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CP violation for B— X *I~ including long-distance effects
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We consider theC P-violating effects for theB— Xl "1~ process, including both short- and long-distance
effects. We obtain th&€ P asymmetry parameter and present its variation over the dilepton f&3556-
2821(96)04611-5

PACS numbes): 13.20.He

As is well known, the flavor-changing process Gl a o .
b—sl*I~ can serve as an excellent “window” for precisely Heﬁ=—(ﬁ) E VilAisyu.(1—y5)bly*(1—ys)l
testing the standard model or for finding new physics beyond V2 4mSy/ 7

it. This process occurs through one-loop diagrams. There are
three types of Feynman diagrams for the>sI™|~ transi- .
tion: they are electromagnetiphotonig penguin diagrams, —2imbS\2NFi2§quV(1+ vs)/9?bly*ysl ], 1)
weak Z° boson penguin diagrams, and box diagrafis2).

These diagrams produce the short-distance contributions tghere Vi=UxU;, (i=u,c,t) is the product of Cabibbo-
this process. The short-distance contribution to the branchingobayaski-MaskawaCKM) matrix elementsSy=sinéy,
ratio of the inclusive procesB— X 1~ is estimated to be where 6,y is the Weinberg angld=e, u, andq is the mo-
about 10°° at the large mass of the top qudk3]. In addi-  mentum of the lepton pair.

tion to the short-distance contributions, there are long- At the scaleu~M,y, the coefficientsA; and B, take the
distance contributions tb—sl*|~ through physical inter- forms

mediate states:

+BiSy,(1— y5)bly*(1+ ys)l

A=—2B(x)+2C(x)— SG[4C(x)+ D(x)—4/9],
b—>S(UU—,CC_)—>S|+|7. BIZ—S\%V[4C(X)+D(X)_4/9], (2)

. . wherex=m?/M?,,
The intermediate states can be vector mesons sugh as vw

J/y, and¢'. The long-distance contribution to the branch-

ing ratio of b—slI™1~ is calculated to be as large as 0 B(x)= E _X+ X 5Inx|,

[4,5]. So the long-distance effect is not negligible. In this 4lx=1 (x-1)

paper, we study the long-distance effect in @ violation

of the inclusive procesB— X 1~. Our work is different X|x/2=3 3x/2+1

from previous ones in two aspects. First, in Rgf], the C(X)ZZ x—1 + (x—1)2|nx '

authors studied th€ P violation effect of B— X "1~ by

considering only photonic penguin diagrams; here, we con- —19%3/36+ 25x2/36

sider all three types of diagranislectromagnetic, weak, and D(x)= )3

box diagramgsand include QCD corrections within the lead- (x=1)

ing logarithmic approximatiorj6]. Secondly, we consider —x*16+ 5x3/3— 3x2%+ 16x/9— 4/9

both short- and long-distance contributions. + X=1)° Inx|. (3)
The effective Hamiltonian relevant tb—sl*1~ transi-

tions is[3,6—8

Here,B(x) arises from the box diagram, a{x) from the
Z° penguin diagram, whil@®(x) is contributed from they
penguin diagram. We can see from E8). that with increas-
ing X, the contribution from the box ang penguin diagrams
will decline, while C(x) will become dominant. Then using

“Electronic address: Duds@bepc3.ihep.ac.cn the renormalization group equation to scale the effective
"Electronic address: Yangmz@bepc3.ihep.ac.cn Hamiltonian down to the order of thb quark mass, one
*Mailing address. obtains
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A A 4 4. iy Eti o162 L 8x>+5x%~7x 3x3/2—x2|
t(Xlg)_ t(X)+m _ﬁ( _f 2(X,§)_§ _1_2 (X_1)3 + (X_1)4 nx
8 116 58
O L -o0p 2 0103 1y P9 o823
+tg7(1-¢ %]S\N, 135(¢ 1~ 1g9(¢ 1)} 5)
A 4 _ In our numerical calculation, we take,=174 GeV[9]
= !l _(1— 11/2 ) ¢ .
Bi(x.¢) B‘(X)Jras(MW)[ 331 ¢ ) Furthermore, the nonresonant coefficients and B;
(i=u,c) are represented by
8 —29/2 2
+ oo (1-67299) 1 54, 4
87 ) (m? q?
Ai=Bi=a,S;9 —z.—z), (6)
where = ay(my)/ ag(My)=1.75. LTI Y mg

Moreover, the coefficient for the magnetic-moment opera-
tor is given by with [6,8]

4I 8 44r|+2 4r, 2+4ri 1+\/1—4ri/s+. 4r|<1

shhri—=-—+ 5 -— — — ,

37" 9 3 3 s s 1-\1-4r,/s

g(ri,s)= (7)
4I 8 44r|+4 4r; 2Jr4ri ; 1 4r|>1
379735 "3Vs ?arcan/—‘"ils_l s

Here a,=C_+C,/3 is the coupling for the neutrdisqq ~ wherez=qg?/mZ,
(g=u,c) four-quark operator.

In addition to the short-distance contribution, the inclu- _ 2 271¢b 2 K
sive decayB— X4 "1~ involves the long-distance contribu- Fo(2=[ViAD*+ VB2 F]f1(2) + S ViVl A(2)
tions arising fromuu and cc resonances, such ag770), +Bj(2)1*Fh+H.c}2(2) + 2S4 |ViFL|2f5(2),
w(782), J/4(3100), andy’'(3700), etc. The long-distance
contribution to the coefficient& and B in Eq. (1) can be
taken ag44,5,10,11

1672/ fy \2 a,? _
e s T

(12

and

! )
q°=MG+iM\ Ty £2(2)=2(1—2)(1+2z—22),

whereM,, and 'y, are the mass and width of the relevant
vector mesorp, w, J/, andy’, respectively.e?? is the f?z(z):6(1—z)2, (13
relevant phase between the resonant and nonresonant ampli-

tudes. The decay constafy is defined as TABLE |. CP asymmetries for some “best values” op (7).

(O[cy,clV(e)=Fye 9) AZp denotes the cases without long-distance contributioti:-
# VEm: with long-distance contributions.

We can determiné,, through the measured partial width for

S S+L
the decays of the mesons to lepton p&ir8]: (p.7m) Acp Ap
-0.48, 0.10 1.81x 104 1.60x 105
4 2 ( )
[‘(U_)|+|*):_7TMf\2/, (100  (-0.44,0.12 2.17x10°4 1.92x10°°
3 My (-0.40, 0.15 2.71x 1074 2.40x10°°
(-0.36, 0.18 3.25x10°4 2.88x10°°

with Q.= 3. For the parametea,, there is the CLEO value

- —4 —5
|a,|=0.26+0.03[13]. In this work, a, should be taken as E_g'ig’ 8'2 j';ji 18,4 3:53><X 18,5
a,=—(0.26£0.03) and ¢y=0 or a,=0.26+0.03, o ' 4 ' e

(-0.23, 0.2 4.88x10 4.31X 10

by=ml2 [11].

—4 -5
The differential decay width of the inclusive process (-0.17,0.29 5.24x10 4.63<10

-4 -5

B— X4 I~ over the dilepton mass is given ¥] (-0.11,0.32 5.78x10 . 5.11x10
(-0.04, 0.33 5.96x 10~ 5.27x107°
d 2 a ]2 (+0.03, 0.33 5.96x107* 5.27<10°°
d_zF(BHXSm_):W ans, Fo(2), (1)  (-0.12,0.32 6.14x 104 5.43< 105
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o 1 wherel’, is obtained by integrating E¢11) over the dilep-
f2(2)=4(1-2)| Uz— 5—2/2)- ton mass squaredz from zyi,=(2m/my)? t0 Zyax
=(1—mg/my)?. The CKM matrix in Eq(12) can be written

We define theCP violating asymmetry through the rate N terms of four parameters, A, p, and » in the Wolfen-

; . stein parametrizatiopl4]. There have been definite results
difference betweel andB: for X and A, which are \=0.2205-0.0018 [15] and
r—r A=0.80+0.12[16]. But for p and 5, there are no definite
Acp= b_ b (14 results. So we express th€P-violating parameter for
Fp+T'y B—X.e"e in terms ofp and 7,
|
7.618<1073

~1.799+2.991X 10 3p+45.8761+0.04847%) + 1.4718< 10" *(p°+ 5?)
for the case of including long-distance effects, and

3.1389%< 10 3y

S _
Ace= 1.702+ 3.345< 10 3p+3.607x 10" %(1+ 0.0484 %) + 1.4373< 10 *(p°+ 5°)

(16)

for the case without long-distance effects. Equatidi® and  parameter.Acp is about (1.6-5.4)x107°. It is reduced
(16) indicate thaty affects theCP asymmetry mainly, and about one order of magnitude by the resonant effects. The
p does not. main difference between the cases with and without long-

In Table I, we give the results aflcp for some “best distance effects resides in the third term of the denominator
values” of (p, ) [16]. We can see the followingdi) Without  of Egs.(15) and(16), which comes from the integration of
the long-distance effects, tf@P violating asymmetryAcp  the first term of Eq. (12), i.e., f;:;xdz{|Vc|2|(Ac(Z)

is about (1.8-6.1)x10 4, while, in Ref.[1], the relevant 2¢b . -
CP asymmetry is about 1:310 2. Our result is about 20 +Bo(2))|*f1(2)}. Without resonant contributions,

times smaller than theirs. The reason is that in REfonly ,

the photonic penguin diagram is considered. But in fact the f TAZIV 2T A(Z) + Bo(2) 1512822 =019V
Z° penguin diagram will give a big contribution to the am- Zmin {IVelAIAL2) + B2 1T 1(2)}=0.13Ve
plitude at largem,(~ 174 GeV [2]; at the same time, it does a7
not provide a largeC P-nonconserving phaséi) Including

the long-distance effects, the result of t8d®> asymmetry  while with resonant contributions,

2
3

—~Z Zmax
5 J Q2| Vol Ac(2) + Bo(2) 5" L[2F2(2)} = 152.9V, 2.
QOQ Zmin

S (18

Because the total decay width df ¢ or ' is narrow
(I'y,=88 KeV, I' ,, =277 KeV), when the dilepton mass
squaredz is near the mass squared Ifiy or ', the reso-
nance will give a big contribution. At the same time, the first
term of Eq.(12) only contributes to the decay widfh, and
I'y; it does not give a contribution to tHeP violation. So
with the resonant effects th€ P violation will be greatly
reduced.

We also calculated the distribution of tiiP? asymmetry
over the dilepton mass forp(n) taking the “preferred
value” of (—0.12,0.34)[16]:

0.05

~0.05 |

R R B R W RNy R _Fo(@-Fy(2) 19

P )+ Fu)

Z:qz/mb2
FIG. 1. The dilepton mass distribution of ti@P asymmetry ~1he resultis plotted in Fig. 1. The solid line is for the case
parameter for théB— X.e*e~ process without resonancésolid ~ Without resonances and the dotted line for the case with reso-
line) and with resonance@otted ling. nances. We can see that, in general, @R asymmetry is
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suppressed by the resonance effect, and in the region near tihés shown that whem?— 0 the long-distance effect is also
resonances, th&€P violating parameter is severely sup- very small in the case d— X " ~.
pressed. Finally, we want to point out that for the caselef u, the

Golowich and Pakvasa have discussed the long-range e p asymmetry parameter is smaller than in thee case.
fects inB—K* y [17], which are relevant to the condition of . ] ) )
the squared masg?=0. They found a small effect by re- This work was supported in part by the China National

specting gauge invariance. It should be noted that there is fjatural Science Foundation and the Grant of State Commis-
controversy between their results and ours. That is, in Fig. 15ion of Science and Technology of China.
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