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Radiative B*˜Bg and D*˜Dg decays in light-cone QCD sum rules
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The radiative decaysB* (D* )→B(D)g are investigated in the framework of light-cone QCD sum rules. The
transition amplitude and decay rates are estimated. It is shown that our results for the branching ratios ofD
meson decays are in good agreement with the existing experimental data.@S0556-2821~96!03913-6#

PACS number~s!: 13.25.Hw, 11.55.Hx, 13.25.Ft
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I. INTRODUCTION

The experimental and theoretical investigations of t
heavy-flavored hadron physics constitute one of the m
interesting research areas in particle physics. This is du
their outstanding role in the precise determination of the fu
damental parameters of the standard model, and so in de
opment of a deeper understanding of the dynamics of QC
However, the theoretical interpretation of the experimen
results is not always easy; the main problem is the influe
of long distance dynamics. Therefore, the extraction of fu
damental parameters from the data of heavy-flavored h
rons inevitably requires some information about large d
tance physics. In the literature, there exist numero
theoretical works trying to make this extraction as reliable
possible. While inclusiveB andD decays are better under
stood theoretically, exclusive decays are often much easie
measure experimentally. However, their interpretation
quires accurate estimates of the decay form factors and
other hadronic matrix elements which can only come fro
nonperturbative approaches. Among such nonperturba
approaches the QCD sum rule method@1,2# occupies an ex-
ceptional place, since it is based on the first principles
QCD, and the nonperturbative~i.e., long distance! effects are
parametrized only in terms of the vacuum condensates
these parameters are process independent.

Nowadays, QCD sum rules based on light-cone expans
are widely exploited as an alternative to the ‘‘classical QC
sum rule method.’’ The main features of this version are t
it is based on the approximate conformal nonperturbat
invariance of QCD, and instead of many vacuum condens
parameters in classical ‘‘QCD sum rules,’’ it involves a ne
universal nonperturbative parameter, namely the wave fu
tion @3#. Light-cone sum rules were successfully applied
calculating the decay amplitudeS→pg @4#, the nucleon
magnetic moment, thegpNN and grvp couplings@5#, form
factors of semileptonic and radiative decays@6–9#, the
pAg* form factor@10#, B→rg andD→rg decays@11,12#,
B*Bp andD*Dp coupling constants@13#, etc.

In this work we study the radiativeB* (D* )→B(D)g de-
cays in the framework of the light-cone QCD sum rule
Note that these decays have been previously investig
@14,15#, in the framework of a classical QCD sum ru
method.

The paper is organized as follows. In Sec. II, we deri
the sum rule which describesB* (D* )→B(D)g in the
framework of the light-cone sum rules. In the last section
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present the numerical analysis.

II. THE RADIATIVE B*˜Bg DECAY

According to the general strategy of QCD sum rules, we
will calculate the transition amplitude forB*→Bg decay, by
equating the representation of a suitable correlator functio
in hadronic and quark-gluon languages. To this aim, we con
sider the correlator

Pm~p,q!5 i E d4xeipx^0uT@ q̄~x!gmb~x!,b̄~0!ig5q~0!#u0&F
~1!

in the external electromagnetic field

Fab~x!5 i ~ebqa2eaqb!eiqx. ~2!

Hereq is the momentum, andem is the polarization vector of
the electromagnetic field. The Lorentz decomposition of the
correlator is

Pm5emnabpnqaebP. ~3!

Our main problem is to calculateP in Eq. ~3!. This problem
can be solved in the deep Euclidean space where bothp2 and
p825(p1q)2 are negative and large. In this deep Euclidean
region, the photon interacts with the heavy quark perturba
tively. The various contributions to the correlator function,
Eq. ~1!, are depicted in Fig. 1, where Figs. 1~a! and 1~b!
represent the perturbative contributions, Fig. 1~c! the quark
condensate, Figs. 1~c! and 1~d! the five-dimensional opera-
tor, Fig. 1~e! is the photon interaction with a soft quark line,
and Fig. 1~f! the three-particle high twist contributions. A
part of the calculation of these diagrams was performed in
@12,14,15#.

First, let us calculate the perturbative contributions,
namely the contributions of Figs. 1~a! and 1~b!. For the con-
tribution of Fig. 1~b! we get

P15
Qq

4p2NcE
0

1

xdxE
0

1

dy
mbx̄1max

mq
2x1mb

2x̄2p2xx̄y2p82xx̄ ȳ
,

~4!

where Nc53 is the color factor, x̄512x ,ȳ512y,
p85p1q, andQq andmq are, respectively, the charge and
the mass of the light quarks. The next step is to use th
exponential representation for the denominator:
857 © 1996 The American Physical Society
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1

Cn 5
1

~n21!! E0
`

daan21e2aC.

Then

P15
QqNc

4p2 E
0

1

xdxE
0

1

dy@mbx̄1mqx#

3E
0

`

dae2a~ma
2x1mb

2 x̄2p2x x̄y2p82x x̄ȳ!. ~5!

Application of the double Borel operatorB̂(M1
2)B̂(M2

2) on
P1 gives

P̃15
QqNc

4p2

s1s2

s11s2
E
0

1

dx
1

x̄
@mbx̄1mqx#

3expS 2
mq
2x1mb

2x̄

xx̄
~s11s2! D , ~6!

where s151/M1
2 and s251/M2

2 . In deriving Eq. ~6! we
have used the definition

B̂~M2!e2ap25d~12aM2!. ~7!

FIG. 1. Diagrams contributing to the correlation function 1
Solid lines represent quarks, wavy lines external currents.
We next consider the spectral density, which can be shown
@16# to be given by

r1~s,t !5
1

st
B̂S 1s ,s1D B̂S 1t ,s2D P̃1

s1s2
. ~8!

Using Eq.~6! and Eq.~8!, for the spectral density, we get

r1~s,t !5
QqNc

4p2 E
x0

x1
dxd~s2t !u„s2~mb1mq!

2
…

3u„t2~mb1mq!
2
…

mbx̄1mqx

x̄
, ~9!

where the integration region is determined by the inequality

sxx̄2~mb
2x̄1mq

2x!>0. ~10!

Carrying out the integration overx in ~9!, we get

r1
q~s,t !5

QqNc

4p2 d~s2t !u„s2~mb1mq!
2
…

3u„t2~mb1mq!
2
…S ~mb2mq!l~1,k,l !

1mbln
11k2 l1l~1,k,l !

11k2 l2l~1,k,l ! D , ~11!

wherek5mq
2/s,l5mb

2/s and,

l~1,k,l !5A11k21 l 222k22l22k l . ~12!

The contribution of Fig. 1~a! can be obtained by making
the following replacements in Eq.~4!: mb↔mq ,eq↔eQ ,
which yields

r2~s,t !5r1~q↔b,mq↔mb ,Qq↔Qb!. ~13!

Finally, for the perturbative part of the correlator we have

Pper5
Ncmb

4p2 E ds
1

~s2p2!~s2p82!

3F ~Qq2Qb!S 12
mb
2

s D 1Qbln
s

mb
2G . ~14!

Here we have neglected the mass of the light quark. Finally,
applying the double Borel transformation to Eq.~14! for the
bare-loop contribution, we get

P̃per5
Ncmb

M1
2M2

24p2E dsexpF2sS 1

M1
2 1

1

M2
2D G

3F ~Qa2Qb!S 12
mb
2

s D 1Qbln
s

mb
2G . ~15!

After a simple calculation, for the double Borel trans-
formed quark condensate contribution, corresponding to Fig.
1~c!, we get

.
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P̃ q̄q52Qb^q̄q&
1

M1
2M2

2 expS 2
mb
2

M1
21M2

2D . ~16!

Similarly, the result for the five-dimensional operator contr
bution, corresponding to Figs. 1~c! and 1~d!, is

P̃d5552Qb^q̄q&
1

M1
2M2

2e
2mb

2/~M1
2
1M2

2
!

3F2
m0
2mb

2

4 S 1

M1
2 1

1

M2
2D 21 1

3

m0
2

M2
2G . ~17!

Here m0
25(0.860.2) GeV2 and is defined by

gs^q̄sabGabq&5m0
2^qq̄&. For the calculation of Fig. 1~e!

corresponding to the propagation of the soft quark in th
external electromagnetic field, we use the light-cone expa
sion for nonlocal operators. After contracting theb-quark
line in Eq. ~1! we get

Pm5 i E d4x
d4k

~2p!4
ei ~p2k!x

mb
22k2

3^0uq̄~x!gm~mb1k” !g5q~0!u0&F . ~18!

Using the identity,gmgag55gmag52(1/2)srbemarb , Eq.
~18! can be rewritten as

Pm5 i E d4x
d4k

~2p!4
ei ~p2k!x

mb
22k2

$mb^0uq̄~x!gmg5qu0&F

2~1/2!emarbka^0uq̄~x!srbqu0&F%. ~19!

The leading twistt52 contribution to this matrix element in
the presence of an external electromagnetic field is defined
@4,17#

^q̄~x!srbq&F5Qq^q̄q&E
0

1

duf~u!Frb~ux!,
-

e
n-

as

^q̄~x!gmg5q&F5
1

4
emnabxnqaeb f E

0

1

dueiuqxg'~u!.

~20!

Here the functionsf(u), g'(u) are the photon wave func-
tions. The asymptotic form of the wave functionf(u) is
well known @4,18,19#:

f~u!56xu~12u!, ~21!

wherex is the magnetic susceptibility. In@7#, it is shown that
f5(Qq /gr) f rmr where f r5200 MeV andgr55.5 @1#.
The most general decomposition of the relevant matrix

elements, up to twist-four terms, involves two new invariant
functions~see, for example,@11,12#!:

^q̄~x!srbq&F5Qq^q̄q&S E
0

1

dux2f1~u!Frb~ux!

1E
0

1

duf2~u!@xbxhFrh~ux!

2xrxhFbh~ux!2x2Frb~ux!# D . ~22!

The two new invariant functions entering~22! are given
by @11#

f1~u!52
1

8
~12u!~32u!,

f2~u!52
1

4
~12u!2. ~23!

Using Eqs. ~19!, ~20!, and ~22!, for the twist t52 and
t54 contributions we get
t

P~t52!1~t54!5Qq^q̄q&F E
0

1 f~u!du

mb
22~p1uq!2

24E
0

1@f1~u!2f2~u!#du

@mb
22~p1uq!2#2 S 11

2mb
2

mb
22~p1uq!2D G1E

0

1

du
fg'~u!mb

2@mb
22~p1uq!2#2

.

~24!

In order to perform the double Borel transformation we rewrite the denominator in the following manner:

mb
22~p1uq!25mb

22~12u!p22~p1q!2u.

After Wick rotation this becomes

mb
22~p1uq!2→mb

21~12u!p21~p1q!2u.

Using the exponential representation for the denominator and performing the double Borel transformation for the twis
t52 andt54 contributions we get

P̃~t52!1~t54!5e2mb
2
~1/M1

2
11/M2

2
!SQq^q̄q&H fS M1

2

M1
21M2

2D 1

M1
21M2

2 24Ff1S M1
2

M1
21M2

2D 2f2S M1
2

M1
21M2

2D G
3S 1

M1
2M2

2 1
mb
2~M1

21M2
2!

M1
4M2

4 D J 1
mb

2
f g'S M1

2

M1
21M2

2D 1

M1
2M2

2D . ~25!
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The masses of theB* (D* ) andB(D) mesons are practically equal. So, it is natural to takeM1
25M2

2 , and introduce a new
Borel parameterM2 such thatM1

25M2
252M2. In this case the theoretical part of the sum rule becomes

P̃theor5
3mb

4p2E
mb
2

s0
dse2s~1/M2!F ~Qq2Qb!S 12

mb
2

s D 1Qbln
s

mb
2G 1

4M4 2Qb^q̄q&e2mb
2/M2S 12

m0
2mb

2

M4 1
m0
2

6M2D 1

4M4

1~e2mb
2/M2

2e2s0 /M
2
!HQq^q̄q&F 1

4M2fS 12D G24S 11
mb
2

M2D @f1~1/2!2f2~1/2!#
1

4M4 1
mb

8M4 f g'~1/2!J . ~26!
In deriving Eq.~26!, we have subtracted the continuum an
the higher resonance states contributions from the dou
spectral density. The details of this procedure are given
@13#.

To construct the sum rules we need the expression for
physical part as well. Saturating Eq.~1! by the lowest-lying
meson states, we have

Pm
phys5

^0uq̄gmbuB* &^B* uBg&^Bub̄ig5qu0&

~mB*
2

2p2!@mB
22~p1q!2#

. ~27!

These matrix elements are defined as

^0uq̄gmbuB* &5em f B*mB* , ~28!

^Bub̄ig5qu0&5
f BmB

2

mb
, ~29!
d
ble
in

the

^B* uBg&5«abrspaebqres
~g!h/mB . ~30!

Hereh is the dimensionless amplitude for the transition ma-
trix element;em andmB* are the polarization four-vector and
the mass of the vector particle, respectively;f B is the lep-
tonic decay constant andmB is the mass of the pseudoscalar
particle;qb andes

(g) are the photon momentum and the po-
larization vector. Applying the double Borel transformation
we get for the physical part of the sum rules

Pphys5 f B*mB* f BmB

h

mb

e2~m
B*
2

1mB
2

!/2M2

4M4 . ~31!

Note that the contribution of three-particle twist-four opera-
tors are very small@4#, and thus we neglect them@Fig. 1~f!#.
From Eqs.~26!–~30! we finally get the dimensionless cou-
pling constanth as
f B* f Bh5
mb

mB*mB
e~m

B*
2

1mB
2

!/2M2H 3mb

4p2E
mb
2

s0
dse2s~1/M2!F ~Qq2Qb!S 12

mb
2

s D 1Qbln
s

mb
2G

2^q̄q&e2mb
2/M2FQbS 12

m0
2mb

2

M4 1
m0
2

6M2D G
1~e2mb

2/M2
2e2s0 /M

2
!HQq^q̄q&FfS 12DM224S 11

mb
2

M2D @f1~1/2!2f2~1/2!#G1
1

2
mbfg'~1/2!J J . ~32!
III. NUMERICAL ANALYSIS OF THE SUM RULES

The main issue concerning Eq.~32! is the determination
of the dimensionless transition amplitude,h. First, we give a
summary of the parameters entering in Eq.~32!. The value of
the magnetic susceptibility of the medium, in the presence
an external field, was determined in@20,21#:

x~m251 GeV2!524.4 GeV22.

If we include the anomalous dimension of the
current q̄sabq, which is equal to (24/27) at them5mb
scale, we get

x~m25mb
2!523.4 GeV22
of

and

^q̄q&52~0.24 GeV!3.

The leptonic decay constantsf B(D) and f B* (D* ) are known
from two-point QCD sum rules:f B(D)50.14(0.17) GeV
@13,22#, f B* (D* )50.16(0.24) GeV @13,23–25#, mb54.7
GeV, mu5md50, m0

25(0.860.2) GeV2, mB* (D* )
55.324(2.007) GeV, andmB(D)55.279(1.864) GeV, and
for the continuum threshold we chooses0

B(s0
D)536 (6)

GeV2.
The valuef1(u)2f2(u) is calculated in@11#:
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f1~u!2f2~u!5
21

8
~12u2!.

From the asymptotic form of the photon wave functio
given in Eq.~21!, we get

f~1/2!53/2x. ~33!

Following @17#, we will use g'(u)51, i.e., to the leading
twist accuracy, in the numerical calculations below.

Having fixed the input parameters, it is necessary to fin
range ofM2 for which the sum rule is reliable. The lowes
value ofM2, according to the QCD sum rule ideology,
determined by requiring that the power corrections are r
sonably small. The upper bound is determined by impos
the condition that the continuum and the higher states c
tributions remain under control.

In Fig. 2 we presented the dependence ofh onM2. From
this figure it follows that the best stability region forh is
6<M2<12 GeV2, and, thus we obtain

f B0* f B0h5~20.160.02! GeV2,

f B1* f B1h5~0.260.02! GeV2. ~34!

Note that the variation of the threshold value from 36 to
GeV2 changes the result by only a few percent. We see
the sign of the amplitudes forB0 andB1 are different. This
is due to the fact that the main contributions to the theoret
part of the sum rules comes from the bare loop, and
quark condensate in the external field@last term in Eq.~32!#.
In theB0 (B1) case, both contributions have negative~posi-
tive! signs, and therefore the sign ofh is negative~positive!.
To get the dimensionless transition amplitude for the de
D*→Dg, it is sufficient to make the following replacemen
in Eq. ~32!:

FIG. 2. The dependence of the transition amplitudeh on the
square of the Borel parameterM2. The solid line corresponds to
B0 and the dashed line toB1 meson cases.
,

a

a-
g
n-

0
at

al
he

ay

mb→mc ,

f B* ~B!→ f D* ~D ! , Qb→Qc ,

s0B→s0D . ~35!

Performing similar calculations for theD*→Dg decay, we
get the best stability region forh as 2<M2<4 GeV2, and
we find

f D0* f D0h5~0.1260.02! GeV2,

f D1* f D1h5~20.0460.01! GeV2. ~36!

The signs of the transition amplitudes forD0 andD
1 meson

decays are different in theB-meson case.
Using the transition amplitudeh, one can calculate the

decay rates forB* (D* )→B(D)g, which can be tested ex-
perimentally. For the decay width we get

G~B0*→B0g!50.16 keV, ~37!

G~B1*→B1g!50.63 keV, ~38!

and

G~D0*→D0g!514.40 keV, ~39!

G~D1*→D1g!51.50 keV. ~40!

In order to compare these theoretical results with experi-
mental data forD-meson decays, we need the theoretical
values of theD*→Dp decay widths. We take these values
from @13#:

G~D*1→D0p1!53265 keV, ~41!

G~D*1→D1p0!51562 keV, ~42!

G~D* 0→D0p
0!52262 keV. ~43!

From Eqs.~39!–~43!, for the branching ratios~BR’s!, we
obtain

B~D0*→D0g!539%,

B~D1*→D1g!53%. ~44!

These results are in agreement with the CLEO data@26#,
which are

B~D0*→D0g!5~36.462.363.3!%,

B~D1*→D1g!5~1.161.461.6!%.

We see that our predictions on branching ratio are in reason
able agreement with experimental results.
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