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CP asymmetry in b—sl*|~ decay

T. M. Aliev,” D. A. Demir, E. litan, and N. K. Pak
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Using the experimental upper bound on the neutron electric dipole moment and the experimental result on
the b— sy branching ratio we have calculated & asymmetry and"?"PM(b—sI*17)/TSMb—slI*17). It
is shown that in the invariant dilepton mag$ region (mi,+0.2 Ge\?)<g?<m? the CP asymmetry is
maximal and quite detectablg50556-282(96)02211-4

PACS numbeps): 11.30.Er, 12.60.Fr, 13.20.He

[. INTRODUCTION determiningr and A we shall make use of the experimental
results onB(b—sy) [1,2], and the neutron electric dilpole
The experimental discovery of the inclusive and exclusivemoment(EDM).
decaysB— Xyy and B—K* y by the CLEO Collaboration Section Il is devoted to the derivation of basic theoretical
[1,2] has triggered a lot of theoretical and experimental acresults and Sec. Ill contains the numerical analysis of them.
tivity in the field of rare decays dB mesons. These decays
are interesting for checking the predictions of the standard Il. FORMALISM
model (SM) at the one-loop level, for determining the
Cabibbo-Kobayaski-MastawéCKM) matrix elements, and
for looking for the “new physics” beyond the SM. From the
experimental point of view another promising decay in this sind oo s
direction is the semileptonic decéy— X *1~, because this §f=me'”f( v —cotB, (1)
decay is easier to measure provided that we are given a good
electromagnetic detector and a large numbeBdiadrons. wheref=t or b, o;=+ for b and — for t, and §;=h,/h;
Theoretically this decay has been the subject of many workshereh, and h; are the diagonal elements of the matrices
in the framework of the SM3-6] and its extensions, par- T'} andI'{, respectively. Herd'" are the matrices in the
ticularly in the two Higgs doublet modéPHDM). flavor space, and determine the Yukawa coupliffigs more
b—sl*l~ decay is a flavor-changing neutral current details see[9]), and & is the relative phase between the
(FCNO) process which appears only at the one- loop level olvacuum expectations of the two Higgs scalars:
pertubation theory. The basic thing about this decay is that
the penguin diagrams provide the two key ingredients o U 5 o U .
needed for partial rate asymmetries. Being a loop diagram, it ($p1)= ECOSGG , ($2)= ES'”:B- 2
involves all three generations, each generation contributing
with different elements of the CKM matrix. At the same time The most general 2HDM reduces to the well-known
the loop effects that involve on-shell particle rescatteringHpwm's in the current literature, in certain limiting cases
provide the necessary absorbtive parts. [9]. Namely, if 5,= 8,=0, then &= &,= — cot@ (model |
It is well known that in the 2HDM, thd—sI"I™ decay  ang, if 5,= 5,5,=0, thené,= — cotB,&,=tan8 (model Ii).
receives significant contributions from the charged Higgs bo- - A5 mentioned above the penguin diagrams provide the
son (H™) exchangg7]. Another interesting pecularity of the necessary absorbtive parts for the calculation of @
2HDM is the appearence of new source<Xd? violation[8]  asymmetry. In this decay the dilepton invariant mags
in addition to the one in the SM. An interesting version of ranges from m|2 to mﬁ therefore, thes andc loops give rise

the 2HDM, the so-called most general 2HDM, which wasq honzerg absorbtive parts which are described, at the point
proposed in9], has a new source dE P violation, arising #:mb by

from the relative phase between the vacuum expectation val

ues of two Higgs scalars. a
In this work we shall work out thé&—sl|*|~ decay. In F:i4\/§GF)\uEAQSL7’MbL|+')’,u|71 3

particular we shall determine th@P asymmetryA and the

ratio r =I'2""(b—sI"17)/TM(b—sl"17) as functions of \herex,=V,.V% and the functiom, is given by

the charged Higgs mass. oTisTb

In the most general 2HDNB,9] the couplings oH* with
tg andbg is characterized by the coefficiengs defined by

In the calculation of th€&€ P asymmetry we shall consider Ag=w,[Q(MZ/ %) —Q(mZ/g?)], (4)
both the SM and 2HDM contributions simultaneously. In
where
* . . . . . 271'
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andw,, having the numerical value of 0.3864, comes fromwith x=m/M3,, y=mZ/MZ, s3,=0.2315, 7=as(My)/

the renormalization group equati¢RGE) movement of the

Wilson coefficients from theu= M,y to u=my point.

It is well known that in the range (#?,mZ) one can
create real low lying charmonium stafd9,11]. In this work

ag(my) and the explicit expressions for functions
A,B,D,E,F,G can be found irf12].
As noted in[9], & is expected to be of order of unity or

less, if the Yukawa couplings of the top quark is reasonable.

we shall discard that portion of total dilepton mass rangéNe have shown that this happens to hold also for the decay
including thed/ ¢ andy’ poles and the region between them process under consideration. Thus, without loosing general-
to avoid the addition of new hadronic uncertainities to theity, in what follows we set&/?> = 0 (all the conclusions
decay amplitude. Thus we restrict ourselves to the followingemain in force for the case ¢|?> =1 as wel).

kinematical region$6]:

region I:  4mf<g?<(mj—7),
region II: (mzw,+r)$q2$m§, (6)

wherer=0.2 Ge\ is the cutoff parameter.

Taking into account the 2HDM contributions and absorb-
in (3), the amplitude for

tive part described byF
b—sll~ can be written as

a I
Mp_si+1-=432Gr 5 —| CE(w)s bl " 7,1~

14

— _q
+Cao( )Ly, bl Ty, sl T+ 7

X Co()80,,(MpR+ML)bI* y,17|. (7)

The Wilson coefficients appearing (i) are given by

Co( ) =N CM( )+ C2HOM( )],

CEM( ) =N CEM( ) + CIPM( 1) ]+ iN A,

Cao( ) =M CioN ) + CHPM(w)]. (8)

The explicit forms ofCiSM(,u) (i=7,9,10 including leading
and next-to-leading order QCD corrections can be found in
[3,12-14. The 2HDM contributions,C?"™™(x), in the

framework of the most general 2HDM)] are given by
CTM(w) = |&)7KT7 + (Rpp+il ) K,
CE™OM( ) =|&/°Ks,
CEM(p) = &K, €
whereRy, =R &4] 1,1ip=Im[ &£; 1, and
KP=7""1G(y) - §(1—n **E(Y)],
K7=3 7" A(y)+ §(1— 7 ?*)D(y)],

—1+4s,

X
Ky=——g— 3B +TYFY),
W

Ki=— 5 2B(y) (10
0 &2 '

Using (7), the differential decay rate fdy—sl|*|1~ is ob-
tained as

dFZHDM 2
ds =N\o(1—5s)? 4 §+1 ‘C7(,u) 24+(1+2s)
X[|C§"(w)2+|Cao(m)|?]
+12R¢C7(M)C3ﬁ(u)]} (11)

wheres=g?/m3, and\ o= a’GZ/7687°.
After integrating(11) overs we get

y=7yo+4pl?+21(6lg+6a5 Ry,) + 4pR>+ 2R(6R,

+6agl +4pC3M) + 1285V CSM  + alPfy,

+2(ar9|tu+ai9Rtu)- (12)
where
FZHDM FSM
= ——, =l ——|laco, 1=1pK{,
y )\O )\t| ’}/O ()\0|)\[| ) Ag 0 tb™tb
Im[A ]
R=RypK{,, |tu=w,
t
RG] I\y[?
wWETNE 0 T (13

and the other parameters(it2) are defined by the following
integrals:

2
41
S

p=fds<1—s>2 , Rg=fds<1—s>2Re<CSM>,

I9=fds(1—s)zlm(C§,M), agl>=fds(1—s)2A9,
ag,2>:f ds(1—s)?(1+2s)A2,
arng ds(1—s)%(1+2s)Re(C3M)A,,

aig=f ds(1-s)%(1+2s)Im(C5")A,. (14)

For theCP conjugate process, the analog(@®) can be
obtained by the following replacements:

y=y(l—=—1; ly——lw). (15
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Now we introduce the parametethat measures the rela-
tive strength of 2HDM and SM rates

Y

r=—-, 16
Ysm (19
where ygy is obtained by settingg=R=0 in (12).
Next we define th&C P asymmetry by
A=L7 17
Yty

Substituting the expressions fgrand yg), into (16) we
obtain a circle for fixed values of:

(R+Rp) 2+ (1+19)?=t(r—1)+R5+13, (18)
where the parametef®, andl, are given by
2 7
ROZZ R9+ §pCSM +r0,
3 (1)
lo= Z(I9+a9 R, (19

and the quantity o= (3/2p)agl)l tu 1S introduced for later use.
On the other hand, insertion @12) and (15) into (17)
yields another circle

"2 "2 1 12 12
(R+Rp)+H(I+1g)*=—t+e 1_K +R'§+1'S, (20
where
/_IO SM ro
IO_K’ Ro= 2 Rgy+ 3pC7 +K' (21
The parameterg andt in (19) and(20) are given by
=3, (122°C3"+ 2a,9),
= 1A 22
- AS €, ( )

where Ag is the CP asymmetry in SM which is obtained
from (17) by
As=Al —r=0- (23)

Note that theCP asymmetry in SM has previously been
studied in[15]. Up to this point, our analysis df—sl*1~
decay parallels that di—svy in [9] except for the definition
of A. We shall, however, analyze the circlegi8) and(20)
in a different context by exploiting the relation between | an
neutron EDM, and experimental results lor> sy branching
ratio [1,2].

First we obtain the expression for ti&P asymmetry in
(17) by subtracting20) from (18) and solving forA:

(29)
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where

tr

T e+2ll g+ 2Rrg’ (25

Now we turn to the determination dfwith the use of the
experimental upper bound on neutron EDM. Weinberg has
proposed aCP violating six-dimensional gluonic operator
[16]

Og~ fabCGngngC,uv ) (26)
which has been shown to give very large contribution to
neutron EDM,d,, by the neutra[16] or charged 17] Higgs
exchange. Weinberg, after relating the hadronic matrix ele-
ments ofOg to d,,, predicts the value ad, on the basis of a
naive dimensional analysi$NDA). However a detailed
analysis by Bigi and Uraltsepl8] reports a different value
for d, which equals 1/30 of that of Weinberg's. The big
difference between the results of these analyses is an indica-
tion of the existence of hadronic uncertainities which are
mainly introduced by the matrix elements©f between the
nucleon states. In addition to these theoretical uncertainities,
we have also problems with experimental détathat ex-
periment yields only an upper bound on neutron EDM
These can be summarized as

A= Cypeor | 1pK (y) 10 2% (27)

dactua Cexptx dmax (28)
whereceor@ndCeypr are constants andey,{ is known to be
less than unity. Let us note theg,, is related to the theo-
retical uncertainities and,, to the experimental uncertaini-
ties. Experiment yieldsd)®=1.1x10"%%ecm [19]. The
functionK(y) in (27) is given by[16,17]

K(y)= ——=[3/2—2y+y?2+In(y)]. (29

(y— )
The common point for the analyses[iti7,1§ is the presence
of the functionK(y) which is equal to 1/3 ag— 1.

Equating (27) to (28) and defining8=1.1(Cexpt/ Ctheod
we obtain

I=pBf(y), (30
where
)
Hy) = “(’(yy) (31

Note that the constam® in (30) includes now both theo-
retical and experimental undeterminicies. We shall not make

gany assumption concerning the value @f instead we are

going to fix it through the use of the experimental results on
b— sy branching ratio.
The b— sy decay amplitude is given by

4G

M= — \/E 4 C7(/~L)

s(p") o, (MR+mgL)b(p)F~,
(32
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whereC-(u) is defined in(8). Using the experimental result
on the braching ratio ob— sy decay[1,2] we get the fol-
lowing circle:

(C3M+R)Z+12=(C5H?, (33
whereC%* is the experimental value &-(u)
0.22<|C%{<0.30. (34)

We shall determine the central values gf r, and A
which are defined in Eqg20), (16), and(17), respectively.
In doing this, we will make use of the circles in Eq48),
(20), and(33) together with Eq(30). Let us note that30) is

obtained by the use of the experimental upper bound on neu-

tron EDM [19], and (33) is constructed with the use of the
experimental data ob— sy branching ratid1].

Let us first determing3. For this purpose we consider the
circle in (33) in the limit of infinitely largeM or equiva-
lently y—0. As y—0, R—0 and through(30), | — Bf,,
where numericallyf ;= 0.2706. Then EqQ.33), which is valid
for any value ofM,,, yields

((Csx 2_(C$M)2) 1/2

fO
With (35), | in (30) has now become a completely known
function of M. Now we solve(33) for R, yielding

R= 04 |[CT

(39

(36)

where the choice of plus sign is necessary to satisfy the as- For m(=176 GeV we obtain C$M=

ymptotic condition orR.
Using (36) for R, and(30) for | we can solve Eq.18) for
r

(R+Rg)2+ (1 +19)2—R3—13

n (37

r=1+
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FIG. 1. TheMy dependence of(y) for m;=194 GeV (with
circles, m;=176 GeV (bare solid curvg andm,= 158 GeV (with
squarep

Figure 1 shows the variation d{y) in (29) with My for
the lowest, central, and the highest valuesnppermitted by
the CDF datd20]. As we see from Fig. 1 the dependence of
f(y) onm; is very weak; thus, insensitivity of results to the
variation ofy with m; is guaranteed. In what follows we
shall use therefore the central value of CDF data=176
GeV.

—0.2686. The
b—sy branching ratio has approximately 50% eridr]

which is transferred into a range of values t&gt may take,
as described by34).

With the use of the above-mentioned data we calculate
the SMCP asymmetry in(23) to be A,=0.0714% in region
I, and A;=0.0223% in region Il.

In the second column of Table | we give the values of

whoseM, dependence shall be discussed in the next sectiorg as |CS moves from its maximum value 0.30 towards

Finally, takingr from (37), R from (36) and| from (30)
we determine theCP asymmetryA in (24) whose depen-
dence onMy shall also be studied in the next section.

Ill. NUMERICAL ANALYSIS

In the numerical analysis we shall use,=10 MeV,
m.=1.5 GeV,m,=4.6 GeV. For the top quark mass we rely
on the CDF data[20] and for the W mass we use
My=80.22 GeV[19].

In calculatingl, and R;, we use the parametrization in

[19], and in doing this we take the midvalues of the quanti-

ties. For the phasé;; of the CKM matrix in[19] we shall
use the the midvalue of cég=0.47+0.32 given in[21]

which icludes a large uncertainity. A straightforward calcu-

|C3M=0.2686. We see thdi3| decreases gradually with
decreasing C%|. Moreover, it is seen that the maximum
value is|8|~0.5.

Regarding the present calculations[itv,18 as the pos-
sible candidates fotyeo IN (27), we can make certain pre-
dictions for Ceyp in (28). A simple calculation yields
Ciheor= 9.9 andcy,e.o=0.33 for Weinberg’s NDA and Bigi-
Uraltsev calculations, respectively. In the case of NDA, a
solution for ceyy exists only for [3]<~0.27 at which
d2"@ tyms out to be very close to its experimental upper
bound. On the other hand, for the Bigi-Uraltsev calculation,
being a more detailed analysis, for all value$®@§’| ranging
from |C3Y| to 0.30 there exists a solution fag, with the
help of which, through(28), one determines the value

lation shows that corresponding to the uncertainity indq . In the third column of Table | we give the values of

cod 3, Ry, andly, are uncertain by 3.87% and 23.75%,
respectively. Thus, the standard model asymméerin (23)

d3 35| C% moves from its maximum value 0.30 towards

|CSM=0.2686. We observe that fofC®{=0.3, |d2"?

is uncertain by 23.75%, and we shall use its central value imeaches its maximum value of 1,830 2% which is 1 order
our calculations. This choice is justified by the closeness obf magnitude less than the present experimental upper
l:, andRy, calculated in this way to that obtained by the usebound.

of Wolfenstein parametrizatiof22)].

In our numerical analysis we use the range of values of
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FIG. 2. TheMy dependence af in region |. Here labels 1, 2, 3,
and 4 correspond t@=0.4938,-0.4938, 0.2922, and-0.2922,

Mu(GeV)

respectively.

My from 44 GeV[19] to 10m, [16]. In Figs. 2 and 3 we
show the variation of in (37) with My, in regions | and I,
respectively. We observe that in both figuress fairly high

at low My and lands rapidly to a lower value after

M ~500 GeV.

As we see from Fig. 2, the dependence a@in the sign of
B in region | is very weak. Moreover, foMy>~1 TeV,
r attains the values~1.056, ~1.0050, ~1.020, and
for B=+0.4938, —0.4938, 0.2922,

~1.016

—0.2922, respectively.
From Fig. 3 we observe that in region Il the dependencevalues of~—0.27, ~0.40, ~—0.14, and~0.28.

of r on the sign ofB is large. Specificially, we see that, for
large M, r becomes practically independent bfy and
attains the values-1.021, ~0.998, ~1.01, and~0.9996
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FIG. 3. The same as in Fig. 2 but for region II.
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FIG. 4. TheMy dependence oA in region |. Labels have the
same meaning as in Fig. 1. Here the unlabeled solid line shows the
SM asymmetry.

corresponding to 8=+0.4938, —0.4938, 0.2922, and
—0.2922, respectively.

In Figs. 4 and 5 we show the variation Afin (24) with
My in regions | and Il, respectively. What we observe to be
common between them is the saturationG® asymmetry
A to a certain value afte,,~500 GeV.

From Fig. 4 we observe that the 2HDRIP asymmetry
A, practically for allM, is of the same order as the SM
CP asymmetryA;. Indeed, especially for largel,,, corre-
sponding to the wvalues of B, B=+0.4938,
—0.4938, 0.2922, and-0.2922, A attains the percentage

In Fig. 5 we observe that asymmetdy as compared to
the previous figure, is completey different in that it is posi-
tive and takes higher values for all valuesMf; . Actually,

209
15
g ]
R
< ]
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. 1
OKIlIII{\I’I\Vlll\Il|7|l\|\\||‘||\l1:’lT11—|
0 500 1000 1500 2000
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FIG. 5. The same as in Fig. 4 but for region Il.
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we see that for smaM, 2HDM CP asymmetry is larger

than the SMCP asymmetry by approximately 3 orders of

magnitude. For larg®,,, howeverA gets values which are

larger than SM asymmetry by 2 orders of magnitue. Indeed

for large My, corresponding to the values 08,
B=+0.4938, —0.4938, 0.2922, and-0.2922, A gets the
following percentage values~1.1, ~3.25, ~0.2, and
~1.5.

The last point to be noted about Figs. 2-5 is that negative

B gives rise to larger andA than positiveB does.

To decern &CP asymmetryA at the o significance level
with only statistical errors, the number & hadronsNg
needed to demonstrate the asymmetry is givep23}

0_2

Ne~ g5 a?

(39

Now denoting the number & hadrons to observAg, A in

I, and A in Il by N3, Ni, andNj, respectively, we get,
using the values of and A we have obtained already, the
following ratios:

Ng Ng
—~1, —~104
Ng

N (39

which clearly prove that region Il is more suitable for experi-

mental investigations oA.
In conclusion we have determined the 2HOBP asym-

T. M. ALIEV, D. A. DEMIR, E. ILTAN, AND N. K. PAK

TABLE I. Values of 8 andd2*“for different values ofCSY.

c? B di*(e—cm)
0.30 +0.4938 +1.63 1072
0.29 +0.4040 +1.3310°%
0.28 +0.2922 +9.65 10 %
0.27 +0.1015 +3.35 10 %

r, and the actual value of the neutron EDM. In doing these
we have utilized the experimental results on thessy
branching ratio, and on the upper bound of the neutron
EDM. Both r and A relax to constant values after
My~500 GeV. This saturation property of quantities shows
that if charged Higgs mass happens to be largd (TeV)
then the most general 2HDM merely shifts the SM values of
r and A to some other value which may be important for
establishing 2HDM. Boldly speaking, in the high dilepton
mass regiorfregion ll) r is closer to unity and asymmetry is
very large as compared to those in low dilepton mass region
(region ). Thus on the basis of the order of magnitude analy-
sis carried out foNg, we conclude that the high dilepton
mass region is important and appropriate for experimental
check of the quantities under concern. Regiof6llis acces-
sible to theB experiments which will be carried out with

metry A, the ratio of 2HDM decay rate to SM decay rate hadron beams in CDF, HERA, and LHC.
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