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Nonleptonic two-body decays ofD mesons in broken SU„3…
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Decays of theD mesons to two pseudoscalars, to two vectors, and to pseudoscalar plus vector are discussed
in the context of broken flavor SU~3!. A few assumptions are used to reduce the number of parameters.
Amplitudes are fit to the available data, and predictions of branching ratios for unmeasured modes are made.
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INTRODUCTION

Many data are available on the hadronic two-body deca
of charmed mesons. Theoretical models that attempt to s
tematize the decay patterns have been available for m
years. These models usually make dynamical assumption
order to reduce the number of amplitudes that contribute t
particular decay. For example, the largeNc approximation
@1,2#, or the heavy-quark effective theory@3#. It is not cleara
priori how well such approximations should work and hen
how seriously to take a conflict between a prediction and
measured value. Another approach is to assume that the
trix elements factorize@4#. This model is quite successful in
describing observed modes, but again, it is difficult to kno
whether a discrepancy is due to an incorrect measuremen
the failure of the assumption. A more general approach ba
on a diagrammatic classification@5#, with different assump-
tions, also exists. In many cases attempts are made to ob
predictions of unmeasured modes from these models.

SU~3! is badly broken in these decays, so models bas
on exact symmetry@6# are not useful. An analysis of the
SU~3! breaking was begun in@7#. However, an attempt at a
complete parameterization has been conspicuously miss
due to the large number of reduced matrix elements
volved. We set out to remedy this omission. This work giv
a full parameterization of the decays of theD mesons into
final states of two pseudoscalars (PP), two vectors (VV),
and a pseudoscalar plus a vector (PV), including SU~3!
breaking. We assume that isospin is a good symmetry;
relations predicted between decay modes that follow fro
isospin are therefore respected by our fit. The elements
this parameterization—the particle representations, the w
Hamiltonian, the breaking operator, and the reduced ma
elements—are discussed in the following sections. We ma
only very few assumptions to limit the number of param
eters. We fit the parameters to the available data of two-bo
decays and predict many unmeasured modes. Because a
of the parameters are not constrained, we indicate wh
branching fractions are needed to predict the rest of cert
classes of modes. We comment on the case ofDs→h8r1,
where the model is barely consistent with data.

I. PARTICLE STATES IN FLAVOR SU „3…

In a model based on flavor SU~3!, the particles are de-
noted by their SU~3! representations. The fundamental re
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resentation is the triplet~3! of quarksu, d, ands. The three
D mesons$D0, D1, D s

1% form an antitriplet~3̄! representa-
tion. The pseudoscalars$p1, p0, p2, K1, K0, K2, K̄0, h8%
form an octet~8! representation, as do the vectors$r1, r0,
r2, K*1, K*0, K̄*2, K̄*0, v8%. Theh1 andv1 are each sin-
glets. The physicalh, h8, f, andv are linear combinations
of them, with mixing angles217.3°@8# and 39°@9# for h-h8
andf-v, respectively.1

II. THE WEAK HAMILTONIAN

The decays of theD mesons are mediated by the weak
Hamiltonian. Ignoring QCD corrections, the Hamiltonian in
terms of the quark fields is

Hweak5
GF

&
cos2uCūgm~12g5!ds̄gm~12g5!c

1
GF

&
cosuCsinuCūgm~12g5!ss̄gm~12g5!c

2
GF

&
cosuCsinuCūgm~12g5!dd̄gm~12g5!c

2
GF

&
sin2uCūgm~12g5!sd̄gm~12g5!c. ~1!

Note that the operatorsq̄ create quarks and so transform as a
triplet, while q transforms as the antitriplet. Using the
Clebsch-Gordan coefficients for the expansion of the product
333̄33, we can classify the operators according to irreduc-
ible representations of SU~3! as

~ ūd!~ s̄c!52~1/& !6̄~2 2
3 ,1,1!2~1/& !15~2 2

3 ,1,1!,

~2!

~ ūs!5~ d̄c!5~1/& !6̄~ 4
3 ,0,0!1~1/& !15~ 4

3 ,1,0!,

~ ūd!~ d̄c!5~1/A8!3~ 1
3 ,

1
2 ,

1
2 !1 1

238~
1
3 ,

1
2 ,

1
2 !2 1

2 6̄~ 1
3 ,

1
2 ,

1
2 !

2~1/) !15~ 1
3 ,

3
2 ,

1
2 !2~1/A24!15~ 1

3 ,
1
2 ,

1
2 !,

1K* denotesK* ~892!; h8 denotesh8~958!.
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~ ūs!~ s̄c!5~1/A8!3~ 1
3 ,

1
2 ,

1
2 !1 1

238~
1
3 ,

1
2 ,

1
2 !1 1

2 6̄~ 1
3 ,

1
2 ,

1
2 !

1A3/8 15~ 1
3 ,

1
2 ,

1
2 !,

where~q̄q8! denotesq̄gm(12g5)q8. The numbers in paren-
theses are hypercharge, total isospin, and third componen
isospin of the particular members of the SU~3! representa-
tions. The weak Hamiltonian can now be written in terms
the representations3, 38, 6̄, and15 as

Hweak5GFsin
2uC@2 1

2 6̄~ 4
3 ,0,0!2 1

2 15~
4
3 ,1,0!#

1GFcos
2uC@2 1

2 6̄~2 2
3 ,1,1!2 1

2 15~2 2
3 ,1,1!#

1GFcosuCsinuC•@~1/& !6̄~ 1
3 ,

1
2 ,

1
2 !

1~1/A6!15~ 1
3 ,

3
2 ,

1
2 !1~1/) !15~ 1

3 ,
1
2 ,

1
2 !#. ~3!

Note that the3 and38 representations do not appear in th
uncorrectedHweak @10#. Because the QCD corrections ar
multiplicative and do not mix the SU~3! representations, the
3 and38 will also not appear inHweak~mc!.

Since the decays of theD mesons occur at the scale of th
c-quark mass, we must allow the QCD evolution of the va
ous operators from theW-mass scale, where Eq.~1! is valid,
to thec-mass scale. The operators represented by the15 are
symmetric under quark interchange, and those represen
t of

f

e

i-

ted

by the 6̄ are antisymmetric. The QCD renormalization of
operators with these symmetry properties has been calculate
@11#. We find that

15→153Fas~MW!

as~mb!
Ga513Fas~mb!

as~mc!
Ga41,

6̄→6̄3Fas~MW!

as~mb!
Ga523Fas~mb!

as~mc!
Ga42, ~4!

where

aNf

1 5
6

3322Nf
,

aNf

2 5
212

3322Nf
, ~5!

in the regime where there areNf flavor degrees of freedom.
Taking into account the change in the number of active fla
vors as the b-quark threshold is crossed, and using
a~Mz!50.119, we obtain

15→0.81

6̄→1.5

15,
6̄
. ~6!

With Eq. ~3! as the boundary condition, we have
Hweak~mc!5
GF

2
sin2uC@20.81 15~ 4

3 ,1,0!21.5 6̄~ 4
3 ,0,0!#1

GF

2
cos2uC@20.81 15~2 2

3 ,1,1!21.5 6̄~2 2
3 ,1,1!#

1
GF

2
cosuCsinuC@0.813~2/) !15~ 1

3 ,
1
2 ,

1
2 !10.813A2/315~ 1

3 ,
3
2 ,

1
2 !11.53&6̄~ 1

3 ,
1
2 ,

1
2 !#. ~7!
d
e

-
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Note that the QCD corrections do not introduce any ne
phases into the process. We can absorb these corrections
the reduced matrix elements~discussed below!, and therefore
they do not affect our analysis. In the absence of an indepe
dent determination of the matrix elements~e.g., from lattice
gauge theory!, the values of the QCD corrections are irrel
evant.

III. PARAMETRIZATION

A. SU„3… breaking

For a complete parametrization of any process in flav
SU~3!, we must include explicit breaking. Since we know
that the source of flavor SU~3! breaking among the pions and
kaons is the difference between the quark masses, we do
with an operatorM which transforms as an8. Although the
quark mass difference is insufficient to explain the larg
SU~3! breaking that will be found, an octet is the simples
nontrivial operator that can be used.

We can expressM as

M5al31bl8 , ~8!
w
into

n-

-

or

this

e
t

whereli are the usual Gell-Mann matrices. The term ina
represents breaking of the isospin SU~2! subgroup. This
breaking, proportional to the difference between up an
down quark masses, is expected to be very small and w
neglect it in the following. The constantb can be absorbed
into the reduced matrix elements. HenceM can be reduced
to

M5l8 . ~9!

B. Reduced matrix elements

Now consider the most general parametrization of the de
cays in the context of the flavor SU~3! symmetry. For each
possible contraction of the representations into an SU~3! sin-
glet there must be one parameter, i.e., one reduced mat
element. Each reduced matrix element is complex. The re
resentations involved are those in Sec. I:D ~3̄!, H ~6̄%15!,
and two ofP and V ~each1 or 8!. In addition, we must
include all possible ways of involving the symmetry-
breaking parameterM . We assume that the breaking is linear
in M . We have chosen to contractD with H, then contract
the products~PP, PV, VV! ~and then possibly withM !, and
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916 54IAN HINCHLIFFE AND THOMAS A. KAEDING
finally contract the two parts into the singlet. Our labels f
the reduced matrix elements reflects this. For example,
matrix element denoted@~DH15!8„~PP)1M …8# is obtained by
contractingD and the15 component ofH into an octet,
contractingPP into a singlet which combines withM to
become another octet, and contracting the two resulting
tets into the singlet.

Unfortunately, the above parametrization involves
more parameters than there exist data. Therefore we m
two important assumptions. First, we assume that we
separate the spin and flavor dynamics of the processes,
that the relative strengths of the reduced matrix elements
the same in thePP, PV, ~VP!, andVV cases. This implies
that only forty-eight reduced SU~3! matrix elements are
needed. They are labeled withS andO for the singlet and
octet representations, rather than withPP, PV, or VV. They
are listed in the Appendix. In order to distinguish the sp
states we introduce two parameters, calledAPV and AVV

~APP[1!. Second, we assume that the phase of each redu
matrix element is given solely by the representation of
product particles~beforeM is included!. Bose symmetry for
PP andVV and an appropriate phase rotation of the parti
fields reduces the list of phases to~h1h1!1, ~h1v1!1, ~v1v1!1,
~Ph1!8, ~Pv1!8, ~Vh1!8, ~Vv1!8, (PP)1, (PP)27, (PV)1,
(PV)88, (PV)10, (PV)10̄, (PV)27, (VV)1, and (VV)27. One
should note that we cannot determine the relative phases
tweenPP, PV, andVV. To the extent that all phases ar
introduced by final-state interactions, one can read off
relative phases of the product representations in Table
The complete list of parameters appears in Tables VI a
VII.

The amplitude for each decay mode can be expressed
sum over the reduced matrix elements with the appropr
Clebsch-Gordan coefficients:

A~Dj→Xi !5(
k
Ci jkRkSi . ~10!

HereRk are the reduced SU~3! matrix elements andSi are
the parameters that we callAPP[1, APV , and AVV . The
SU~3! Clebsch-Gordan factorsCi were calculated by com-
puter. Many of the routines used are described in@12#.

C. Linear combinations of reduced matrix elements

There are 45 measured values for the two-body de
modes and an additional 13 modes where upper limits ex2

It would appear that there are still more parameters than d
and therefore the model lacks predictability. However, th
are only forty linearly independent combinations of th
SU~3! reduced matrix elements that contribute to the p
sible decay modes of theD mesons. With the assumption o
the last section concerning the phases of the reduced m
elements, the linear combinations fall into these classes:

2The data are from the Particle Data Group@9#, together with@14#
for the modeD1→K*0p1.
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involving ~SS!1 :
involving ~SO!8 :
involving ~OO!1 :
involving ~OO!8 :
involving ~OO!88 :
involving ~OO!10:
involving ~OO!10:
involving ~OO!27:

L1 ,
L2 , . . . ,L8 ,
L9 ,
L10, . . . ,L16,
L17, . . . ,L23,
L24, . . . ,L28,
L29, . . . ,L33,
L34, . . . ,L40

.

We write them each as a sum over the reduced matrix ele
ments, viz.,

Ln5(
i
Cin8 Ri , ~11!

and normalize them for convenience by setting

(
i
Cin8

251. ~12!

Now Eq. ~10! is replaced by

A~Dj→Xi !5(
n

Ci jn9 LnSi . ~13!

TheLn replace the reduced matrix elements in our param
eterization of the amplitudes. The forty linearly independen
combinations contain matrix elements including those tha
involve the breaking operatorM . It is not possible to divide
the linear combinations into a set that contains only matrix
elements withoutM and a set containing only matrix ele-
ments withM . Of the forty combinations, three are not con-
strained by the available data. We call themL1, L2, andL3.
They are discussed below. A list of the independentLn and
the expressions for the amplitudesA(Di→X! are given in
the Appendix.

The replacement of the set of reduced matrix elements b
the set of linear combinations that contribute to the possible
decay modes reduces the number of parameters by eight. T
total number is now 53. These parameters are fit to the data
the individual reduced matrix elements are no longer consid
ered. The values of the linear combinations for the best fit ar
in Table VI. The signs have been absorbed into theCi jn

9 .
The units are fixed by Eq.~12! and by the units of the am-
plitudes, as given in Sec. IV.

The unconstrained combinationL1 contributes to the
modesD0→hh, hh8, h8h8, hf, hv, h8f, h8v, ff, fv, and
vv. Because these modes are unobserved, the phases
~h1v1!1, and~v1v1!1 are also unconstrained. The remaining
unconstrained linear combinations areL2 andL3. They con-
tribute to the above modes, and also to modes of the type
D0→hK0 andDs→hK1. By ‘‘type’’ we mean a class of
modes that contain mesons of the same flavors and charge
Thus the typeDs→hK1 contains the modesDs→hK1,
h8K1, hK*1, h8K*1, fK1, vK1, fK*1, vK*1 and no oth-
ers. With the exception of the limit on the branching ratio for
Ds→fK1, there are no data for these modes. We still have
some freedom in the definition ofL2 and L3 that allows
modes of the typeD0→hK0 to depend on only one of them
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~chooseL2!. This will allow us to estimate one of thei
branching fractions and thereby make some predictions
the other modes of this type.

IV. DATA AND FITTING THEREOF

The data used to determine the parameters are liste
Tables I–V. These are the modes for which there exist eit

TABLE I. Modes with positive experimental values. Branchin
ratios ~BR! from data and from the fit are given.

Mode Data BR Fit BR

D0→K2p1 0.040160.0014 0.040060.0014
D0→K2K1 0.0045460.00029 0.0045360.00030
D0→K̄0p0 0.020560.0026 0.020860.0022
D0→K̄0K0 0.001160.0004 0.0010360.00043
D0→p2p1 0.0015960.00012 0.0015960.00012
D0→p2K1 0.0003160.00014 0.0003120.00014

10.00018

D0→p0p0 0.0008860.00023 0.0008760.00025
D0→hK̄0 0.006860.0011 0.006960.0011
D0→h8K̄0 0.016660.0029 0.016860.0028
D0→K*2r1 0.05960.024 0.06360.016
D0→K̄* 0r0 0.01660.004 0.016460.0038
D0→K̄* 0K* 0 0.002960.0015 0.002920.0014

10.0019

D0→vK̄* 0 0.01160.005 0.009960.0044
D0→fr0 0.001960.0005 0.0019260.00045
D0→K2r1 0.10460.013 0.10260.013
D0→K2K*1 0.003460.0008 0.0032360.00080
D0→K̄0r0 0.011060.0018 0.011060.0017
D0→K*2p1 0.04960.006 0.049560.0058
D0→K*2K1 0.001860.0010 0.0020960.00087
D0→K̄* 0p0 0.03060.004 0.030160.0039
D0→fK̄0 0.008360.0012 0.008160.0012
D0→vK̄0 0.02060.004 0.019560.0043
D0→hK̄* 0 0.01960.005 0.020460.0049

D1→K̄0p1 0.027460.0029 0.026260.0028
D1→K̄0K1 0.007860.0017 0.008660.0016
D1→p0p1 0.002560.0007 0.0025760.00067
D1→hp1 0.007560.0025 0.006860.0021
D1→K̄* 0r1 0.02160.014 0.039860.0092
D1→K̄* 0K*1 0.02660.011 0.009020.0041

10.0054

D1→K̄0r1 0.06660.025 0.07160.018
D1→p1K* 0 0.0004660.00015 0.0004660.00014
D1→K̄* 0p1 0.02260.004 0.021760.0041
D1→K̄* 0K1 0.005160.0010 0.0046360.00097
D1→fp1 0.006760.0008 0.0067460.00078

D1→fK1 0.0003960.00020 0.0003920.00020
10.00027

Ds→K̄0K1 0.03560.007 0.031960.0059
Ds→hp1 0.01960.004 0.020460.0039
Ds→h8p1 0.04760.014 0.05460.012
Ds→K̄* 0K*1 0.05660.021 0.05560.018
Ds→fr1 0.06560.017 0.05660.014
Ds→K̄0K*1 0.04260.010 0.04360.011
Ds→K̄* 0K1 0.03360.005 0.032860.0053
Ds→fp1 0.03560.004 0.034960.0040
Ds1hr1 0.10060.022 0.10060.019
of

in
er

experimental values or experimental limits. In theVV
modes,S andD waves are possible. Data exist from E691
@15# for the modesD0→K̄* 0r0 andD

1→K̄* 0r1. These are
consistent with theS andD waves both having significant
amplitudes and are inconsistent with either being zero. Th
ratios ofS- andD-wave amplitudes from these two modes
are taken as additional data, and the overall ratio ofS- to
D-wave amplitudes for theVV modes is allowed to vary in
the fit. Its value is determined by the two modes mentione
above, and depends very little on the other data.

For each mode we remove the phase space and Cabib
factors and reduce the branching ratio to a decay amplitud
in arbitrary units. Because the vector particles have substa
tial widths, the phase space for modes involving a vector i
integrated over the relativistic Breit-Wigner resonance fo
that resonance. The effect of this is important for those
modes where the sum of the particle masses is within a fe
widths of theD mass. The modesD0→fK* 0, fK̄*0, and
D1→fK*1 would be forbidden if the widths were set to
zero. Each amplitude is now expressed as a sum of Clebsc
Gordan coefficients times the parameters that represent t

TABLE II. D0 modes with predicted branching ratios. Experi-
mental limits are given when available. All limits are at 90% con-
fidence.

Mode Data BR Predicted BR Predicted limit

D0→p0K0 0.0001720.00008
10.00011

D0→fK̄* 0 0.0010820.00054
10.00073

D0→r0K* 0 0.0003820.00022
10.00031

D0→p0r0 0.0001420.00011
10.00018

D0→p2r1 0.09320.075
10.133

D0→r2p1 0.09420.076
10.136

D0→hp0 0.006020.0050
10.0092

D0→hr0 0.02520.021
10.041 ,0.092

D0→K*2K*1 0.002420.0021
10.0041 ,0.0092

D0→r0K0 0.002420.0021
10.0041 ,0.0091

D0→h8K̄* 0 ,0.0011 0.0001820.00016
10.00032 ,0.00070

D0→r2K*1 0.0002220.00020
10.00038 ,0.00085

D0→r2K1 0.002020.0018
10.0035 ,0.0078

D0→fp0 0.02420.022
10.049

D0→p2K*1 0.001920.0018
10.0037 ,0.0080

D0→p0K* 0 0.002020.0019
10.0041 ,0.0087

D0→K̄0K* 0 ,0.0008 ,0.00052

D0→vp0 ,0.086

D0→h8r0 ,0.011

D0→vr0 ,0.084

D0→r2r1 ,0.015

D0→K̄* 0K0 ,0.0015 ,0.00061

D0→h8p0 ,0.057

D0→r0r0 ,0.0065
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reduced matrix elements, and finally as a sum over the
early independent combinations of reduced matrix elemen

The parameters were fit to the data amplitudes w
MINUIT , release 93.11@13#. The totalx2 was found to be 30.9
for seven degrees of freedom, indicating that the overall
was poor. However, more than half of thex2 arose from only
one mode. The mode in question isDs→h8r1. The experi-
mental value for the branching ratioDs→h8r1 cannot be
accommodated in our scheme. It is measured@16# to be
larger than that forDs→hr1, an a priori surprising result.
We note that the angular distribution of the decay pions
barely consistent with that expected. A confirmation of th
experimental value would be very significant as all oth
models @4# also predict a ratio of B(Ds→h8r1)/
B(Ds→hr1) of less than 1.

We decided to reject the experimental value for th
branching fraction ofDs→h8r1. The result is a better fit,
from which the branching ratios are reported in the table
The totalx2 is now 11.6 for six degrees of freedom. Th
best-fit values of the parameters are given in Tables VI a
VII. The units correspond touA(D0→p1K2!u51.15.

TABLE III. D1 modes with predicted branching ratios. Exper
mental limits are given when available. All limits are at 90% con
fidence.

Mode Data BR Predicted BR Predicted limit

D1→r0r1 0.006660.0023

D1→hK1 0.003220.0020
10.0030

D1→p1K0 0.01720.011
10.018

D1→p0K1 0.008620.0057
10.0089

D1→p0r1 0.003420.0023
10.0036

D1→fK*1 0.0003120.00022
10.00035

D1→r1K* 0 0.02520.018
10.031

D1→r0K*1 0.009520.0071
10.0118

D1→r1K0 0.008720.0068
10.0119

D1→vK*1 0.002220.0018
10.0031

D1→vp1 ,0.007 0.002420.0020
10.0036

D1→p0K*1 0.010320.0087
10.0162

D1→vr1 0.002620.0023
10.0049 ,0.011

D1→K̄0K*1 0.001220.0011
10.0026 ,0.0054

D1→hr1 ,0.012 0.001220.0011
10.0022 ,0.0048

D1→h8K1 0.001620.0015
10.0041 ,0.0082

D1→r0K1 0.001820.0017
10.0042 ,0.0086

D1→h8p1 ,0.009 0.0009420.00092
10.00237 ,0.0048

D1→fr1 ,0.015 ,0.0074

D1→vK1 ,0.0012

D1→h8r1 ,0.015 ,0.00071

D1→r0p1 ,0.0014 ,0.00091

D1→h8K*1 ,0.000082

D1→hK*1 ,0.0022
lin-
ts.
ith

fit

is
is
er

e

s.
e
nd

V. PREDICTIONS

A. Predictions from the fit parameters

From the fit values of the parameters the branching ratio
of decay modes were calculated. We emphasize that o
model of SU~3! breaking is such that modes whose branch

TABLE IV. Ds modes with predicted branching ratios. Experi-
mental limits are given when available. All limits are at 90% con-
fidence.

Mode Data BR Predicted BR Predicted limit

Ds→p0K1 0.005920.0034
10.0048

Ds→p1K* 0 0.03820.028
10.047

Ds→h8r1 0.12060.030a 0.01520.011
10.019

Ds→p0K*1 0.07720.058
10.096

Ds→r0K*1 0.012620.0096
10.0164

Ds→r1K0 0.03120.024
10.043

Ds→r0K1 0.04920.040
10.071

Ds→vr1 0.01220.012
10.030 ,0.061

Ds→p1K0 ,0.007 ,0.0015

Ds→K0K*1 ,0.00039

Ds→K0K1 ,0.00046

Ds→K* 0K*1 ,0.00057

Ds→r1K* 0 ,0.0080

Ds→K* 0K1 ,0.00025

Ds→vp1 ,0.017 ,0.0090

Ds→p0r1 ,0.064

Ds→r0p1 ,0.0028 Not significant

Ds→p1p0 [0

Ds→r1r0 [0

aSee text.

TABLE V. Modes based on estimates. The only available ex
perimental limit is shown. Values marked with asterisks are inputs

Mode Data BR
Fit BR

~scheme A!
Fit BR

~scheme B!
Fit BR

~scheme C!

D0→hK0 0.000054* 0.000054* 0.00035
D0→h8K0 0.00046 0.00046 0.00085
D0→fK* 0 0.000019 0.000019 0.000016
D0→vK* 0 0.00027 0.00027 0.0012
D0→fK0 0.00054 0.00054 0.000066*
D0→vK0 0.000096 0.000096 0.0014
D0→hK* 0 0.00048 0.00048 0.00094
D0→h8K* 0 0.0000083 0.0000083 0.0000024
Ds→hK1 0.0027* 0.00041 0.0031
Ds→h8K1 0.017 0.052 0.015
Ds→fK*1 0.011 0.024 0.0095
Ds→vK*1 0.0057 0.028 0.0046
Ds→fK1 ,0.0025 0.00051 0.0033* 0.00037*
Ds→vK1 0.0064 0.019 0.0055
Ds→hK*1 0.00083 0.00015 0.00094
Ds→h8K*1 0.00090 0.0028 0.00077

i-
-
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ing ratios are related by isospin satisfy those relations.
Table I are presented the modes for which there exist exp
mental values. Our calculated branching ratios are consis
with the data, with the exception ofD1→K̄* 0K*1 and
Ds→h8r1. For the former the fit prefers a branching rat
that is three standard deviations below the reported exp
mental value. The latter was removed before the fit~see Sec.
IV ! because its experimental value was questioned. For
mode we predict a branching ratio of~1.521.1

11.9!%, well below
the reported experimental value@16#. Tables II–IV contain

TABLE VI. Linear combinations and their fit values.

Linear
combination

Amplitudes
involved Fit value

L1 (SS)1

L2
L3
L4 2.9760.66
L5 (SO)8 6626
L6 8617
L7 16618
L8 6613

L9 (OO)1 2.462.7

L10 5.2060.12
L11 1.767.3
L12 12.462.3
L13 (OO)8 34612
L14 9.565.5
L15 45621
L16 52621

L17 10.864.1
L18 55637
L19 44638
L20 (OO)88 45644
L21 34625
L22 42646
L23 11647

L24 4.765.9
L25 59644
L26 (OO)10 107663
L27 39621
L28 43637

L29 21.167.1
L30 71667
L31 (OO)10 97651
L32 135674
L33 115661

L34 0.462.5
L35 26.267.3
L36 2.562.9
L37 (OO)27 21.864.6
L38 9.266.2
L39 8.068.6
L40 19611
In
ri-
ent

ri-

his

modes for which there is no experimental information or fo
which there is an experimental limit. We have attempted t
predict the branching ratio of each mode from the fit. How
ever, in some cases the uncertainties are so large that we
able only to provide~90% confidence level! limits on the
branching ratios. Notice that in all cases in which there ar
experimental limits, our predicted branching ratio or pre
dicted limit is in the allowed region. We are unable to say
anything about the modeDs→r0p1, because the uncertainty
on its prediction is greater than the experimental limit.

There are two modes,Ds→p1p0 andDs→r1r0, which
are forbidden in a model without isospin breaking. They ar
predicted to be identically zero. The modes that are kine
matically forbidden areD0→h8h8, h8f, andff. The modes
involving the linear combinationsL1, L2, and L3 are dis-
cussed below. AnyPP, PV, or VV mode not appearing in
the tables is higher order in the weak couplingGF .

B. Unconstrained linear combinations

There remain three linearly independent combinations o
the reduced matrix elements that are not constrained by t
data. The combinationL1 contributes only to modes of the
type D0→hh. L2 contributes to the typesD0→hh and
D0→hK0. L3 contributes to these modes, and to modes o
the typeDs→hK1.

The first unconstrained linear combinationL1 contributes
only to amplitudes involving (SS)1. These amplitudes, it is
worth noting, are due entirely to SU~3! breaking. However,
when we include the phases, we must make four estimates
order to obtain two predictions of modes of the type
D0→hh. This would be an unproductive endeavor, and s
we forego it.

In order to predict the modes of the typesD0→hK0 and
Ds→hK1, we need two new inputs. In order to show the
variability of the resulting predictions, we try three different

TABLE VII. The remaining parameters and their fit values.

Parameter Fit value

APV 0.9160.32
AVV 1.4060.16
D/S wave 2.7960.41
Phase ofh1h1

Phase ofPh1 1.6460.45
Phase ofPP1 0.761.2
Phase ofPP27 1.4960.16
Phase ofv1v1

Phase ofVv1 1.2860.52
Phase ofVV1 23.063.2
Phase ofVV27 0.5360.77
Phase ofh1v1

Phase ofPv1 0.0160.35
Phase ofVh1 22.662.5
Phase ofPV1 0.2861.5
Phase ofPV88 21.4760.38
Phase ofPV10 22.4960.30
Phase ofPV10 2.6160.23
Phase ofPV27 22.8660.52
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sets of inputs. Scheme A is motivated by the recent CL
measurement of the doubly suppressed modeD0→p2K1

@17#, in which this mode is found to have a branching ratio
about three times that expected from the corresponding
suppressed mode,D0→p1K2. For this scheme, the two in
puts are

B~D02hK0!53 tan4uCB~D0→hK̄0!,
~14!

B~Ds→hK1!53 tan2uCB~Ds→hp1!.

The linear combinationsL2 andL3 are then constrained an
the remaining branching ratios in the column for scheme
in Table V are found. The predictions for scheme B a
based on the estimates

B~D0→hK0!53 tan4uCB~D0→hK̄0!,
~15!

B~Ds→fK1!53 tan2uCB~Ds→fp1!.

A third scheme~C! is considered also. It is based on the
estimates:

B~D0→fK0!53 tan4uCB~D0→fK̄0!,
~16!

B~Ds→fK1!5 1
3 tan

2uCB~Ds→fp1!.

The resulting predictions are again in Table V. The spread
these values provides an indication of the expected ran
for these quantities.

One should note that arbitrary choices of the above mo
may fail to give an acceptable fit, given the constraints fro
measured modes. For example, an apparently reason
choice would have been

B~D0→hK0!5tan4uCB~D0→hK̄0!,
~17!

B~Ds→hK1!5tan2uCB~Ds→hp1!.

A consistent fit cannot be obtained to implement this. T
parametersL2 andL3 could not be given values to accom
modateB(D0→hK0),0.0052%.

C. Modes involving axial vectors

There are a few modes involving axial vectors that ha
been observed or for which there are experimental lim
However, those that involveK~1270! andK~1400! are mix-
tures with the 112 octet, which we can callB since it in-
cludes theb1~1235!. Therefore, in order to include thes
modes in our framework, we require two new paramete
APA andAPB . In addition, we must also accommodate t
mixing between f 1

~1! and f 1
~8! to become f 1~1285! and

f 1~1510!, as well as the new phases that are introduc
There are too few experimental observations of thePA and
PB modes to make this endeavor fruitful. For that reas
they are not included here.

VI. COMMENTS ON MODELS

It is clear from the data alone that significant SU~3! break-
ing is necessary in any successful model ofD decays. For
example,B(D0→K1K2)5B(D0→p1p2) in exact SU~3!,
O

f
n-

A
e

e

in
es

es
m
ble

e
-

e
s.

rs,
e

d.

n,

yet they are in reality quite different. Models based on exact
SU~3! @3,6,10,18# ~or even on nonet symmetry@19#! are thus
not admitted by the data.

Models of D decays based on heavy-quark effective
theory ~e.g., @3#! have as yet not developed to the point at
which individual nonleptonic decays can be calculated. The
question of whether heavy quark effective theory~HQET! is
applicable to thec quark is still unsettled. The HQET is
based on an expansion in the parameter

LQCD

mc
.0.2 ~18!

and assumes that it is small. Certainly this would be a good
assumption in the case of theb quark, but perhaps not so
here. Until we are able to calculate branching fractions in
HQET, we must reserve judgement on its applicability to the
D mesons.

Diagrammatical methods to the problem ofD decays
present us with a complementary approach to the one
adopted in this work. The parameters in the SU~3! frame-
work represent sums of diagrams in the diagrammatical ap
proach. A very general diagrammatical calculation of
branching fractions appears in@5#. Two shortcomings of
their work lie in final-state interactions and in the inclusion
of SU~3! breaking. The phases of the final-state interactions
are added to the model, and are external to its central theme
and therefore appear as anad hocmechanism to force a fit.
SU~3! breaking is added to the calculation as an additive
correction to the diagrams in which it is believed to be im-
portant. However, there is also hidden breaking in the addi-
tion of phases in the final-state interactions. The result is a
model in which the size and source of SU~3! breaking is not
easily discerned. It is difficult to draw any conclusions from
the application of such a model.

The factorization method is a special case of the diagram
matical approach. In it certain diagrams are considered un
important~i.e., the annihilation diagrams!. However,@4# find
that these diagrams must be again included, as well as fina
state transitions and intermediate resonances. The result is a
eclectic model with little elegance. We are unable, because
of the ad hoc features, to comment on the reliability and
predictability of this model.

A description of nonleptonicD decays in a large-Nc
~number of colors! expansion@2# is an elegant one with few
parameters. In it, the source of SU~3! breaking is introduced
by including nearby resonances. It is also a subset of the
diagrammatical approach and neglects some diagrams base
on their suppression by 1/Nc . One may argue that these dia-
grams are larger than thought, and cite the fit of@5# as evi-
dence of this. Nevertheless,@2# obtain excellent agreement
with the data, with the exception of some modes involvingh
and h8. In this model, SU~3! breaking is introduced only
through the inclusion of resonances in one class of diagram
They obtain, in agreement with our work, large breaking.

CONCLUSIONS

There now exist enough data to constrain all but three
combinations of the reduced matrix elements of the broken
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SU~3! model of the decays ofD mesons with the two as
sumptions discussed in Sec. III B. We have assumed tha
breaking of SU~3! is such that isospin remains a good sym
metry; data indicate that this is the case. We have used t
data to fix our parameters. Using the experimental inform
tion on 57 modes we are able to predict branching ratios
upper limits for an additional 53 modes. Only two measur
modes are not easily accommodated in the fit. The meas
ment of a few additional modes involvingh, h8, f, v would
enable another dozen or so modes to be predicted.
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APPENDIX: EXPLICIT EXPRESSIONS FOR DECAY
AMPLITUDES

An assumption of Sec. III B is that we can introduce the
parametersAPP[1, APV , andAVV , so that the reduced ma-
trix element involving pseudoscalar-pseudoscalar deca
modes is distinguished from the pseudoscalar-vector an
vector-vector cases by these multiplicative factors. Below i
a list of the resulting 48 reduced matrix elements. They ar
complex. HereO represents an octet of mesons, andS a
singlet under SU~3!. Without the assumption of Sec. III B
there would be duplicate lists forPP, PV, VP, and VV
decay modes. Only in theSO cases would thePV andVP
matrix elements distinct. Subscripts denote irreducible SU~3!
representations. Parentheses show the multiplication of re
resentations:
M15@~DH 6̄!8~SSM!8#, M25@~DH15!8~SSM!8#,

M35@~DH 6̄!8~SO!8#, M45@~DH15!8~SO!8#,

M55@~DH 6̄!8~SOM!8#, M65@~DH 6̄!8~SOM!88#,

M75@~DH 6̄!10̄~SOM!10̄#, M85@~DH15!8~SOM!8#,

M95@~DH15!8~SOM!88#, M105@~DH15!10̄~SOM!10̄#,

M115@~DH15!27~SOM!27#, M125@~DH 6̄ !8~OO!8#,

M135@~DH 6̄ !8~OO!88#, M145@~DH 6̄ !10̄~OO!10#,

M155@~DH15!8~OO!8#, M165@~DH15!8~OO!88#,

M175@~DH15!10~OO!10̄#, M185@~DH15!27~OO!27#,

M195@~DH 6̄ !8„~OO!1M …8#, M205@~DH 6̄ !8„~OO!8M …8#,

M215@~DH 6̄ !8„~OO!8M …88#, M225@~DH 6̄ !10̄„~OO!8M …10̄#,

M235@~DH 6̄ !8„~OO!88M …8#, M245@~DH 6̄ !8„~OO!88M …88#,

M255@~DH !10̄„~OO!88M …10#, M265@~DH 6̄ !8„~OO!10̄M …8#,

M275@~DH 6̄ !10̄„~OO!10M …10#, M285@~DH 6̄ !8„~OO!10̄M …8#,

M295@~DH6!8„~OO!27M …8#, M305@~DH 6̄ !10̄„~OO!27M …10#,

M315@~DH15!8„~OO!1M …8#, M325@~DH15!8„~OO!8M …8#,

M335@~DH15!8„~OO!8M …88#, M345@~DH15!10„~OO!8M …10̄#,

M355@~DH15!27„~OO!8M …27#, M365@~DH15!8„~OO!88M …8#,

M375@~DH15!8„~OO!88M …88#, M385@~DH15!10„~OO!88M …10̄#,

M395@~DH15!27„~OO!88M …27#, M405@~DH15!8„~OO!10M …8#,

M415@~DH15!27„~OO!10M …27#, M425@~DH15!8„~OO!10̄M …8#,
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M435@~DH15!10„~OO!10̄M …10̄#, M445@~DH15!27„~OO!10̄M …27#,

M455@~DH15!8„~OO!27M …8#, M465@~DH15!10„~OO!27M …10̄#,

M475@~DH15!27„~OO!27M …27#, M485@~DH15!27„~OO!27M …278#.

In the notation of@6#, the threePP reduced matrix elements not involving SU~3! breaking are

S5APPM12* , E5APPM15* , T5APPM18* .

The formulation of@6# does not involve SU~3! breaking. We explicitly add the SU~3!-breaking matrix elements in this work
Under the assumptions of Sec. III B, the reduced matrix elements can be replaced by forty linearly independent co

tions. The phases are removed from these combinations. Below is our choice of linearly independent combinatio
coefficients are combinations of Clebsch factors that make theLn linearly independent:

L150.845 15M110.534 52M2 ,

L250.719 20M310.454 86M410.160 82M520.359 60M610.101 71M820.227 43M920.227 43M1020.083 05M11,

L350.213 26M310.134 88M420.505 47M510.305 67M620.521 52M720.319 69M810.193 32M9

20.328 20M1010.261 02M11,

L450.426 89M320.765 07M420.096 96M520.070 03M620.181 41M710.401 57M820.044 29M9

10.033 07M1010.144 56M11,

L550.384 66M320.178 64M410.228 42M510.604 46M610.419 79M720.433 01M820.188 77M9

10.050 97M1010.024 82M11,

L6520.083 26M310.079 53M410.575 53M510.045 67M620.521 51M720.074 32M820.253 76M9

10.273 36M1010.486 63M11,

L750.205 37M310.291 44M410.141 69M510.406 65M610.006 83M710.483 32M810.604 49M9

10.297 10M1010.011 23M11,

L8520.035 51M310.092 63M420.156 81M520.173 10M610.496 85M710.092 27M810.071 58M9

20.092 63M1010.816 41M11,

L950.845 15M1910.534 52M31,

L1050.719 20M1210.454 86M1510.160 82M2020.359 60M2110.101 71M3220.227 43M33

20.227 43M3420.083 05M35,

L1150.339 37M1210.214 63M1520.262 68M2010.587 37M2120.478 80M2220.166 13M3210.371 48M33

20.107 32M3410.135 65M35,

L12520.152 73M1220.096 60M1520.546 43M2020.388 19M2120.215 33M2220.345 59M3220.245 51M33

20.460 84M3410.282 17M35,

L1350.152 27M1210.096 31M1520.286 02M2010.232 22M2110.851 11M2220.180 89M3210.146 87M33

20.176 96M3410.147 70M35,

L1450.480 23M1220.756 68M1520.152 19M2020.001 19M2110.377 97M3220.000 75M33

10.005 25M3410.175 39M35,
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L1550.176 31M1220.266 72M1510.359 33M2010.332 40M2120.606 92M3220.537 61M33

10.024 08M3420.014 50M35,

L16520.051 62M1210.164 03M1510.302 17M2020.031 89M2110.087 30M3220.031 98M33

10.164 83M3410.917 77M35,

L1750.719 19M1310.454 86M1610.160 82M2320.359 60M2410.101 71M3620.227 43M37

20.227 43M3820.083 05M39,

L1850.124 50M1310.078 74M1610.566 06M2310.338 91M2410.253 72M2510.358 01M3610.214 35M37

10.468 07M3820.292 31M39,

L19520.350 71M1320.221 80M1610.217 17M2320.617 11M2410.459 61M2510.137 35M3620.390 30M37

10.069 31M3820.112 14M39,

L2050.152 27M1310.096 31M1620.286 02M2310.232 22M2410.851 11M2520.180 89M3610.146 87M37

20.176 96M3810.147 70M39,

L21520.480 23M1310.756 68M1610.152 19M2310.001 19M2420.377 97M3610.000 75M37

20.005 25M3820.175 39M39,

L2250.176 31M1320.266 73M1610.359 33M2310.332 40M2420.606 92M3620.537 61M37

10.024 09M3820.014 50M39,

L2350.051 62M1320.164 03M1620.302 17M2310.031 89M2420.087 31M3610.031 99M37

20.164 82M3820.917 77M39,

L24520.866 03M1410.306 19M2710.395 29M41,

L2550.411 00M1410.464 99M2610.319 68M2710.294 09M4010.652 83M41,

L26520.284 75M1410.671 16M2620.469 81M2710.424 48M4020.259 94M41,

L27520.218 22M2620.763 76M2720.138 01M4010.591 61M41,

L2850.534 52M2620.845 15M40,

L29520.738 55M1720.522 23M2820.330 29M4220.261 12M4310.067 42M44,

L30520.558 29M1710.328 98M2810.208 06M4210.526 36M4320.509 65M44,

L31520.124 84M1710.382 52M2810.241 93M4220.809 17M4320.353 28M44,

L3250.113 96M1720.644 66M2810.713 51M4220.249 67M44,

L3350.338 06M1720.239 05M2820.529 15M4220.740 66M44,

L3450.771 84M1820.272 89M2910.482 40M3020.172 59M4510.096 48M4620.046 13M4720.236 33M48,

L3550.463 81M1820.233 17M2920.590 77M3010.349 24M4520.431 27M4610.252 97M4710.097 67M48,

L3650.188 97M1810.706 43M2910.302 74M3010.498 27M4520.303 01M4620.180 07M4720.033 02M48,

L3750.261 97M1810.508 51M2920.492 35M3020.571 08M4510.053 61M4620.180 26M4720.262 45M48,

L3850.131 64M1820.160 51M2920.242 72M3010.311 01M4510.410 04M4620.767 51M4710.209 91M48,
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L3950.033 89M1820.053 86M2910.159 09M3020.420 84M4520.525 95M4620.306 94M4710.650 15M48,

L4050.257 51M1810.291 34M2910.515 03M4610.430 90M4710.630 77M48.

We can now express the decay amplitudes to each decay mode in terms of the linear combinations of reduced ma
elements. They appear below. HereF (XX)R

is the phase of the productsXX in the irreducible SU~3! representationR. These

phases are introduced in Sec. III B. We have defined the symbolaR
XX to represent expiF(XX)R

. The Cabibbo factors are
abbreviated byc[cosuC , s[sinuC . The amplitudes to the physical mixtures ofh1, h8, v1, v8 are mixtures of the relevant
amplitudes with the mixing angles given in@8,9#:

A~D0→h1h1!5APPcs3@0.295 80L1a
h1h1#,

A~D0→h1K̄
0!5APPc

23@0.283 82L2a
h1P#,

A~D0→h1p
0!5APPcs3@0.148 79L2a

h1P10.175 04L3a
h1P#,

A~D0→h1K
0!5APPs

23@0.166 38L2a
h1P10.032 50L3a

h1P20.029 59L4a
h1P10.129 40L5a

h1P

20.039 46L6a
h1P10.180 67L7a

h1P#,

A~D0→h1h8!5APPcs3@0.281 68L2a
h1P20.019 55L3a

h1P20.005 04L4a
h1P10.061 41L5a

h1P10.022 76L6a
h1P

10.146 79L7a
h1P20.052 37L8a

h1P],

A~D0→K2p1!5APPc
23@0.219 85L10a8

PP10.070 52L34a27
PP#,

A~D0→K2K1!5APPcs3@0.147 90L9a1
PP10.170 57L10a8

PP10.104 43L11a8
PP10.028 74L34a27

PP10.069 54L35a27
PP#,

A~D0→K̄0p0!5APPc
23@20.155 46L10a8

PP10.066 84L34a27
PP20.004 52L35a27

PP10.043 59L36a27
PP#,

A~D0→K̄0K0!5APPcs3@20.147 90L9a1
PP20.007 58L10a8

PP10.060 26L11a8
PP10.098 21L12a8

PP20.036 32L34a27
PP

10.018 74L35a27
PP10.057 33L36a27

PP10.032 46L37a27
PP],

A~D0→K̄0h8!5APPc
23@0.089 75L10a8

PP20.056 97L34a27
PP20.007 83L35a27

PP10.075 51L36a27
PP#,

A~D0→p2p1!5APPcs3@20.147 90L9a1
PP10.178 15L10a8

PP10.044 17L11a8
PP20.098 21L12a8

PP10.043 06L34a27
PP

10.030 83L35a27
PP10.015 57L36a27

PP20.002 02L37a27
PP10.034 06L38a27

PP],

A~D0→p2K1!5APPs
23@0.128 88L10a8

PP10.100 71L11a8
PP20.119 74L12a8

PP10.085 11L13a8
PP10.039 01L34a27

PP

10.044 98L35a27
PP20.001 09L36a27

PP10.009 16L37a27
PP10.000 17L38a27

PP10.036 65L39a27
PP],

A~D0→p0p0!5APPcs3@0.104 58L9a1
PP20.125 97L10a8

PP20.031 23L11a8
PP10.069 44L12a8

PP10.037 90L34a27
PP

10.025 64L35a27
PP10.042 29L36a27

PP10.008 62L37a27
PP10.048 17L38a27

PP],

A~D0→p0K0!5APPs
23@20.091 13L10a8

PP20.071 21L11a8
PP10.084 67L12a8

PP20.060 18L13a8
PP10.033 42L34a27

PP

10.043 19L35a27
PP10.042 44L36a27

PP10.009 72L37a27
PP10.000 18L38a27

PP10.038 87L39a27
PP],

A~D0→p0h8!5APPcs3@20.094 10L10a8
PP20.095 08L11a8

PP20.056 70L12a8
PP20.006 56L34a27

PP10.076 45L35a27
PP

10.049 65L36a27
PP10.028 11L37a27

PP],

A~D0→K0h8!5APPs
23@0.052 61L10a8

PP10.041 12L11a8
PP20.048 88L12a8

PP10.034 75L13a8
PP20.037 67L34a27

PP

20.035 37L35a27
PP10.076 17L36a27

PP20.005 61L37a27
PP20.000 10L38a27

PP20.022 44L39a27
PP],



54 925NONLEPTONIC TWO-BODY DECAYS OFD MESONS IN . . .
A~D0→h8h8!5APPcs3@0.104 58L9a1
PP10.125 97L10a8

PP10.031 23L11a8
PP20.069 44L12a8

PP20.069 00L34a27
PP

20.053 88L35a27
PP10.060 81L36a27

PP10.034 43L37a27
PP],

A~D1→h1p
1!5APPcs3@0.088 08L2a

h1P10.160 77L3a
h1P10.249 45L4a

h1P#,

A~D1→h1K
1!5APPs

23@0.068 51L2a
h1P10.003 48L3a

h1P10.157 30L4a
h1P10.226 07L5a

h1P#,

A~D1→K̄0p1!5APPc
23@0.066 58L34a27

PP10.114 20L35a27
PP20.000 15L36a27

PP10.100 50L37a27
PP

10.049 55L38a27
PP20.032 47L39a27

PP],

A~D1→K̄0K1!5APPcs3@0.068 23L10a8
PP10.104 02L11a8

PP10.068 72L12a8
PP20.041 59L13a8

PP10.188 61L14a8
PP

10.027 38L34a27
PP10.066 76L35a27

PP10.020 50L36a27
PP10.078 45L37a27

PP20.008 44L38a27
PP

10.013 60L39a27
PP10.022 43L40a27

PP],

A~D1→p0p1!5APPcs3@0.076 92L34a27
PP10.030 08L35a27

PP10.028 54L36a27
PP10.035 57L37a27

PP

10.056 80L38a27
PP10.020 91L39a27

PP#,

A~D1→p0K1!5APPs
23@0.037 52L10a8

PP10.023 35L11a8
PP20.035 43L12a8

PP10.045 71L13a8
PP10.099 64L14a8

PP

10.094 55L15a8
PP10.036 21L34a27

PP10.055 22L35a27
PP10.020 30L36a27

PP10.000 62L37a27
PP

10.006 88L38a27
PP10.038 81L39a27

PP20.007 93L40a27
PP],

A~D1→p1K0!5APPs
23@20.053 07L10a8

PP20.033 02L11a8
PP10.050 11L12a8

PP20.064 65L13a8
PP20.140 91L14a8

PP

20.133 72L15a8
PP10.035 07L34a27

PP10.027 97L35a27
PP10.030 22L36a27

PP10.022 04L37a27
PP

20.009 31L38a27
PP10.036 74L39a27

PP10.011 21L40a27
PP],

A~D1→p1h8!5APPcs3@20.055 71L10a8
PP20.084 93L11a8

PP20.056 11L12a8
PP10.033 96L13a8

PP20.154 00L14a8
PP

10.033 54L34a27
PP10.081 76L35a27

PP10.025 11L36a27
PP10.096 08L37a27

PP20.010 33L38a27
PP

10.016 65L39a27
PP10.027 47L40a27

PP],

A~D1→K1h8!5APPs
23@0.021 66L10a8

PP10.013 48L11a8
PP20.020 46L12a8

PP10.026 39L13a8
PP10.057 53L14a8

PP

10.054 59L15a8
PP10.023 20L34a27

PP20.027 14L35a27
PP10.038 87L36a27

PP10.052 91L37a27
PP

20.034 73L38a27
PP10.022 78L39a27

PP10.041 20L40a27
PP],

A~Ds→h1p
1!5APPc

23@20.097 87L2a
h1P20.029 02L3a

h1P20.197 29L4a
h1P20.078 37L5a

h1P10.158 34L6a
h1P#,

A~Ds→h1K
1!5APPcs3@20.078 30L2a

h1P20.073 71L3a
h1P20.175 39L4a

h1P20.141 85L5a
h1P20.043 64L6a

h1P

10.002 65L7a
h1P10.192 43L8a

h1P#,

A~Ds→K̄0K1!5APPc
23@20.075 81L10a8

PP20.019 81L11a8
PP20.010 67L12a8

PP20.072 59L13a8
PP20.172 60L14a8

PP

20.001 32L15a8
PP10.083 78L16a8

PP10.037 51L34a27
PP10.048 71L35a27

PP20.022 43L36a27
PP

20.005 53L37a27
PP10.033 69L38a27

PP20.026 97L39a27
PP10.019 62L40a27

PP],

A~Ds→p0K1!5APPcs3@20.042 88L10a8
PP20.065 38L11a8

PP10.030 81L12a8
PP10.054 10L13a8

PP20.088 32L14a8
PP

20.095 49L15a8
PP10.059 24L16a8

PP10.025 60L34a27
PP20.007 19L35a27

PP20.001 76L36a27
PP

10.029 67L37a27
PP10.039 75L38a27

PP20.008 98L39a27
PP10.037 66L40a27

PP],
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A~Ds→p1K0!5APPcs@0.060 65L10a8
PP10.092 46L11a8

PP20.043 57L12a8
PP20.076 50L13a8

PP10.124 90L14a8
PP

10.135 04L15a8
PP20.083 78L16a8

PP10.069 77L34a27
PP10.028 19L35a27

PP20.000 43L36a27
PP

20.008 10L37a27
PP10.027 90L38a27

PP20.003 04L39a27
PP10.051 86L40a27

PP],

A~Ds→p1h8!5APPc
2@0.061 90L10a8

PP10.016 18L11a8
PP10.008 71L12a8

PP10.059 27L13a8
PP10.140 92L14a8

PP

10.001 08L15a8
PP20.068 41L16a8

PP10.045 94L34a27
PP10.059 66L35a27

PP20.027 47L36a27
PP

20.006 77L37a27
PP10.041 26L38a27

PP20.033 03L39a27
PP10.024 03L40a27

PP],

A~Ds→K0K1!5APPs
2@0.083 47L34a27

PP10.081 54L35a27
PP10.015 64L36a27

PP10.006 45L37a27
PP10.004 20L38a27

PP

10.046 31L39a27
PP10.105 13L40a27

PP],

A~Ds→K1h8!5APPcs@20.024 76L10a8
PP20.037 75L11a8

PP10.017 79L12a8
PP10.031 23L13a8

PP20.050 99L14a8
PP

20.055 13L15a8
PP10.034 20L16a8

PP10.126 57L34a27
PP10.081 50L35a27

PP10.001 99L36a27
PP

20.071 24L37a27
PP20.000 51L38a27

PP10.008 11L39a27
PP10.061 80L40a27

PP].

The amplitudes for theVV modes have the same coefficients as the correspondingPP modes. They are found by relabeling
PP→VV in the above expressions. ThePV modes do not obey Bose symmetry and therefore have antisymmetric parts. O
the antisymmetric parts are given below. The symmetric parts have coefficients that are 1/& times the corresponding coeffi-
cients of thePP amplitudes, with the exception ofh1V, v1P, p0r0, andh8v8 which do not involve 1/&. The antisymmetric
parts ofA(Di→XY* ) are2A(Di→YX* ) uasy, where an asterisk denotes spin-1. The expressions given forVV are for the
S-wave amplitudes. We have assumed that theD-wave amplitudes are given by theS-wave amplitude times a constant facto
times a kinematic factor~phase space!. The best-fit value of the constant factor is in Table VII~also see the text!:

A~D0→K2r1!asy5APVc
2@0.115 87L17a88

PV
10.060 86L24a10

PV10.071 36L29a10
PV

#,

A~D0→K2K*1!asy5APVcs@0.097 89L17a88
PV

10.103 86L18a88
PV

20.041 84L24a10
PV10.040 07L25a10

PV

10.051 90L29a10
PV

10.025 75L30a10
PV

#,

A~D0→K̄0r0!asy5APVc
2@20.081 93L17a88

PV
10.086 07L24a10

PV20.043 17L29a10
PV

20.014 69L30a10
PV

10.022 58L31a10
PV

#,

A~D0→K̄0K* 0!asy5APVcs@20.183 79L17a88
PV

20.045 19L18a88
PV

10.082 28L19a88
PV

20.041 84L24a10
PV10.040 07L25a10

PV

10.051 90L29a10
PV

10.025 75L30a10
PV

#,

A~D0→K̄0v8!asy5APVc
2@20.141 91L17a88

PV
10.074 78L29a10

PV
10.025 44L30a10

PV
20.039 11L31a10

PV
#,

A~D0→p2r1!asy5APVcs@0.085 90L17a88
PV

20.058 68L18a88
PV

20.082 28L19a88
PV

20.041 84L24a10
PV

10.040 07L25a10
PV10.051 90L29a10

PV
10.025 75L30a10

PV
# ,

A~D0→p2K*1!asy5APVs
2@0.067 92L17a88

PV
10.058 56L18a88

PV
20.058 06L19a88

PV
10.044 86L20a88

PV
10.038 04L24a10

PV

20.006 50L25a10
PV10.060 03L26a10

PV10.032 44L29a10
PV

10.051 49L30a10
PV

#,

A~D0→p0K* 0!asy5APVs
2@20.048 03L17a88

PV
20.041 41L18a88

PV
10.041 05L19a88

PV
20.031 72L20a88

PV
20.026 90L24a10

PV

10.004 50L25a10
PV20.042 45L26a10

PV10.045 87L29a10
PV

10.072 82L30a10
PV

#,

A~D0→p0v8!asy5APVcs@0.072 47L24a10
PV20.069 41L25a10

PV10.089 89L29a10
PV

10.044 59L30a10
PV

#,

A~D0→K0v8!asy5APVs
2@0.083 19L17a88

PV
10.071 72L18a88

PV
20.071 11L19a88

PV
10.054 94L20a88

PV
20.046 58L24a10

PV

10.007 96L25a10
PV20.073 52L26a10

PV#,
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A~D1→K̄0r1!asy5APVc
2@20.125 52L24a10

PV10.094 23L25a10
PV20.037 52L26a10

PV10.085 40L27a10
PV#,

A~D1→K̄0K*1!asy5APVcs@20.035 96L17a88
PV

10.040 58L18a88
PV

10.051 68L19a88
PV

10.021 92L20a88
PV

10.099 40L21a88
PV

20.079 88L24a10
PV10.072 57L25a10

PV20.022 51L26a10
PV10.012 20L27a10

PV10.039 84L28a10
PV

10.048 66L29a10
PV

10.036 78L30a10
PV

10.008 22L31a10
PV

10.042 04L32a10
PV

#,

A~D1→p0r1!asy5APVcs@0.050 85L17a88
PV

20.057 39L18a88
PV

20.073 09L19a88
PV

20.031 00L20a88
PV

20.140 58L21a88
PV

20.056 48L24a10
PV10.051 31L25a10

PV20.015 92L26a10
PV10.008 63L27a10

PV10.028 17L28a10
PV

10.034 41L29a10
PV

10.026 01L30a10
PV

10.005 82L31a10
PV

10.029 73L32a10
PV

#,

A~D1→p0K*1!asy5APVs
2@0.019 78L17a88

PV
10.017 61L18a88

PV
20.013 79L19a88

PV
10.024 09L20a88

PV
20.052 51L21a88

PV

10.049 83L22a88
PV

10.029 59L24a10
PV20.009 96L25a10

PV10.026 53L26a10
PV10.008 63L27a10

PV

10.028 17L28a10
PV10.045 87L29a10

PV
10.072 82L30a10

PV
#,

A~D1→p1K* 0!asy5APVs
2@20.027 97L17a88

PV
20.024 90L18a88

PV
10.019 50L19a88

PV
20.034 07L20a88

PV
10.074 27L21a88

PV

20.070 48L22a88
PV

20.041 84L24a10
PV10.014 08L25a10

PV20.037 52L26a10
PV20.012 20L27a10

PV

20.039 84L28a10
PV10.032 44L29a10

PV
10.051 49L30a10

PV
#,

A~D1→p1v8!asy5APVcs@0.097 83L24a10
PV20.088 87L25a10

PV10.027 57L26a10
PV20.014 94L27a10

PV20.048 79L28a10
PV

10.059 59L29a10
PV

10.045 05L30a10
PV

10.010 07L31a10
PV

10.051 49L32a10
PV

#,

A~D1→K1v8!asy5APVs
2@0.034 25L17a88

PV
10.030 50L18a88

PV
20.023 89L19a88

PV
10.041 73L20a88

PV
20.090 96L21a88

PV

10.086 32L22a88
PV

20.051 24L24a10
PV10.017 24L25a10

PV20.045 95L26a10
PV

20.014 94L27a10
PV20.048 80L28a10

PV#,

A~Ds→K̄0K*1!asy5APVc
2@0.039 96L17a88

PV
20.006 46L18a88

PV
20.009 95L19a88

PV
10.038 26L20a88

PV
20.090 97L21a88

PV

10.000 70L22a88
PV

10.044 16L23a88
PV

20.038 04L24a10
PV10.023 83L25a10

PV20.035 02L26a10
PV

10.016 27L27a10
PV20.039 84L28a10

PV20.051 90L29a10
PV

20.012 26L30a10
PV

10.008 77L31a10
PV

20.030 03L32a10
PV

10.035 63L33a10
PV

#,

A~Ds→p0r1!asy5APVc
2@20.056 51L17a88

PV
10.009 13L18a88

PV
10.014 07L19a88

PV
20.054 11L20a88

PV
10.128 65L21a88

PV

20.000 99L22a88
PV

20.062 45L23a88
PV

20.026 90L24a10
PV10.016 85L25a10

PV20.024 76L26a10
PV

10.011 50L27a10
PV20.028 17L28a10

PV20.036 70L29a10
PV

20.008 67L30a10
PV

10.006 20L31a10
PV

20.021 24L32a10
PV

10.025 20L33a10
PV

#,

A~Ds→p0K*1!asy5APVcs@20.022 60L17a88
PV

20.013 37L18a88
PV

10.035 67L19a88
PV

10.028 51L20a88
PV

10.046 55L21a88
PV

20.050 33L22a88
PV

20.031 22L23a88
PV

10.061 86L24a10
PV20.037 53L25a10

PV10.019 46L26a10
PV

10.031 63L27a10
PV20.028 17L28a10

PV20.050 46L29a10
PV

20.038 14L30a10
PV

10.024 04L31a10
PV

10.016 99L32a10
PV

10.050 40L33a10
PV

#,
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A~Ds→p1K* 0!asy5APVcs@0.031 96L17a88
PV

10.018 91L18a88
PV

20.050 44L19a88
PV

20.040 32L20a88
PV

20.065 83L21a88
PV

10.071 17L22a88
PV

10.044 16L23a88
PV

20.087 48L24a10
PV10.053 07L25a10

PV20.027 51L26a10
PV

20.044 73L27a10
PV10.039 84L28a10

PV20.035 68L29a10
PV

20.026 97L30a10
PV

10.017 00L31a10
PV

10.012 01L32a10
PV

10.035 63L33a10
PV

#,

A~Ds→p1v8!asy5APVc
2@0.046 58L24a10

PV20.029 18L25a10
PV10.042 89L26a10

PV20.019 92L27a10
PV10.048 80L28a10

PV

20.063 56L29a10
PV

20.015 02L30a10
PV

10.010 74L31a10
PV

20.036 78L32a10
PV

10.043 65L33a10
PV

#,

A~Ds→K0K*1!asy5APVs
2@0.102 70L24a10

PV20.100 73L25a10
PV10.097 55L26a10

PV10.085 39L27a10
PV#,

A~Ds→K1v8!asy5APVcs@20.039 15L17a88
PV

20.023 15L18a88
PV

10.061 78L19a88
PV

10.049 38L20a88
PV

10.080 62L21a88
PV

20.087 17L22a88
PV

20.054 08L23a88
PV

20.107 14L24a10
PV10.065 00L25a10

PV20.033 70L26a10
PV

20.054 78L27a10
PV10.048 79L28a10

PV#.
d
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