phase transitio
or spontaneous symmetry breaking wherein andout vacua
are of different natures.

These problems can be overcome by using the CTP fo
malism based onin-in rather thanin-out matrix elements
@7,12#, but otherwise using the familiar techniques of the
path integral method for quantizing the theory. Thein-in
generating functional is defined as thein-vacuum to
in-vacuum amplitudeZ@J,r̂ #5Tr(w^0inuw&J^wur̂u0in&J , in-
cluding possible initial state correlations represented by th
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density matrixr̂ at t0 , and a sum over a complete set o
statesw at t` @Fig. 1~b!#. With reference to Appendix A,
where the relevant concepts are reviewed and applied to
case of QCD, I merely state here the resulting path integ
representation for thein-in or CTP generating functional. It
is given by the following path integral representation in two
point source approximation:

ZP@Jm, j , j̄ ,Kmn,k#5eiWP@Jm, j , j̄ ,Kmn,k#

5E DAa
mDcaDc̄a

3expF i S I @Aa
m ,ca ,c̄a#1Jm

aAa
m1 j ac̄a

1 j̄ aca1
1

2
Aa

mKmn
abAb

n 1c̄ak
abcbD G ,

~25!

where I introduced a shorthand notation for the integrati
over the space-time variables to be understood in the fu
tional sense:

Jf[E
P
d4x J~x!f~x!,

fKf[E
P
d4x d4yf~x!K~x,y!f~y!. ~26!

The CTP generating functional@Eq. ~25!# differs from the
usual generating functional of QCD in two essential aspec

First, it contains bothlocal sources (J, j , j̄ ) andnonlocal
two-point sources (K,k). The former represent not only the
usual external source contributionJext(x), but also the local
source termK̃(x) for a possible dynamical background fiel
present already at initial pointt5t0 , that is,J5Jext1K̃, and
similarly for j and j̄ . The nonlocal sourcesK(x,y) and
k(x,y), on the other hand, represent the two-particle initi
state correlations att5t0 . Both these source contributions4

stem from the general nontrivial density matrixr̂(t0) that
defines the initial ground state. In the usual field theory fo
mulation both these source terms are absent. As a con
quence, theconnectedgenerating functionalWP52 i lnZP in
Eq. ~25! gives both the nonlocalconnectedGreen functions
of gluons and quarks, including initial state correlations@de-
noted byDmn(x,y), respectively,S(x,y)#, as well as pos-
sible local mean fields which physically can either aris
through nonvanishing external sources, or, in the case
gluons, may be generated dynamically by the system its
depending on the initial conditions@denoted in the following
by Ãm(x)#.

Second, the CTP functionalZP is defined on aclosed time
path in the complext plane~indicated by the subscriptP).
This pathP for the time integration is illustrated in Fig. 2~a!:
the path goes forward fromt0 to t` on the positive branch,

4In the two-point sources approximation, the actually infinite s
ries of nonlocaln-point sources that generaten-particle correlations
is truncated beyondn52 ~cf. Appendix A!.
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and then back fromt` to t0 on the negative branch. Accord-
ingly the generalized time-orderingTP is defined such that
any point on the negative branch is understood at a lat
instant than any point on the positive branch. This is no
merely a mathematical trick to restore analogy with the usu
quantum field theory, but provides the means to compu
expectation values for physical observables at finite time
contrast to theS-matrix formalism. The interpretation of this
closed-time path is simple: although for physical observabl
the time values are on the positive branch, both positive a
negative branches will come into play at intermediate ste
in a self-consistent calculation, corresponding to a quantu
mixing of positive and negative energy solutions. Therefor
in contrast to the usual path integral formulation of quantum
field theory, the nonlocal two-point Green functions
Dmn(x,y) and S(x,y) for gluons and quarks, respectively,
each come in four different forms corresponding to the po
sible time orderingsab511,12,21,22 along the
closed time pathP, as illustrated in Fig. 2~b!. In as much as
the propagatorsDmn(x,y) andS(x,y) can have valuesx and
y on either the positive branch or the negative branch on t
contourP, it is convenient to represent them 232 matrices
G(x,y)[Dmn ,S with componentsGab ~a convention which
holds for any two-point function defined along the close
time pathP),

G~x,y!52 i ^TPf~x!f†~y!&[SG11 G12

G21 G11D
[S GF G.

G, GF̄ D , ~27!

-

FIG. 1. Illustration of the difference of expectation values in th
in-out and thein-in formalisms, corresponding to the time-ordered
product of field operators.~a! In the usualS-matrix formalism with
a trivial ~diagonal! density matrixr̂(t0)51̂ andu0in&5u0out&, it suf-
fices to calculatê 0outu•••u0in&, because of the symmetry of the
time paths (t0 ,t`) and (t` ,t0). ~b! In the general case of a non-
trivial initial state with multiparticle correlations described by
r̂(t0)Þ1̂, one must account for the complete time evolution on
closed time path fromt0 to t` and back tot0 by calculating
^0inu••• r̂u0in&.
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where ^•••&[^f1,t0u•••uf2,t0& denotes the vacuum ex-
pectation value, ifuf,t0&5u0&, or else the appropriate en
semble average. The generalized time-ordering operatorTP
is defined as

TPA~x!B~y!:5uP~x0 ,y0!A~x!B~y!6uP~y0 ,x0!B~y!A~x!,
~28!

where the1 (2) sign refers to boson~fermion! operators,
and theu function with two time argumentsx0 ,y0 is defined
on the closed time pathP ~Fig. 2! as

uP~x0 ,y0!5H 1 if x0 succeeds y0 on the contourP,

0 if x0 precedes y0 on the contourP.
~29!

HenceTP coincides with the usual temporal orderingT on
the positive branch (t0→t`) of the closed time path in Fig.
2, but represents antitemporal orderingT† on the negative
branch (t`→t0). The notation on the right hand side ex
presses thatGF is the usual Feynman causal propagato

GF̄ is the corresponding anticausal propagator, andG.

(G,) is the correlation function forx0.y0 (x0,y0). Explic-
itly,

FIG. 2. ~a! The closed time path in the complext plane for the
evolution of operator expectation values in an arbitrary initial sta
Any point on the forward, positive brancht0→t` is understood at
an earlier instant than any point on the backward, negative bra
t`→t0 . ~b! The four different possible time orderings (t1 ,t2) in the
arguments of the two-point Green functionsG(x,y)

5G(t1 ,xW ;t2 ,yW ), corresponding toGF,G.,G,,GF̄.
r,

Dmn
F ~x,y!52 i ^TAm~x!An~y!&,

Dmn
. ~x,y!51 i ^An~y!Am~x!&,

Dmn
, ~x,y!52 i ^Am~x!An~y!&,

Dmn
F̄ ~x,y!52 i ^T†Am~x!An~y!&, ~30!

and

SF~x,y!52 i ^Tc~x!c̄~y!&, S.~x,y!52 i ^c̄~y!c~x!&,

S,~x,y!52 i ^c~x!c̄~y!&, SF̄~x,y!52 i ^T†c~x!c̄~y!&.
~31!

The CTP generating functionalZP5exp(iWP), Eq.~25!, is
the fundamental starting point for deriving the dynamic
equations of motion for both the gluon mean fieldÃm and the
dressed gluon and quark propagatorsDmn andS, using the
matrix representations~27!–~31!. Formally, this Green func-
tion formalism on the closed time path is completely anal
gous to the usual quantum field theory, except that all prop
gators, self-energies, etc., are now 232 matrices, as
diagrammatically represented in Fig. 3. Correspondingly, t
Feynman rules remain the same, but each propagator line
a Feynman diagram can be any of the four components of
Green functions.

C. The CTP effective action

To proceed, it is convenient to work with the CTP effec
tive actionGP , thetwo-particle irreducible vertex functional,
which determines the equations of motion for the physica
relevant Green functions and the mean field, rather than w
ZP orWP of Eq. ~25! which involve the sourcesJ andK that
do not have any immediate physical interpretation. TheCTP
effective actionGP is defined as the multiple Legendre trans
form ofWP @7,8#, which with respect to the two-point source
representation~25! is given by

GP@Ãm,Dmn,S#5WP@Jm, j , j̄ ,Kmn,k#2~JmÃ
m1 j c̄1 j̄c!

2~ 1
2 A

mKmnA
n2c̄kc!. ~32!

Note thatGP reduces to the usual effective action for th
one-particle irreducible vertex functions in the limit of van-
ishing mean fieldÃm50 and absence of initial state correla
tionsK5k50. In the general case, one obtains

e.

ch

FIG. 3. Matrix representation of the CTP two-point functions
~a! The Green functionG(x,y), and ~b! the self-energy function
Ŝ(x,y)}@G(x,y)#2.
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FIG. 4. Diagrammatic representation of the Green functions~i! G(0)(x,y) of the bare propagators,~ii ! G̃(0)(x,y), including the effect of
a mean field by dressing the bare propagators with a dynamical mass, and~iii ! G(x,y), the full propagators, dressed by both local mean fiel
and nonlocal quantum self-interactions~Dyson-Schwinger equations!.
l

a
a
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s

he

ll

n

g

GP@Ãm,Dmn,S#5 Ĩ @Ãm#2
i

2
Tr@ ln~D ~0!

21D !2D̃ ~0!
21D11#

1 i Tr@ ln~S~0!
21S!2S̃~0!

21S11#

1GP
~2!@Ãm,Dmn,S#. ~33!

The first term is of order\0 and is given by the classica
action ~4! @and Eq.~A9! of Appendix A# with

Ĩ @Ãm#[I @Aa
m ,ca ,c̄a#uA

a
m5Ãm,ca5c̄a50 . ~34!

The second and third terms are of order\1 and correspond to
the gluon and quark contributions in which the bare prop
gatorsD (0)

mn andS(0) ~8! are modified by the presence of
local gluon mean fieldÃm leading to ‘‘mean-field-dressed’
propagatorsD̃ (0)

mn and S̃(0) with an effective screening mas
m̃[m̃@Ãm# ~see Fig. 4!. In analogy with Eq.~6!,

~D̃ ~0!
21!mn~x,y!5~D ~0!

21!mn~x,y!2m̃g
mn~x,y!d4~x2y!,

S̃~0!
21~x,y!5S~0!

21~x,y!2m̃q~x,y!d4~x2y!. ~35!

Thus the effect of the mean field is to shift the pole in t
bare Green functions@Eq. ~6!# by a dynamical mass function
m̃.

The last termGP
(2) in Eq. ~33! represents the sum of a

two-particle irreducible graphs of order\2,\3, . . . @11#,
with full propagatorsDmn andS, dressed by both local mea
-

field and nonlocal self-interactions~see Fig. 4!. As will be-
come clear, the real~dispersive! part of GP

(2) contains the
virtual loop corrections associated with the self-interactions
of gluons and quarks, whereas the imaginary~dissipative!
part contains the real emission, absorption, and scatterin
processes. In other words,GP

(2) embodies all the interesting
quantum dynamics that is connected with renormalization
group, entropy generation, dissipation, etc. Explicitly writing
out the color indices, it is given by@see Fig. 5~a!#

GP
~2!@Ãm,Dmn,S#52

gs
2

2 E d4xd4y

3TrF E d4z1d
4z2lmm8m9

aa8a9 Ln9n8n
b9b8b~z2 ,z1 ;y!

3Da8b8
m8n8~x,z1!Da9b9

m9n9~x,z2!Dba
nm~y,x!

1E *d4z1d
4z2gmTii 8

a J j j 8n
b

~z2 ,z1 ;y!

3Dab
mn~x,z1!Si 8 j 8~x,z2!Si j ~y,x!G . ~36!

HereLnn8n9 andJn are theggg andqqg vertex functions,
respectively,
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FIG. 5. ~a! Diagram of the functionGP
(2) , Eq. ~36!, representing the sum of all two-particle irreducible graphs of order\2,\3, . . . , with

fully dressed propagatorsDmn and S. ~b! Illustration of the self-energiesPmn and S, Eqs. ~42! and ~43!, which derive fromGP
(2) by

functional differentiation with respect toDmn andS.
d

e

n

io
Lnn8n9
aa8a9~z1 ,z2 ;y!5lnn8n9

aa8a9d4~y2z1!d
4~y2z2!g@Ãm~y!#

1O~gs
2!,

J i j n
a ~z1 ,z2 ;y!5gnTa

i jd4~y2z1!d
4~y2z2!g@Ãm~y!#

1O~gs
2!, ~37!

with lnn8n9
aa8a9 andgmTa

i j the corresponding bare vertices, an
the functiong@Ãm# describes the effect due to the presenc
of the gluon mean fieldÃm as compared to free space, wher
g@0#51.

D. The self-consistent equations of motion

The dynamical equations of motion for the gluon mea
field and the gluon and quark Green functions in the absen
of external sources are now as usual obtained from variat
of the effective actionGP with respect to its variables, and
setting the external sources to zero. Hence by functional d
ferentiation ofGP in Eq. ~33! with respect to the gluon mean
field Ãm one gets theGinzburg-Landau equation@34#

dGP

dÃm~x!
5

d Ĩ @Ãm#

dÃm~x!
12i TrH d@D̃ ~0!

mn #21

dÃm~x!
2
1

2

d@S̃~0!#
21

dÃm~x!
J

1
dGP

~2!

dÃm~x!
5 0. ~38!

Similarly, the variation ofGP with respect to the dressed
propagatorsDmn andS gives theCTP version of the Dyson-
Schwinger equations@35#:
e

ce
n

if-

i
dGP

dDmn~y,x!
5Dmn

21~x,y!2D̃ ~0!mn
21 ~x,y!1Pmn~x,y!50,

~39!

2 i
dGP

dS~y,x!
5S21~x,y!2S̃~0!

21~x,y!1S~x,y!50. ~40!

Here P and S are 232 matrices analogous to Eq.~27!,
representing the proper self-energy parts of gluons and
quarks. They are obtained by functional differentiation of the
quantum contributionGP

(2) to the effective action@Eq. ~33!#:

2 i
dGP

~2!

dDnm
ba~y,x!

5Pab
mn~x,y!, 2 i

dGL
~2!

dSi j ~y,x!
5S i j ~x,y!.

~41!

From Eq.~36!, one gets@cf. Fig. 5~b!#,

Pab
mn~x,y!52 igs

2F E d4z1d
4z2laa8a9

mm8m9Ln9n8n
b9b8b~z2 ,z1 ;y!

3Da8b8
m8n8~x,z1!Da9b9

m9n9~z2 ,x!

1 E d4z1d
4z2gmTii 8

a J j j 8n
b

~z2 ,z1 ;y!

3Si j ~x,z1!Si 8 j 8~x,z2!G , ~42!

S i j ~x,y!51 igs
2E d4z1d

4z2gmTii 8
a J j j 8n

b
~z2 ,z1 ;y!

3Dab
mn~x,z1!Si 8 j 8~x,z2!, ~43!
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with the ggg andqqg vertex functionsLmnt
abc andJ i j m

a , re-
spectively, defined by Eq.~37!.

The Dyson-Schwinger equations~39! and ~40! can be
brought into a more familiar form by employing the expre
sions for the free propagators@Eq. ~6!#:

@hW x,mr1m̃g
2~x,y!#Dab

rn~x,y!

5dabg
mndP

4 ~x,y!2E
P
d4x8Ps,a,b8

m
~x,x8!Db8b

sn
~x8,y!,

Dab
rn~x,y!@hQ y,mr1m̃g

2~x,y!#

5dabgmndP
4 ~x,y!2E

P
d4x8Ds,a,b8

m
~x,x8!Pb8b

sn
~x8,y!,

~44!

and

@ ig•]W x2m̃q~x,y!#Si j ~x,y!

5d i jdP
4 ~x,y!1E

P
d4x8S ik~x,x8!Skj~x8,y!,

Si j ~x,y!@2 ig•]Q y2m̃q~x,y!#

5d i jdP
4 ~x,y!1E

P
d4x8Sik~x,x8!Sk j~x8,y!, ~45!

where]x
m5]/]xm, hx

mn is defined by Eq.~7!, the time inte-
grations on the right hand sides are understood along
contourP, and the generalizeddP function is defined on the
closed time pathP ~Fig. 2! as

dP
4 ~x,y!

:5H 1d4~x2y! if x0 and y0 from positive branch,

2d4~x2y! if x0 and y0 from negative branch,

0 otherwise.
~46!

Let me emphasize once more the essential difference fr
the usual quantum field theory: Eqs.~44! and~45! are matrix
equations and represent four equations, one for each of
four correlators in Eqs.~30! @~31!#. In the limiting case where
correlations among different partons vanish, one h

G.5G,50, and becauseGF5GF̄†, one recovers the stan
dard Dyson-Schwinger equations in terms of the Feynm
propagators alone. The first equation in Eqs.~44! @~45!#, de-
scribes the change of the propagators in the argumentx,
whereas the second equation describes the change iny of the
adjoint propagators~adjoint † means Hermitian conjugate
with simultaneous exchange of the arguments!. A diagram-
matic representation of these Dyson-Schwinger equations
the fully dressed Green functionsDmn(x,y) and S(x,y) is
shown in the previous Fig. 4.

Let me summarize the considerations of this section. T
CTP generating functionalZP involving initial state correla-
tions of the form Eq.~21!, described by the density matrix
r̂ at t5t0 , yields an infinite hierarchy ofn-point Green func-
tions, defined along the closed time path. As explained
-

the

om

the

as

an

for

he

in

Appendix A, the truncation of this hierarchy beyondn.2
assumes that the dynamics may be described to sufficie
accuracy by a possible local gluon mean field and the no
local two-point Green functions of gluons and quarks, an
that higher-order correlators are negligible. The resultin
CTP effective action may then be represented by a syste
atic loop expansion corresponding to an expansion in powe
of \. Considering the pure quantum regime with zero mea
field yields a coupled set of equations of motion for th
gluon and quark propagators, which are 232 matrices con-
taining the four possible time orderings of their argumen
x and y. The solution of these dynamical equations the
boils down to the evaluation of expectation values involvin
the propagators and vertex functions, e.g., by using perturb
tion theory@8,11#.

III. QUANTUM KINETIC THEORY

Within the two-point source approximation to the full
theory in terms of two-point Green functions, the resultin
CTP Dyson-Schwinger equations~44! and ~45! contain the
quantum dynamics in terms of the dressed gluon and qua
propagatorsDmn and S. Even with the neglect of higher-
order correlators, the equations of motion are nonlinear, no
local integro-differential equations, generally not solvable i
closed form. To make progress, one needs to supply reas
able physical input that allows one to make realistic approx
mations for multiparton systems of interest.

First of all, I will confine myself for the remainder of the
paper to the pure quantum dynamics of gluons and quar
when a gluon mean field is absent. That is, I choose th
homogeneous initial conditionÃm(x)50 at t0 , which in the
absence of external sources implies thatÃm will remain zero
at all timest.t0:

dGP

dÃm~x!
50, Ãm~x!50. ~47!

Consequently, in Eq.~33!, the classical partĨ @Ãm#50 @see
also Eq.~A4! of Appendix A#, and m̃g5m̃q50, so that the
mean-field propagators reduce to the bare propagators:

D̃ ~0!
mn~x,y!5D ~0!

mn~x,y!, S̃~0!
mn~x,y!5S~0!~x,y!. ~48!

This step, however, is not an approximation, but mere
serves as a simplification in order not to overburden the fo
lowing analysis. The more general case including a dynam
cal gluon background field causes in principle no severe a
ditional complexities, and will be addressed elsewhere.

The essential approximation now is based on the ‘‘two
scale’’ nature of high-energy QCD, as mentioned in the In
troduction. The dynamical evolution of a multiparton system
can—in a reference frame where the partons move wi
highly relativistic velocities—be characterized by two differ-
ent time ~or length! scales, separated by time dilation and
Lorentz contraction effects: aquantum field theoretical scale
Dr qua and astatistical-kineticscaleDr kin . This is illustrated
in Fig. 6~a!. Thequantum length scaleDr qua, measures the
spatial range of quantum fluctuations associated with the p
tons’ self-interactions, and thus specifies the Compton wav
length lc[mgq

21 of dressed partons. These gluon emissio
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FIG. 6. ~a! Classification of the different
scales of relevance:~i! the quantum scale
Dr qua, of the order of the spatial extent of quan
tum fluctuations associated with the ‘‘radiative’
self-energies, and defining a dressed parton st
as a quasiparticle;~ii ! the kinetic scaleDr kin ,
measuring the range of correlations and bina
interactions between these quasiparticles, wi
the ‘‘collisional’’ self-energies; and~iii ! the
‘‘macroscopic’’ scaleDrmac, where the dynamics
can be described in terms of bulk thermodynam
variables or hydrodynamics.~b! The quality of
separation of quantum and kinetic scales is co
trolled by the choice ofm(r ). Because the mul-
tiparticle dynamics of the system in general ma
change the scale of separation in space-time, o
may choosem(r ) variable to optimize the kinetic
description.
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and absorption processes, embodied in the self-energy,
up the bare propagators and allow one to describe parto
quasiparticles with finite spatial extent, but with a dynam
substructure. This is nothing but the underlying philoso
of the usual parton description in QCD. Thekinetic length
scaleDr kin , on the other hand, measures the range of bin
interactions between these quasiparticles. These scatt
processes may be described on a semiclassical level,
vided the local density of the quasiparticles is smaller tha
critical density where the particles begin to overlap and
separation between quantum and classical regimes b
down. Quantitatively, one has to require that the mean
pathlmf of particles is large compared to the radiative c
rections to the Compton wavelengthlc . The crucial point is
that with increasing energy scale the latter range beco
increasingly short range, concentrated around the light c
@see Fig. 6~b!#. Hence, in most physical situations at hi
energies, the quantum and the kinetic scales separate to
good approximation, and in the asymptotic limit exactly. I
important to stress that both quantum and kinetic scales
fine the microscopic regime of a semiclassical particle
scription. It is to be distinguished from the macroscopic
main of the dynamics of the bulk parton matt
characterized by comparably large space-time distance
the ordern21/3, or n/(] rn), wheren(r ) is the density of
quasiparticles. In this regime the system may be descr
by, e.g., hydrodynamical evolution, which is, however,
yond the scope of this paper.

To exemplify this concept, consider the simple case
parton in a Lorentz frame in which it moves with large m
mentum k1[E1kz (k12@k2@1 GeV2) nearly with the
speed of light along the forward light conex1[t1z. The
quantum fluctuations around this parton’s classical trajec
stem from its self-interaction with the gluon radiation fie
corresponding to gluon emissions and reabsorptions,
smear out its energy over an intervalDE;k2/k1. It may
ress
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thus be pictured as an unstable particle with a typical lifetim
Dtp;1/DE. On the one hand, in the direction parallel to th
light cone, the parton’s intrinsic fluctuations decouple fro
the soft vacuum fluctuations withDtv;1/k1!Dtp;k1/k2

@36#. On the other hand, in the transversex' direction, the
partonic fluctuations have a small spatial extent
Dr';1/k'!1 GeV21. Therefore, on kinetic scales
Dkin.m21, the parton appears as a dressed particle wh
can be considered quasiclassically as an extended object
a small transverse sizeDr' and a comparably long lifetime
Dtp—a quasiparticle. On quantum scales, however, t
dressed parton has a substructure, determined by its
rounding cloud of gluons which it emits and reabsorbs due
its quantum nature.

In this spirit I will classify the parton dynamics with re-
spect to elementary and quasiparticle excitations, referring
them by the termsbareanddressedpartons, respectively:~i!
Bare partons are to be understood as pointlike, massl
quanta in the absence of radiative self-interactions, i.e.,
fore renormalization;~ii ! dressedpartons, on the other hand
are dressed by the quantum self-interactions with their rad
tion field, which renormalize their masses and couplings.

In the field theoretical parton language, a dressed par
with its dynamically generated renormalized mass can
described~in a frame where it moves close to the speed
light! as a bare quantum which is surrounded by a virtu
cloud of other bare gluons and quark-antiquark pairs w
which it emits and absorbs. Hence, on kinetic space-tim
scales, a dressed parton can be visualized as a quasipar
i.e., an extended object with a dynamical substructure tha
determined by the short-distance quantum fluctuations.

A. Definition of quantum and kinetic space-time scales

The realization of the two space-time scales, sho
distance quantum and quasiclassical kinetic, allows one
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reformulate the quantum field theoretical problem as a re
tivistic many-body problem within kinetic theory. The key
element is to establish the connection between the quant
theoretical Green functions and the kinetic particle descri
tion in terms of parton phase-space densities. In particul
the aim is to describe the evolution of a multiparton en
semble, given at timet0 , with a certain spatial and a momen
tum distribution, by exploiting the two-scale nature of high
energy QCD. As explained before, this requires a choice
Lorentz frame, in which the quanta move very fast and th
typical momentum scale of their binary interactions and a
sociated radiative processes is sufficiently large such that
corresponding interaction times are small compared to t
mean free time between mutual collisions. For examp
imagine a high-energy reaction has produced an initial co
figuration of materialized partons~e.g., a hadronic or nuclear
collision with As*100 GeV per hadron!. If t0 denotes the
earliest point of time in the lab frame, when the parton de
sities have evolved to satisfyDpDr@1, where 1/Dp mea-
sures the scale of the partons’ intrinsic quantum motion a
Dr the space-time variation of the system of partons, the
for times t.t0 , an approximate incoherent treatment o
quantum dynamics and kinetic evolution is justified, as h
been shown by McLerran and Venugopalan@25#.

With this physical scenario in mind, now suppose tha
space-time is discretized into cells, with their size chose
intermediate between quantum and kinetic scales such t
the separation between the two scales is optimal@8#. Then
the correlation betweendifferentcells will be negligible, and
only when two space-time points corresponding to the arg
ments of the propagators or self-energies lie in thesamecell
will the two-point correlation contribute~as explained in Ap-
pendix B!. Consequently, in a given cell, one can by con
struction neglect spatial inhomogeneities of the local gluo
and quark densities of the multiparton system. Within ea
cell, one may therefore describe the short-distance quant
dynamics analogously as in vacuum or homogenous med
whereas inhomogeneities of the spatial parton distributi
and relaxation phenomena associated with binary collisio
become apparent as one moves from cell to cell. In contin
ous space-time, corrections to this discretized picture can
taken into account by a systematic expansion in terms
gradients of the spatial inhomogeneities of the parton dist
butions@Eq. ~66! below#.

In order to quantify this concept, let me clearly specif
quantum and kinetic domains with respect to the cellul
space-time. It is important to realize that both quantum a
kinetic scales are of dynamical, ‘‘internal’’ nature, i.e., de
termined by the multiparton evolution itself. The classifica
tion of the two scales only makes sense in the presence
self- and mutual interactions. However, the class of hig
energy parton systems addressed here is characterized by
corresponding ‘‘external’’ scales: first, the large energy sca
of the reaction that produces the initial system of large m
mentum partons, and second, the initial local density of pa
tons in phase space that depends on the type of reaction.
first property implies a large characteristic momentum tran
fer q'

2[(k12k18)
2 of scattering processes (k1k2→k18k28) and

radiative processes (k1→k18k28). The second property, on the
other hand, is related to the mean free pathlmf and mean
free timetmf of partons in between subsequent scatterings.
-
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the latter are large compared to the typical space-time exte
1/q' of the scattering and radiation processes, then an inc
herent treatment of the binary collisions among partons, an
of the partons’ propagation with associated quantum fluctua
tions, is applicable. This condition may be characterized b
the invariant mass scalemgq , defined such that

q'
2.mgq

2 .lmf
22 . ~49!

The parametermgq
2 can be interpreted as defining the mini-

mum virtuality of a dressed parton, or, correspondingly, it
maximum size, or Compton wavelengthlc5mgq

21 , such that
the applicability condition of the parton description is en-
sured. Consequently, the size of each space-time cell must
chosen large enough that the spread of the dressed parto
intrinsic quantum motion is localized inside its four-
dimensional volume, but smaller than the mean free path
dressed partons in between scatterings. Accordingly, I defin
the cell sizeDrm[Dr 0D3r by

mgq
24,Drm[m24~r !!LQCD

24 , ~50!

whereLQCD.0.25 GeV is the QCD renormalization scale.
For example, a cell sizeDr& 0.1 fm allows one to resolve
particles with energy-momentum*2 GeV. One can then
characterize the kinetic space-time evolution of the syste
by a velocity profile of cellsi , located around the points
r i

m , with a four-dimensional cell volume in its rest frame:

V~r i !5E
r 8PV

d4r 85E
r i
0
2Dr0/2

r i
0
1Dr0/2

dr0E
rW i2DrW/2

rW i1DrW/2
d3r 8.m24.

~51!

Each cell carries a total momentum

Pm~r i !:5(
j51

Ngq

kj
mU

~r j
0 ,rW j !PV~r i !

~52!

and a total invariant virtuality~the incoherent sum of parton
virtualities!

Q2~r i !:5(
j51

Ngq

kj
2U

~r j
0 ,rW j !PV~r i !

, ~53!

where the sums are over all dressed partonsj inside the cell
i , i.e., those that are during a time sliceDr 05m21 contained
within D3r5m23 around space-time pointr i . The corre-
sponding local four-flow velocity isum(r i)5Pm/P0. This
cellular space-time picture is illustrated in Fig. 7~a!.

The validity of the above cell picture is controlled by the
condition that the different scales are well separated:

P12~r i !@Q2~r i !>m2~r i !@LQCD
2 , ~54!

where Pm5(P1,P2,PW'), P65P06P3 , and P'

5AP1
21P2

2 with P1(P2) the lightcone momentum (energy),
P25P1P22P'

2 , and the normalization of a cell stateuP& is

^PuP8&52P1(2p)3d3(PW 2PW 8). On the basis of Eq.~54!
and in terms of these light-cone variables, the four
momentum of a partonj can be characterized by only two
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variables, namely, its light-cone momentumkj
15xjP

1 with
fraction xj of the total cell momentum, and its off-shellnes
~invariant virtuality! kj

25kj
1kj

22kj'
2 [M2(kj ). Its light-

cone energy iskj
25(kj

21kj'
2 )/kj

1.0 (k1 2@k2*k'
2 ), and

one has, therefore,

kj5~kj
1 ,kj

2!5~xjP
1,kj

2!,

d4kj
~2p!4

~2p!d1
„kj

22M2~kj !…5
1

16p2

dxj
xj

dkj
2 . ~55!

The requirement Eq.~54! together with Eq.~50! hence trans-
lates to the parton level askj

12@kj
2>m2(r i), for all partons

j within a given cell aroundr i ;

Q2~r i !>kj
2>mgq

2 >m2~r i !. ~56!

Sincelc5mgq
21 characterizes the maximum size of dress

partons, the ratiom4(r i)/mgq
4 determines the minimum frac

tion of volume occupied by dressed partons in the cell. T
quantum and kinetic space-time regions can now be defi
as

Dr qua5@P121,m21#, Dr kin5@m21,LQCD
21 #. ~57!

For largeP1 andQ2, quantum and kinetic length scale
are well separated and theparton phase-space densities Ff
may be locally represented as a convolution of the kine

FIG. 7. ~a! Illustration of the cellular space-time picture, wit
cell size chosen intermediate between quantum and kinetic sc
such that the separation between the two scales is optimal, so
short-distance quantum correlation between different cells is ne
gible. ~b! Representation of the partons’ phase-space dens
F5N^P as a convolution of the statistical density of dressed p
tonsN with the spectral densityP of each dressed parton, describ
ing its intrinsic density of bare parton states as its quantum s
structure.
s
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statistical density of dressed partonsNf of type f5g,q, with
the quantum theoretical spectral densityPf of each dressed
parton describing the intrinsic density of bare parton states as
its quantum substructure, as depicted in Fig. 7~b!:

F f~r i ,k!5F f~r i ,k
1,k2![Nf~r i ,P

1,mgq
2 ! ^Pf~r i ,k1,k2!,

~58!

where the convolution of the statistical densityNf of dressed
partons at the scalemgq

2 with the spectral densityPf , is
defined as the average over the local space-time volume
V(r i) aroundr i of the densities,

Nf ^Pf[
1

V~r i !
E

V~r i !
d4r 8E dy

y
Nf

3~r 8,yP1,mgq
2 !Pf S r 8,xy ,k2D , ~59!

with V(r i).m(r i)
24, P15P1(r i), k15xP1, z5x/y

(0<z<1), and

Nf~r ,yP
1,mgq

2 !5
dNf

d4r d lny
d~k22mgq

2 !, ~60!

Pf~r ,z,k2!5 (
f 85g,q

Pff 85 (
f 85g,q

E
mgq
2

k2

dk82
dnf

f 8

d lnz dk82
. ~61!

This ansatz describes the multiparton system on the basis o
treating each individual dressed parton as a composite par
ticle of type f with a substructure of a number of bare quanta

nf
f 8 of type f 8, weighted locally with the total number of

dressed partonsNf in a space-time cell. The spectral density
P characterizes the intrinsic structure of a dressed parton
state, whereas the quasiparticle densityN describes the cor-
relations and scatterings among those dressed partons. A
will become clear later, the spectral densitiesPf can indeed
be identified with the QCD parton structure functions. The
crucial quantities that control the cellular resolution in space-
time of the partons’ substructure are the characteristic cell
size m21(r i) and the minimum resolvable virtuality
mgq
2 >m2 of dressed partons in the cell, or alternatively the

fractional space-time volume occupied, DV/V
5m4/(Ngqmgq)

4, which determines how densely a cell may
be populated without the partons overlapping. Hence the va-
lidity of the kinetic approximation, based on the separation
of quantum and kinetic scales, is controlled by the choice of
these quantities, which need not be constant but rather may
be taken as space-time dependent, i.e., variable from cell to
cell chosen such that the resolution is optimal. A convenient
choice would be, for instance,

m~r i !.mgq ~62!

which I will adopt in the following for lucidity, keeping in
mind thatmgq is not a free external parameter, but rather is to
be understood as a dynamical, possibly space-time-
dependent quantity, which in principle should be determined
self-consistently from screening effects. I will not address
this latter issue here.
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B. Wigner transformation and the kinetic equations of motion

Let me proceed, referring to Appendix B for details, b
introducing center-of-mass and relative coordinates of t
space-time pointsx andy,

r[ 1
2 ~x1y!, s[x2y, ~63!

in terms of which one can express any two-point functi
W(x,y)[Dmn ,S,Pmn ,S, as

W~x,y!5WS r1
s

2
,r2

s

2D5W~r ,s!, ~64!

and introduce itsWigner transform W(r ,k) as @13#

W~x,y!5E d4k

~2p!4
e2 ik•sW~r ,k!,

W~r ,k!5E d4seik•sW~r ,s!, ~65!

i.e., one Fourier transforms with respect to the relative co
dinates, the canonical conjugate to the momentumk. In the
cell picture of space-time, the coordinater is the cell index
that labels the kinetic space-time dependenceO(Dr kin),
whereas s measures the quantum space-time dista
O(Dr qua), as illustrated in Fig. 8. In homogeneous system
such as the vacuum, translation invariance dictates that
dependence onr drops out entirely, and the Wigner trans
forms then coincide with the momentum-space Fourier tra
forms of the Green functions and self-energies. In gene
spatial inhomogeneities can be systematically accounted
by performing an expansion in terms of gradien
] r[]/]rm:

W~r1s,s!.W~r ,s!1s•] rW~r ,s!1O@~s•] r !
2#. ~66!

For quasihomogeneous or moderately inhomogeneous
tems, such thats•] rW!W, the correlations between differ
ent cells will be small so that the propagators and se
energies accordingly vary only slowly withr . One may then
truncate the series~66! after the second term, and convert th

FIG. 8. In the cellular space-time picture, the ‘‘absolute’’ coo
dinate r labels the kinetic space-time dependenceO(Dr kin),
whereas the ‘‘relative’’ coordinates measures the quantum spac
time distanceO(Dr qua).
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quantum field equations of motion~44! and~45! into a set of
kinetic equations by first performing the Wigner transforma
tion ~65! for all Green functions and self-energies, and the
taking for Eqs.~44! and ~45! the sum and difference of the
two adjoint equations in their transformed representation.

This procedure~see Appendix B! yields two distinct equa-
tions for each of the Wigner transformsDmn and S with
rather different physical interpretations, which I will refer to
as therenormalization equationand transport equation, re-
spectively. Therenormalization equationsare obtained as

S k22 1

4
] r
2DDab

mn~r ,k!52dmn~k!dab1̂P

1
1

2
~$P,D%1!ab

mn1
i

4
Gabmn~2 ! ,

~67!

1

2
$g•p,Si j ~r ,p!%15d i j 1̂P2

i

2
~@g•] r ,S#2! i j

1
1

2
~$S,S%1! i j1

i

4
Fi j~2 ! ,

where dmn(k) is given by Eq. ~8!, ] r
2[] r•] r , and

@A,B#2[AB2BA, $A,B%1[AB1BA. The transport
equationsare found in the form

k•] rDab
mn~r ,k!52

i

2
~@P,D#2!ab

mn1
1

4
Gabmn~1 ! , ~68!

1

2
$g•] r ,Si j ~r ,p!%15

i

2
~@g•p,S#2! i j

2
i

2
~@S,S#2! i j1

1

4
Fi j~1 ! .

In Eqs.~67! and~68! the self-energiesP andS are explicitly
given by Eqs.~42! and~43!, and the operator functionsG and
F on the right hand sides, which include the effects of spati
inhomogeneities to first order in the gradient expansion E
~66!, are5

Gmn~2 !5@]k
lPs

m ,]l
r Dsn#22@] r

lPs
m ,]l

kDsn#2 ,

Gmn~1 !5$]k
lPs

m ,]l
r Dsn%12$] r

lPs
m ,]l

kDsn%1 , ~69!

F~2 !5@]p
lS,]l

r S#22@] r
lS,]l

pS#2 ,

F~1 !5$]p
lS,]l

r S%12$] r
lS,]l

pS%1 . ~70!

For completeness, I note that the equations for quark Gre
functions can formally also be brought into a more familia
quadratic form, similar to the equations for the gluon Gree

5Note that] r
m[]/]km acts on a functionf (r ,k) as the derivative

with respect to the space-time coordinate, whereas]k
m[]/]km and

]p
m[]/]pm refer to the variation of four-momentum.
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functions, which exhibits the mass and drift term on the l
hand side of the renormalization and transport equations
spectively:

S p22 1

4
] r
2DSi j ~r ,p!5~g•p1S!d i j 1̂P1

1

2
~$S2,S%1! i j

1
i

4
Ai j

~1 !2
1

8
Bi j~2 !,

p•] rSi j ~r ,p!5
1

2
~g•] r !d i j 1̂P2

i

2
~@S2,S#2! i j

1
1

4
Ai j

~2 !1
i

8
Bi j~1 ! , ~71!

whereS i j5d i jS, and

A~6 !5 1
2 @~g•p1S!~F~2 !1F~1 !!

6~F~2 !2F~1 !!~g•p1S!#,

B~6 !5 1
2 @~g•]W r !~F~2 !1F~1 !!

6~F~2 !2F~1 !!~g•]Q r !#. ~72!

As will be seen in the following, the renormalizatio
equations~67! express the normalization conditions impos
by unitarity and renormalization group due to the quantu
self-interactions, and redefine the bare quanta in terms
renormalized quasiparticles. The transport equations~68!, on
the other hand, describe the kinetic space-time evolution
the system of quasiparticles and their binary collisions.

The kinetic approximation of trading the Green functio
G(x,y) with their Wigner transformsG(r ,p) means in the
picture of cellular space-time that inside a given cell carryi
the space-time coordinater5(t,rW) as a label,G(r ,p) equals
the translation-invariant Fourier transformG(p) of
G(x2y), but outside of the cell it is zero. In another ce
r 8, the Wigner functionG(r 8,p8) is determined by a differ-
ent translation-invariantG(p8). Hence, when looking at the
short-distance quantum fluctuations within a given spa
time cell aroundr5(r 0,rW), one may approximate the spatia
distribution of partons as being homogeneous and cons
over the cell volume, and describe the short-range quan
dynamics in a translation-invariant manner. With the sa
accuracy of approximation, one can neglect in the quan
regime binary parton collisions, provided the mean free p
lmf5(sgqFgq)

21 in terms of the parton-parton cross se
tionssgq and the local densityFgq is large compared to the
spatial spread of the quantum fluctuations, which is typica
of the order of 1/Ap2. Hence the essential requireme
p2@lmf

22 can always be realized, if the particle energies a
sufficiently large.

On the basis of these considerations, I first study
quantum theoretical aspects embodied in the renormaliza
equations~67! to obtain the renormalized gluon and qua
propagators, and from this determine the momentum dep
dence of the phase-space densitiesFgq , Eq. ~58!, associated
with the variation of the parton structure functions. Sub
quently, I will investigate the transport theoretical aspects
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the statistical kinetic dynamics, described by transport equa-
tion ~68!, which determines the space-time variation of the
phase-space densitiesFgq in terms of renormalized, dressed
partons.

C. The ‘‘physical representation’’ and strategy of solution

Within the kinetic approximation, the goal is to obtain the
best possible approximation to the complete propagators
G5Dmn ,S, starting from the case of noninteracting fields
with the corresponding Wigner transformed Green functions
G(0)5D (0)

mn ,S(0) . In this ‘‘free field’’ case, because of trans-
lational invariance, ther dependence of the Green functions
is homogeneous, and the equations of motion~67! and ~68!
reduce to

k2D ~0!
mn~r ,k!52dmn~k!1̂P , k•] rD ~0!~r ,k!50,

p2S~0!~r ,p!5g•p1̂P , p•] rS~0!50, ~73!

and the corresponding ‘‘free field’’ solutions of the four
types of correlatorsF,.,,,F̄ in Eqs.~27!–~31! are given by
@5,7#

D ~0!mn
F ~r ,k!

52dmn~k!F 1

k21 i«
22p iF ~0!g~r ,k!d~k22mgq

2 !G ,
~74!

D ~0!mn
. ~r ,k!522p i @2dmn~k!#@u~1k0!1F ~0! g~r ,k!#

3d~k22mgq
2 !,

D ~0!mn
, ~r ,k!522p i @2dmn~k!#@u~2k0!1F ~0! g~r ,k!#

3d~k22mgq
2 !,

D ~0!mn
F̄ ~r ,k!

51dmn~k!F 1

k22 i«
22p iF ~0! g

~r ,k!d~k22mgq
2 !G ,

wheredmn(k) is defined by Eq.~8!, and

S~0!
F ~r ,p!5

11

g•p1 i«
12p iF ~0!q~r ,p!d~p22mgq

2 !,

S~0!
. ~r ,p!512p iF ~0!q~r ,p!d~p22mgq

2 !,

S~0!
, ~r ,p!522p i @12F ~0!q~r ,p!#d~p22mgq

2 !,

S~0!
F̄ ~r ,p!5

21

g•p2 i«
12p iF ~0!q~r ,p!d~p22mgq

2 !.

~75!

The scalar functionsF (0)g andF (0)q are the free field ana-
logues of Eq.~58! with the spectral densitiesPf replaced by
unity,
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F ~0! f~r ,k!5Nf~r ,k! ^15
dNf

d3rd3k U
r05t,k25m

gq
2

~ f5g,q!,

~76!

i.e., the phase-space densities of gluons and quarks that m
sure the number of noninteracting quanta in a phase-sp
elementd3rd4k at a given timet5r 0: It can be shown@8#
that the functionF (0)g (F (0)q) is real, even, and the same fo
all four gluon ~quark! correlatorsDmn (S) in Eqs.~74! and
~75!. For an ideal gas of gluons and quarks in equilibrium
for example, one findsF (0)}1/@exp(bmk

m)61# with 2 (1)
for gluons~quarks! andb5(T21,0W ) in the local rest frame.
It is important to bear in mind that the presence of the fun
tions Fg and Fq in Eqs. ~74! and ~75! even in the ‘‘free
field’’ case is a direct consequence of the CTP formulati
which incorporates initial state correlations due to a no
trivial density matrix r̂(t0), Eq. ~21!, corresponding to
F(t0 ,rW,p)Þ0, as opposed to the usual quantum field theo
description, wherer̂(t0)5u0&^0u and F(t0 ,rW,p) vanishes.

Evidently, in this latter caseG.5G,50 andGF5GF̄† at
all times, so that the dynamics is described by the Feynm
propagatorsGF alone.

More suitable for practical purposes, one may employ

stead of the setGF,G.,G,,GF̄, an equivalent set of the
retarded (advanced) propagators GR (GA) plus thecorrela-
tion function GC. The latter are directly connected with
physical observable quantities, and are commonly referred
as thephysical representation@7#. The functionsGR, GA,
andGC are obtained via the relations

GR5GF2G.5G,2GF̄, GA5GF2G,5G.2GF̄,

GC5GF1GF̄5G,1G., ~77!

which are most general identities that also hold in the pre
ence of interactions. Because the fourth possible linear co

binationGF2G.2G,1GF̄ is always identically zero, the
three physical functionsGR, GA, andGC form a complete
alternative set that eliminates the overdetermination of t

setGF,G.,G,,GF̄. The ‘‘free field’’ forms ofGR, GA, and
GC corresponding to those of Eqs.~74! and ~75! are

D ~0!mn
R~A! ~r ,k!5

2dmn~k!

k26 i«k0
, S~0!

R~A!~r ,p!5
1

g•p6 i«p0
,

D ~0!mn
C ~r ,k!522p i @2dmn~k!#@112 F ~0!g~r ,k!#

3d~k22mgq
2 !, ~78!

S~0!
C ~r ,p!522p i ~g•p!@122 F ~0!q~r ,p!#d~p22mgq

2 !,

where 1 (2) in the denominators corresponds to theR
(A). Generally speaking, the retarded and advanced fu
tions characterize the quantum nature of parton sta
whereas the correlation function describes the phase-sp
occupation of these states.

The preceding relations~77! are generally valid for any
two-point function defined on the closed time path, an
hence apply not only to the free field case, but also to the f
Green functionsG5Dmn ,S, as well as to the self-energie
E5Pmn ,S. In matrix form, the correspondence between th
representation~27! in terms ofG (E) and the physical rep-
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ace
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resentation denoted byĞ ( Ĕ) is given by a unitary transfor-
mation U, a 232 matrix with Umn51/A2 for
mn511,21,22 andU12521/A2:

Ğ5UGU215S 0 GA

GR GCD , Ĕ5U21EU5S EC ER

EA 0 D ,
~79!

where, in subtle contrast with Eq.~77!,

EA5EF1E.52E,2EF̄,

ER5EF1E,52E.2EF̄,

EC5EF1EF̄52E,2E.. ~80!

The great advantage of this physical representation is that th
dependence on the partons’ phase-space densitiesFg and
Fq is essentially carried by the correlation functionsGC,
whereas the dependence of the retarded and advanced fun
tionsGR andGA is weak. In the free field case, this separa-
tion of correlations is exact, as is evident from Eq.~78!, such
that the retarded and advanced functions do not depend at a
onFg andFq . In fact, even in the general case of interacting
fields, this advantageous property becomes very suggestiv
when rewriting the renormalization and transport equations
~67! and~68! in generic form for the individual Green func-
tion components:

$G~0!
21 ,GR2GA%1522S k22 1

4
] r
2D ~GR2GA!

5$dE,P%11$G,dG%1, ~81!

@G~0!
21 ,GC#2522ik•] rG

C

5@EC,dG#21@dE,GC#2

1
i

2
~$EC,P%11$G,GC%1!, ~82!

where

dG[ReG5 1
2 ~GR1GA!, dE[ReE5 1

2 ~ER1EA!,

P[ImG5 i ~GR2GA!, G[ImE5 i ~ER2EA! ~83!

are the real and imaginary components of the retarded an
advanced Green functions and self-energies, whereas

GC5G,1G., EC52~E,1E.! ~84!

are the real correlation functions and corresponding self
energies. The physical significance of Eqs.~81! and ~82! is
the following. Equation ~81! determines the state of a
dressed parton with respect to its virtual fluctuations and rea
emission~absorption! processes, corresponding to the real
and imaginary parts of the retarded and advanced sel
energies. Equation~82!, on the other hand, characterizes the
correlations among different dressed parton states, and th
self-energies appear here in two distinct ways. The first two
terms on the right hand side account for scatterings betwee
quasiparticle states, i.e., dressed partons, whereas the la
two terms incorporate the renormalization effects which re-
sult from the fact that the dressed partons between collision
do not behave as free particles, but change their dynamica
structure due to virtual fluctuations, as well as real emission
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and absorption of quanta. For this reasonER(A) are called
radiativeself-energies, andEC is termed thecollisional self-
energy. As shown by Kadanoff and Baym@5#, the imaginary
parts of the retarded and advanced Green functions and s
energies~83! are just the spectral densityP, giving the prob-
ability for finding an intermediate multiparticle state in th
dressed parton, and, respectively, the decay widthG, de-
scribing the dissipation of the dressed parton. The solution
Eqs. ~81! and ~82! can be obtained in complete analogy t
the detailed derivation given by Kadanoff and Baym@5#.
One finds that the solution for the spectral densityP has the
same formal structure as in equilibrium, namely,

P~r ,k!5
G

k22dE1~G/2!2
[DPdE1DPG , ~85!

describing the particle density in terms of the finite widt
G and the dynamical mass termdE ~which in the ‘‘free
field’’ case areG5dE50, corresponding to an on-shell, clas
sically stable particle!. On the right hand side of Eq.~85!, the
second form exhibits the physical meaning more sugg
tively in terms of the ‘‘wave function’’ renormalization
(DPdE) due to virtual fluctuations, and the dissipative par
(DPG) due to real emission~absorption! processes. This
separation will prove convenient later.6 The spectral density
P satisfies the sum rule@7,5#

15
1

P1E dk1

2pk1 T11P~r ,k1,k2!

5
1

P1E dk1

2p
k1P~r ,k1,k2!, ~86!

which is an implicit consequence of unitarity, and requir
that the total light-cone momentum of the spectral density
the internal bare partons must be equal to the dressed
tons’ momentum. For example, in the ‘‘free field’’ case, i.e
in the absence of interactions, one hasDPdE
5d(12k1/P1) and DPG50 with k25mgq

2 , so that
P→P(0) describes a single ‘‘on-shell’’ parton state

P~0!~r ,k
1,k2!5d~k22mgq

2 !dS 12
k1

P1D , ~87!

on the ‘‘mass shell’’k25mgq
2 , and carrying the total light-

cone energyk15P1.7 This is nothing but the fact that the
presence of a pole in the Green function means the prese
of a particle, stable if it occurs for realk2, unstable if it
occurs for complexk2, as in the Breit-Wigner formula~85!.
The generalization of Eq.~87! to the case of interactions, in
which, as advocated before, a dressed parton may be vis
ized as a substructured particle with a fluctuating number
bare quanta intermediately present in its wave function,
straightforward. A dressed parton has now a ‘‘blurred’’ ma
shell, because its internal excitations fluctuate due to virt

6The formula~85! holds for bothspacelike(k2,0) and timelike
(k2.0) momenta. Ifk2 is spacelike then the imaginary partDPG

vanishes, so thatP is purely real. On the other hand, ifk2 is time-
like then bothDPdE andDPG contribute, and soP is complex.
7Note that for the choice Eq.~62!, the fractionz5x/y in the

defining equation forP, Eq. ~61!, reduces toz5x.
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and real emission~absorption! processes of its bare daughte
partons. The spectrum of these quantum excitations will ha
a finite extension aroundmgq

2 , described by the real part
dE of the self-energy, with a widthG, described by the
imaginary part and being inversely proportional to the life
time of the particular parton state. Hence, one may wr
formally, instead of Eq.~87!,

P~r ,k!5d„k22M2~r ,k1,k2!…, M25dE2
G2

4
, ~88!

wheredE andG are given in terms of the real and imaginar
parts of the retarded and advanced self-energies@Eq. ~83!#.
This representation serves to maintain the analogy with t
free field case, for which one has an immediate intuitio
However, instead of a simple mass-shell condition, the arg
ment of thed function now expresses a nontrivial functiona
dependence of the spectrum onk1 andk2 and, in general, on
space-timer . The solution of this implicit equation deter-
mines the spectral densityP, which is the subject of Sec.
III D.

Once the spectral density is known, the correlation fun
tion GC is given by the generic expression@5#

GC~r ,k!522p i @162N~r ,k!# ^P~r ,k!

522p i @16 2F~r ,k!#d„k22M2~r ,k!…, ~89!

where 1 (2) is for gluons ~quarks!. It reduces to
the free field form when P is replaced by P(0) ,
Eq. ~87!, so that G(0)

C 522p i @162N#d(k22mgq
2 )

522p i @162F (0)# f3d(k22mgq
2 ) becomes an on-shell dis-

tribution, as in Eqs.~78!. The theoretical basis for the previ-
ous, more physically motivated, ansatz@Eq. ~58!# for the
parton phase-space distributionsF becomes evident now: It
is the logical generalization of the free field forms@Eq. ~78!#
to include renormalization effects and dissipation in terms
nontrivial spectral densities, or parton structure function
which embody the underlying quantum dynamics. In th
sense the Wigner functionsF are the quantum kinetic exten-
sion of the classical particle phase-space distributions.

Following this strategy, I will now proceed on the basis o
the factorized ansatz@Eq. ~58!# for the gluon and quark den-
sitiesFf in terms of the quasiparticle distributionsNf with
the spectral densitiesPf , i.e., the presumption that the sepa
ration between quantum and kinetic scales allows a distin
treatment of the intrinsic quantum fluctuations of dress
partons and the kinetic correlations among them. In contr
to Eq. ~78!, the poles of the retarded and advanced Gre
functions are shifted by the real and imaginary parts of t
self-energiesER(A), and in the expression for the correlation
functions thed function is replaced by the spectral densit
P. Introducing the scalar functions forP̂ for the gluon and
Ŝ for the quark self-energies through

Pab
mn5dab~k

mkn2gmnk2!P̂, S i j5d i j p
2Ŝ, ~90!

instead of Eq.~78! one has now
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Dmn
R~A!~r ,k!5

2dmn~k!

k2~12P̂R~A!!
,

SR~A!~r ,p!5
g•p

p2~12g•pŜR~A!!
, ~91!

Dmn
C ~r ,k!522p i @2dmn~k!#@112Ng~r ,k!# ^Pg~r ,k!

522p i @2dmn~k!#@112 Fg~r ,k!#

3d„k22Mg
2~r ,k!…,

SC~r ,p!522p i ~g•p!@122Nq~r ,p!# ^Pq~r ,p!

522p i ~g•p!@122 Fq~r ,p!#d„p22Mq
2~r ,p!….

~92!

The two-step strategy that I will follow in the next sections i
the following.

~1! In Sec. III D, the renormalization equations~67! will
be solved for the retarded~advanced! Green functions

~DR~A!
21 !ab

mn~r ,k!5~D ~0!R~A!
21 !ab

mn2~PR~A!!ab
mn ,

~SR~A!
21 ! i j ~r ,p!5~S~0!R~A!

21 ! i j2~SR~A!! i j , ~93!

which determine the spectral densitiesPg andPq in terms of
the radiative self-energiesPmn

R(A) andSR(A).
~2! In Sec. III E the transport equations will be solved fo

the correlation functions

DCab
mn ~r ,k!52DRaa8

mm8 @~D ~0!C
21 !a8b8

m8n82~PC!a8b8
m8n8#DAb8b

n8n ,

SCi j~r ,p!52SRii8@~S~0!C
21 ! i 8 j 82~SC! i 8 j 8#SAi8 j , ~94!

which determine the parton phase-space distributionsFg and
Fq by the collisional self-energiesPmn

C andSC, in conjunc-
tion with the spectral densitiesPg andPq .

D. Quantum dynamics and renormalization equations

As advocated above, when addressing renormalization
fects and dissipative quantum dynamics, it is appropriate
focus on the retarded and advanced propagators and
imaginary parts of the self-energies, which embody th
short-distance propagation of quantum fluctuations. Furth
more, on quantum scales, one can neglect ther dependence,
and thus ignore in this regime the functionsG andF in Eqs.
~67! and~68!. Then, by performing the transformation of the
Wigner transformed Green functionsDmn , S and self-
energiesPmn , S to the physical representation via Eq.~79!,
one obtains simplified equations for the retarded~advanced!
functions ~cf. Appendix B!. The renormalization equations
reduce to the form

~k22 1
4 ] r

2!Dab
mnR~A!~r ,k!

52dmn~k!dab1
1
2 ~PR~A!DR~A!1DR~A!PR~A!!ab

mn ,

1
2 $g•p,Si j

R~A!~r ,p!%15d i j1
1
2 ~SR~A!SR~A!1SR~A!SR~A!! i j .

~95!
s

r

ef-
to
the
e
r-

To solve the equations~95!, it is suggestive in view of Eq.
~78! to parametrize the renormalized, ‘‘dressed’’ propagator
Dmn
R andSR on account of their Lorentz structure as@27,28#

Dab
mnR~A!~r ,k!5dab

2dmn~k!

k2@12P̂R~A!~r ,k!#

[Dg~r ,k
2,kk!dab

2dmn~k!

k26 i«k0
1•••,

Si j
R~A!~r ,p!5d i j

g•p

p2@12g•pŜR~A!~r ,p!#

[Dq~r ,p
2,kp!d i j

g•p

p26 i«p0

1D̃q~r ,p
2,kp!d i j

g•n

n•p
1•••, ~96!

where dmn(k)5gmn2(nmkn1nnkm)/(n•k) as before, the
scalar self-energy functionsP̂R and ŜR are defined by Eq.
~90!, andk implicitly accounts for the dependence ofDg and
Dq on the coordinater , which is conjugate tok

1. The func-
tion k is of the order of the large light-cone momentumk1

squared~cf. Appendix C!:

kk
2[

~n•k!2

n2
.k12, n2!1. ~97!

The renormalization functionsDg (Dq) account for the
modifications of the ‘‘bare’’ propagators~78! due to the self-
interactions embodied inP (S). The third functionD̃q turns
out to be proportional toDq ~cf. Appendix C!. They are
normalized in accord with the condition~56!, such that

Dg~r ,k
2,kp!uk25m

gq
2 5Dq~r ,p

2,kp!up25m
gq
2 51, ~98!

meaning that a gluon or quark is considered as a maximal
dressed particle@in the sense of the applicability of Eq.~56!#,
corresponding to the invariant scalemgq , which may be
called the dressed partons’ mass shell.

It is well known@27# that other contributions to the propa-
gators in Eq.~96!, indicated by the ellipses, are strongly
suppressed8 in light-cone-dominated processesQ2→` by in-
verse powers ofQ2. In fact, this feature is the very founda-
tion of the QCD parton description within the~modified!
leading log approximation~MLLA ! @27,28#, where the renor-
malization problem reduces to a multiplication of the bare
propagators and vertices by scalar functions. That is, as d

8Note the benefit of the employed gaugenmA
m50 for the gluon

field, Eq. ~3!: by suitable choice of the vectornm such thatn2!1,
one can concentrate the short-distance quantum fluctuations to
bitrary proximity around the light cone,n2→0, i.e.,kk→`, corre-
sponding to the asymptotic limitk1→`. In this regime the leading
log singularities of the propagators give the dominant contribution
and the ellipses in Eqs.~96! and ~100! can be neglected because
they do not generate leading logs.
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picted in Fig. 9, with respect to the Wigner transforms of t
self-energies Eqs.~42! and ~43!,

Pab
mnR~A!~r ,k!52

gs
2

2 E d4k8

~2p!4i
f aa8clmm8s~2k,2k1k8,k8!

3Dcd
stR~A!~r ,k8!Ldb8b

tn8n
~2k8,k2k8,k!

3Da8b8
m8n8R~A!

~r ,k2k8!

2gs
2NfE d4k8

~2p!4i
gmTln

a Snn8
R~A!

~r ,2k81k!

3Jn8 l 8n
b

~2k81k,k,k8!Sll 8
R~A!

~r ,k8!, ~99!

S i j
R~A!~r ,p!5gs

2E d4k8

~2p!4i
gsTii 8

c Si 8 j 8
R~A!

~r ,p2k8!

~100!

3J j 8 j t
d

~p2k8,p,k8!Dcd
stR~A!~r ,k8!,

one can represent theqqg and ggg vertex functionsG
(L), Eq. ~37!, as multiplicative renormalization functions:
e G i j
ma~r ;p1 ,p2 ,k3!5gmTi j

a Vqqg~r ;p1
2 ,p2

2 ,k3
2 ,k1 ,k2 ,k3!

1•••,

Lmnl
abc ~r ;k1 ,k2 ,k3!5 f abcgmlknVggg~r ;k1

2 ,k2
2 ,k3

2 ,k1 ,k2 ,k3!

1•••,

wherekn is understood as the momentum associated with the
intermediate of the three gluon virtualities, i.e.,kn5k2 n if
k1
2,k2

2,k3
2 , etc. Analogous to Eq.~98!, the normalization

conditions are

Vqqg~r ;pi
2 ,k i !up

i
25m

gq
2 5Vggg~r ;ki

2 ,k i !uk
i
25m

gq
2 5 1. ~101!

Employing these definitions in the renormalization equa-
tions ~95! and the expressions for self-energies given by Eqs.
~42! and~43!, and differentiating the inverse of the propaga-
tors Dmn

R(A) and SR(A) with respect to the gluon and quark
virtuality, respectively,

]

]k2
$2dmn~k!@DR~A!~r ,k!#mn

21%512
]

]k2
P̂R~A!~r ,k!,

]

]p2
$g•p@SR~A!~r ,p!#21%512

]

]p2
ŜR~A!~r ,p!,

~102!

one obtains the following determining equations for the mo-
mentum dependence of the scalar self-energy functions@Eq.
~90!# P̂R(A) and ŜR(A) to ordergs

2 in terms of the renormal-
ization functionsDg andDq ~for more details, see Appendix
C!:
k2
]

]k2
P̂R~A!~r ,k!5

gs
2

2
CA~2p i !E d4k8

~2p!4i Er021/@2m~r !#

r011/~2m!

dt T~k8t!
]Dg~r ,k8!

]k8 2

]

]k9 2

3@Vggg
2 ~r ;k2,k82,k92,kk ,kk8,kk9!Dg~r ,k9!#Uggg~k8,k9,n!

2gs
2TrNf~2p i !E d4p8

~2p!4i Er021/~2m!

r011/~2m!

dt T~p8t!
]Dq~r ,p8!

]p8 2

]

]p9 2

3@Vgqq
2 ~r ;k2,p82,p92,kk ,kp8,kp9!Dq~r ,p9!#U g

qq~p8,p9,n!, ~103!

p2
]

]p2
ŜR~A!~r ,p!52gs

2CF~2p i !E d4p8

~2p!4i Er021/~2m!

r011/~2m!

dt T~p8t!
]Dq~r ,p8!

]p8 2

]

]k9 2

3@Vqqg
2 ~r ;p2,p82,k92,kp ,kp8,kk9!Dg~r ,k9!#U q

qg~p8,k9,n!, ~104!
c
n-
plus termsO(n2) which can be neglected forn2!1. The
constants CAdab5 f acdf bcd5Ncdab , TRdab5Tr(Ta•Tb)
5 1

2dab , and CFd i j5(Ta•Ta) i j5@(Nc
221)2Nc#d i j arise

from summing over color indices, andNf is the number of
quark flavors. As explained in Appendix C, the time integra
*dt on the right hand sides extends over the finite time sli
m21[m21(r ) of the space-time cell aroundr , weighted by
the functionT which satisfies
l
e

E
0

`

dt T~p8t!51, ~105!

e.g.,T5p8exp(2p8t). With reference to Ref.@37#, where an
elaborate presentation of the time dependence of parton de
sities in the framework of QCD evolution is given, it suffices
here to note that the effect of the finite time slice integration
*dt is to impose the compatibility condition on space-time
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FIG. 9. The ‘‘radiative’’ self-energies in one-
loop approximation, Eqs.~99!: ~a! the retarded
~advanced! gluon self-energiesPmn

R(A) , and ~b!
the retarded ~advanced! quark self-energies
SR(A).
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and energy-momentum variables as constrained by the
certainty principle: it limits the range of virtualitiesk82 such
that within the finite time intervalDr 05m21 only those fluc-
tuationsk→k8k9 are resolvable that are sufficiently sho
living, with proper lifetime t0.1/k8 and gt0
.k1/k82,Dr 0 . Finally, the functionsU f

f 8 f 9(k8,k9,n) rep-
resent the squared matrix elements for the virtual decay
cessesk→k8k9. Their explicit form is given in Appendix C

In the cellular space-time picture, the momenta of part
in a given cell aroundr are per design limited by the cond
tion ~56!, such that

P1 2~r !>k1 2>k2>mgq
2 >m2~r !. ~106!

As explained in Appendix C, by employing this conditio
and introducing the fractional light-cone momenta of t
daughter partons in the processk→k8k9,

zk8[z5
k81

k1 , zk9[12z5
k91

k1 , ~107!

d4k85
p

2
dk82dk92dz uS k22 k82

z
2

k92

12zD , ~108!

the integrals~103! and~104! are readily evaluated to leadin
log accuracy. Solving for the renormalization functionsDg
andDq , and takingkk5k1 2 and kp5p1 2 from Eq. ~97!,
the result is~cf. Appendix C!

Dg~r ,k
2,k1 2!5expH 2E

k2

k1 2dk82

k82
E
0

1

dz A~r ,z,k82!

3S 12 gg
gg~z,e!1gg

qq~z,e! D J ,
Dq~r ,p

2,p1 2!

5expH 2E
p2

p1 2dp82

p82
E
0

1

dz A~r ,z,p82!gq
qg~z,e!J ,

~109!

where

A~r ,k2,z!.
as@~12z!k2#

2p
uS zk2k1 2m~r ! D ~110!
un-

t

ro-

ns

e

is the effective local coupling strength9 averaged over a cell
centered aroundr of space-time extentV(r ).D4r , and
as(q

2)5b ln(q2/LQCD
2 )]21, b511Nc22Nf . The function

A(r ,z,k2) reflects the fact that in cellular space-time the re
evant quantum fluctuations are restricted by the uncertain
principle, as embodied in the u-function term:
k2<m251/(Dr )2, k0<1/Dr 0, with Dr 05k1/k2.

The functionsg(z,e) in Eq. ~109! involve, at leading-log
level, the standard Dokshitzer-Gribov-Lipatov-Altarelli-
Parisi~DGLAP! kernels@27#, carrying an explicitk1 depen-
dence arising from the dependence onk.k1 2,

gg
gg~z,e!52CAS z

12z1e~kk!
1
12z

z
1z~12z! D ,

gg
qq~z,e!5

1

2
@z21~12z!2#,

gq
qg~z,e!5CFS 11z2

12z1e~kk!
D , ~111!

where in the denominators the functione appears,

e~kk!5
k82n2

4~k•n!2
.

k2

k1 2 , ~112!

which arises here as a consequence of the] r
2 term in the

renormalization equations~95!, after Fourier transforming
with respect tor25r 02r 3, the conjugate variable ofk1. It
can be interpreted as a manifestation of the indetermina
principle, which determines space-time uncertainty of the o
der of the cell sizeDr that is associated with the off-
shellness of the partons. The presence ofe effectively cuts
off small-angle gluon emission when the emitted gluon i
soft, i.e., whenzg512z→0, by modifying the free gluon
propagator}1/zg to the form 1/(zg1e) whenk/k1;1, that
is, in branching processes with large space-time uncertain
This ensures that the two daughter partons can be resolved
individual quanta only if they are separated sufficiently b
Dr}1/k in position space, in accord with the uncertainty
principle. Note that e can be neglected in the terms

9In ~110! one could imagine, instead of theu function
u(k22m2), a smeared-out probability distribution, e.g.,
}exp(2k2/m2), by choosing a more refined form for the function
T under the time integral in Eqs.~103! and ~104!. The specific
choice is ambiguous at this level of calculation~see Ref.@37# for
details!.
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}1/(zg1e) in Eq. ~111! for energetic gluon emission
(zg→1), but is essential in the soft regime (zg→0). The
effect of e has been shown@27,28# to result in a natural
regularization of the infrared-divergent behavior of th
branching kernels@Eq. ~111!#, due to destructive gluon inter-
ference which becomes complete in the limitzg→0.

As summarized in Appendix C, the renormalization fun
tions D f are intimately related to the spectral densitiesPg
and Pq defined by Eqs.~61! and ~85!. In fact, sincePg
(Pq) are defined as the trace over the difference of retard
and advanced proagatorsDmn

R(A) (SR(A)), i.e.,

Pg5 (
f 85g,q

Pgf 85 i Tr@dmn~Dmn
R 2Dmn

A !#, ~113!
o

n

a

I

e

-

ed

Pq5 (
f 85g,q

Pqf 85 i Tr@SR2SA#,

the solutions ofDmn
R(A) and SR(A), and hence the solutions

@Eq. ~109!# of Dg andDq , determine the forms ofPg and
Pq , respectively. As has been investigated in detail by, e.g.
Dokshitzeret al. @27#, the Dyson-Schwinger integral repre-

sentation of the densitiesPff 8 which is summed over in Eq.
~113! follows from the integration over lnk2 (lnp2) of Eq.
~103! and Eq.~104!, respectively. These give~cf. Appendix
C! then the self-energiesPmn

R(A) and SR(A), and hence
Dmn
R(A) andSR(A). Finally, by utilizing Eq. ~113!, one finds

that the resulting solution of the densitiesPff 8 is given by
Pff 8~r ;x,k2!5d f
f 8d~12x!d~k22mgq

2 !D f~r ;mgq
2 ,k1 2!

1D f~r ,mgq
2 ,k1 2!(

f 9
E

mgq
2

k2 dk82

k82
E
0

1

dzHA~r ,k2,z!g f
f 9 f 8~z,e!Pf 9

f 8S xz ,k82;k812DD f
21S r , k82z ,k812D J .

~114!
-

Comparing this expression with Eq. ~85!,
P5d(k22m2)DPdE1DPG , one sees now that the Sudako
form factorD f together with the real emission and absorpti

probabilitiesWf[( f 9*d lnk8
2dz Ag f

f 9 f 8Pf 9
f 8 combine to play

the role of the ‘‘wave function renormalization’’ partDPdE
and the dissipative partDPG .

Equation ~114! has a simplephysical significance: The
first term on the right hand side represents the probability
find a dressed parton of typef in the cell around space-time
point r as a ‘‘classical’’ particle, i.e., without any other glu
ons or quarks present in its wave function or spectral dens
In accord with the normalization@Eq. ~98!#, this means that it
is propagating on shell withk25mgq

2 >m2(r ), where
m(r )21 is the resolution size of the cell as explained in Se
III A. Its fraction of the cell’s light-cone energy is
x5k1/P1(r )51. The probability for finding such a rare
fluctuation is suppressed by the functionD f(r ,k

2,k1 2),
which becomes stronger with increasing gap betweenmgq

2

andk2. The second term on the right hand side correspo
then to the adjoint probability that the parton is actually
dressed parton with a substructure, described by the bal
between real and virtual emission and absorption proces
while localized within the cell aroundr . It is obvious that the
spectral densities of dressed partons, introduced in Sec. I
are identical to the usualparton structure functionsPf , i.e.,
the probability densities for finding a dressed partonf in an
intermediate state containing a number of bare partons
virtual and real fluctuations.

From Eq.~114! with Eq. ~109!, and using the representa
tion ~58! of the parton densitiesF f in terms of the parton

structure functionsPff 8 , follows then the final form of the
renormalization equations,
v
n

to

-
ity.

c.

ds
a
nce
ses,

I C,

as

-

k2
]

]k2
Fg~r ;x,k

2!5E
0

1

dz A~r ;k2,z!H F1z FgS r ; xz ,zk2D
2
1

2
Fg~r ;x,k

2!GGg
gg~z,e!

1 2NfFq~r ;x,k
2!Gq

gq~z,e!

2NfFg~r ;x,k
2!Gg

qq~z,e!J ,
p2

]

]p2
Fq~r ;x,p

2!5E
0

1

dz A~r ;p2,z!H F1z FqS r ; xz ,zp2D
2Fq~r ;x,p

2!GGq
qg~z,e!

1 Fg~r ;x,p
2!Gg

qq~z,e!J , ~115!

which are the space-time generalization of the DGLAP evo
lution equations@27# that govern the momentum dependence
of the parton densities. The effective branching kernels

G f
f 8 f 9 @38# are related to theg f

f 9 by

G f
f 8 f 95g f

f 8 f 9S 12
F f 8

F f 86 1D , ~116!

where the upper~lower! sign in the term in parentheses is for
gluons ~quarks!. It yields a suppression when the phase-
space densityFg or Fq becomes large, so that the emission
processesf→ f 8 f 9 have significant competition from absorp-
tion processesf 8 f 9→ f . In the limit F f 8@1, thedetailed bal-
ance is established, in accord with the Bose-Einstein and
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Fermi-Dirac statistics of the gluon~quark! densities. For in-
stance, in thermal equilibrium,Fg(q)

(eq)5(e2E/T71)21, so that
G5g(12eE/T), which tends to zero as the temperatureT
becomes large.

Equations~115! are the main result of this section. Th
emerge as a direct consequence of the renormalization e
tions ~67! in the short-distance regime of virtual and dissip
tive quantum fluctuations, and ensure unitarity conserva
locally in each space-time cell. They embody the Heisenb
uncertainty principle, expressing the fact that it is imposs
to localize soft partons in a given cell if their waveleng
exceeds the cell size, which sets the resolution scale. Las
not least, they account for the balance between real emis
and absorption processes that tends to increase~decrease! the
effective real emission rate of gluons~quarks!.

E. Kinetic dynamics and transport equations

With the dynamical structure of dressed partons quan
tively controlled by the above renormalization equatio
~115!, one is now in the position to address the kinetic spa
time evolution of the multiparticle system in terms of sta
tical binary scatterings among these dressed partons. A
plained in Sec. III A, in order to obtain quasiclassic
transport equations for the phase-space distribution func
F5N^P, two key conditions have to be met. First, as
fore, the maximal space-time extension of relevant quan
fluctuations,lc5mgq

21 , is supposed to be smaller than t
mean free pathlmf between scatterings. Second, the typi
four-momentum transferq'[Auq2u in the scattering of any
two partons is required to be larger than the inverse Com
wavelengthlc

215mgq . That is@cf. Eq. ~49!#,

lmf.mgq
21 , q'

2.mgq
2 5lc

22 . ~117!

The first condition ensures that the quantum evolution, ta
care of by the renormalization equations, can be factor
from the scattering processes. The second condition gu
tees that the scattering is sufficiently hard, i.e., is of sh
range compared to the space-time extent of the scatt
partons’ intrinsic quantum motion, so that over the dura
of the scattering, the dressed partons can be treated as
zen’’ assemblies of bare particles that represent their ins
taneous quantum state~the usual sudden approximation!.
These two conditions are equivalent to the factorization
sumption of the well-established ‘‘QCD hard scattering p
ture’’ @39# for, e.g., high-energy hadron-hadron collisio
where the colliding hadrons are described as conglome
of bare partons in terms of their structure functions. T
relation of this hard scattering picture to the present appro
is its adoption to multiple, internetted scattering processe
a system of stochastically colliding dressed partons, eac
them represented by its own structure function, or spe
density.

The two requirements@Eq. ~117!# are the crucial points
which allow one in the following to cast the kinetic evolutio
into simple, probabilistic Boltzmann-type equations, whi
however, have to be solved self-consistently in conjunc
with the renormalization equations~115!. Here is the key
difference from other formulations@5,40,41# to include quan-
tum effects in a quasiclassical treatment of transport p
y
qua-
a-
tion
erg
ble
th
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nomena, in which one has only one type of equation, a ge
eralized Boltzmann equation, that contains a local, classic
part and a nonlocal quantum contribution, containing th
space-time history of memory effects. In the present a
proach, this is translated to stochastically occurring~‘‘lo-
cal’’ !, hard parton-parton scatterings, linked with the caus
quantum evolution between scatterings~‘‘nonlocal’’ !, ac-
counting for renormalization and dissipation due to the pre
viously occurred scatterings. The advantage here is, th
while quantum effects are included in the multiparticle evo
lution, still a local~in space and time! picture can be main-
tained, where memory effects are embodied effectively in th
dressed partons’ structure function evolution.

To proceed, recall from Sec. III C, that the correlation
functionsDmn

C and SC are the quantities which are deter-
mined by the transport equations of the form~82! @explicitly
given in Appendix B, Eqs.~B25! and~B26!#. On account of
the presumed conditions~117!, over kinetic space-time
scaleslmf.lc , the quantum motion decouples, so that th
correlation functions are determined by the collisional sel
energiesPmn

C andSC, in conjunction with the real parts of
the retarded and advanced functions@cf. Eq. ~82!#. This
means that the collisional self-energies are to be evaluat
with the renormalized propagators@Eq. ~96!# and vertices
@Eq. ~100!# which were obtained from the retarded and ad
vanced self-energies before.

Noting that from Eq.~77! one has

Dmn
C 5Dmn

. 1Dmn
, , SC5S.1S,, ~118!

the transport equations~68! now read~cf. Appendix B!

k•] rDab
mn:~r ,k!52

i

2
~P:DA1PRD:2D:PA

2DRP:!ab
mn, ~119!

i $g•] r ,Si j
:~r ,p!%152~@g•p,S:#2! i j

1~S:SA1SRS:2S:SA2SRS:! i j ,

which can be rewritten as

k•] rDab
mn:~r ,k!52 1

2 ~$ P.~r ,k!,D,~r ,k!%1

2$ P,~r ,k!,D.~r ,k!%1!ab
mn ,

p•] rSi j
:~r ,p!5 1

2 ~$ S.~r ,p!,S,~r ,p!%1

2$ S,~r ,p!,S.~r ,p!%1! i j . ~120!

These equations correspond to what is usually termed t
quasiparticle approximation. In the cellular space-time pic-
ture, the characteristics of the statistical-kinetic evolution o
the system are, per design, insensitive to the localized flu
tuations associated with short-distance quantum dynam
inside a space-time cell. To stress it more precisely, th
space-time variation can be considered homogeneous o
the range of the Compton wavelengthlc5mgq

21<m21(r ), so
that uGC(r ,k)u@ulc

2] r
2GC(r ,p)u and the derivatives with re-

spect tor on the left hand side of the original Eqs.~67! and

54GEIGER
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54 971QUANTUM FIELD KINETICS OF QCD: QUARK-GLUON . . .
~68! may be omitted. In the present context, it emerges as
logical consequence that the partons can be describe
kinetic space-time scales as quasiparticles, with the und
ing quantum motion effectively accounted for in the ren
malized propagators and vertices.
i

the
on

rly-
r-

The self-energiesPmn
: andS: are obtained from the gen

eral expressions~42! and ~43!, respectively. The lowest
order nonvanishing contributions are the two-loop diagra
shown in Fig. 10, which are proportional to\ andO(gs

4). In
terms of the renormalized correlatorsD: andS: one finds
Pab
st:~r ,k!5

gs
4

2 E d4k8

~2p!4i

d4q

~2p!4i
f aa8clmm8s~2k,k2k8,k8!Dcc8

ss8:
~r ,k8! f c8 f els8rl~2k8,2q,q1k8!

3Df f 8
rr8:

~r ,2q! f e8 f 9d8ll8r8t8~2q2k8,q,k8!Ddd8
t8t:

~r ,q1k8! f db8bltn8n~2k8,2k1k8,k!Da8b8
m8n8:

~r ,k2k8!

1
gs
4

6 E d4k8

~2p!4i

d4q

~2p!4i
vac8a8c

ms8m8s
~2k,q8,k2q2q8,q!Dcd

st:~r ,q!Dc8d8
s8t8:

~r ,q8!vdb8d8b
tn8t8n

~2q,2k1q1q8,2q8,k!

3Da8b8
m8n8:

~r ,k2q2q8!1gs
4NfE d4k8

~2p!4i

d4q

~2p!4i
f aa8clmm8s~2k,k2k8,k8!Dcc8

ss8:
~r ,k8!gs8Tln

c8Snn8
:

~r ,2q!

3gt8Tn8 l 8
d8 Sl 8 l

:
~r ,q1k8!Dd8d

t8t:
~r ,k8! f db8bltn8n~2k8,2k1k8,k!Da8b8

m8n8:
~r ,k2k8!2gs

4 2NfE d4k8

~2p!4i

d4q

~2p!4i

3gmTli
aSln

:~r ,k2k8!gnTjn
b Sj 8 j

:
~r ,k8!gtTn8 j 8

d Sl 8n8
:

~r ,k82q!gsTi 8 l 8
c Sii 8

:
~r ,k8!Dcd

st:~r ,q!, ~121!

S i j
:~r ,p!52

gs
4

2 E d4k8

~2p!4i

d4q

~2p!4i
gsTii 8

c Dcc8
ss8:

~r ,k8! f c8 f els8rl~2k8,2q,q1k8!Df f 8
rr8:

~r ,2q!

3 f e8 f 9d8ll8r8t8~2q2k8,q,k8!Ddd8
t8t:

~r ,q1k8!gtTj 8 j
d Si 8 j 8

:
~r ,p2k8!

2gs
4NfE d4k8

~2p!4i

d4q

~2p!4i
gsTii 8

c Dcc8
ss8:

~r ,k8!Snn8
:

~r ,2q!gs8Tln
c8Sl 8 l

:
~r ,q1k8!gt8Tn8 l 8

d8 Dd8d
t8t:

~r ,k8!

3gtTj 8 j
d Si 8 j 8

:
~r ,p2k8!1gs

4E d4k8

~2p!4i

d4q

~2p!4i
gsTil

c Sll 8
:

~r ,p2k8!Dee8
ll8:

~r ,q!

3glTl 8m
e Smm8

:
~r ,p2k82q!gtTnj

d Dcd
st:~r ,k8!, ~122!
r

-
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-
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-
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where lmrn(p1 ,p2 ,p3) and vabcd
mstn(p1 ,p2 ,p3 ,p4) are the

usual three-gluon and four-gluon vertices@cf. Appendix D,
Eq. ~D27!#. The correlation functionsDmn

: andS: are re-
lated to the phase-space densitiesFg andFq : by employing
Eq. ~92! in conjunction with the identities Eqs.~74!–~77!,
one obtains

Dmn
: ~r ,k!522p i „2dmn~k!…@u~6k0!1Fg~r ,k!#

3d„k22Mg
2~r ,k!…,

S:~r ,p!522p i ~g•p!@u~6p0!2Fq~r ,p!#

3d„p22Mq
2~r ,p!…, ~123!

where the signs1 (2) refer to . (,).10 As repeatedly
stressed, the densitiesF are the distributions of dressed pa

10It must be mentioned that Eq.~123! assumes a spin-symmetr
form for the quark-antiquark spinor products, which means a
glect of spin-polarization effects. As shown by Elzeet al. @16#, in
general the quark phase-space distribution does require at lea
838 matrix representation.
-

tons, with their substructure represented in terms of corre
sponding assemblies of bare partons, that satisfy the cond
tion ~56!. Therefore the functionsF can also be interpreted to
measure the number of bare partons with dynamical invari
ant massesk2>mgq

2 . Consequently, a binary collision of two
dressed partons can be described in terms of the above ‘‘ha
scattering picture’’ as a scattering of two bare partons, one
out of each assembly, picked statistically from the instanta
neous quantum state of the two dressed partons, as given
their structure functions or spectral densities. The four-
momentum transferq'

2 sets hereby the probing scale, so that
k2'q'

2 . Therefore the energy spectra of partons emerging
from these scatterings are—using Eq.~88!—determined by

v[6k0~r ,k!5v~0!S 11
Mg

2~r ,k1,k2!

2v~0!
D ,

E[6p0~r ,p!5E~0!S 11
Mq

2~r ,p1,p2!

2E~0!
D , ~124!

e-

t an
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FIG. 10. The ‘‘collisional’’
self-energies in two-loop approxi-
mation, Eqs.~121! and ~122!: ~a!
the contributions to the gluon cor-
relation functionsPmn

: and~b! the
contributions to the quark correla-
tion functionsS:.
o

.
h

a

al
where k051/2(k11k2).k1/2, p0.p1/2, and v (0)

56AkW 21mgq
2 , E(0)56ApW 21mgq

2 . Accordingly, one can
now write

v56AkW 21q'
2u~q'

22mgq
2 !, E56ApW 21q'

2u~q'
22mgq

2 !,
~125!

and

Fg~r ,k!d~k22q'
2 !5

1

2v
@Fg~r ,kW !d~k02v!

1Fg~r ,2kW !d~k01v!#,

Fq~r ,p!d~p22q'
2 !5

1

2E
@Fq~r ,pW !d~p02E!

1F̄q~r ,2pW !d~p01E!#, ~126!

which exhibits explicitly the particle-antiparticle character
the phase-space densities. In particular,Fq(r ,pW ) denotes the
quark distribution andF̄q(r ,2pW ) the antiquark distribution.

Using the representations~123! for Dmn
: , S: in the self-

energies Eqs.~122! and ~121!, and substituting into Eqs
~120! gives the final form of the transport equations in t
kinetic regime~cf. Appendix D!,

k•] rFg~r ,k!5Ig~r ,k!, p•] rFq~r ,p!5Iq~r ,p!,
~127!

where

Ig~r ,k!5 1
2 $ P̂.~r ,k!,Fg~r ,k!%1 ~128!

2 1
2 $ P̂,~r ,k!,Fg~r ,k!11%1 ,
f

e

Iq~r ,p!5 1
2 $ Ŝ.~r ,p!,Fq~r ,p!%1

2 1
2 $ Ŝ,~r ,p!,Fq~r ,p!21%1 ,

and the careted self-energy functionsP̂ and Ŝ stand for

P̂:~r ,k!5
1

2i (s51,2
«m~k,s!«n* ~k,s!Pmn

: ~r ,k!,

Ŝ:~r ,p!5
1

2i (s51,2
@ ū~p,s!S:~r ,p!u~p,s!

1 v̄~p,s!S:~r ,2p!v~p,s!#. ~129!

The collision termsIg andIq on the right hand side of Eq.
~127! describe the balance of gain and loss of partons in
phase-space elementd3rd4k, or d3d4p, within a time slice
aroundr 0 . Their explicit form is obtained as explained in
Appendix D, and emerges as the result of applying the usu
cutting rules@42# to the self-energies Eqs.~121! and ~122!
and averaging~summing! over initial ~final! spin and color
degrees of freedom~see Fig. 11!. The resulting structure of
the collision terms is

Ia~r ,p1![(
bcd

~2Icd→ab
~ loss! ~p1 ,r !1Iab→cd

~gain! ~p1 ,r !# ~130!

52(
bcd

CabCcdE d3p2
~2p!32E2

E d3p3
~2p!32E3

3E d3p4
~2p!32E4

~2p!4d4~p11p22p32p4!

3$ Fa~1!Fb~2!uM~ab→cd!u2u~q'
22mgq

2 !
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FIG. 11. Cutting the ‘‘collisional’’ two-loop self-energies gives the different binary 2→2 collision processes, namely,~a! the gluon terms
gg↔gg, gq↔gq, gg↔qq̄, and~b! the quark terms,qg↔qg, qq̄↔qq̄, qq↔qq.
3@16Fc~3!#@16Fd~4!#

2@16Fa~1!#@16Fb~2!#uM~cd→ab!u2

3u~q'
22mgq

2 !Fc~3!Fd~4! %.

Here the notation isF f( i )[F f(r ,pi) for the distribution
functions of the parton speciesf5g,q,q̄ with four-momenta
pi5p,p2 ,p3 ,p4 at space-time pointr5(r 0,rW). The structure
of the collision terms in conjunction with Eqs.~127! is such
that the squared matrix elements for the various scattering
processes 12→34 ~depicted in Fig. 11, and explicitly given
in Appendix D! are weighted by a distribution function
F f( i ) for each of the partons coming into the vertex and a
factor@16F f 8( j )# for each of the outgoing ones. The1 sign
is for gluons so that (11Fg) results in a Bose enhancement,
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FIG. 12. Illustration of the ‘‘hard scattering picture,’’ for the evolution of a multiparton system on the basis of the coupled renorm
ization and transport equations.~a! A dressed parton is described as a quasiparticle with a dynamical substructure, corresponding to
instantaneous state consisting of a number of bare gluons and quarks~its radiative cloud!. The underlying quantum fluctuations are embodied
in the spectral densities, or parton structure functions, which are determined by the renormalization equations.~b! A binary collision between
two dressed partons is described as a statistically occurring ‘‘hard scattering,’’ determined by the local density of dressed parton
convoluted with their spectral densities at the ‘‘hard scattering scale’’ of the order of the momentum transfer. This is described b
transport equations.
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and the 2 sign refers to quarks and antiquarks wi
(12Fq) indicating Pauli blocking. This is a direct conse
quence of the quantum-statistical difference between
gluon and quark propagators@Eqs. ~75! and ~78!#. The fac-
torsCab (Ccd) in front account for the identical particle ef
fect, if incoming~outgoing! partons are indistinguishable.

Equations~127! are the essential result of this sectio
These Boltzmann-type equations are the final form of
transport equations for the dressed partons with phase-s
densitiesF. The equations have a drift term on the left ha
side and a collision term on the right hand side, which b
ances the various processes by which a dressed parton
be gained or lost in a phase-space elementd3rd4p around
time r 06Dr /25r 061/(2m). They describe the dynamics o
the multiparton system on kinetic scales, due to statisti
binary collisions, in which dressed partons appear as qu
particles with a dynamical substructure, which is describ
in terms of probabilities to find a parton as a state consist
of a number of bare gluons and quarks of virtualiti
k2.mgq

2 . These the underlying quantum fluctuations are e
bodied inF5N^P through the spectral density, or parto
structure function,P and are determined by the renormaliz
tion equations~115!. A scattering between two dressed pa
tons is therefore described as a ‘‘hard scattering’’ determin
by the probabilities of finding in each of them a hard flu
tuation with k2.q'

2.mgq
2 of the order of the momentum

transfer that sets the probing scale. This is expressed by
collision term on the right hand side, in which the produc
of F ’s involve the convolution of spectral densitiesP,
weighted with the squared matrix elements. A graphical
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lustration of this is shown in Fig. 12.

F. A Monte Carlo calculation scheme

A practical calculation scheme to compute the evolutio
of a multiparton system as governed by the coupled reno
malization and transport equations may be outlined with th
following concrete example. Consider the collision of two
large nuclei with mass numberA@1 at ultrarelativistic
center-of-mass energy. Before their contact upon collisio
the approaching nuclei appear as two highly Lorentz
contracted disks of coherently bound gluons and quarks w
a coherence lengthL051/m0 , where m0.gsr' with
r'5Ngq /(pRA

2) sets the scale of the typical spacelike par
ton virtuality, and henceL0 their characteristic transverse
size. McLerran and Venugopalan@25# have shown that ifA
is sufficiently large, the associated primeval parton distribu
tion of the nuclei before and shortly after the collision can b
calculated nonperturbatively from first principles in terms o
coherent quantum fields. Their conclusion is that, as long
the very early generation of this parton matter distributio
hasDpDr;1, it cannot be described by a kinetic particle
picture, which requiresDpDr@1. However, after a time
t0.1/m0 past the nuclear contact, the parton matter has go
through a decoherence stage, so that the latter condition
satisfied, and a kinetic description can be matched to t
complex coherent evolution of the primeval matter. In othe
words, at timet0 , one may proceed with a probabilistic de-
scription of the parton dynamics in terms of the interpla



a

s

a

c

e

r

s
o

tu

u
r

a
i

a
c

n

n
u

c
f
in
t
te

in
h

-
o
n
a-

-
ns
a
ss
s-
ion
s
b-
the
ss

e
le
s
ity
ns
t
eir
o

s
tion
ent
he
l

It
s-
-

rk

,

al
t
e

-

m

-

r
s-
n
nd

s,

54 975QUANTUM FIELD KINETICS OF QCD: QUARK-GLUON . . .
between coherent radiative evolution and incoherent bin
interactions, as suggested in the present work.

At time t0 , one starts from the initial multiparton state
and the subsequent time evolution of the partons’ pha

space densitiesFgq(t,rW,p
2,pW ) may be calculated by a Monte

Carlo procedure, using the advocated discretization of sp
time with four-dimensional cells of sizeDr5DtD3r.m24.

~i! The first step consists in evaluating, from the collisio
kernel of the transport equations~127!, the probabilities of
scatterings among the initial partons within the time sli
Dt05m21(t0)[m0

21 betweent0 and t01Dt0 for each cell

centered aroundrW. The essential condition~117! provides the
possibility of treating the scattering among partons incoh
ently, and requires that the impact parameterbab of any two
scattering candidatesa andb must satisfybab,m0

21 , imply-
ing for the momentum transfer of the scatteringqab'

2 .m0
2 ,

wherem0
2 is the initial virtuality of the partons att0 , set by

the coherence length of the colliding nuclei. The prima
parton scatteringsa1b that occur withinDt0 subject to this
condition change the phase-space occupation of parton
t15t01Dt0 in two ways: on the one hand their spatial pr
file is altered due to gain and loss of deflected scatterersa8
andb8 in the spatial cells, and on the other hand, the vir
alities are reset fromka

25kb
25m0

2 to ka8
25kb8

25qab'
2 .m0

2 .
~ii ! In the next step one must now calculate the quant

fluctuations, virtual plus real emission and absorption p
cesses, that are triggered by the primary scatterings and
change of virtualities fromk2 to k82. That is, the parton
structure functions need to be evolved withinDt0 according
to the renormalization equations~115!, which account for the
associated renormalization and dissipation. One then obt
a spatial profile of new dressed partons that defines the in
condition for the further evolution, starting att1 . The proce-
dure repeats, as before att0 , by evaluating the scattering
probabilities in the next time sliceDt15m21(t1) between
t1 andt11Dt1 , now, however, subject to the modified inco
herence condition that for any scattering of partonsa andb
their impact parameter must bebab,max(ka

2 ,kb
2)21/2, i.e.,

qab'
2 .max(ka

2 ,kb
2).

It is important to realize that the condition~117! of a
well-defined separation between quantum and kinetic sc
imposes the crucial incoherence requirement for binary s
terings, and allows a ‘‘hard scattering’’ picture, in which th
quantum evolution and hard scattering of evolving qua
factorize. The condition defines the range of validity for
probabilistic description in terms of incoherently scatteri
particles, and is essentially the uncertainty principle: the q
siclassical picture holds only if the scattering partons may
treated as clearly distinguishable, incoherent quasiparti
of size 1/Ak2, meaning that at least a ‘‘formation time’’ o
tk.1/Ak2 must have passed since their previous scatter
during which their quantum structure evolves with virtuali
k2. A concrete example of this scheme will be presen
elsewhere.

IV. CONCLUDING REMARKS

In this paper I have attempted to lay out a foundation
obtain from the fundamental quantum field theoretical pr
ciples of QCD a self-consistent kinetic description for t
ry
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evolution of a high-energy system of self- and mutually in
teracting gluons and quarks. The main result is a set of tw
distinct but coupled equations that govern the time evolutio
of the gluon and quark Wigner functions, the quantum an
logues of the classical phase-space densities.

~i! A renormalization equation, which describes the mo
mentum dependence of short-distance quantum fluctuatio
due to the partons’ self-interactions. It defines the state of
dressed parton as a quasiparticle with a renormalized ma
and a decay width, corresponding to virtual and real emi
sion and absorption processes. The solution of this equat
describes, locally in space-time, the spectral density in term
of bare partons that are associated with the quantum su
structure of the state of a dressed parton, and determines
partons’ structure functions as well as their dynamical ma
spectrum.

~ii ! A transport equation, which describes the space-tim
evolution of the dressed partons in the kinetic quasipartic
regime by means of mutual binary collisions. It determine
the time dependence of the change both of the spatial dens
and the energy-momentum distribution of dressed parto
due to elastic and inelastic collisions. Accordingly, it no
only redistributes the partons in space, but also modifies th
momentum spectrum and virtualities, which feed back int
the renormalization equations.

Loosely speaking, the renormalization equation define
the state of dessed partons, whereas the transport equa
governs the occupation of these states. The self-consist
solution of the equations provides the means to trace t
dynamical development of the multiparton system in rea
time and full seven-dimensional phase spaced3rd3pdp2,
spanned by position, momentum, and invariant virtuality.
suggests a probabilistic, causal description, which is prede
tined for numerical evaluation by using Monte Carlo simu
lation techniques.

The essential steps that lead to this kinetic framewo
may be summarized as follows:

~a! the path integral quantization of the classical action
using the CTP formalism within-in boundary conditions,
including initial state correlations at timet0 described by the
density matrixr̂(t0);

~b! the two-point source approximation, which allows one
to rewrite the CTP path integral as the generating function
for a possible color background field, and for the two-poin
gluon and quark Green functions defined on the closed tim
path betweent0 and t` ;

~c! the derivation of the self-consistent equations of mo
tion for mean field~Ginzburg-Landau equation! and Green
functions~Dyson-Schwinger equations!;

~d! the transition to kinetic theory by imposing the
physics-motivated well-defined separation between thequan-
tum scalethat specifies the range of short-distance quantu
fluctuations and thekinetic scalethat characterizes the range
of interparticle correlations and stochastic binary interac
tions;

~e! the conversion of the Dyson-Schwinger equations fo
the Green functions to the set of renormalization and tran
port equations for the corresponding Wigner functions, o
the basis of the separation of quantum and kinetic scales a
a cellular space-time picture;

~f! the calculation of the spectral density of bare parton
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locally within the cells, from the renormalization equation
which define the state of dressed partons in terms of t
substructure, and the evaluation of the collision kernel of
transport equations, which determine the statistical occ
rence of scattering processes among these dressed part

This quantum-kinetic framework may be extended in
straightforward manner to include effects of a color ba
ground field, or gluonic mean field, that acts as a class
background medium in which the partonic quanta evo
~e.g., in a QCD plasma, where it may be generated due to
bulk dynamics of soft gluon modes!. This option has not
been considered in the present paper; however, the fra
work incorporates this possibility by considering a nonva
ishing Ãm instead of setting it to zero as in Sec. III. Th
inclusion of such a mean field would extend the set of ren
malization and transport equations for the partons’ Wig
functions, by coupling to the Ginzburg-Landau equation
the mean field. Qualitatively, the effect would be twofol
first, the poles of the Wigner functions would be shifted by
mean-field-generated massm(Ãm), and second, the transpo
equations would acquire an additional force term of Vlas
form.

The future extensions and applications are manifold. M
important at first, I believe, is a detailed calculation for
specific situation where the concepts and formalism p
sented here may be illustrated and checked for consiste
For instance, it would be desirable to study a thermal~or
close to thermal! parton system in this real-time descriptio
and compare it with the well-known results in the imagina
time formalism of finite-temperature QCD. Such a projec
planned to be carried out in the near future. On the ot
hand, the probabilistic interpretation of the real-time evo
tion of a rather general multiparton system offers the opp
tunity to simulate the dynamical development on the basi
the master equations with Monte Carlo techniques on a c
puter @43#.
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APPENDIX A: THE CTP FORMALISM
AND THE TWO-POINT SOURCE
GENERATING FUNCTIONAL

In this appendix, I review the CTP functional formalis
applied to the case of QCD. For additional reading conce
ing the general techniques, I refer to the extensive litera
@3–5,7–9#. In the in-in formulation of quantum field theory
mentioned in Sec. II, the generating functional is defined
the in-vacuum to in-vacuum amplitude Z@J,r̂ #
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5Tr(w^0inuw&J^wur̂u0in&J , including possible initial state
correlations represented by the density matrixr̂ at t0 , and a
sum over a complete set of statesw at t` . In the Heisenberg
picture it is represented by

ZP@J,r̂ #5TrH TPexpS i(
f
E Pd

4xJf~x!FH
f ~x! D r̂J ,

~A1!

wheref5g,u,ū,d,d̄, . . . specifies the gluon and quark field
degrees of freedom, and theFH

f 5(Am,c,c̄) are the corre-
sponding Heisenberg field operators. The symbolP refers to
the time integration along aclosed time pathin the complex
t plane as illustrated in Fig. 2: the path goes forward from
t0 to t` on the positive branch, and then back fromt` to t0
on the negative branch. The generalized time-orderingTP is
therefore defined such that any point on the second branch
understood at a later instant than any point on the first branc
@cf. Eqs.~28! and ~29!#. Utilizing Eq. ~13!, Eq. ~A1! can be
rewritten as

ZP@J1 ,J2 ,r̂ #5Tr$UJ2

† ~ t0 ,t !UJ1
~ t,t0!r̂~ t0!%, ~A2!

whereJ1 (J2) is the source along the positive~negative!
branch of Fig. 2~a!. In generalJ1ÞJ2 , so thatZP depends
on two different sources. If these are set equal, one ha
ZP(J,J,r)5Trr̂, which is equal to unity in the absence of
initial correlations, being a statement of unitarity. The de-
rivatives of ZP with respect to the sources generate the
n-point CTP Green functions

Ga1 , . . . ,an

f1 , . . . ,f n ~x1 , . . . ,xn!

5
dnZP@J1 ,J2 ,r̂ #

dJa1

f1 ~x1!•••dJan

f n ~xn!

5~2 i !n21Tr$TPFa1

f1 ~x1!•••Fan

f n ~xn!r̂%,

~A3!

wherea i56, and the indicesf i label the type of thei th
field operatorF as before. The functionalZP can be repre-
sented as a path integral by employing the relation betwee
the Heisenberg and interaction pictures@Eq. ~16!#. One im-
poses boundary conditions in terms of complete sets o
eigenstates of the Heisenberg fieldsFH at initial time
t5t0 ,

FH~ t0 ,xW !uf1~ t0!&5F I~ t0 ,xW !uf1~ t0!&5f1~xW !uf1~ t0!&,

FH~ t0 ,xW !uf2~ t0!&5f2~xW !uf2~ t0!&, ~A4!

and in the remote future att5t` ,

FH~ t` ,xW !uw~ t`!&5w~xW !uw~ t`!&. ~A5!

Then, making use of the completeness of the eigenstates, o
obtains from Eq.~A2! the following functional integral rep-
resentation forZP :
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ZP@J1 ,J2 ,r̂ #5E Df1Df2Dw

3^f2~ t0!uUJ2

† ~ t0 ,t`!uw~ t`!&

3^w~ t`!uUJ1
~ t` ,t0!uf1~ t0!&

3^f1~ t0!ur̂uf1~ t0!&. ~A6!

At this point it is convenient to represent1 and2 by greek
indicesa,b,g, . . . and to introduce a 23 2 matrixs as a
‘‘metric tensor,’’

tab5tab5diag~1,21!, a,b56, ~A7!

and similarly higher-rank tensors,

uabg5dabtbg , vabgd5sgn~a!dabdbgdgd , ~A8!

with the usual summation convention over repeated gr
indicesa,b,... .With this convention one can generalize t
classical action@Eq. ~4!# to account for all four field order-
ings on the closed time pathP:

I @f f
a#[I @f f

1#2I * @f f
2#

5I~0!@tabAm
aAn

b#1I~0!@tabc̄acb#

1I~ int!@uabgc̄aAm
bcg,uabg~]mAn

a!Am
bAn

g ,

vabgdAm
aAn

bAm
gAn

d#, ~A9!

where the correspondence of the termsI with the ones of Eq.
~4! is obvious~the color indices are suppressed here!. Also,
the following shorthand notation for the integration over t
space-time variables will be used in the functional sense

Jf[E
P
d4xJ~x!f~x!,

fKf[E
P
d4xd4yf~x!K~x,y!f~y!. ~A10!

Returning to the functional integral@Eq. ~A6!#, I now utilize
the above conventions and exploit the fact that the first
amplitudes are just the ordinary transition matrix element
the presence ofJ1 andJ2 , whereas the density matrix ele
ment incorporates the initial state correlations att0 at the end
points of the closed time pathP. I obtain the path integra
representation forZP in analogy with the usual field theor
@11,12#

ZP@J1 ,J2 ,r̂ #5E )
f
Df f

aexpF i S I @f f
a#

1(
f
Jf ,af f

aD GN@ r̂#. ~A11!

HereDf f
a[Df f

1Df f
2 , and I suppressed the formal pre

ence of the Faddeev-Popov determinant associated with
gauge freedom, because for the class of ghost-free ga
@Eq. ~3!# it is equal to unity. The functionalN@ r̂# is the
ek
e

e
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density matrix element containing the initial state correla-
tions that may be represented by a nonlocal source function
K as

N@ r̂#5^f1~ t0!ur̂uf2~ t0!&[expS i(
f
K f@f1 ,f2# D .

~A12!

When expanded functionally as

Kf@f1 ,f2#5Kf1Ka
f fa1

1

2(f 8
Kab
f f 8f f

af f 8
b

1
1

6(f 8 f 9
Kabg
f f 8 f 9f f

af f 8
b f f 9

g
1•••, ~A13!

Eq. ~A11! becomes a functional of an infinite number of
nonlocal sources@8#, which, however, contributeonly at
t5t0 , corresponding to the initial state correlations,

ZP@J1 ,J2 ,r̂ #[ZP@Ja ,Kab , . . . #

5E )
f ,a
Df f

aexpH i F I @f f #1(
f

S Ja
f f f

a

1
1

2(f 8
f f

aKab
f f 8f f 8

b
1 . . . D G J , ~A14!

where the constant termKf has been absorbed into the nor-
malization and the local initial state kernelKa

f (x) has been
combined with the external source termJa

f (x), i.e.,
Ja
f [Ja

f 1Ka
f .

The corresponding generating functional for thecon-
nectedGreen functionsWP is defined as usual by the loga-
rithm of ZP :

WP@Ja,Kab,Kabg, . . . #52 i lnZP@Ja,Kab,Kabg, . . . #.
~A15!

The functional derivatives ofWP with respect to the local
sourcesJf

a(x) define gluon and quark mean fieldsf̃ f
a(x) as

the expectation values of the single field operators, which
either can arise through nonvanishing external sources, or,
the case of gluons, may be generated dynamically by th
system itself depending on the initial conditions. Similarly,
the variation ofWP with respect to the nonlocal kernels
Kf f 8

ab (x,x8),Kf f 8 f 9
abg (x,x8,x9), . . . , gives the the n-point

Green functionsGf f 8
ab (x,x8), Gf f 8 f 9

abg (x,x8,x9), etc., for the
different particle species, which are the expectation values o
products ofn field operators. On the basis of Eqs.~A14! and
~A15!, the explicitdefinitions@11# for the mean fields and the
Green functions are given by the functional derivatives of
WP with respect to the sourcesJ andK:

dWP

dJa
f 5f̃ f

a , ~A16!

dWP

dKab
f f 8

5
1

2
~ iG f f 8

ab
1f̃ f

af̃ f 8
b

!,
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dWP

dKabg
f f 8 f 9

5
1

6
~Gf f 8 f 9

ab
13iG f f 8

ab f̃ f 9
g

1f̃ f
af̃ f 8

b f̃ f 9
g

!, etc.

Note that with these definitions, the Green functio
Gf f 8•••

ab••• describe the actual net change ofWP , i.e.,

dWP /dKab•••
f f 8••• with the ‘‘trivial’’ product f̃ f

af̃ f 8
b
••• sub-

tracted.
One immediately recognizes the infinite hierarchy of t

Green functions, the complete knowledge of which wou
correspond to the full solution of the theory. Clearly, in pra
tice one must truncate this infinite series. In what follows
will assume that alln-point sources of ordern>3 ~i.e., the
kernelsKabg, etc.! are negligible and thus can be omitte
Such an approximation is justified if the higher-order cor
lations generated by then>3 source terms are comparab
small and the quantum dynamics of the system can be s
ciently well described by single-particle distributions corr
sponding to the two-point functions. In fact, this is the ve
hypothesis of the parton description of QCD at large en
gies, where higher-order correlations~‘‘higher-twist’’ ef-
fects! are kinematically suppressed by powers of a large m
mentum scaleQ22 corresponding to an approxima
factorization of dominant short-distance two-point corre
tions and larger-distance three-, four-, . . . , point correlations
associated with multiparticle effects, an approximati
which becomes exact in the asymptotic limit@27#. In this
approximation the generating functional@Eq. ~A14!# then ex-
plicitly reads

ZP@Jm, j , j̄ ,Kmn,k#5eiWP[J
m, j , j̄,Kmn,k]

5E DAa
mDcaDc̄aexpF i S I @Aa

m,ca,c̄a#

1Jm
aAa

m1 j ac̄a1
1

2
Aa

mKmn
abAb

n

1c̄akabcbD G , ~A17!

which is the expression I stated in Eq.~25! of Sec. II B.
Since the present interest concerns only cases where no
ternal sources are present, one obtains from Eq.~A17! the
mean fields and the two-point functions for gluons a
quarks by taking into account the fact that in the absenc
external sources the establishment of a local colored m
field can only occur for the gluons, but not for quarks
antiquarks. Because of their bosonic character the produc
of gluons can lead to a dynamically generated coherent fi
acting as a background medium, whereas the productio
quarks and antiquarks occurs only in pairs and cannot yie
coherent mean field. Furthermore, a physical gluon m
field is determined by the equalityÃ1

m 5Ã2
m [Ãm. Hence one

gets, from Eq.~A17!, using Eq.~A16!,

dWP

dJa
m~x!

5Ãm~x!,
dWP

d j̄ a~x!
5

dWP

d j a~x!
5 0, ~A18!
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dWP

dKab
mn~x,y!

5
1

2
@ iDmn

ab~x,y!1Ãm
a~x!Ãn

b~y!#,

dWP

dkab~x,y!
52 iSab~x,y!,

where, as a remindera,b56, not to be confused with color
indices, which I suppressed in this appendix.

APPENDIX B: FROM QUANTUM FIELD DESCRIPTION
TO KINETIC THEORY

In this appendix I explain steps that lead from the Dyson-
Schwinger equations~44! and ~45! to the kinetic counter-
parts, the renormalization equations~67! and transport equa-
tions ~68!. A good separation between the quantum scale of
short-distance fluctuations and the statistical-kinetic scale is
the essential requirement for recasting the quantum-
theoretical problem, formulated in terms of the two-point
Green functionsG(x,y), into the much simpler form of ki-
netic theory, employing Wigner transformsG(r ,p). In the
picture of cellular space-time, constructed in Sec. III A, a
clearly defined separation between the two scales is con
trolled by the characteristic size of the space-time cells with
volume V.m24, by choosing m such that Dr qua
<m21,Dr kin , i.e., the cell size is larger than the range of
short-distance quantum fluctuations,Dr qua<m21, but small
compared to the mean free path of the quanta between the
kinetic, statistical interactions,Dr kin . This is illustrated in
Figs. 6 and 7. Therefore the correlation between different
cells is negligible by design, and the only relevant case is
when the pointsx andy in the argument ofG(x,y) lie in the
same cell. In the interior of each cell, one can then assume
approximate translation invariance, because large-distanc
inhomogeneities of space-time are, by construction, not re-
solvable within the small cell volume. Thus, for each indi-
vidual cell, one can Fourier-transform the Green functions
over the cell volume, and use the common machinery of
propagator theory as for homogeneous systems, or the
vacuum. Specifically, introducing the variables

r5 1
2 ~x1y!, s5x2y, ~B1!

one transforms the Green functionsG[Dmn ,S with respect
to the ‘‘relative coordinate’’s, whereas the ‘‘absolute coor-
dinate’’ r serves as a cell label:

G~x,y!5E d4p

~2p!4
e2 ip•~x2y!GS x1y

2
,x2yD

5E d4p

~2p!4
e2 ip•sG~r ,s!, ~B2!

whereG(r ,p) is called the Wigner transform ofG(x,y), and
similarly for the self-energiesE(x,y)[Pmn ,S,

E~x,y!5E d4q

~2p!4
e2 iq•~x2y!ES x1y

2
,x2yD

5E d4q

~2p!4
e2 iq•sE~r ,s!. ~B3!
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If the separation between quantum and kinetic scales w
perfect ~as in vacuum, whereDr kin5`), then ther depen-
dence would drop out and the Wigner transforms reduce
the ordinary Fourier transformsG(p) andE(q). In the case
of moderately inhomogeneous media, meaning that
Green functions and self-energies vary only slowly withr
and are strongly peaked arounds5x2y, as I consider
here, then one can expand the Green functio
G(x,y)5W(r1 1

2s,r2 1
2s)5W(r ,s) in a series of gradients,

W~r1s,s!.W~r ,s!1s•] rW~r ,s!1•••, ~B4!

and analogously for the self-energiesE. The great advantage
of the Wigner transformation and the gradient expansion
that, on the one hand, the fundamental Dyson-Schwin
equations~44! and~45! do not change their formal structur
when Wigner transformed; on the other hand, howev
within the kinetic approximation based on the gradient e
pansion@Eq. ~152!#, they become algebraic differential equ
tions rather than integro-differential equations like the ori
nal ones. For example, when rewriting the integral terms
the right side of Eqs.~44! and ~45! by substituting the
Wigner transforms for the Green functionsG5Dmn,S, Eq.
~B2! and self-energiesE5Pmn,S, Eq. ~B3!, and exploiting
the expansion@Eq. ~B4!# up to first order, one finds for the
terms*EG[*PmsDn

s or *EG[*SS:

E d4x8E~x,x8!G~x8,y!5E d4q

~2p!4
d4p

~2p!4
E d4x8

3e2 iq•~x2x8!ES x1x8

2
,x2x8D

3e2 ip•~x82y!GS x81y

2
,x82yD .

~B5!

The integrand will be significantly different from zero only
x8 lies within the same cell asx and y, in which case
1
2(x1x8). 1

2(x81y).r . Therefore Eq.~B5! reduces to

E d4x8E~x,x8!G~x8,y!

5E d4p

~2p!4
$ e2 ip•~x2y!E~r ,p!G~r ,p!1D~r ,p!%,

~B6!

whereD(r ,p) embodies the corrections to the ideal sepa
tion of cells. In terms of the gradient expansion@Eq. ~B4!#,
the first order correction which isO(\) is given by

D~r ,p!5
i

2

]E~r ,p!

]pm

]G~r ,p!

]rm 2
i

2

]E~r ,p!

]rm

]G~r ,p!

]pm

[
i

2
@~]pE!•~] rG!2~] rE!•~]pG!#. ~B7!

In general, the convolution between two functionsf andg is
given by
ere

to

he

ns
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er

r,
x-
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a-

E d4x8 f ~x,x8!g~x8,y!→expF i2 ~]p
~ f !
•] r

~g!2] r
~ f !
•]p

~g!!G
3 f ~r ,p!g~r ,p!. ~B8!

The gradient expansion@Eq. ~B4!# corresponds to keeping
only the first two terms in the Taylor series of the exponen-
tial function, which gives the following set of conversion
rules:

E d4x8 f ~x,x8!g~x8,y!

→ f ~r ,p!g~r ,p!1
i

2
@~]pf !•~] rg!2~] r f !•~]pg!#,

h~x!g~x,y!→h~r !g~r ,p!2
i

2
~] rh!•~]pg!,

h~y!g~x,y!→h~r !g~r ,p!1
i

2
~] rh!•~]pg!,

]x
m f ~x,y!→S 2 ipm1

1

2
] r

mD f ~r ,p!,

]y
m f ~x,y!→S 1 ipm1

1

2
] r

mD f ~r ,p!. ~B9!

If one applies these rules now to the Dyson-Schwinger equa
tions ~44! and ~45!, which upon setting for simplicity the
mean-field contributionsm̃g5m̃q50, read

hW x,mrDab
rn~x,y!5dabg

mndP
4 ~x,y!

2E
P
d4x8Ps,a,b8

m
~x,x8!Db8b

sn
~x8,y!,

Dab
rn~x,y!hQ y,mr5dabgmndP

4 ~x,y!

2E
P
d4x8Ds,a,b8

m
~x,x8!Pb8b

sn
~x8,y!,

~B10!

and

ig•]W xSi j ~x,y!5d i jdP
4 ~x,y!1E

P
d4x8S ik~x,x8!Skj~x8,y!,

2Si j ~x,y!ig•]Q y5d i jdP
4 ~x,y!1E

P
d4x8Sik~x,x8!Sk j~x8,y!,

~B11!

one finds on the basis of the gradient expansion@Eq. ~B4!# a
set of corresponding matrix equations for the Wigner trans
forms of the gluon and quark Green functions
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S 2k21
1

4
]W r
22 ik•]W r DDab

mn~r ,k!

5dmn~k!dab1̂P2~PD !ab
mn2

i

2
@~]kP!•~] rD !

2~] rP
ms!•~]kDs

n !#ab
mn ,

Dab
mn~r ,k!S 2k21

1

4
]Q r
21 ik•]Q r D

5dmn~k!dab1̂P2~DP!ab2
i

2
@~]kD !•~] rP!

2~] rD !•~]kP!#ab
mn , ~B12!

and

Fg•S p1
i

2
]W r D GSi j ~r ,p!5d i j 1̂P1~SS! i j1

i

2
@~]pS!•~] rS!

2~] rS!•~]pS!# i j ,

Si j ~r ,p!Fg•S p2
i

2
]Q r D G5d i j 1̂P1~SS! i j1

i

2
@~]pS!•~] rS!

2~] rS!•~]pS!# i j , ~B13!

where

1̂P5H 1̂ for F,F̄,

0 for .,,,
~B14!

recalling thatG[Dmn,S and the self-energiesE[Pmn,S
each represent a 23 2 matrix as defined by Eq.~27!,

G5S GF G.

G, GF̄ D , E5S EF E.

E, EF̄ D . ~B15!

Adding the two equations of~B12! @~B13!# yields the imagi-
nary parts as the passage to the renormalization equa
stated in Eq.~67!, whereas subtracting the two equations
~B12! @~B13!# gives the real parts as the transport equatio
~68!. For the gluon Wigner functions one obtains

S k22 1

4
] r
2DDab

mn~r ,k!52dmn~k!dab1̂P1
1

2
~$P,D%1!ab

mn

1
i

4
Gabmn~2 ! ,

k•] rDab
mn~r ,k!52

i

2
~@P,D#2!ab

mn1
1

4
Gabmn~1 ! , ~B16!

where@A,B#2[AB2BA, $A,B%1[AB1BA, and

Gmn~2 !5@]k
lPs

m ,]l
r Dsn#22@] r

lPs
m ,]l

kDsn#2 ,

Gmn~1 !5$]k
lPs

m ,]l
r Dsn%12$] r

lPs
m ,]l

kDsn%1 .
~B17!
ons
f
ns

For the quark Wigner functions the corresponding equatio
read

1

2
$g•p,Si j ~r ,p!%15d i j 1̂P2

i

2
~@g•] r ,S#2! i j

1
1

2
~$S,S%1! i j1

i

4
Fi j~2 !,

1

2
$g•] r ,Si j ~r ,p!%15

i

2
~@g•p,S#2! i j2

i

2
~@S,S#2! i j

1
1

4
Fi j~1 ! , ~B18!

where

F~2 !5@]p
lS,]l

r S#22@] r
lS,]l

pS#2 ,

F~1 !5$]p
lS,]l

r S%12$] r
lS,]l

pS%1 . ~B19!

The equations~B18! for quark propagators can be formall
brought in the same form as Eq.~B16! for the gluon propa-
gators by multiplying the first equation of~B13! by
g•(p1 i /2]Q r)d l i1S l i from the left, and the second equatio
of ~B13! by g•(p2 i /2]Q r)d j l1S j l from the right, and then
adding and subtracting the resulting equations:

S p22 1

4
] r
2DSi j ~r ,p!5~g•p1S!d i j 1̂P1

1

2
~$S2,S%1! i j

1
i

4
Ai j

~1 !2
1

8
Bi j~2 ! ,

p•] rSi j ~r ,p!5
1

2
~g•] r !d i j 1̂P2

i

2
~@S2,S#2! i j1

1

4
Ai j

~2 !

1
i

8
Bi j~1 ! , ~B20!

where the notationS i j5d i jS is employed, and

A~6 !5 1
2 @~g•p1S̃!~F~2 !1F~1 !!

6~F~2 !2F~1 !!~g•p1S̃!#,

B~6 !5 1
2 @~g•]W r !~F~2 !1F~1 !!6~F~2 !2F~1 !!~g•]Q r !#.

~B21!

Due to the 232 matrix character of Eqs.~B16!, ~B18!, and
~B20!, the four componentsF,F̄,.,, of the Green func-
tionsDmn andS and self-energiesPmn andS mix, so that
each of these equations actually represents a nontri
coupled set of four equations. However, as noted in S
III C, in the physical representation@Eq. ~77!#,

Ğ5S 0 GA

GR GCD , Ĕ5S EC ER

EA 0 D , ~B22!

one has the great advantage that the retarded and adva
functionsGR(A) are determined exclusively by theR andA
components, and only the equation forGC involves a mixing
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of these. Omitting for lucidity the gradient termsG andF,
Eqs. ~B16! become in the physical representation a se
contained set for the retarded and advanced functions:

S k22 1

4
] r
2DDab

mnR~A!~r ,k!

52dmn~k!dab1
1

2
@PR~A!DR~A!1DR~A!PR~A!#ab

mn ,

k•] rDab
mnR~A!~r ,k!52

i

2
@PR~A!DR~A!2DR~A!PR~A!#ab

mn ,

~B23!

and

1

2
$g•p,Si j

R~A!~r ,p!%15d i j2
i

4
~@g•] r ,S

R~A!#2! i j

1
1

2
~$SR~A!,SR~A!%1! i j ,

1

2
$g•] r ,Si j

R~A!~r ,p!%15
i

2
~@g•p,SR~A!#2! i j

2
i

2
~@SR~A!,SR~A!#2! i j ,

~B24!

plus a set of mixed equations for the correlation function

S k22 1

4
] r
2DDab

mn:~r ,k!

52
1

2
~P:DA1PRD:1D:PA1DRP:!ab

mn ,

k•] rDab
mn:~r ,k!

52
i

2
~P:DA1PRD:2D:PA2DRP:!ab

mn ,

~B25!

with Dmn
C 5Dmn

. 1Dmn
, , and

$g•p,Si j
:~r ,p!%152

i

2
~@g•] r ,S

:#2! i j1~S:SA1SRS:

1S:SA1SRS:! i j ,

i $g•] r ,Si j
:~r ,p!%152~@g•p,S:#2! i j1~S:SA1SRS:

2S:SA2SRS:! i j , ~B26!

with SC5S.1S,.

APPENDIX C: THE RENORMALIZATION FUNCTIONS
AND THE SPECTRAL DENSITIES OF PARTONS

In the following I explain in more detail the steps th
lead from the determining equation for the retarded se
energiesP̂ and Ŝ, Eqs.~103! and ~104!, to the solution for
lf-

,

t
lf-

the renormalization functionsDg andDq , Eqs. ~109!, and
finally to the evolution equations for the phase-space dens
tiesFg andFq , Eq. ~115!. I exemplify the procedure for the
simpler case of the quark self-energy. The case of the gluo
self-energy is more elaborate, but conceptually it is com
pletely analogous. I confine myself here to the leading lo
approximation~LLA !, referring to Refs.@27,28# for addi-
tional reading.

The quantity of interest is hence the quark self-energ
S i j5d i j p

2Ŝ, Eq. ~90!, given by Eq.~99!. As explained in
Sec. II A, when studying short-distance dynamics around th
light cone, it is appropriate and most convenient to work in
the planar axial gaugen•A50, Eqs.~2! and ~3!, with the
constant vectornm satisfying n2!1. Parametrizing it as
nm5(a1b,0,0,a2b) then requiresn254ab!1. Without
loss of generality, one may setb51 anda!1/4, so that the
scalar product of n with some four-vector q is
n•q5q11aq2.q1 with q65q06q3 and q1q2

5q22q'
2.q2!q1 2. Let me then proceed with Eq.~104!

for the variation of the scalar quark self-energy function
Ŝ(r ,p) of a quark with momentump and virtuality
p2!p1 2, within a given space-time cell of volume
V(r )5Dr 0D3r5m24(r ) aroundr ~cf. Sec. III A!:

p2
]

]p2
ŜR~A!~r ,p!

52gs
2CF~2p i !E d4p8

~2p!4i Er021/~2m!

r011/~2m!

dtT~p8t!

3
]Dq~r ,p8!

]p8 2

]

]k9 2

3@Vqqg
2 ~r ;p2,p82,k92,kp ,kp8,kk9!

3Dg~r ,k9!#3U q
qg~p8,k9,n! ~C1!

with

kp5
~n•p!2

n2
5p1 21

1

2
~p22p'

2 !.p1 2 ~C2!

and

Uqqg~p8,k9,n!522
~p8•k9!~g•n!1~p8•n!~g•k9!

n•k9
1O~n2!.

~C3!

Here,p is the four-momentum of the incoming quark which
branches intop8 and k9 of the outgoing quark and gluon,
respectively. Becausen2!1, the termsO(n2) are negligible
and will be omitted in the following.

The role of the time integral* r021/(2m)
r011/(2m)

dt in Eq. ~C1! over

the finite time slicem21[m21(r ) of the space-time cell
aroundr was investigated in detail in Ref.@37# to which I
refer for details rather than repeating the elaborate presen
tion given there. For the present context it suffices to not
that the evolution of the parton densities during a finite time
Dt51/m ~rather thanDt→`) is modified by the time inte-
gral *dt weighted by the functionT which must satisfy
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`

dt T~p8t!51. ~C4!

Aside from this normalization condition, the functionT is not
determinable from first principles, but needs to be speci
as physics input from plausibility arguments: to give tw
simple examples,T5p8u(12p8t) or T5p8exp(2p8t). As
shown in Ref.@37#, the essential effect of the time weigh
T is the imposition of the uncertainty principle which co
strains the simultaneous use of space-time and ene
momentum variables for the quantum evolution of parto
When integrated overt as in Eq.~C1!, it limits the range of
virtualities p82 such that within the finite time slice
Dr 05m21 only those fluctuationsp↔p81k9 are resolvable
that are sufficiently short living, such that

t~p!5gt0~p!5
p1

p82
,

1

m~r !
, ~C5!

wheret0.1/p8 is the proper lifetime of the virtual parton, t
be understood in the averaged sense.

To perform the integral@Eq. ~C1!#, the procedure is as
follows. First, due to the kinematic ordering conditio
p2@p82,k92 in the LLA, the gluon momentumk9 can be
decomposed as

k95~12z!p2S 122zD n

n•p
p21k'9 1O~n2!,

z5
p81

p1 , k'9 •p5k'9 •n5 0. ~C6!

Then one can rewrite Eq.~C3! in the form

U q
qg~p8,k9,n!52z~g•p!1~12z12z2!

~g•n!

~n•k9!
p2. ~C7!

Next, one rewrites the integration measure in Eq.~C1! as

d4p85
p

2
dp82dk92dzuS p22 p82

z
2

k92

12zD , ~C8!

where theu function accounts for the aforementioned ord
ing of virtualities and acts as a kinematic constraint that li
its the integration range, such that

k92<~12z!S p22 p82

z D . ~C9!

Finally, to simplify the analysis, I approximate thet integral
by @37#

E
r021/~2m!

r011/~2m!

dt T~p8t!'uS 1

m~r !
2
p1

p82D5uS zp2p1 r 02 1D ,
~C10!

wherem(r ) characterizes the size of the space-time inter
of the localized quantum fluctuations@cf. Sec. III A, Eq.
~50!#. Using the above formulas, the integration overk92

now gives
ed
o

t
-
gy-
s.

n

r-
-

al

p2
]

]p2
ŜR~A!~r ,p!

5
gs
2Cf

16p2E
0

1

dzE
0

zp2

dp82F2z~g•p!1~12z12z2!

3S p2~g•n!

~n•k9! D GVqqg
2 F r ;p2,p82,~12z!

3S p22 p82

z D ;p1 2,zp1 2,~12z!p1 2G
3DgF r ;~12z!S p22 p82

z D G
3

]Dq~r ,p8!

]p8 2 uS zp2p1 r 02 1D . ~C11!

Next one integrates overp82, which yields for the last two
factors in Eq.~C9! an ‘‘effective vertex function’’ under the
remainingz integral:

Veff
2 [

gs
2

4p
Vqqg
2 @r ;p2,zp2,~12z!p2;p1 2,zp1 2,

~12z!p12]Dq~r ;zp
2!Dg@r ;~12z!p2#, ~C12!

which in the LLA has been shown@27,28# to generate the
running of the couplingas5gs

2/(4p). In the present case,
however, it is modified by the finite-time slice effect ex-
plained after Eq.~C3!, which produces theu function
u@(zp2/p1)r 021# as a result of the*dt T integral in Eq.
~C3!. In any case, by a nontrivial manipulation~see, e.g.,
@27#!, Eq. ~C12! can be brought into the following form,
stated here without further elaboration:

Veff
2 5Dq

21~r ;p2!as@~12z!p2#uS zp2p1 r 02 1D . ~C13!

Employing this identification, inserting the decomposition

ŜR~A!~r ,p!5Ŝ1~g•p!1Ŝ2

p2~g•n!

n•p
, ~C14!

into Eq.~C11!, and solving forDq andD̃ in the parametriza-
tion of the self-energy@Eq. ~96!#,

Dq~r ,p!5
1

11Ŝ11Ŝ2

, D̃q~r ,p!5Dq~r ;p
2!

Ŝ2

11Ŝ1

,

~C15!

one finds the form of the quark renormalization function a
stated in Sec. III E:
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Dq~r ,p
2,p1 2!

5expH 2E
p2

p1 2dp82

p82
E
0

1

dz A~r ,z,p82!gq
qg~z,e!J ,

~C16!

where11

A~r ,p2,z!.
as@~12z!p2#

2p
uS zp2p1 2m~r ! D ~C17!

and

gq
qg~z,e!5CFS 11z2

12z1e~p1 2! D , ~C18!

with

e~p1 2!5
p2n2

4~p•n!2
5

p2

p1 2!1. ~C19!

By repeating the same analysis for the gluon case one
tains

Dg~r ,k
2,k1 2!5expH 2E

k2

k1 2dk82

k82
E
0

1

dz A~r ,z,k82!

3S 12 gg
gg~z,e!1gg

qq~z,e! D J ~C20!

where

gg
gg~z,e!52CAS z

12z1e~k1 2!
1
12z

z
1z~12z! D ,

gg
qq~z,e!5

1

2
@z21~12z!2#. ~C21!

The renormalization functionsD f ( f5g,q) determine the

form of the gluon and quark structure functionsPff 8(r ,p)
defined in Sec. III A, Eq.~61!, as the spectral densities of th
parton phase-space distributionsF f(r ,p), which are the
space-time generalization of the usual momentum-space
ton densities in QCD. With reference to the excellent revi
of Dokshitzeret al. @27#, I merely state here the fact that th

parton structure functionsPff 8(r ,p) can be shown to have th
following Dyson-Schwinger integral representation:

Pff 8~r ;x,p2!5d f
f 8d~12x!d~p22mgq

2 !D f~r ;mgq
2 ,p1 2!

1D f~r ,mgq
2 ,p1 2!(

f 9
E

mgq
2

p2 dp82

p82
E
0

1

dz

3HA~r ,p2,z!g f
f 9 f 8~z,e!Pf 9

f 8S xz ,p82;p812D
3D f

21S r , p82

z
,p812D J . ~C22!

11A detailed derivation of the effective coupling functio
A(r ,p2,z) can be found in Ref.@37#.
ob-

e

par-
w
e

This form can be derived by formal integration of Eq.~C11!
with respect to lnp2, and exploiting the relation between the
retarded~advanced! propagatorsSR(A) ~self-energiesSR(A))

and the spectral densitiesPff 8 as given by Eq.~113!. The first
term on the right side of the above integral representation
describes the probability that the parton density does no
change. It is the product of a ‘‘free streaming’’ part times the
Sudakov form factorD f<1, which suppresses the free
streaming probability because of the presence of parton in
teractions. The second term then describes the compleme
tary probability that the parton density does actually change
locally in phase space, (r ,p)→(r ,p8), because of real and
virtual emission and absorption processes. This second co
tribution is proportional to the ratio of Sudakov form factors,
D f(r ,mgq

2 ,p2)D f
21(r ,p82/z,p82).

Now, becauseF f5Nf ^Pf , Eq. ~58!, the variation of
F f(r ,p) with the parton momentump ~more precisely, with
virtuality p2) therefore reflects the parton’s changing gluon-
quark substructure as dictated by the renormalization func
tions,Dg(q) , also called the Sudakov form factor of a gluon
~quark!. This connection betweenD f andF f emerges as fol-
lows. Treating gluons and quarks on the same footing, th
differentiation ofD f

21 with respect top2, the incoming par-
tons’s virtuality, yields

p2
]

]p2
D f

21~r ;p2,p1 2!

52D f
21~r ;p2,p1 2!(

f 9
E dzA~r ;p2,z!g f

f 8 f 9~z,e!,

~C23!

where the sum overf 95g,q automatically fixesf 8 due to the

symmetry properties of the kernelsg f
f 8 f 9 under interchange

of f 8 and f 9 @27#. On account of the momentum sum rule
@Eq. ~86!# for the parton structure functions
P(r ,p)5P(r ;x,p2), i.e., the momentap15xP1(r ) of all
partons in a given cell aroundr add up to the total cell
momentumP1(r ), one has

15(
f f 8

E dx xP f
f 8~r ;x,p2!, ~C24!

and hence

(
f f 8

E dx xp2
]

]p2
P f

f 8~r ;x,p2!5 0, ~C25!

and, therefore, one can rewrite Eq.~C18! in the form

Fp2 ]

]p2
D f

21~r ;p2,p1 2!GP f
f 8~r ;x,p2!1D f

21~r ;p2,p1 2!

3Fp2 ]

]p2
Pff 8~r ;x,p2!G

52D f
21~r ;p2,p1 2!(

f 9
E dz A~r ;p2,z!

3g f
f 8 f 9~z,e!

1

z
P f 9

f 8S r ; xz ,zp2D . ~C26!

Employing Eq.~C23! then yields
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D f
21~r ;p2,p1 2!p2

]

]p2
P f

f 8~r ;x,p2!

5Dq
21~r ;p2,p1 2!(

f 9
E dz A~r ;p2,z!g f

f 8 f 9~z,e!

3HP f
f 8~r ;x,p2!2

1

z
P f 9

f 8S r ; xz ,zp2D J . ~C27!

The final evolution equation for the parton phase-space de
sities F f(r ,p) is obtained by~i! multiplying with D f , ~ii !
convoluting the resulting equation according to Eq.~58! with
the local parton densityNf(r ,p), i.e., the number of dressed
partons in a given cell aroundr , and~iii ! accounting for the
competition between real emission and reverse absorpt
processes@38#, using the fact that the squared matrix ele
ments }ga

bc are invariant under the reversala→bc and
bc→a. The extended result is

k2
]

]k2
Fg~r ;x,k

2!5E
0

1

dz A~r ;k2,z!H F1z FgS r ; xz ,zk2D
2
1

2
Fg~r ;x,k

2!GGg
gg~z,e!

1 2NfFq~r ;x,k
2!Gq

gq~z,e!

2NfFg~r ;x,k
2!Gg

qq~z,e!J ,
p2

]

]p2
Fq~r ;x,p

2!5E
0

1

dz A~r ;p2,z!H F1z FqS r ; xz ,zp2D
2Fq~r ;x,p

2!GGq
qg~z,e!

1 Fg~r ;x,p
2!Gg

qq~z,e!J , ~C28!

where

G f
f 8 f 95g f

f 8 f 9S 12
F f 8

F f 86 1D ~C29!

represents the net emission probability, being a manifestat
of the principle of detailed balance between the rate of em
sion of partonf 8 from a partonf , and the rate of absorption
of a quantumf 8 in the phase-space proximity of partonf .

The net rateG f
f 8 f 9 results in a suppression whenFg or Fq

becomes large, and thus reflects correctly the Bose-Einst
and Fermi-Dirac statistics~1 for gluons,2 for quarks!. On
the other hand, whenFg andFq are small compared to 1, the

usual branching kernelsg f
f 8 f 9 are recovered.

APPENDIX D: DERIVATION OF DRIFT TERM AND
COLLISION KERNEL OF THE TRANSPORT EQUATIONS

This appendix explains the derivation of the transpo
equations~115! and~127! that govern the kinetic, dispersive
dynamics of dressed gluons and quarks. First of all, one o
serves that from the matrix representation of the CTP Dyso
n-

on
-

on
s-

in

t

b-
n-

Schwinger equations~39! and ~40! in terms of the Green

functions GF, GF̄, G., and G, and self-energies

EF, EF̄, E., andE,, whereG[Dmn ,S andE5Pmn ,S, fol-
low immediately the corresponding equations for the re-
tarded, advanced, and correlation functionsGR, GA, and
GC andER, EA, andEC, as given by Eq.~93!:

~DR~A!
21 !mn~r ,k!5~D ~0!R~A!

21 !mn2~PR~A!!
mn,

SR~A!
21 ~r ,p!5S~0!R~A!

21 2SR~A! , ~D1!

and

DC
mn~r ,k!52DR

mm8@~D ~0!C
21 !m8n82~PC!m8n8#DA

n8n ,

SC~r ,p!52SR@S~0!C
21 2SC#SA ~D2!

for the quarks. It is convenient to introduce scalar and di-
mensionless self-energy functionsP̂ and Ŝ through

Pab
mn~r ,k!5dab~k

mkn2gmnk2!P̂~r ,k!,

S i j ~r ,p!5d i j p
2Ŝ~r ,p!, ~D3!

so that the propagators can be written as

Dab
mnR~A!~r ,k!5dab„2dmn~k!…

1

p06 ip1
,

Si j
R~A!~r ,p!5d i j ~g•p!

1

s06s1
, ~D4!

and the correlation functions as

Dab
mnC~r ,k!5dab„2dmn~k!…

22ip2

p0
21p1

2 @11Fg#,

Si j
C~r ,p!5d i j ~g•p!

22is2

s06s1
@12Fq#, ~D5!

wheredmn(k) is defined in Eq.~8!, andFg andFq are the
phase-space densities of dressed gluons and quarks as d
fined by Eq.~58!. This separation of real and imaginary con-
tributions uniquely determines the Green functions in terms
of the three functionsp i (s i) as can be shown rigorously@7#.
The real parts correspond to the dispersive and wave func-
tion renormalization piece, whereas the imaginary parts give
rise to dissipation and decay. Formally,

p05k2~12ReP̂!, ReP̂5
1

2
~P̂R1P̂A!,

p152k2ImP̂, ImP̂5
i

2
~P̂R2P̂A!, ~D6!

s05p2~12ReŜ!, ReŜ5
1

2
~ŜR1ŜA!,

s152p2ImŜ, ImŜ5
i

2
~ŜR2ŜA!, ~D7!
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and

p25
i

2
~P̂,1P̂.!, s25

i

2
~Ŝ,1Ŝ.!. ~D8!

Next, recalling that the correlations among different
dressed partons determine their mutual interactions at kin
space-time scales, one focuses on the correlation functi
Dmn
C andSC. Noting thatDmn

A 5Dmn
R† , SA5SR†, and employ-

ing the representations~92!,

Dmn
C ~r ,k!522p i @2dmn~k!#@112 Fg~r ,k!#

3d„k22Mg
2~r ,k!…,

SC~r ,p!522p i ~g•p!@122 Fq~r ,p!#d„p22Mq
2~r ,p!…,

~D9!

where color indices are suppressed, Eqs.~D4!–~D8! may be
combined to write

2dmn~k!Dmn
C ~r ,k!5~p01 ip1!

21Hg2Hg~p02 ip1!
21

522i
p2

p0
21p1

2 ,

g•pSC~r ,p!5~s01 is1!
21Hq2Hq~s02 is1!

21

522i
s2

s0
21s1

2 , ~D10!

where@cf. Eq. ~89!#

Hg~r ,k!511 2Fg~r ,k!, Hq~r ,p!512 2Fq~r ,p!.
~D11!

Hence, on account of Eqs.~D1! and ~D2! one finds

2dmn~k!~D ~0!
C212PC!mn52~Hgp02p0Hg!

1 i ~Hgp11p1Hg!,

g•p~S~0!
C212SC!52~Hqs02s0Hq!1 i ~Hqs11s1Hq!.

~D12!

Then, by inserting the expressions~D7! and~D8! for p i and
s i , one obtains

Fgp02p0Fg5
1
2 @~11Fg!P̂

,1P̂,~11Fg!

2FgP̂
.2P̂.Fg#

[Cg ,

Fqs02s0Fq52 1
2 @~12Fq!Ŝ

,1Ŝ,~12Fq!

1FqŜ
.1Ŝ.Fq#

[Cq , ~D13!

with the self-energiesP̂: and Ŝ: given by Eqs.~121! and
~122! together with Eq.~D3!. Finally, as argued in Sec. III E,
the presumed clear separation of quantum and kinetic spa
time scales allows one to treat the kinetic dynamics qua
classically, by expanding both sides of Eq.~D13! in terms of
y
tic
ns

ce-
si-

\ and keeping only the lowest-order contributions. The
lowest-order nonzero terms on the right hand sides of Eq.
~D13! correspond then to the Born collision terms which are
of order\,

Cg~r ,k!5~11Fg!P̂
,2FgP̂

.1O~\3!,

Cq~r ,p!52~12Fq!Ŝ
,1FqŜ

.1O~\3!, ~D14!

whereas the lowest-order nonzero terms on the left hand
sides of Eq.~D13! result in the classical Poisson brackets
which are also of order\,

~Fgp02p0Fg!~r ,k!52 i @~] rFg!•~]kp0!2~]kFg!•~] rp0!#

52 i S ]p0~r ,k!

]k2 D
k25m

gq
2
S k•] rFg~r ,k!

2
1

2
] rk0

2
•]kFg~r ,k! D1O~\3!,

~Fqs02s0Fq!~r ,p!52 i @~] rFq!•~]ps0!2~]pFq!•~] rs0!#

52 i S ]s0~r ,p!

]p2 D
p25m

gq
2
S p•] rFq~r ,p!

2
1

2
] rp0

2
•]pFq~r ,p! D1O~\3!,

~D15!

where as before] r5]/]rm, ]k5]/]km, etc., and the center
dot denotes a scalar product of four-vectors. The latter
equalities in these two equations are obtained by using the
fact that the solutions of the dressed partons’ energy spectr
Eq. ~124! are strongly peaked around momentum transfers

q'
2.mgq

2 , i.e., k0(r ,kW ).AkW 21mgq
2 and p0(r ,pW )

.ApW 21mgq
2 , because of the well-known QCD specific loga-

rithmic behavior of the spectral densities}asln(q'
2/mgq

2 ), and
the power law form of the scattering cross sections
}as

2q'
2n (n.4).

Finally, using ] rk05] rp0'0, and equating Eqs.~D13!
and~D15!, one obtains the transport equations of Boltzmann
type, stated in Sec. III E, Eqs.~120!,

k•] rFg~r ,k!5Ig~r ,k!, p•] rFq~r ,p!5Iq~r ,p!,
~D16!

where the Lorentz-invariant collision termsI on the right
hand side are defined by

Cg~r ,k!52 i S ]p0~r ,k!

]k2 D
k25m

gq
2
Ig~r ,k!,

Cq~r ,p!52 i S ]s0~r ,p!

]p2 D
p25m

gq
2
Iq~r ,p!. ~D17!

In Eqs.~D15! and ~D17!, the derivatives with respect to the
virtuality k2 are to be taken atmgq

2 , which according to Eqs.
~56! and ~98! defines the scale at which a dressed parton
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appears as a quasiparticle, with the renormalization and d
sipation effects taken into account in the spectral densit
Pg andPq , Eq.~114!. Their form is determined by the renor-
malization equations~115!, and therefore the parton distribu-
tionsF5N^P contain implicitly the short-distance quantum
effects. The derivatives ofp0 ands0 are related to the renor-
malization functionsDg andDq , respectively, via the corre-
spondence of the representations~D4! and ~96!, and one
finds

2 i S ]p0~r ,k!

]k2 D
k25m

gq
2

5Dg
21~r ,k2,k1 2!uk25m

gq
2 5 1,

2 i S ]s0~r ,p!

]p2 D
p25m

gq
2

5Dq
21~r ,p2,p1 2!up25m

gq
2 5 1,

~D18!

where the latter equality results from the normalization co
dition ~98!.

The explicit form of the collision integralI is obtained by
substituting the correlation functions~D9! into the two-loop
expressions~121! and ~122! for the self-energiesP̂ and Ŝ,
and then inserting those into Eqs.~D13!. Applying the stan-
dard cutting rules@42# to the resulting self-energies, as sym
bolically represented in Fig. 11, yields the different binar
collision processesab↔cd by which a parton of typea may
be gained or lost in a phase-space element, name
gg↔gg, gg↔qq̄, gq↔gq, qq↔qq, qq̄↔qq̄. The corre-
sponding collision integralsIa may be compactly repre-
sented in the generic form of Eq.~130!:
is-
s

-

ly,

Ia~r ,p1![(
bcd

@2Icd→ab
~ loss! ~p1 ,r !1Iab→cd

~gain! ~p1 ,r !#

52(
bcd

CabCcdE d3p2
~2p!32E2

E d3p3
~2p!32E3

3E d3p4
~2p!32E4

~2p!4d4~p11p22p32p4!

3$ Fa~1!Fb~2!uM~ab→cd!u2u~q'
22mgq

2 !

3@16Fc~3!#@16Fd~4!#2@16Fa~1!#

3@16Fb~2!#uM~cd→ab!u2

3u~q'
22mgq

2 !Fc~3!Fd~4! %, ~D19!

where theFa( i )[Fa(pi ,r ) denote the distribution functions
of parton speciesa5a,b,c,d and corresponding four-
momentapi5p1 ,p2 ,p3 ,p4 at space-time pointr5(r 0,rW).
As a consequence of the representations~D9!, the squared
matrix elementsuMu2 for the processesab↔cd ~which con-
tain the 2→2 kinematics, color, and spin structure, as given
below! are weighted by a distribution functionFa for each of
the particles coming into the interaction vertex and a facto
@16Fa# for each of the outgoing ones, with the1 sign
referring to gluons and the2 sign to quarks and antiquarks.
The factorsSab5(11dab)

21 andScd[(11dcd)
21 account

for the cases where the two incoming and/or outgoing pa
tons are identical. Using the identities12

dmn~k!5 (
s51,2

«m~k,s!•«n* ~k,s!,

g•p52p0 (
s51,2

ū~p,s!u~p,s!52p0 (
s51,2

v̄~p,s!v~p,s!,

~D20!
raging
sions
finally, the squared matrix elements are obtained by evaluating the amplitudes illustrated in Fig. 11, squaring those, ave
over initial colors and spins, summing over final colors and spins, and summing over quark flavors. The resulting expres
are standard and given by

uM~gagb→gcgd!u25
gs
4

~832!2 (
color,spin

U gtt8 f aedf ebc
~p12p4!

2 lrts~2p1 ,p12p4 ,p4!l
t8mn~p22p3 ,2p2 ,p3!

1
gtt8 f aecf ebd
~p12p3!

2 lrtn~2p1 ,p12p3 ,p3!l
t8ms~p22p4 ,2p2 ,p4!

1
gtt8 f dbef ecd
~p11p2!

2 lrmt~2p1 ,2p2 ,p11p2!l
t8ns~2p32p4 ,p3 ,p4!1vabcd

rmns~p1 ,p2 ,2p3 ,2p4!U2, ~D21!

12Note that in contrast to the standard normalization for fermions}Am/p0, here the normalization is chosen commonly for both gluons and
quarks}1/(2p0).
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uM~gagb→q̄iqj !u25
gs
4

~832!(f
Nf

(
color,spin

uū j~p4!S Tika Tk jb g•«~p2!
g•~p12p3!

~p12p3!
2 g•«~p1! D v i~p3!

1ū j~p4!S Tikb Tk ja g•«~p1!
g•~p22p3!

~p22p3!
2 g•«~p2! D v i~p3!

1ū j~p4!S i f abcTi jc «m~p1!«
n~p2!g

r

~p11p2!
2 lmnr~2p1 ,2p2 ,p11p2! D v i~p3!u2, ~D22!

uM~gaqi→gbqj !u25
gs
4

~832!~332!(f
Nf

(
color,spin

U f cabTi jc «m~p1!«
n~p3!

~p12p3!
2 lrmn~p12p3 ,2p1 ,p3!ū j~p4!g

rui~p2!

2 iTik
b Tk j

a ūj~p4!g•«~p1!
g•~p22p3!

~p22p3!
2 g•«~p3!ui~p2!

2 iTil
aTl j

b ūj~p4!g•«
m~p3!

g•~p21p1!

~p21p1!
2 g•«~p1!ui~p2!U2, ~D23!

uM~qiqk→qjql !u25
gs
4

~332!2 (f1 , f2

Nf

(
color,spin

UTi ja Tkla ūj~p4!gmui~p1!
1

~p12p4!
2 ūl~p3!g

muk~p2!

2d f1f2
Til
bTk j

b ūj~p4!gnuk~p2!
1

~p12p3!
2 ūl~p3!gnui~p1!U2, ~D24!

uM~qiq̄k→qj q̄l !u25
gs
4

33232 (
f1 , f2

Nf

(
color,spin

Ud f1f4
d f2f3

Ti j
a Tlk

a ūj~p4!gmui~p1!
1

~p12p4!
2 v̄k~p2!g

mv l~p3!

2d f1f2
d f4f3

Tik
b Tli

b ūj~p4!gnv l~p3!
1

~p12p3!
2 v̄k~p2!gnui~p1!U2, ~D25!

uM~ q̄iqj→gagb!u25
64

9
uM~gagb→q̄iqj u2. ~D26!

Here

lmrn~p1 ,p2 ,p3![~p12p2!
ngmr1~p22p3!

mgrn1~p32p1!
rgmn,

vabcd
mstn~p1 ,p2 ,p3 ,p4![ f abef cde~g

rngms2grsgmn!1 f acef bde~g
rmgns2grsgmn!1 f adef cde~g

rngms2grmgsn! ~D27!

are the usual three-gluon vertex function and the four-gluon vertex, respectively. The shorthand notation suppressing
and polarization indices,u(p1)[u(p1 ,s1)a , «(p2)[«(p2 ,s2), etc., is employed, and in Eqs.~D24! and~D25! d f f 8 is equal
to 1 if the two quarks are of the same flavor and is zero otherwise.
o
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