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Wide-angle elastic scattering and color randomization
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Baryon-baryon elastic scattering is considered in the independent scattering~Landshoff! mechanism. It is
suggested that for scattering at moderate energies direct and interchange quark channels contribute with equal
color coefficients because the quark color is randomized by soft gluon exchange during the hadronization
stage. With this assumption, it is shown that the ratio of cross sectionsRp̄p/pp at a c.m. angleu590° decreases
from a high energy value ofRp̄p/pp'1/2.7, down toRp̄p/pp'1/28, compatible with experimental data at
moderate energies. This sizable fall in the ratio seems to be characteristic of the Landshoff mechanism, in
which changes at the quark level have a strong effect precisely because the hadronic process occurs via
multiple quark scatterings. The effect of color randomization on the angular distribution of proton-proton
elastic scattering and the cross section ratioRnp/pp is also discussed.@S0556-2821~96!00811-9#

PACS number~s!: 13.60.Fz, 13.85.Dz
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I. INTRODUCTION

The analysis of exclusive hadronic processes within t
framework of perturbative QCD~PQCD! remains conceptu-
ally as well as computationally challenging. In the case
hadronic elastic scattering at high energy and wide c.
angle, the formalism for the treatment of the amplitude h
been developed in the kinematic region of momentum tran
fer utu much larger than the hadronic mass scales. The lo
distance dynamics of the hadronic bound state factorize fr
the short distance scattering of the constituent quarks. S
cifically, for baryon-baryon elastic scattering the amplitud
takes the factorized form@1#

A~s,t;hi !5E )
i51

4

@dx# if i~xm,i ,lm,i ,hi ;m!

3MH~ ŝi j ,lm,i ;m!, ~1!

wherei , j51,2,3,4 are the baryon labels,m,n51,2,3 are the
constituent quark labels, and

E @dx# i[E
0

1

dx1,idx2,idx3,idS 12 (
n51

3

xn,i D .
The hard scattering amplitudeMH( ŝi j ,lm,i ;m) describes the
scattering of nearly collinear constituent quarks with helic
ties lm,i . It depends on the quark invariantsŝi j but not on
the hadronic mass scales. At lowest order inas , MH is equal
to the Born amplitude with, in principle, calculable highe
order corrections. The quark distribution amplitude
f i(xm,i ,lm,i ,hi ;m) describe the three-valence quark com
ponent of the baryon wave function with helicityhi and it is
evaluated at factorization scalem25O(utu), with calculable
lnt corrections. In the single hard scattering mechanis
where all constituents scatter together in a small space-ti
region, the calculation ofMH at lowest order,O„as

5(m)…,
requires the evaluation of approximately 300 000 distin
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tree graphs for 6q→6q scattering@2#. Moreover, the inclu-
sion of higher order radiative corrections and the implemen
tation of the factorization of infrared singularities make this
approach unyielding. Alternatively, and long before the
above complications were studied in such detail, two distinc
scattering mechanisms had been considered. The first is th
quark interchange model~QIM! @3#, in which the scattering
is assumed to proceed via the exchange of a pair of quark
between the scattering hadrons. The second is the indepe
dent scattering~Landshoff! mechanism@4#, in which the
quarks from each initial hadron scatter pairwise and indepen
dently up to logarithmic radiative corrections. From the
PQCD point of view, both QIM and Landshoff-type dia-
grams originate as particular pinch singularities of the single
hard scattering diagrams, although the two sets are distinc
@5#.

The experimental studies of wide-angle elastic scattering
at moderate energies suggest that the process is main
driven by the QIM mechanism@6,7#. In particular, QIM is
consistent with the dimensional counting scaling behavior o
the elastic baryon cross section

dsBB

dt
;

1

s10
f ~u!, ~2!

its dependence on the c.m. angleu as given by the function
f (u), as well as its flavor and crossing properties manifested
by the cross section ratios such as

Rp̄p/pp~s,u!5
ds p̄p/dt

dspp/dt
. ~3!

On the other hand, the Landshoff mechanism seems to hav
negligible contribution to the elastic scattering. This fact re-
mains a puzzle since, within PQCD, independent quark sca
tering, beingO„as

3(m)… modulo radiative corrections, is an-
ticipated to contribute. Indeed, Botts@8# has studied
numerically the Landshoff mechanism with Sudakov-
resummed radiative corrections. With reasonable choices fo
the end point and infrared cutoff parameters, he has con
808 © 1996 The American Physical Society
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54 809WIDE-ANGLE ELASTIC SCATTERING AND COLOR RANDOMIZATION
cluded that Landshoff-type contributions to the cross sec
are non-negligible and must be included in the phenome
ogy of elastic scattering.

In this paper we consider the above puzzle. Specifica
we reexamine the Landshoff mechanism and study to w
extent it can account for certain features of the elastic bar
cross sections such as their angular dependence and th
tiosRp̄p/pp(s,u) andRnp/pp(s,u) in the moderate energy re
gime where measurements are available. Recent experim
at the BNL Alternate Gradient Synchrotron~AGS! @7# have
measuredRp̄p/pp'1/40 atAs53.59 GeV andu590°. This
measurement is near the beginning of the scaling regio
given by Eq. ~2!. Of course, the energy here is not hig
enough for a fully self-consistent perturbative treatment
the process in terms of independent hard scatterings. Ne
theless, in a constituent quark model,Rp̄p/pp is largely deter-
mined by the flavor flows, i.e., the number of possible ro
ings of the quarks among the participating hadrons, and
color factors arising from combining the color structure
the hard scatterings with the color singlet external hadro
Expecting this ratio to be less sensitive than the elastic c
section itself to the factorization assumptions, we comput
using the formalism of PQCD. In a sense, the treatment
sented below supplies a QCD-motivated model which re
izes the observation that elastic scattering is dominated
quark interchange. We emphasize again that order by o
in perturbation theory the diagrams contributing to the Q
and Landshoff mechanisms are topologically different as
as gluon exchange is concerned. However, the Lands
mechanism, which is considered here, does contain contr
tions in which quarks are interchanged between the sca
ing hadrons, as explained further in the following section

Our starting point is the factorized form of the elas
amplitude in the Landshoff mechanism, which we brie
review in Sec. II. In Sec. III the idea of color randomizatio
is presented and its effect on the crossing properties of
elastic amplitude is illustrated by considering a toy model
scalar quarks. The main point is that there is always s
gluon exchange among the constituent quarks in the in
and final states which cannot be factored into the hadro
wave functions and mixes the quark color. In the asympto
high energy regime, where soft radiation can be treated
turbatively, it is possible to relate the color of the quarks
the hadronization region with their color at the hard scat
ing region by computing color traces order by order inas .
But for moderate energies, where a perturbative expan
for soft gluon exchange is not self-consistent, we sugg
that the effect of soft radiation is to decorrelate the color
the constituent quarks at hadronization from the color th
have when they participate in the hard scatterings. In o
words, by the time the quarks enter the hard scattering
gion, their color has been randomized by soft gluon
change. We express this color randomization by requir
that all quark channel combinations, i.e. direct (ttt), total
interchange (uuu), and single and double interchang
(ttu, tuu), contribute with the same color coefficients wh
summed in the calculation of the elastic proton-proton a
plitude. In Sec. IV we compute thepp, p̄p, andnp elastic
amplitudes in the helicity basis and at lowest order inas for
the hard scatterings. At asymptotically high energies, we
pect color flow to be dominated by lowest order contrib
ion
ol-
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tions. This gives an asymptotic ratioRp̄p/pp
as '1/2.7 at

u5900. In the color randomization model suggested for sub-
asymptotic energies, we findRp̄p/pp

rand '1/28. The effect of
color randomization on the angular distribution of proton-
proton elastic scattering and the ratioRnp/pp is also consid-
ered. We end by discussing these results.

II. THE LANDSHOFF MECHANISM IN PQCD

The structure of the elastic amplitude via independen
quark scatterings@4# is shown in Fig. 1 forpp→pp. Only
the three-valence quark part of the proton wave function is
considered andM1,M2, andM3 represent on-shell quark-
quark scatterings. In leading twist factorization, the hard
scatteringsMm, m51,2,3, depend only on the longitudinal
quark momentaxm,iPi , that scale withAs in the proton c.m.
frame. The longitudinal momentum fractions are character
ized by both a hadronic labeli and a scattering labelm. The
kinematics of on-shellq-q scattering requires that quarks
participating in the same hard scattering have equal momen
tum fractions, i.e.,

x1,i5x1>0, x2,i5x2>0, x3,i512x12x2>0 , ~4!

for every i51,2,3,4 up toO(1/As) corrections. Dependence
on transverse momentum and hadronic mass scales resides
the hadronic wave functions.

The hard scatterings lie along the spacelike direction
hm, perpendicular to the scattering plane. This is the line o
intersection of the Lorentz contracted wave functions of the
incoming and outgoing protons. We denote bybm the posi-

FIG. 1. Proton-proton elastic scattering in the Landshoff mecha
nism and inequivalent flavor routings. The dashed lines represen
thed quarks. All momenta flow from left to right.
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810 54MICHAEL G. SOTIROPOULOS
tions of the hard scatteringsMm along thehm direction and
by b̃m their mutual transverse separations defined as

b̃15b22b3 , b̃25b12b3 , b̃35b̃22b̃1 . ~5!

The three-quark component of the proton wave function
obtained as a Fourier transform of the three-quark opera
@9#

Yabg~k1 ,k2 ;P,h!5
~A2E!1/2

Nc!
E d4y1

~2p!4
eik1•y1

d4y2
~2p!4

eik2•y2

3^0uT@ua
a~y1!ub

b~y2!dg
c~0!#uP,h&eabc ,

~6!

whereE is the energy of the fast moving proton andh its
helicity. The wave function is decomposed in terms of v
lence quark spinors with definite helicity. Defining the d
mensionless structures@10#

Mabg
~1! 5~E1E2E3!

21/2ua~k1 ,1 !ub~k2 ,2 !

3dg~P2k12k2 ,1 !,

Mabg
~2! 5~E1E2E3!

21/2ua~k1 ,2 !ub~k2 ,1 !

3dg~P2k12k2 ,1 !, ~7!

Mabg
~3! 52~E1E2E3!

21/2ua~k1 ,1 !ub~k2 ,1 !

3dg~P2k12k2 ,2 !,

whereE1 , E2 , andE3 are the energies of the twou quarks
and thed quark, respectively, we obtain the helicity decom
position of the wave function. In impact parameter (b̃-!
space and forh51 this is

Ỹabg~x1 ,x2 ,x3 ,b̃1 ,b̃2 ;h51 !

5
21/4

8Nc!
@P 123Mabg

~1! 1P 213Mabg
~2! 12T 123Mabg

~3! #, ~8!

where

T 123[
1

2
~P 1321P 231!, ~9!

andP 123[P (x1 ,x2 ,x3 ;b̃1 ,b̃2) is the proton wave function
projected along thehm direction. Its dependence on th
transverse separationsb̃m can be computed perturbatively via
soft gluon resummation and results in a Sudakov exponen
be specified below. The connection ofP to the usual light-
cone distribution amplitudef is given in perturbation theory
via

P ~x1 ,x2 ,x3 ,b̃1→0,b̃2→0;m!5 f N~m!f~x1 ,x2 ,x3 ;m!

1O„as~m!…, ~10!

where f N(m) is an overall normalization parameter:

f N~m51 GeV!5~5.260.3!31023 GeV2. ~11!
is
tor

-
-

-

t to

In the asymptotic energy limit (P as)123 becomes symmetric
upon permutation of its arguments. The asymptotic light-
cone distribution amplitude is

fas~x1 ,x2 ,x3!5120x1x2x3 . ~12!

For subasymptotic energies, model-dependentf ’s @11# are
more suitable for reproducing the overall normalization of
the exclusive process in which the proton participates. Fi-
nally, the color structure of the hadronic wave function is of
the formeabc .

The main feature of the Landshoff mechanism for elastic
scattering is that the hard subprocessMH in Eq. ~1! is ap-
proximated by the product of three quark amplitudesMm.
For qq scattering botht andu channels are available, Figs.
2~a! and 2~b!, and for q̄q there aret and s channels, Figs.
2~c! and 2~d!. Given the above classification, there are four
channel combinations that contribute topp or np elastic
scattering, namely, the direct (ttt), Fig. 3~a!, single inter-
change (tuu1permutations), Fig. 3~b!, double interchange
(tuu1permutations), and total interchange (uuu). Simi-
larly, for p̄p the four possible combinations are obtained
from the above by crossing from interchange to annihilation
channels (u→s).

The color structure of the quark scatterings can be decom
posed along a two-dimensional color flow basis (cI) $ai %

,

I51,2. Forqq→qq, we choose the basis

FIG. 2. Exchange channels for quark-quark~a! and ~b! and
antiquark-quark~c! and ~d! scattering.

FIG. 3. Soft gluon exchange and color mixing for the direct
(ttt), ~a!, and the single interchange (utt) channel,~b!, in baryon-
baryon elastic scattering. Hard gluons are not shown. Interpreted a
color graphs, these diagrams represent contributions toU222, ~a!,
andU211, ~b!.
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54 811WIDE-ANGLE ELASTIC SCATTERING AND COLOR RANDOMIZATION
~c1!$ai %
5da1a4da2a3, ~c2!$ai %

5da1a3da2a4. ~13!

At lowest order inas , the color decomposition of the direc
and interchange channels is

~Ct!$ai %
5~Tm!a3a1~Tm!a4a25A1~c1!$ai %

1A2~c2!$ai %
,

~14!
~Cu!$ai %

5~Tm!a4a1~Tm!a3a25A2~c1!$ai %
1A1~c2!$ai %

.

The color matrices Tm are normalized as tr(TmTn)
5(1/2)dmn and the color decomposition coefficients are

A152NcA25
1

2
. ~15!

For q̄q→q̄q, we choose theu↔s crossed basis

~ c̄1!$ai %
5da1a2da3a4, ~ c̄2!$ai %

5da1a3da2a4, ~16!

and the lowest order color decomposition of the direct a
annihilation channels is

~C̄t!$ai %
5~Tm!a1a3~Tm!a4a25A1~ c̄1!$ai %

1A2~ c̄2!$ai %
,

~17!
~C̄s!$ai %

5~Tm!a1a2~Tm!a3a45A2~ c̄1!$ai %
1A1~ c̄2!$ai %

,

with coefficients as in Eq.~15!.
Since the amplitudes will be given in the helicity bas

we state here the two approximations made concerning
licity. The first is that the total baryon helicity is the sum
the helicities of the valence constituents, Eqs.~7! and ~8!.
This is a consequence of leading twist factorization. Tra
verse momenta of the valence quarks are neglected rel
to the hard scaleO(utu) and the quarks are assumed to
almost collinear and moving in the direction of the pare
hadron. The second approximation is helicity conservatio
the quark amplitudesMm, m51,2,3, up toO(mq /A@ t |#)
corrections which can be neglected for light constituents
high momentum transfers. Then, the quark amplitudes
scaleless and depend only on the c.m. angleu. Because of
helicity conservation at the baryon and quark levels, the o
nonvanishing helicity baryon amplitudes are

A~11;11 !5A~22;22 !,

A~12;12 !5A~21;21 !, ~18!

A~12;21 !5A~21;12 !.

Theqq helicity Born amplitudes@12# for the t channel are

Mt~11;11 !522g2
s

t
Ct52g2

1

sin2~u/2!
Ct ,

Mt~12;12 !52g2
u

t
Ct52g2

cos2~u/2!

sin2~u/2!
Ct , ~19!

Mt~12;21 !50,

and, for theu channel,
d

,
he-
f

s-
tive
e
t
in

nd
re

ly

Mu~11;11 !522g2
s

u
Cu52g2

1

cos2~u/2!
Cu ,

Mu~12;12 !50, ~20!

Mu~12;21 !52g2
t

u
Cu52g2

sin2~u/2!

cos2~u/2!
Cu .

The q̄q t channel amplitudes are as in Eqs.~19! but with
opposite sign and the annihilation channel is thes↔u
crossed version of Eqs.~20!, i.e.,

Ms~11;11 !50,

Ms~12;12 !522g2
u

s
C̄s52g2cos2~u/2!C̄s , ~21!

Ms~12;21 !52g2
t

s
C̄s522g2sin2~u/2!C̄s .

So far, we have presented all the structures that determin
the hadronic elastic amplitude at lowest order. Before giving
its factorized form we discuss the effect of radiative correc-
tions. In the formalism of Botts and Sterman@13#, these are
divided into two sets. The first set contains gluon exchange
among quarks in the same hadron, which is factored into the
hadronic wave functions. The second set contains soft gluon
exchange among quarks from different hadrons, i.e., wave
function irreducible corrections. These are factored into the
color-mixing tensorU $aibiciai8bi8ci8%(b̃1 ,b̃2), which has the

perturbative expansion

U5)
i51

4

daiai8dbibi8dcici81O„as~1/b̃m!…. ~22!

Primed indices are the color indices of the quark lines enter-
ing the hard scatterings and unprimed are the color indices o
the quarks at hadronization, Fig. 3. Therefore, the quark am
plitudes carry primed color indices and the hadronic wave
functions unprimed ones. At lowest orderO(as

0), U, de-
notedU (0) below, simply describes the absence of soft gluon
exchange.

Radiative corrections lead to logarithmic dependence on
s/m2, t/m2, and b̃m

2 /m2, wherem is the factorization scale.
Logarithmic corrections can be resummed into exponentia
factors exp(2SI), the Sudakov suppression factors. The
Sudakov exponentSI corresponding to a certain hard scatter-
ingMm with color flow along the directionI51,2, is@14,13#

SI~Qm ,b̃m!5
8CF

9
ln~Qm /L!ln

ln~Qm /L!

ln~1/ub̃muL!
1~NL! I ,

~23!

whereQm
2 5O(xm

2 utu) is the hard scale ofMm andL is the
QCD scale parameter. In the axial gauge, the leading loga
rithmic corrections describe the perturbative evolution of the
wave function with the hard scaleQ and the nonleading
logarithmic corrections (NL)I are generated by the wave
function irreducible soft gluon exchange and depend on the
color flow I of the hard scattering.
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812 54MICHAEL G. SOTIROPOULOS
We introduce the following notation. Given color tenso
C$ai ,bi ,ci %

, i51,2,3,4, we denote by trc(C) the contraction

of the indices ofC with the color structure of the baryon
wave functions: i.e.,

trc~C![)
i51

4

(
ai ,bici

eaibiciC$ai ,bi ,ci %
. ~24!

Then the factorized form of the elastic amplitude in impa
parameter space is@13#

A~s,t;hi !5
N

stu(f E
0

1dx1dx2
x1
2x2

2x3
2 E db̃1db̃2R

~ f !

3trc~UM
1M2M3!exp~2S12S22S3!,

~25!

where

N5
p6

2~Nc! !
4 ~26!

is a numerical constant depending on the normalization co
vention for the wave function, Eq.~8!, and ( f takes into
account all the quark-scattering channel combinations. T
channel index in the quark amplitudesMm has been left im-
plicit. R( f ) is a fourth degree homogeneous polynomial o
the hadronic wave functionsP .

III. COLOR MIXING AND RANDOMIZATION

The decomposition of the color-mixing tensorU in the
basis (cI) $ai8% defined in Eq.~13! is

UIJK[trc~UcIcJcK!. ~27!

Since the color structure of the quark amplitudes factoriz
from their helicity dependence, we can readily separate t
color coefficients through which each channel combinatio
contributes to the amplitudeA in Eq. ~25! and express them
in terms of the above color-mixing tensor. For the direc
channel the color coefficient is

Bttt5trc~UCtCtCt!

5A1
3U1111A2

3U22213A1
2A2U11213A1A2

2U122,

~28!

for the single interchange it is

Bttu5trc~UCtCtCu!

5A1
2A2U1111A1A2

2U2221~A1
312A1A2

2!U112

1~A2
312A1

2A2!U122, ~29!

and for double and total interchange they are

Btuu5BttuuA1↔A2
, Buuu5BtttuA1↔A2

. ~30!

The above expressions distinguish explicitly between t
color structure of the hard scattering contained inA1 , A2 ,
t

n-

e

f

s
e
n

t

e

and the color-mixing factorsUIJK generated by soft gluon
exchange. This distinction is important for the model we
present below.

The lowest order color-mixing tensorU (0) has decompo-
sition

U111
~0!5U222

~0! 536, U112
~0!5U221

~0! 5
U222

~0!

3
, ~31!

which yields

Bttt
~0!5Buuu

~0! 5
10

3
, Bttu

~0!5Btuu
~0! 52

2

9
. ~32!

Note that the single and double interchange coefficients are
~21/15! times the direct or total interchange. Higher order in
soft gluon exchange coefficientsB(n) can be constructed
from the perturbative expansion ofU to O„as

n(1/b̃m)…. This
expansion has a clear meaning in the asymptotic region
s;utu→` where the Sudakov suppression exp(2S) forces
the hard scatterings close together, so that 1/b̃m can be
treated as a perturbative scale@13#. Botts @8#, however, finds
that the onset of asymptopia where the process is dominated
by these perturbative contributions occurs at very high ener-
gies, ln(s/s0);8, s051 GeV2. This suggests that at moder-
ate energies, where measurements are available, the Sudako
suppression becomes far less effective andU is beyond per-
turbative control. We suggest that the effect of soft gluon
exchange in this region is to decorrelate the color configura-
tions of the constituent quarks in the initial and final states
from the color configurations they have when they partic-
ipate in the hard scatterings. In other words, because of
strong color-mixing, the color indices of the quark lines, Fig.
3, have been randomized byU by the time they enter the
hard scatterings. We build this into the formalism by requir-
ing the color-mixing tensorUIJK to be totally symmetric in
the bases of Eqs.~13! and ~16! and to satisfy

U111
rand5U222

rand5U112
rand5U221

rand. ~33!

Compare this with Eq.~31! and note that the above relation
is not assumed to be valid order by order inas . It is a
statement about color flow in the nonperturbative regime.
The color randomization condition~33! yields, via Eqs.
~28!–~30!,

Bttt
rand5Buuu

rand5Bttu
rand5Btuu

rand. ~34!

This relation holds independently of the specific value of the
hard color coefficientsA1 ,A2 . It means that the color struc-
ture of the short distance subprocess becomes irrelevant for
the determination of the hadronic amplitude exactly because
it is unstable under soft gluon exchange over large space-
time scales.1 Since all channel configurations contribute with
the same color coefficients in the Landshoff mechanism, the

1Similar ideas have been suggested in the context of diffractive
deep inelastic scattering~DIS! and heavy quarkonium production in
Refs.@15,16#, respectively.
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54 813WIDE-ANGLE ELASTIC SCATTERING AND COLOR RANDOMIZATION
elastic scattering will be dominated by the interchange cha
nels as they are more numerous.

In order to demonstrate the combined effect of flav
flows and color factors without the complications of spin w
consider a toy model where the constituent quarks are s
lars. The quark Born amplitudes, Fig. 2, are

Mt5g2
1

t
~k11k3!•~k21k4!~Ct!$ai %

5g2S s2u

t D ~Ct!$ai %
,

Mu5g2
1

u
~k11k4!•~k21k3!~Cu!$ai %

5g2S s2t

u D ~Cu!$ai %
,

Ms5g2
1

s
~k12k2!•~k32k4!~C̄s!$ai %

5g2S u2t

s D ~C̄s!$ai %
.

~35!

Thepp and p̄p amplitudes are determined by simply coun
ing the available channel combinations:

Ascalar
pp 5

N

stu
trc$U@3~Mt1Mu!

3

16~Mt
21Mu

2!~Mt1Mu!#%I , ~36!

Ascalar
p̄p 5

N

stu
trc$U@3~Mt1Ms!

3

16~Mt
21Ms

2!~Mt1Ms!#%I . ~37!

The first term in Eq.~36! comes from the contributions of
Fig. 1~a! and the second from Figs. 1~b! and 1~c!. The flavor-
inequivalent reorderings of the hard scatterings have b
taken into account. The factorI contains the integrations
over momentum fractions and impact parameters as in
~25! and depends on the hadronic mass scales. Atu590°,
annihilation channels do not contribute (Ms50) and direct
and interchange channels are equal up to their respec
color structure. Then the amplitude ratio depends only on
color coefficientsB:

UA p̄p

AppU
u590°

5U 9Bttt
9Bttt19Buuu115Bttu115Btuu

U. ~38!

At asymptotically high energies, the lowest perturbative o
der coefficientsB(0) of Eqs.~32! give

Rp̄p
as ~s,u590°!5S 916D

2

5
1

3.16
. ~39!

At moderate energies, where color randomization is assum
to occur, the color coefficientsBrand, Eq. ~34!, yield

Rp̄p
rand~s,u590°!5

1

9
Rp̄p
as~s,u590°!5

1

28.4
. ~40!

Color randomization results in a smaller ratio because
interchange channels in Eq.~36! give much bigger relative
-

a-

n

q.

ve
e

-

d

e

contribution to thepp amplitude than in lowest order in
PQCD. In the next section we shall see that this feature of
Landshoff scattering persists after the inclusion of the spin of
the quarks.

IV. ELASTIC SCATTERING IN THE HELICITY BASIS

In this section we compute the baryon-baryon (pp, p̄p,
andnp) elastic amplitudes for wide-angle scattering both in
the asymptotic energy limit and for moderate energies, where
the assumption of color randomization is believed to be rel-
evant. According to Eq.~25! the elastic amplitude for given
baryon helicities is obtained by summing over all quark-
scattering channels that are allowed by helicity conservation
weighed by the appropriate wave function factorsR and
color traced after contraction with the color-mixing tensor
U. For very large momentum transferutu, the dependence of
the Sudakov exponentSI on the color flow of the corre-
sponding hard scattering enters as nonleading logarithmic
dependence ont, Eq. ~23!. It has been argued that these
nonleading logarithmic corrections can give rise to non-
trivial phase structure in the amplitude that may account for
its oscillatory behavior with energy@17,18#. In the following
we are going to neglect them because, although our mode
retains the flavor and crossing structure of PQCD, it is sug-
gested to be valid in an energy region where the perturbative
expansion of radiative corrections is not applicable. In this
case we will actually set the whole Sudakov exponent equa
to zero.

The decomposition of the hadronic state in terms of quark
helicities is given by Eq.~8!. The results are given in terms
of a generalP 123, whose explicit form is determined by
considering specific models for the proton wave function
@10,11#. The pp and p̄p amplitudes can be expressed in
terms of the following five wave function combinations:

R05P 123
4 1P 213

4 116T 123
4 1~1↔3!1~2↔3!,

R152P 123
2
P 213
2 18P 123

2
T 123

2 18P 213
2
T 123

2 1~1↔3!

1~2↔3!,

R1852P 123
2
P 312
2 12P 132

2
P 213
2 18P 213

2
T 132

2 ~41!

18P 312
2
T 123

2 1~1↔2!1~1↔3!,

R2852P 123
2
P 132
2 132T 123

2
T 132

2 1~1↔2!1~1↔3!,

R38516P 123P 132T 123T 1321~1↔2!1~1↔3!.

The additional terms generated by the permutations shown in
the above equations are because of the flavor inequivalen
relabelings of the three hard scatteringsMm. R1 contributes
to the diagram Fig. 1~a!, the threeR8’s contribute to the
diagrams Figs. 1~b! and 1~c!, andR0 contributes to all three
diagrams Figs. 1~a!–1~c!.

The pp helicity amplitudes are
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App~11;11 !52
N~8p!3

stu E
0

1dx1dx2
x1
2x2

2x3
3 E db̃1db̃2as

3~m!exp~2S12S22S3!

3FBttt~2R0!S s3t3 1
s3

u3D1Bttt~R11R181R28!S su2t3 1
st2

u3 D
1Bttu~4R0!S s3t2u1

s3

tu2D1Bttu~R11R28!S sut2 1
st

u2D G , ~42!

App~12;12 !5
N~8p!3

stu E
0

1dx1dx2
x1
2x2

2x3
3 E db̃1db̃2as

3~m!exp~2S12S22S3!

3FBttt~2R0!
u3

t3
1Bttt~R11R181R28!

s2u

t3

1Bttu~2R11R18!
s2

t2
1Bttu~R11R38!S tu1

s2

tuD G , ~43!
e

and

App~12;21 !5App~12;12 !u t↔u . ~44!

The p̄p helicity amplitudes are obtained from the abovepp
amplitudes via the following crossings:

A p̄p~11;11 !5App~12;12 !us↔u ,

A p̄p~12;12 !5App~11;11 !us↔u , ~45!

A p̄p~12;21 !5App~12;21 !us↔u .

Finally, thenp helicity amplitudes are given in the Appen-
dix.

The observables we are considering here do not depe
significantly on the specific form of the hadronic wave func
tion. Model light-cone distribution amplitudes affect the
overall normalization of the hadronic amplitudes because
t
e

nd
-

of

the asymmetric distribution of the longitudinal momentum
among the valence quarks@9,11#. Because of the permuta-
tions of the arguments in Eqs.~41!, though, the wave func-
tion model dependence of the cross section ratios and th
angular distribution is expected to be minimal@8#. Conse-
quently, to computeRp̄p/pp we use the totally symmetric
P 1235P as, and the above wave function combinations be-
come

R0554P as
4 , R1554P as

4 ,
~46!

R18560P as
4 , R285102P as

4 , R38548P as
4 .

The above forms for the wave function combinations and
Eqs. ~42!–~45! reproduce the results of Farrar and Wu in
Ref. @19# up to an overall normalization factor. The ratio
Rp̄p/pp is given in the helicity basis by
Rp̄p/pp5
uA p̄p~11;11 !u21uA p̄p~12;12 !u21uA p̄p~12;21 !u2

uApp~11;11 !u21uApp~12;12 !u21uApp~12;21 !u2
. ~47!
Using the lowest perturbative order color coefficientsB(0) in
Eq. ~32!, we obtain the result

Rp̄p/pp
as ~s,u590°!'

1

2.68
. ~48!

This result, although definitely less than unity, is much larg
than the experimental valueRp̄p/pp'1/40, measured a
As53.59 GeV@7#. For the color randomization model, w
computeRp̄p/pp using again the asymptotic wave function
of Eq. ~46!, and the color factorsBrandof Eq. ~34!. The result
is
er

s

Rp̄p/pp
rand ~s,u590°!'

1

27.7
. ~49!

Color randomization yields a ratio one order of magnitude
smaller than the asymptotic case and close in value to the
scalar quark toy model of the previous section. The corre-
sponding results fornp elastic scattering are obtained by
using the helicity amplitudes given in the Appendix:

Rnp/pp
as ~s,u590°!'0.30, Rnp/pp

rand ~s,u590°!'0.36.
~50!
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Color randomization gives slightly bigger ratio fornp/pp
elastic scattering unlike the case ofp̄p/pp. Both values of
Rnp/pp , though, are compatible with the experimental val
@20# Rnp/pp50.3460.05 measured over an energy range 3

GeV <As< 4.75 GeV.
Finally, we examine the effect of color randomization o

the angular distribution ofpp elastic scattering. To this end
we plot the differential cross section normalized atu590°
vs cosu, Fig. 4. Landshoff scattering in the asymptotic lim
yields a steeply rising angular distribution, approximately
the form (12cos2u)212. Color randomization softens thi
distribution to an approximate form (12cos2u)210. This
is to be compared with the fit to the experimental da
(12cos2u)27 given by Farrar and Wu in@19#. In all cases the
angular distribution is independent of the c.m. energy. T
color randomization distribution is in relatively good agre
ment with the experimental fit for cos(u)<0.3 but it becomes
much steeper away from the central region.

V. SUMMARY

We have considered wide-angle elastic scattering in
Landshoff mechanism and organized the calculation mak
explicit the effect of color. For scattering at moderate en
gies we have suggested a PQCD-motivated model which
alizes the observation that the elastic scattering is domina
by quark interchange among the hadrons. This is assume

FIG. 4. Angular distribution for proton-proton elastic scatterin
The data fit is from Ref.@19#.
e
10

n

it
of

ta

he
-

the
ing
r-
re-
ted
d to

occur because the color of the constituent quarks is tota
randomized by soft gluon exchange. By implementing this i
the expressions for the hadronic helicity amplitudes we o
tain a cross section ratioRp̄p/pp which is an order of magni-
tude smaller than the asymptotic value and compatible wi
the experimental measurements@6,7#. This feature of
Rp̄p/pp is because of the nature of the Landshoff mechanism
Because in this picture the elastic process occurs via ind
pendent quark scattering, a change in the relative contrib
tion between channels at the quark level has a sizable eff
in the hadronic cross section. Color randomization leads
softening of the angular distribution inpp scattering, al-
though we found that away from the central region it is sti
steeper than what experiment suggests.

On the theoretical side, the separation of gluons into ha
and soft becomes less clear away from asymptopia, beca
of the small momentum transfers involved. Moreover, con
servation of color and color randomization require to includ
components of the hadronic wave function beyond the lea
ing twist three-quark part. Another set of approximations w
made has to do with helicity conservation. In the modera
energy regime, quark mass and intrinsic transverse mome
tum corrections can be important. This is the reason why w
did not reproduce the;s210 scaling of the elastic cross sec-
tion. We considered instead observables which are less s
sitive to the specific form of the hadronic wave function o
the factorization assumptions and mainly determined by th
flavor routing of the constituent quarks. Cross section ratio
involving meson scattering, where data are also available, a
currently under study. Moreover, it would be of interest to
analyze the contribution of the Landshoff mechanism rela
tive to the QIM mechanism, as in Ref.@21#, by taking into
account color randomization.
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APPENDIX

Because of isospin symmetry the wave function for th
neutron is obtained from the corresponding one for the pr
ton via the substitutionu→2d andd→u in Eqs.~7! and~8!.
For np elastic scattering, apart from the wave function com
binations given in Eq.~42!, an additional one is needed:
namely,

R4858P 123P 213P 312T 13218P 132P 312P 213T 1231~1→2!

1~1→3!. ~A1!

Thenp helicity amplitudes are

g.
Anp~11;11 !52
N~8p!3

stu E
0

1dx1dx2
x1
2x2

2x3
3 E db̃1db̃2as

3~m!exp~2S12S22S3!

3FBttt~2R0!S s3t3 1
s3

ut2
1

s3

tu2D1Bttt~R11R181R28!
su2

t3
1BttuR18

su

t2
1Bttu~2R38!

st

u2G , ~A2!



816 54MICHAEL G. SOTIROPOULOS
Anp~12;12 !5
N~8p!3

stu E
0

1dx1dx2
x1
2x2

2x3
3 E db̃1db̃2as

3~m!exp~2S12S22S3!

3FBttt~2R0!
u3

t3
1Bttt~R11R181R28!

s2u

t3
~A3!

1Bttu~R1812R28!
s2

t2
1Bttu~R281R38!S s2tu1

t

uD G , ~A4!

and

Anp~12;21 !52
N~8p!3

stu E
0

1dx1dx2
x1
2x2

2x3
3 E db̃1db̃2as

3~m!exp~2S12S22S3!BttuR48S 2s2u2 1
s2

tu
1
u

t D . ~A5!
e
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