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Nonleptonic two-body decays oD mesons in broken SU3)

lan Hinchliffe and Thomas A. Kaedifig
Theoretical Physics Group, Lawrence Berkeley Laboratory, University of California, Berkeley, California 94720
(Received 16 February 1996

Decays of théd mesons to two pseudoscalars, to two vectors, and to pseudoscalar plus vector are discussed
in the context of broken flavor SB). A few assumptions are used to reduce the number of parameters.
Amplitudes are fit to the available data, and predictions of branching ratios for unmeasured modes are made.
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INTRODUCTION resentation is the triple3) of quarksu, d, ands. The three
D mesons{D? D*, D} form an antitriplet(3) representa-
Many data are available on the hadronic two-body decaysion. The pseudoscalafsr®, #°, 7, K*, K® K™, K°, 77%}
of charmed mesons. Theoretical models that attempt to sy$erm an octet(8) representation, as do the vectdrs, p°,
tematize the decay patterns have been available for many , K**, K*0 K*~ K*O wg}. The 7, and w; are each sin-
years. These models usually make dynamical assumptions glets. The physical, 7', ¢, andw are linear combinations
order to reduce the number of amplitudes that contribute to af them, with mixing angles-17.3°[8] and 39°[9] for 7-%'
particular decay. For example, the lartye approximation  and ¢-w, respectively-
[1,2], or the heavy-quark effective thedi§]. It is not cleara
priori how well such approximations should work and hence
how seriously to take a conflict between a prediction and a Il. THE WEAK HAMILTONIAN
measured value. Another approach is to assume that the ma-
trix elements factoriz¢4]. This model is quite successful in
describing observed modes, but again, it is difficult to know
whether a discrepancy is due to an incorrect measurement &
the failure of the assumption. A more general approach based
on a diagrammatic classificatids], with different assump- Gr _ .
tions, also exists. In many cases attempts are made to obtain Hweak:7 coS Ocuy*(1— y5)dsy,(1—ys)C
predictions of unmeasured modes from these models. 2

The decays of th® mesons are mediated by the weak
Hamiltonian. Ignoring QCD corrections, the Hamiltonian in
rms of the quark fields is

SU(3) is badly broken in these decays, so models based G
on exact symmetry6] are not useful. An analysis of the + —Fcosﬁcsinﬂcuy“(l—'y5)SSyM(l—'y5)C
SU(3) breaking was begun if¥]. However, an attempt at a V2
complete parameterization has been conspicuously missing,
due to the large number of reduced matrix elements in- Ge R —
volved. We set out to remedy this omission. This work gives - ECOS%S'”GCU (1 ys)ddy,(1-ys)C
a full parameterization of the decays of tBemesons into
final states of two pseudoscalarBR), two vectors {V), G o
and a pseudoscalar plus a vectd®\), including SU3) ——FSinz@CU)/”(l—'y5)sd7M(l—y5)C. (1)
breaking. We assume that isospin is a good symmetry; the v2
relations predicted between decay modes that follow from

isospin are therefore respected by our fit. The elements Q{ote that the operatoig create quarks and so transform as a
this parameterization—the particle representations, the weqlﬁmet while q transforms as the antitriplet. Using the

Hamiltonian, the breaking operator, and the reduced matrix|epsch-Gordan coefficients for the expansion of the product

elements—are discussed in the following sections. We makgx 3% 3, we can classify the operators according to irreduc-
only very few assumptions to limit the number of param-jy|e representations of SB) as

eters. We fit the parameters to the available data of two-body
decays and predict many unmeasured modes. Because afew _ _ — )
of the parameters are not constrained, we indicate which (ud)(sc)=—(1n2)6(~- 3,1,1)— (IV2)1¥ - 5,1,1),

branching fractions are needed to predict the rest of certain 2
classes of modes. We comment on the cas®gf:7'p", o () — 4 4
where the model is barely consistent with data. (us)=(dc)=(1#2)8(3,0,0 +(1#2)155,1.0,
|- PARTICLE STATES IN FLAVOR SU (3 (ud)(de)=(L8)3(5,5.3)+33'(5.5.1)— 3 6(5.3.3)
In a model based on flavor $8), the particles are de- 131 111
noted by their SIB) representations. The fundamental rep- —(IV3)15(3,3.3) — (1N2415(3,3.3),
*Electronic addresses: theory@Ibl.gov, takaeding@lbl.gov 1K* denotesk*(892); %' denotesy’ (958).
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Us)(sc)=(1/\/8)3(%, L 1)+ 13/ (L L 1y4 1 _;,;,; by the 6 are antisymmetric. The QCD renormalization of
(US)(5)=(1NB)3(3,7.2) +33' (3.3, 1) + 3 6(3.2.2) operators with these symmetry properties has been calculated
+/3/8 151,11 [11]. We find that
+ +
where(qq’) denotesgy*(1— vs)q'. The numbers in paren- 15 . 15% as(My) |% [ as(my)|?
theses are hypercharge, total isospin, and third component of ag(my) ag(my)|
isospin of the particular members of the @Urepresenta-
tions. The weak Hamiltonian can now be written in terms of — — [aMy)]?® [agmy)]2s
the representationd 3, 6, and15 as 6—6X|— } : } : (4)
T ag(mp) ag(me)
Huwea= GeSIOc[ — 7 6(3,0,0 — 7 15(%,1,0] where
+Grcoffc[— & 6(— 2,1,)— § 15— £,1,1)] ot —
. — 11 Ni— 33—2N;’
+Ggcosdcsindc-[(1V2)6(5,3,3)
_ —-12
+(1V6)15(3,3,5) +(IV3)153,3,5)].  (3) aN,= 333N, ®)
- 33—2N;

Note that the3 and 3’ representations do not appear in the, the regime where there aM flavor degrees of freedom.
uncorrectedH eq [10]. Because the QCD corrections are taking into account the change in the number of active fla-
multiplicative and do not mix the S(3) representations, the vors as the b-quark threshold is crossed, and using

3 and3' will also not appear iH,q,{m.). «(M,)=0.119, we obtain
Since the decays of tH2 mesons occur at the scale of the z '
c-quark mass, we must allow the QCD evolution of the vari- 15—0.81 15,
ous operators from theé/-mass scale, where E(}) is valid, 6-15 6" (©)

to thec-mass scale. The operators represented byl Bere
symmetric under quark interchange, and those represent&flith Eq. (3) as the boundary condition, we have

G _ G _
el Me) = {sinzac[—o.aal 154,1,0 - 1.5 6(4,0,0]+ 7Fco§ac[—0.81 15— 2,1,)—1.5 6(— 2,1,1)]

G —
+ {cosﬁcsinec[o.8l><(2lx/§)15(%,%,%)+O.81>< V2/1315(%,2 4+ 1.5xv26(5,%,1)]. 7

Note that the QCD corrections do not introduce any newwhere); are the usual Gell-Mann matrices. The termdn
phases into the process. We can absorb these corrections ingpresents breaking of the isospin @V subgroup. This
the reduced matrix elemenfdiscussed beloyand therefore breaking, proportional to the difference between up and
they do not affect our analysis. In the absence of an indeperflown quark masses, is expected to be very small and we
dent determination of the matrix elemerésg., from lattice  neglect it in the following. The constayt can be absorbed
gauge theory the values of the QCD corrections are irrel- into the reduced matrix elements. Herldecan be reduced

evant. to

Ill. PARAMETRIZATION

A. SU(3) breaking B. Reduced matrix elements

For a complete parametrization of any process in flavor NO.W consider the most general parametrization of the de-
SU(3), we must include explicit breaking. Since we know cays in the context of the flavor $8) symmetry. For each

that the source of flavor S8) breaking among the pions and poststlﬁle contratctéon of the repre?ent§t|ons Into %m%n' i

kaons is the difference between the quark masses, we do tl"ﬁ%,e eré must be oné parameter, 1.€., one reduced matrix
with an operatoM which transforms as a8. Although the element. Each reduced matrix element is complex. The rep-
quark mass difference is insufficient to explain the large'esentations involved are those in Sec. D (3), H (6©15),

SU(3) breaking that will be found, an octet is the simplest@nd two of P and V (each1 or 8). In addition, we must

We can expresd! as breaking parametévl. We assume that the breaking is linear
in M. We have chosen to contrabt with H, then contract
M=akz+ BAg, (8 the productgPP, PV, VV) (and then possibly witthM), and
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finally contract the two parts into the singlet. Our labels for involving (S9;: Ly,
the r.educed matrix elements reflects this._ For e>.<ample, the involving (SO)g: Ly, ... Lg,
matrix e!ement denoteldDH ;5)5((PP);M)g] is obtained by involving (00);: Lo,
contract!ngD a_nd thels component ofH _mto an octet, involving (00)g: Lyg, - - \L16,
contractingPP into a singlet which combines witM to . i . .
. . involving (OO)g/: Li7,...,L>s,

become another octet, and contracting the two resulting oc- . :
tets into the singlet. !nvolv!ng (00100 Lag, - .- Los,

Unfortunately, the above parametrization involves far involving (OO)15:  Lag, - .- \Laa,
more parameters than there exist data. Therefore we make involving (00)z7:  Laa, - Lao
two important assumptions. First, we assume that we can . ,
separate the spin and flavor dynamics of the processes, i.&/€ Write them each as a sum over the reduced matrix ele-
that the relative strengths of the reduced matrix elements af@€nts. Viz.,
the same in thé P, PV, (VP), andVV cases. This implies
that only forty-eight reduceq SB) matrix elements are anz C/.Ri, (12)
needed. They are labeled wihand O for the singlet and '
octet representations, rather than w&R, PV, or VV. They . _ _
are listed in the Appendix. In order to distinguish the spin@nd normalize them for convenience by setting
states we introduce two parameters, callegl, and Ay,
(App_zl). Secon_d, we assume that the phase of ea_ch reduced D c/2=1. (12)
matrix element is given solely by the representation of the i
product particlegbeforeM is included. Bose symmetry for
PP andVV and an appropriate phase rotation of the particleNow Eq. (10) is replaced by
fields reduces the list of phases(ig 71)1, (7101)1, (w1071)1,
(Pny)g, (Pwyg, (V7i)g, (Vwyg, (PP)1, (PP)a7, (PV)y,
(PV)g', (PV)10, (PV)10, (PV)27, (VV)1, and (VV) ;. One
should note that we cannot determine the relative phases be-
tweenPP, PV, andVV. To the extent that all phases are  Thel,, replace the reduced matrix elements in our param-
introduced by final-state interactions, one can read off theterization of the amplitudes. The forty linearly independent
relative phases of the product representations in Table Vlicombinations contain matrix elements including those that
The complete list of parameters appears in Tables VI anéhvolve the breaking operatd¥l. It is not possible to divide
VIL. the linear combinations into a set that contains only matrix

The amplitude for each decay mode can be expressed agéements withoutM and a set containing only matrix ele-

sum over the reduced matrix elements with the appropriatg'ents withM. Of the forty combinations, three are not con-
Clebsch-Gordan coefficients: strained by the available data. We call them L,, andL;.

They are discussed below. A list of the independentand
the expressions for the amplitud@é¢D,;— X) are given in
A(DJ_’Xi):; CijkRiS: - (10 the Appendix.

The replacement of the set of reduced matrix elements by
the set of linear combinations that contribute to the possible
decay modes reduces the number of parameters by eight. The
total number is now 53. These parameters are fit to the data;
the individual reduced matrix elements are no longer consid-
ered. The values of the linear combinations for the best fit are
in Table VI. The signs have been absorbed into @g .

The units are fixed by Eq12) and by the units of the am-
C. Linear combinations of reduced matrix elements plitudes, as given in Sec. IV.

The unconstrained combinatioh; contributes to the
There are 45 measured values for the two-body deca}hodesl:)oH7777 w7 70 b, e, 7' b, 7w, b, dw, and

modes and an additional 13 modes where upper limits éxist.ww_ Because these modes are unobserved, the phases of
It would appear that there are still more parameters than dat@mwl)l’ and (w,w,), are also unconstrained. The remaining
and therefore the model lacks predictability. However, therg, - nstrained linear combinations argandL. They con-

are only forty linearly independent combinations of the i e o the above modes, and also to modes of the types
SU(3) reduced matrix elements that contribute to the pospo_, 77K° and D.— 7K *. By “type” we mean a class of
s .

sible decay modes of tf2 mesons. With the assumption of 1,,4es that contain mesons of the same flavors and charges.
the last section concerning the phases of the reduced matri, ;s the typeD.— 7K * contains the mode® — 7K *

. ; . . K s s '
elements, the linear combinations fall into these classes: KT gK* T, K* T, KT, oK', $K* T, oK** and no oth-

ers. With the exception of the limit on the branching ratio for
D.— ¢K™, there are no data for these modes. We still have
°The data are from the Particle Data Grd@p together witi14] ~ some freedom in the definition df, and L5 that allows
for the modeD " —K*%7*, modes of the typ® ,— 7K° to depend on only one of them

A(Dj_>xi)=§n‘, ClinLaS: - (13)

Here R, are the reduced SB) matrix elements an&, are
the parameters that we callpp=1, Apy, and Ayy,. The
SU(3) Clebsch-Gordan factor€; were calculated by com-
puter. Many of the routines used are describefili?y.
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TABLE |. Modes with positive experimental values. Branching
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ratios (BR) from data and from the fit are given.

Mode Data BR Fit BR
DO—K 7" 0.0401+0.0014 0.0408:0.0014
DK K" 0.00454-0.00029 0.004530.00030
DO K%° 0.0205-0.0026 0.0208:0.0022
DO—KOKO 0.0011+0.0004 0.001020.00043
DO—m 7t 0.00159-0.00012 0.001590.00012
D~ 7 K* 0.000310.00014 0.000313:33918
DO nPa° 0.00088-0.00023 0.0008%0.00025
DO— 7K 0.0068+0.0011 0.00690.0011
D% 'K 0.0166+0.0029 0.01680.0028
DO—K*p* 0.059+0.024 0.0630.016
DO—K*%p° 0.016+0.004 0.0164:0.0038
DO K*OK*0 0.0029+0.0015 0.00293:351%
DO— wK*©° 0.011+0.005 0.0099-0.0044
D% ¢p° 0.0019+0.0005 0.00192:0.00045
D°—K p" 0.104+0.013 0.102-0.013
DO K K** 0.0034+0.0008 0.003230.00080
DO%— KO 0.011G+0.0018 0.0116:0.0017
DO K* gt 0.049+0.006 0.049%:0.0058
DO—K* K™ 0.0018+0.0010 0.002020.00087
DO K*O7° 0.030+0.004 0.030%0.0039
D% ¢K° 0.0083+0.0012 0.008%0.0012
D% wK® 0.020+0.004 0.0195:0.0043
DO yK*© 0.019+0.005 0.0204:0.0049
DY —K%" 0.0274-0.0029 0.0262:0.0028
D KoK * 0.0078-0.0017 0.0086:0.0016
D7t 0.0025+0.0007 0.0025%0.00067
DF syt 0.0075+0.0025 0.00680.0021
D" —K*%" 0.021+0.014 0.0398:0.0092
DF - K*OK** 0.026+0.011 0.00903:8%31
D*—=K%" 0.066+0.025 0.0710.018
D* - K*O 0.00046-0.00015 0.000460.00014
DY —K*07" 0.022+0.004 0.021%0.0041
DT —K*%K* 0.0051+0.0010 0.004630.00097
Dot 0.0067+0.0008 0.006740.00078
D —¢K™ 0.00039+0.00020 0.000393:38%27
D—KOK™ 0.035+0.007 0.0319-0.0059
D—nym' 0.019+0.004 0.0204:0.0039
Dg—7 m 0.047+0.014 0.0540.012
D—K*OK** 0.056+0.021 0.05%-0.018
De—dp* 0.065+0.017 0.056:0.014
Ds—KOK*™* 0.042£0.010 0.0430.011
D—K*OK* 0.033+0.005 0.03280.0053
Do’ 0.035+0.004 0.0349:0.0040
Det+mp" 0.100+0.022 0.106:0.019

TABLE Il. D° modes with predicted branching ratios. Experi-
mental limits are given when available. All limits are at 90% con-
fidence.

Mode Data BR Predicted BR Predicted limit
D% 7%K° 0.00017'8 90003

DO ¢K*© 0.00108 900025

DO pK*© 0.00038 505057

D%—7%° 0.00014°5:0003%

DO~ p* 0.093"3532

DO—p " 0.094'5338

DO ym 0.0060"5:6650

D% 7p° 0.025°3951 <0.092

DO K* TK** 0.0024" 33551 <0.0092
D% p%?° 0.0024°3:0531 <0.0091
D% 7'K*®  <0.0011 0.00018 935532 <0.00070
DO—p K** 0.00022°9:55938 <0.00085
D%—p K* 0.0020°3:953%3 <0.0078
DO%— ¢ 0.02473:933

DO— 7 K*™* 0.0019°3:0537 <0.0080
D% 70k *0 0.0020" 33515 <0.0087
DO KO%K*®  <0.0008 <0.00052
D= o <0.086

D% 7'p° <0.011

D% wp® <0.084

D%—p p* <0.015

DO K*9K®  <0.0015 <0.00061
DO 7° <0.057

D% p%° <0.0065

experimental values or experimental limits. In thév
modes,S and D waves_are possible. Data exist from E691
[15] for the mode®D ,—K*°py andD*—K*p ™. These are
consistent with theSs and D waves both having significant
amplitudes and are inconsistent with either being zero. The
ratios of S- and D-wave amplitudes from these two modes
are taken as additional data, and the overall ratiGGoto
D-wave amplitudes for th& V modes is allowed to vary in
the fit. Its value is determined by the two modes mentioned
above, and depends very little on the other data.

For each mode we remove the phase space and Cabibbo
factors and reduce the branching ratio to a decay amplitude
in arbitrary units. Because the vector particles have substan-

(chooseL,). This will allow us to estimate one of their tial widths, the phase space for modes involving a vector is
branching fractions and thereby make some predictions dfitegrated over the relativistic Breit-Wigner resonance for
the other modes of this type.

IV. DATA AND FITTING THEREOF

that resonance. The effect of this is important for those
modes where the sum of the particle masses is within a few
widths of theD mass. The modeB%— ¢K*°, ¢K*°, and
D" — ¢K** would be forbidden if the widths were set to

The data used to determine the parameters are listed irero. Each amplitude is now expressed as a sum of Clebsch-
Tables |-V. These are the modes for which there exist eitheGordan coefficients times the parameters that represent the



918

TABLE lll. D" modes with predicted branching ratios. Experi-

IAN HINCHLIFFE AND THOMAS A. KAEDING

54

TABLE IV. D¢ modes with predicted branching ratios. Experi-
mental limits are given when available. All limits are at 90% con- mental limits are given when available. All limits are at 90% con-

fidence. fidence.
Mode Data BR Predicted BR Predicted limit Mode Data BR Predicted BR  Predicted limit
D —p%" 0.0066+0.0023 Dg— oK™ 0.0059" 33035
DT —yK™" 0.0032"3-3539 Dg— 7 K*? 0.038"5-33¢
D —m*KO 0.017:9:918 Dg—7'p* 0.120+0.03¢ 0.015°3-319
D —mOK" 0.0086" 33582 Dy—moK** 0.077°5:32%
D*—a%* 0.0034°0:5635 Ds—pK** 0.0126'g5555
D — gK** 0.00031'5'50055 Ds—p K° 0.031°5:633
DF—pTK*? 0.02579:931 De—p°K™" 0.049°3943
DT —pOK** 0.0095'9:0%18 D—wp* 0.012°3:939 <0.061
D*—p*KO 0.0087°3:05%8 D— 7 KO <0.007 <0.0015
D —wK** 0.0022"3-35%2 D—KOK** <0.00039
D' —wm’ <0.007  0.0024°33%3% D—KoK* <0.00046
D —mOK** 0.0103" 33352 D K*OK** <0.00057
DY —wp’ 0.00263 3933 <0.011 Dg—ptK*? <0.0080
D —KOK** 0.0012°3-392¢ <0.0054 Ds—K*OK* <0.00025
Df—pp’ <0.012 0.0012"3-3922 <0.0048 De—omt <0.017 <0.0090
Df—p'K* 0.0016" 33512 <0.0082 Dg—n'%" <0.064
D —poK™* 0.0018 33513 <0.0086 Dg—p'm" <0.0028 Not significant
Dfsy'mt  <0.009 0.00094 999237 <0.0048 Dg—m'm® =0
D™ —dp” <0.015 <0.0074 Dg—p"p° =0
DT —wK™" <0.0012 aSee text.
DYf—y'p" <0.015 <0.00071

oo V. PREDICTIONS
D —p7 <0.0014 <0.00091
Dy K <0.000082 A. Predictions from the fit parameters
D gK** <0.0022 From the fit values of the parameters the branching ratios

of decay modes were calculated. We emphasize that our

model of SU3) breaking is such that modes whose branch-

reduced matrix elements, and finally as a sum over the lin- TABLE V. Modes based on estimates. The only available ex-
early independent combinations of reduced matrix elementgerimental limit is shown. Values marked with asterisks are inputs.

The parameters were fit to the data amplitudes with

MINUIT, release 93.1[113]. The totaly? was found to be 30.9
for seven degrees of freedom, indicating that the overall fiMode

was poor. However, more than half of tyéarose from only

- . T ; D% 7K°
one mode. The mode in questionDg— %' p". The experi- DO~ 'K
mental value for the branching ratd,— 7 p* cannot be DO pK*0
accommodated in our scheme. It is measufgé] to be D% wK*°
larger than that foD —7p", ana priori surprising result. D%— ¢K°

We note that the angular distribution of the decay pions i °— wK°
barely consistent with that expected. A confirmation of thisD°— nlf*fo
experimental value would be very significant as all otherP —7'K

models [4] also predict a ratio of B(Ds—7'p*)/ Ds~ ﬂ|§++
B(Ds— 7p*) of less than 1. BS_)ZKK*Jf
S—)

We decided to reject the experimental value for the *+
. . r o+ . . Dg—owK
branching fraction ofD,—#'p™. The result is a better fit, LK
from which the branching ratios are reported in the tablesDz_)wK+
The total x, is now 11.6 for six degrees of freedom. The p__, ,k*+
best-fit values of the parameters are given in Tables VI angh_—, ,'k* *

<0.0025

Fit BR Fit BR Fit BR
Data BR (scheme A (scheme B (scheme ¢
0.000054 0.000054 0.00035
0.00046 0.00046 0.00085
0.000019 0.000019 0.000016
0.00027 0.00027 0.0012
0.00054 0.00054 0.000066
0.000096 0.000096 0.0014
0.00048 0.00048 0.00094
0.0000083 0.0000083 0.0000024
0.0027 0.00041 0.0031
0.017 0.052 0.015
0.011 0.024 0.0095
0.0057 0.028 0.0046
0.00051 0.0033 0.00037
0.0064 0.019 0.0055
0.00083 0.00015 0.00094
0.00090 0.0028 0.00077

VII. The units correspond tpA(D°— 7" K 7)|=1.15.
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TABLE VI. Linear combinations and their fit values. TABLE VII. The remaining parameters and their fit values.
Linear Amplitudes Parameter Fit value
combination involved Fit value
Apy 0.91+0.32
L, (S9, Ayy 1.40+0.16
L D/S wave 2.7%0.41
2
Ly Phase ofp,n;
L, 2.97+0.66 i:‘lase 022 n 3'3?&'45
Ls (SO 626 Phase oiP Py 1.49+-0.16
L. 8+17 hase ofw 27 A49+0.
L, 16+18 ghase °N1“’1 L 280050
Ly 6+13 ase oVw, .28+0.5
Phase oV, —3.0£3.2
Lg (00), 2.4x2.7 Phase ofVV,; 0.53+0.77
L1o 5.20+0.12 EEase Ogl“’l 0014035
Lis 1.7+7.3 Phase ON“’l pep
Ly, 12.4+2.3 Phase Ole Jppoiayt
Lis (00)g 34+12 ase o vy eos L
Phase ofP Vg —1.47+0.38
Lig 9.5+5.5
L 45+21 Phase ofPVy, —2.49+0.30
15 —
L 59491 Phase ofP Vg5 2.61+0.23
16 —
Phase ofPV,; —2.86+0.52
Ly 10.8+4.1
Lig 55+37
L1o 4438 modes for which there is no experimental information or for
L2o (O0)g 45+44 which there is an experimental limit. We have attempted to
L2y 34125 predict the branching ratio of each mode from the fit. How-
Loy 42+46 ever, in some cases the uncertainties are so large that we are
Loz 11x47 able only to provide(90% confidence levellimits on the
Ly 4.7+5.9 branching ratios. Notice that in all cases in which there are
Los 50+44 experimental limits, our predicted branching ratio or pre-
Log (00) 10 107+63 dicted limit is in the allowed region. We are unable to say
L,y 39+21 anything about the mode—p°7", because the uncertainty
Log 43+37 on its prediction is greater than the experimental limit.
There are two mode).— =" 7° and Dg—p ™ p°, which
Log 21.1+7.1 are forbidden in a model without isospin breaking. They are
L3o 71+67 predicted to be identically zero. The modes that are kine-
La; (00)15 97+51 matically forbidden ar®°— %' 7', ' ¢, and . The modes
Ls, 135+74 involving the linear combination&, L,, andL; are dis-
Las 115+61 cussed below. AnyP, PV, or VV mode not appearing in
the tables is higher order in the weak coupli@g .
Lag 0.4+2.5
Lss 26.257.3 B. Unconstrained linear combinations
Lsg 2.552.9
Ls; (00),7 21.8+4.6 There remain three linearly independent combinations of
Lag 9.2+6.2 the reduced matrix elements that are not constrained by the
Lo 8.0+8.6 data. The combinatioh; contributes only to modes of the
Lo 19+11 type D°—#7. L, contributes to the type®°—zy and

D%— »K®.  L; contributes to these modes, and to modes of
the typeD— 7K ™.

ing ratios are related by isospin satisfy those relations. In The first unconstrained linear combinatibp contributes
Table | are presented the modes for which there exist experbnly to amplitudes involving $,. These amplitudes, it is
mental values. Our calculated branching ratios are consistemtorth noting, are due entirely to $8) breaking. However,
with the data, with the exception dd" —K*°K** and  when we include the phases, we must make four estimates in
D.—7'p". For the former the fit prefers a branching ratio order to obtain two predictions of modes of the type
that is three standard deviations below the reported experD®— 7. This would be an unproductive endeavor, and so
mental value. The latter was removed before thésBe Sec. we forego it.

IV) because its experimental value was questioned. For this In order to predict the modes of the typB8— 7K° and
mode we predict a branching ratio @f.5 9%, well below D — 7K™, we need two new inputs. In order to show the
the reported experimental val(i&6]. Tables II-IV contain  variability of the resulting predictions, we try three different
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sets of inputs. Scheme A is motivated by the recent CLEGyet they are in reality quite different. Models based on exact

measurement of the doubly suppressed mbde-> 7 K* SU(3) [3,6,10,18 (or even on nonet symmetfy9]) are thus

[17], in which this mode is found to have a branching ratio ofnot admitted by the data.

about three times that expected from the corresponding un- Models of D decays based on heavy-quark effective

suppressed mod®°— 7K. For this scheme, the two in- theory (e.g.,[3]) have as yet not developed to the point at

puts are which individual nonleptonic decays can be calculated. The
_ question of whether heavy quark effective the@GAQET) is

B(D%— 7K° =3 tarf 6.B(D°— 7K, applicable to thec quark is still unsettled. The HQET is

(14 based on an expansion in the parameter
B(Dg— pK*)=3tarfcB(Ds— 7).

The linear combinationk, andL ; are then constrained and ALCD:O_Z (18)

the remaining branching ratios in the column for scheme A me

in Table V are found. The predictions for scheme B are

based on the estimates and assumes that it is small. Certainly this would be a good

_ assumption in the case of the quark, but perhaps not so
B(D°— 7K°) =3 tarf §cB(D°— 7K?), here. Until we are able to calculate branching fractions in
(15) HQET, we must reserve judgement on its applicability to the

B(Ds— ¢K*)=3tarfcB(Ds— p7r"). D mesons.

Diagrammatical methods to the problem Df decays
present us with a complementary approach to the one
adopted in this work. The parameters in the(®Urame-
B(D%— $K®) =3 tarf .B(D'— ¢@) work represent sums of diag(ams in the_ diagramma?ical ap-

' proach. A very general diagrammatical calculation of
(16) branching fractions appears i®m]. Two shortcomings of
their work lie in final-state interactions and in the inclusion
ﬁ’f SU(3) breaking. The phases of the final-state interactions
e added to the model, and are external to its central theme,

A third scheme(C) is considered also. It is based on these
estimates:

B(Ds— ¢K™)= 3 tarf0cB(Ds— ™).

The resulting predictions are again in Table V. The spread i

these values provides an indication of the expected rang : \

for these quantities. and therefor_e appear as ad hocmechamgm to force a f|_t._
One soud ot nat ariary hoies of e above mode813, DEEAID = Ss 0 1 caliatn o o sl

may fail to give an acceptable fit, given the constraints from grtant. However, there is also hidden breaking in the addi-

measured modes. For example, an apparently reasonatﬁon of phases in the final-state interactions. The result is a
choice would have been . . . S
model in which the size and source of @Jbreaking is not

B(D°— 7K°) =tarf 9.B(D°— 7K9), easily discerned. It is difficult to draw any conclusions from
17) the application of such a model.

The factorization method is a special case of the diagram-
_ _ _ _ _ matical approach. In it certain diagrams are considered un-
A consistent fit cannot be obtained to implement this. Theémportant(i.e., the annihilation diagrarhsHowever,[4] find
parameterd., and L5 could not be given values to accom- that these diagrams must be again included, as well as final-

B(Ds— nK ") =tarfcB(Ds— nm™").

modateB(D%— 7K°)<0.0052%. state transitions and intermediate resonances. The result is an
eclectic model with little elegance. We are unable, because
C. Modes involving axial vectors of the ad hocfeatures, to comment on the reliability and

There are a few modes involving axial vectors that havé’re:icdtabi”t.y 9f this} modlel. i d . |
been observed or for which there are experimental limits, escription of non _eptonl_di) ecays in a afge*c
However, those that involvK (1270 andK(1400 are mix- (number of colo_r}sexpansmr[z] IS an eleg_ant one with few
tures with the T~ octet, which we can calB since it in- parameters. In it, the source of &) breaking is introduced

cludes theb,(1239. Therefore, in order to include these by including nearby resonances. It is also a subset of the

modes in our framework, we require two new parameters‘,jiagrammatical approach and neglects some diagrams based

App and Apg. In addition, we must also accommodate the©" tN€ir suppression by . One may argue that these dia-
mixing between f<11> and f(18) to become f,(1289 and grams are larger than thought, and cite the fif5jfas evi-

f1(1510, as well as the new phases that are introducecl‘.j‘.ance of this. Neverthelessz] obtain excellent agreement
There are too few experimental observations offeand  With the data, with the exception of some modes involving

PB modes to make this endeavor fruitful. For that reasonand 7. In this quel, Sw) breaking Is introduced pnly
they are not included here. through the inclusion of resonances in one class of diagram.

They obtain, in agreement with our work, large breaking.

VI. COMMENTS ON MODELS

_ o CONCLUSIONS
It is clear from the data alone that significant(SWbreak-

ing is necessary in any successful modelDofdecays. For There now exist enough data to constrain all but three
example B(D°—K*K")=B(D°— #*#") in exact SU3), combinations of the reduced matrix elements of the broken
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SU(3) model of the decays 0P mesons with the two as- U.S. Department of Energy under Contract No. DE-ACO03-
sumptions discussed in Sec. Il B. We have assumed that th&6SF00098.
breaking of SW3) is such that isospin remains a good sym-

metry; data indicate that this is the case. We have used these APPENDIX: EXPLICIT EXPRESSIONS FOR DECAY
data to fix our parameters. Using the experimental informa- AMPLITUDES

tion on 57 modes we are able to predict branching ratios or ap assumption of Sec. 11l B is that we can introduce the

upper limits for an additional 53 modes. Only two measuretharametersApp=1, Apy/, andAyy, so that the reduced ma-
modes are not easily accommodated in the fit. The measurgix element involving pseudoscalar-pseudoscalar decay

ment of a few additional modes involving %', ¢, » would
enable another dozen or so modes to be predicted.
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|
M;=[(DHgs(SSMg],
M3z=[(DHgg(SO)sgl,
Ms=[(DHgs(SOM)g],
M;=[(DHg1s(SOM)15],
Mg=[(DH15)g(SOM)g ],

M11=[(DHy5)27(SOM)7],
My3=[(DH3%)s(00)g ],
My5=[(DHy5)5(O0)g],
My7=[(DH15)10(00)10],
M19=[(DH7%)5((00)1M)g],
Mz1=[(DH5)g((00)gM)g],
Mz3=[(DH5)g((00)g:M)g],
M5=[(DH)15((00)g:M)1,],
Ma7=[(DH%)16(00)10M)10],
Mz9=[(DHg)g((00)27M)s],
M31=[(DH15)g((00)1M)g],
M33=[(DH15)s((00)gM)s],
Mz5=[(DH15)27((00)gM),7],
M37=[(DH15)s((00)g:M)g/],
M39=[(DH15)27((00)g:M),7],

My1=[(DH15)27((00)10M),7],

Mo=[(DH;5)5(SSMg],
M4=[(DH;15)5(SO)g],
Me=[(DHgs(SOM)g'],

Mg=[(DH15)s(SOM)g],

M10=[(DH15)10(SOM)101,

M12=[(DH%)g(00)s],
M14=[(DH?%)1(00)10],
Mi=[(DH15)5(00)sg/],
Mig=[(DH15)27(00)27],
Mao=[(DH5)((00)gM)g],
M2=[(DH%)16((00)gM)10l,
M24=[(DH75)g((00)g:M)g],
Ma6=[(DH5)g((00)1oM)s],

Myg=[(DH7%)s((00)1M)s],

Mzo=[(DH7%)10((00)27M)10],

M32=[(DHy5)g((00)gM)g],

M34=[(DH15)10((00)gM)10,
M36=[(DH15)s((0O0)g:M)g],

M3g=[(DH15)10((00)g:M)10o],
M4o=[(DH15)s((00)10M)s],

My2=[(DH15)5((00)1ogM)g],
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My3=[(DH15)10((00)10M) 10}, M4gs=[(DH15)27((00)1oM),7],
Mys=[(DH15)g((00),7M)g], Mye=[(DH15)10((00)27M) 101,

M47:[(DH15)27((OO)27M)27]1 M48:[(DH15)27((OO)27M)27’]-
In the notation of 6], the threeP P reduced matrix elements not involving 8) breaking are
S=AppM7,, E=AppMis, T=AppMis.
The formulation of(6] does not involve SIB) breaking. We explicitly add the SB)-breaking matrix elements in this work.

Under the assumptions of Sec. Il B, the reduced matrix elements can be replaced by forty linearly independent combina-
tions. The phases are removed from these combinations. Below is our choice of linearly independent combinations. The
coefficients are combinations of Clebsch factors that make. theearly independent:

L,=0.719 203+ 0.454 86\ ,+ 0.160 82M15—0.359 60V5+0.101 7IMg—0.227 43\ 14— 0.227 43\1,45—0.083 05U 44,

L3=0.213 26\ 3+ 0.134 88\, — 0.505 47\5+0.305 67— 0.521 521, — 0.319 69\ +0.193 3211,
—0.328 20U+ 0.261 02\,

L,=0.426 89\13— 0.765 07\, — 0.096 96\ 15— 0.070 03\l — 0.181 41M,+ 0.401 57Mg— 0.044 29\
+0.033 07M o+ 0.144 56\,

Ls=0.384 66\3— 0.178 64\, +0.228 42U5+0.604 46\ +0.419 79U, — 0.433 01Mg—0.188 77\,
+0.050 97M o+ 0.024 82Uy,

Lg=—0.083 26\5+0.079 53U, + 0.575 53U+ 0.045 67\g— 0.521 51M,— 0.074 32Ug—0.253 76\,
+0.273 36\ o+ 0.486 63U,

L,=0.205 37U+ 0.291 44\1,+0.141 69U+ 0.406 65\ +0.006 83\, + 0.483 32W15+0.604 49\
+0.297 10M o+ 0.011 23U,

Lg=—0.035 51M5+0.092 63\, — 0.156 81M5—0.173 10U+ 0.496 85U1;+0.092 27\ g+ 0.071 58\,
—0.092 63U+ 0.816 41M 5,

Lo=0.845 15\19+ 0.534 52\ 4,

L10=0.719 20M;,+0.454 86\ 15+ 0.160 82U 55— 0.359 60U+ 0.101 7IM3,—0.227 43U 45
—0.227 43\3,— 0.083 05\ 35,

L12=0.339 37\ ;,+ 0.214 63U ;5— 0.262 68U 5o+ 0.587 37\ 5, — 0.478 80Mp,— 0.166 13Ul 5,+ 0.371 4855
—0.107 3234+ 0.135 65U 55,

L1= —0.152 7313, 0.096 60V115— 0.546 43U, 0.388 19W,,— 0.215 33U~ 0.345 59115,— 0.245 51M
—0.460 84\15,+0.282 1M 4,

L15=0.152 27\ 15+ 0.096 31M 15— 0.286 0250+ 0.232 22111+ 0.851 11Mpp— 0.180 89 5o+ 0.146 87M 43
—0.176 96\ 34+ 0.147 70M s,

L1,=0.480 23U1;,— 0.756 68U 15— 0.152 191,55~ 0.001 19\, +0.377 97M 3,— 0.000 75M5,
+0.005 25\ 34+ 0.175 39\,
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L15=0.176 31M,— 0.266 72U 15+ 0.359 33,5+ 0.332 40V »;— 0.606 92\ 5,— 0.537 61M 55
+0.024 08V13,—0.014 50\,

L16=—0.051 62,4 0.164 03\ 1;5+ 0.302 17M 5,— 0.031 89\15;,+0.087 30\ 5,— 0.031 98\,
+0.164 83\3,+0.917 7M 35,

L17=0.719 19U+ 0.454 86\ 15+ 0.160 82U 3— 0.359 60M 5.+ 0.101 7IMge— 0.227 43U5,
—0.227 43\35— 0.083 05\ 5,

L,g=0.124 50\;5+ 0.078 74U 15+ 0.566 06U p3+ 0.338 91M,+ 0.253 72U 5+ 0.358 01M a4+ 0.214 35U 5,
+0.468 07M 35— 0.292 31M g,

L19=—0.350 71M;53—0.221 80M;g+ 0.217 17Mp5— 0.617 11M 4+ 0.459 61Mps+0.137 35M56—0.390 30U
+0.069 3]M38_ 0.112 14(\/139:

Lyo=0.152 27\;5+0.096 31M 45— 0.286 025+ 0.232 22\154+ 0.851 11M p5— 0.180 89U 36+ 0.146 87\ 4,
—0.176 96\ + 0.147 7T0M5q,

Loy=—0.480 23135+ 0.756 68U+ 0.152 19U 55+0.001 19V 54— 0.377 97M a6+ 0.000 75U,
—0.005 25\ 33— 0.175 39\ 59,

Ly,=0.176 31M;5— 0.266 73U+ 0.359 33U 5+ 0.332 40U ,4— 0.606 92U 36— 0.537 61M 5
+0.024 09\ 35— 0.014 50M 59,

L 5= 0.051 62W1;5— 0.164 03U1;5— 0.302 17M 3+ 0.031 89\, 0.087 31M e+ 0.031 99U 5,
—0.164 82\35— 0.917 7M 0,

L 4= — 0.866 03\;,+0.306 190\,,+ 0.395 29\,
Ls=0.411 00U 4+ 0.464 99U y5+ 0.319 6857+ 0.294 09\ 4o+ 0.652 83U,
Lye= —0.284 754+ 0.671 16U 55— 0.469 81My+0.424 48\ 45— 0.259 94\,
L,,= —0.218 22U 55— 0.763 76\ ,,— 0.138 01M 4o+ 0.591 61M 41,
L ,g=0.534 52\1,5— 0.845 15\ 4,
L 9= — 0.738 55\;;— 0.522 23U 55— 0.330 29\l 4,— 0.261 12U 43+ 0.067 42\,
Lao= — 0.558 29\7+ 0.328 98\5g+ 0.208 06\ 4o+ 0.526 36\ 45— 0.509 65\,
Lay= —0.124 84\y7+ 0.382 52U 55+ 0.241 93U14,— 0.809 17M 55— 0.353 28\,
L,=0.113 96\;,— 0.644 66\ 5+ 0.713 51M,— 0.249 67M,,
L35=0.338 06\1;7— 0.239 05M 55— 0.529 15\, 0.740 66\,
La,=0.771 84\ 15— 0.272 89U 59+ 0.482 40U 5p— 0.172 59\ 45+ 0.096 48\l 45— 0.046 13U147— 0.236 33U 4,
L35=0.463 81M5—0.233 17\ 59— 0.590 77\ a0+ 0.349 24\ 45— 0.431 27\ 45+ 0.252 97\ 47+ 0.097 67M g,
Ls=0.188 97M 1+ 0.706 43U 59+ 0.302 74\ 59+ 0.498 27\ 45— 0.303 0IM 45— 0.180 07M 47— 0.033 02M 4,
La,=0.261 9%M 5+ 0.508 51M 9— 0.492 35\59— 0.571 08\ 45+ 0.053 61M 45— 0.180 26\l 47— 0.262 45U 45,

Lag=0.131 64U;5— 0.160 51 9— 0.242 72U 59+ 0.311 0IM s+ 0.410 04U 45— 0.767 51M 47+ 0.209 91M 45,
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L3g=0.033 89U ;15— 0.053 86\ o9+ 0.159 09V 55— 0.420 84\ 45— 0.525 95\ 45— 0.306 94\ 47+ 0.650 15\ g,
L 4o=0.257 5IM g+ 0.291 34\ 9+ 0.515 03U 45+ 0.430 90M 47+ 0.630 77M 4.

We can now express the decay amplitudes to each decay mode in terms of the linear combinations of reduced matrix
elements. They appear below. Hebgyy, is the phase of the producksX in the irreducible S(B) representatioiR. These

phases are introduced in Sec. Ill B. We have defined the symRdlto represent ex'pb(XX)R. The Cabibbo factors are
abbreviated byt=cosi., s=sind.. The amplitudes to the physical mixtures ®f, 7g, w,, wg are mixtures of the relevant
amplitudes with the mixing angles given [i8,9]:
A(D°— 7,71) =AppCsx[0.295 8Q a1 ™],
A(D%— ;K% = Appc?X[0.283 82, 1P],
A(D%— 2, 7% =AppcsX[0.148 79 ,a"P+0.175 04 3o ™P],

A(D%— 7;K%) =Apps?x[0.166 38 ,a"tP+0.032 5@ 3a:":P—0.029 59 ;1P + 0.129 4Q 5 "7
—0.039 46. 50" +0.180 6T.,a""],

A(D%—= 5,7g) =Appcsx[0.281 6& ,a 7" —0.019 55 ;a72P— 0.005 04 ,a"tP+0.061 41 5 "1P+0.022 76 g 1"

+0.146 79,0™P—0.052 3T ga™"],
A(D°— K™ 7)) =Appc?X[0.219 8% qb "+ 0.070 52 340571,

A(D°— K K*)=AppcsX[0.147 90 gat "+ 0.170 5T 10§+ 0.104 43 11057+ 0.028 74 5,057 +0.069 54 55057
A(DO—KO70%) = Appc?X [ —0.155 46 1905 *+0.066 84 54057 —0.004 52 55057 +0.043 58 55057
A(D%—KOK®) = Appcsx [ —0.147 90 gab P~ 0.007 58 1ab P+ 0.060 261,05+ 0.098 21 1,05 "~ 0.036 32 54057

+0.018 74 35057 +0.057 3% 3a57 +0.032 4657057 ],
A(D%—KO7g) = AppC2 X [0.089 75 1qah P~ 0.056 9T 5,057 —0.007 83 55057+ 0.075 51 550571,
A(D°— 7~ ") =AppcsX[—0.147 9 gal P+ 0.178 15 1geb P+ 0.044 1T 1,05 —0.098 21 1,05 P+ 0.043 06 54057
+0.030 83 5a57 +0.015 5T 55057 —0.002 0257057 +0.034 0 55057
A(D%— 7~ K¥)=Apps?X[0.128 88 1o "+ 0.100 71 ;05" —0.119 74 a5 " +0.085 11 505" +0.039 01 54057
+0.044 98 55057 —0.001 09 5garhs +0.009 16 57057 +0.000 1T ggar57 +0.036 6% 39511,
A(D°— 7%7%) = Appcsx[0.104 58 g7 P—0.125 9T @ P— 0.031 28 1,257+ 0.069 44 1,25 P+ 0.037 9@ 34057
+0.025 64 35057 +0.042 29 35057 +0.008 6257057 +0.048 1T 30571,
A(D®— 79K %) = Apps?X[—0.091 1% pa5 " —0.071 21 105" +0.084 6T 1,05 —0.060 18& 505" +0.033 42 54051
+0.043 19 35057 +0.042 44 36057 +0.009 725705+ +0.000 18 sga5+ +0.038 8T 390571,
A(D%— 707)=AppcsX[—0.094 1@ jqaf" —0.095 08 ;1af " —0.056 7Qpcrh °— 0.006 5@ 3451 +0.076 4% g5aF
+0.049 6% 55057 +0.028 11 57057 ],
A(D®—KO7g)=Apps?X[0.052 61 joh " +0.041 12 1,05 P — 0.048 8& 1,05+ 0.034 78 1305 — 0.037 6T 5057

—0.035 3T ggarhs +0.076 1T ggarhs — 0.005 61 57055 — 0.000 1 ggarhs —0.022 44 5garhr ],
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A(D°— 7g75) =AppcsX[0.104 58 g7 P+ 0.125 9T ;@ P+ 0.031 23 1,05 "~ 0.069 44 1,05 " — 0.069 0Q 34 y?
—0.053 88 55057 +0.060 81 55arhs +0.034 4% 5,a57],
AD"— 7)) =AppcsX[0.088 08 ,a”P+0.160 7T ;o™ +0.249 4% ,a "],
AD"— 7,K")=Apps?X[0.068 51 ,a""+0.003 48 ;™" +0.157 30 ;a""+0.226 0L 5a ""],
AD*—KO7r") = Appc?X[0.066 58 35057 +0.114 2Q 3557 —0.000 15 3505 +0.100 5@ 57057
+0.049 5% 5057 —0.032 4T 5qa57
A(D*—KOK™)=AppcsX[0.068 23 105"+ 0.104 02 1,05+ 0.068 72 1,05 °—0.041 58 1505 P+0.188 61 1405 "

+0.027 38 g4a57 +0.066 76 5505+ +0.020 5 zga5r +0.078 4% 57051 —0.008 44 5ga5T
+0.013 6@ 39057 +0.022 43 4oarh7 ],

A(D+—>7T 7T+) AppCSX[O 076 913461’ +O 030 0&35& +0 028 5‘L3GC¥ +O 035 5137&
+0.056 8 3ga5F+0.020 91 302571,

A(D " — 7K ") =Apps?X[0.037 52 50" +0.023 3% 105" — 0.035 4% a5 +0.045 71 505" +0.099 64 405"

+0.094 5% ;505" +0.036 21 5,057 +0.055 22 5557+ 0.020 3 g5+ +0.000 62 37a5F
+0.006 88 5ga57 +0.038 81 5907 —0.007 9% 40571,

A(D " =7 K®)=Apps?X[—0.053 0L ;qaf " —0.033 02 ;05 "+ 0.050 11 1,05 " —0.064 6% 1505 —0.140 91 14"

—0.133 7215057+ 0.035 0T 3,057+ 0.027 9T 35057+ 0.030 22 35057+ 0.022 04 57057
—0.009 31 3505+ 0.036 74 39057+ 0.011 21 40abT],

A(DT — 7" g)=AppCsX[—0.055 71 ;g " — 0.084 9% 1,5 P —0.056 11 1005 P+ 0.033 96 1 5rh " — 0.154 OQ 1 g ”

+0.033 54 54057 +0.081 7655057 +0.025 11 5557 +0.096 0& 3757 —0.010 3% 55T
+0.016 6% 59055 +0.027 4T 4oah7 ],

A(DT = K™ 5g)=Apps?X[0.021 66 qaf" +0.013 48 ;105" —0.020 46,05 "+ 0.026 3% 1505+ 0.057 53 1 4rf "

+0.054 59 ;505 P+0.023 20 3,057~ 0.027 14 35057+ 0.038 8T 35057+ 0.052 91 57057
—0.034 73 35057+ 0.022 78 30057+ 0.041 20 40257,

A(Dg— py7")=Appc?X[—0.097 8T ,a™"—0.029 02 ;™" —0.197 29 ,a”"—0.078 3L 5a”"+0.158 34 4o ™"],

A(Dg— 7:K*)=AppcsX[—0.078 30 ,a"P—0.073 7L 30"P—0.175 3% ,”P—0.141 8% 5P —0.043 64 ga ™"
+0.002 6% ,0”P+0.192 43 ga™P],

A(D—KOK*)=Appc?X[ —0.075 8L 10ah "~ 0.019 81 1,05 "~ 0.010 6T 105"~ 0.072 52 1505 "~ 0.172 6@ 405 P

—0.001 32_1561’ + 0.083 785.16a + 0.037 5].34&’ + 0.048 7].3561(2 PP —-0.022 43.36a
—0.005 53 5,05+ 0.033 6@ 55057 — 0.026 9T 5005 +0.019 62 40a5F],

A(Dg— 7K ™) =AppcsX[—0.042 8& pag" —0.065 3& 105" +0.030 81 a5 +0.054 1Q 1505 —0.088 32145

—0.095 49 505"+ 0.059 24 ;garh P+ 0.025 6Q 54057 —0.007 19 5557 —0.001 7@ 50T
+0.029 61 57057 +0.039 7% 55057 —0.008 98& 59arh7 +0.037 66 400571,
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A(Dg— 77K =Appcg 0.060 6% gh " +0.092 46 1,05 " — 0.043 5T 1 ,0h " — 0.076 5L 13005 7+ 0.124 9U 1 grb "
+0.135 04 ;55 " —0.083 7& 1§ "+ 0.069 7T 3057 +0.028 12 g5a5; —0.000 43 5557
—0.008 1@ 37055 +0.027 9Q 35055 —0.003 04 59057 +0.051 86 400571,
A(Dg— 7" 7g)=Appc?[0.061 90 ;g P+ 0.016 1& 1,057+ 0.008 71 1,05 F+0.059 2T 1305 F+0.140 92 1 4o b P
+0.001 08& ;505" —0.068 41 1gaf" +0.045 94 54057 +0.059 6655051 —0.027 41 gea5r
—0.006 7157057 +0.041 26 55057 —0.033 0% g9arh; +0.024 0% 40571,
A(Dg—KOK™)=Apps?[0.083 4T g4abr +0.081 54 ggahs +0.015 64 5ahy +0.006 4% 57057 +0.004 2@ 3557
+0.046 31 39057 +0.105 13 4ah7 ],
A(Dg—K ™ 7g)=Appcq —0.024 76 1qh " —0.037 7% 1,057+ 0.017 7% 1, P+ 0.031 23 13057 — 0.050 99 14"
—0.055 1% y50f "+ 0.034 2@ ygarh "+ 0.126 5T g4arhs +0.081 5L ggarhs +0.001 99 ggarhs
—0.071 24 57055 — 0.000 51 ggarhs +0.008 11 g9arhs +0.061 8 40arh7].
The amplitudes for th&V modes have the same coefficients as the correspofdihgnodes. They are found by relabeling
PP—VV in the above expressions. TR&/ modes do not obey Bose symmetry and therefore have antisymmetric parts. Only
the antisymmetric parts are given below. The symmetric parts have coefficients thatZatengs the corresponding coeffi-
cients of theP P amplitudes, with the exception of,V, o,P, 7°p°, and 75wg which do not involve /2. The antisymmetric
parts of A(D;— XY*) are —A(Di—>YX*)|asy, where an asterisk denotes spin-1. The expressions giveviVfoare for the
S-wave amplitudes. We have assumed thatDh&ave amplitudes are given by ti¥wave amplitude times a constant factor
times a kinematic factofphase spageThe best-fit value of the constant factor is in Table {4lso see the tekt
A(DO—K ™ p™) a6~ Ap€?0.115 8T y7af,'+0.060 86 54afy+0.071 3@ poarty ],
A(DO—K~K**) = Apycs 0.097 8% j7al,’+0.103 86 jgaf,’ — 0.041 84 5,y +0.040 0L p5arly
+0.051 9Q peary +0.025 7% 30057 ],
A(D®—KO%0) o = Ap\c —0.081 93 ;,ab’+0.086 0L p4aby —0.043 1T o0t —0.014 6Q 5oty +0.022 5& 51051,
A(D°—KOK*0), = Apyco —0.183 79 17aL"— 0.045 18 150t +0.082 28 jgaf, '~ 0.041 84 psafy/+0.040 0L psahy
+0.051 9Q poart) +0.025 7% 50007 ],
A(D°— K wg) o= Apyc? — 0.141 91 170t +0.074 78 peas +0.025 44 50ty —0.039 11 5057,
A(D®— 77 p*) 6= ApyCH 0.085 9 1af,’ — 0.058 6& jgaf,’ —0.082 2& sl — 0.041 84 'ty
+0.040 0L psaty'+0.051 9Q gy +0.025 7% 52T,
A(D®— 7 K* ) o= Apys70.067 92 17af,’+0.058 56 1gaf,’ — 0.058 06 jgaf,’ +0.044 86 sl +0.038 04 puafy
—0.006 5@ a5y +0.060 0% by +0.032 44 a7 +0.051 49 50057,
A(DO— 70K *0) .o = Ap\S% —0.048 0% 17§, — 0.041 41 ;5 + 0.041 0% jgar, — 0.031 72 00, — 0.026 9 pgafy
+0.004 5@ ysay — 0.042 4% ya by +0.045 81 ,ea e +0.072 82 55007,

A(D®— m0wg) a5y~ ApycH 0.072 4T pyaiy/— 0.069 41 55+ 0.089 8L pocryy +0.044 5@ 50051,

A(D°—KPwg) a5/~ Apys?[0.083 12 y7ag,’ +0.071 72 ygarf,’ — 0.071 11 yqerf, +0.054 94 pprf, — 0.046 5& sy
+0.007 96 5505y —0.073 52 55001,
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A(D+—>@p+)asy: Apyc?[ —0.125 52 5,07+ 0.094 23 55l —0.037 52 50T+ 0.085 40,70l ],

A(D*—KK* ) .= Apycs —0.035 96 17af,'+0.040 5& ;gal '+ 0.051 68 j0al’+0.021 92 ypaf,’ +0.099 4Q 5af,’
—0.079 88 540y +0.072 5T psah— 0.022 51 peasy +0.012 2Q p7a )+ 0.039 84 ey
+0.048 66 y0ay +0.036 78 z0ay +0.008 22 500 +0.042 04 50T,

A(D* = 7% ") 6= ApycS 0.050 8% 17af,’— 0.057 3Q g, —0.073 02 yqarf,’ — 0.031 OQ porf,’ — 0.140 58& 55’
—0.056 48 5400y +0.051 31 yaby—0.015 92 5500+ 0.008 63 y7ah)+0.028 1T pgaty
+0.034 41 y0a7'+0.026 0L gpasy +0.005 82 10y +0.029 73 5007,

A(D " — mOK* ¥) .= Apys?[0.019 78 17ap,’ +0.017 61 jga, —0.013 7% ygag,” +0.024 02 poerf,’ — 0.052 51 55,
+0.049 82 pap, +0.029 59 5,y — 0.009 96 H5arhy +0.026 52 Heerky’ +0.008 63 prahy
+0.028 1T ygahy +0.045 81 ,ealy +0.072 82 5520,

A(D* =7 K*9) o= Apys? —0.027 9T 17af,’ — 0.024 9 ygaf,’ +0.019 50 j0af,’ — 0.034 O yaf, +0.074 2L yyaf,’
—0.070 48 pay,,'—0.041 84 p4a5)+0.014 08 psa by — 0.037 52 ycahy —0.012 2@ 57aky

—0.039 84 ygafy+0.032 44 peay'+0.051 49 zpa '],

A(D" — 7" wg) a5~ Ap\CH 0.097 83 5407y —0.088 8T p5a5g +0.027 5T ey — 0.014 94 5705y — 0.048 7R pecr g

+0.059 58 poay +0.045 08 goasy +0.010 OL gaby +0.051 49 50D,

A(D" K" wg) asy= Apys40.034 2% 1 7rf '+ 0.030 5Q 1505, — 0.023 8L jar,’ +0.041 73 a5, — 0.090 96y,
+0.086 32 yap, —0.051 24 54 +0.017 24 y5afy — 0.045 98 peaty
—0.014 94,705y —0.048 8@ ygaty ],

A(Dg—KOK* ) o= Apyc?[0.039 96 ;-al ' —0.006 48 15ar, —0.009 95 jqarf, '+ 0.038 26 s ' —0.090 9T 5l
+0.000 7@ parg,+0.044 16 pa;, —0.038 04 a5y +0.023 83 psa by — 0.035 02 gk
+0.016 21 y7a5y —0.039 84 ygaty —0.051 9 yoay — 0.012 26 zpaty +0.008 7L 5100y
—0.030 0% 507 +0.035 63 30 ],

A(Ds— 7" ) a5y~ Apyc?[ — 0.056 51 175, +0.009 13 505, +0.014 OL g0, — 0.054 11 par, +0.128 6% 5yar,,
—0.000 99 par,,'—0.062 48 pzay, —0.026 9 yuafy +0.016 8% by —0.024 76 gy
+0.011 5Q a5y —0.028 1T g hy — 0.036 7Q pefy — 0.008 6T 500y +0.006 2 3077
—0.021 24 5,007 +0.025 2Q 55001,

A(D g mOK**) o= Apyes —0.022 6Q 1705, —0.013 3L yq0f,'+0.035 6L yqrf, ' +0.028 51 ppaf'+0.046 55 5yl
—0.050 3% paf, —0.031 22 pzay,’+0.061 86 pua b —0.037 53 psahy +0.019 46 gk
+0.031 62 a5y —0.028 1T gy — 0.050 46 5oy —0.038 14 g0ty +0.024 04 g0ty
+0.016 99 g0 +0.050 4Q g3a5) ],
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A(Dg— 7 K*0) 1= ApycH0.031 9& 1 7]+ 0.018 91 150rf,'— 0.050 44 15, — 0.040 32 a5, — 0.065 8% pyary,,”
+0.071 1T par, +0.044 16 3y, —0.087 48 pafy +0.053 0L ysahy —0.027 51 pealy
—0.044 73 570 +0.039 84 a7y —0.035 6& y0aty —0.026 9T zpaly +0.017 0Q gy Dy
+0.012 01 5057 +0.035 63 gary 1,

A(Ds— 7" wg) asy= Ap\?[0.046 5&24a1V 0.029 18 550ty +0.042 sazeafg’ —0.019 92 5705 +0.048 8Q yeaty
—0.063 56 y9a) — 0.015 02 ooy + 0.010 74 5100 — 0.036 7& zp007+0.043 68 33077 ],

A(Dg—KOK* ) o= Apys7 0.102 7Q p4afy — 0.100 73 pearfy/+0.097 58 pea by +0.085 38 5705y,

A(Ds—K* wg)asy=Apycs —0.039 18 j7af,’—0.023 1% jgaf,’+0.061 78 yqaf’+0.049 38 5oarf, +0.080 62 510rf,”
—0.087 11 pay,, ' —0.054 08 pzay, —0.107 14 pa Ty +0.065 OQ s hy —0.033 7Q peaky
—0.054 7& 5700y +0.048 78 a1
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