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Wide-angle elastic scattering and color randomization
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Baryon-baryon elastic scattering is considered in the independent scatieaimgshoff mechanism. It is
suggested that for scattering at moderate energies direct and interchange quark channels contribute with equal
color coefficients because the quark color is randomized by soft gluon exchange during the hadronization
stage. With this assumption, it is shown that the ratio of cross sed@igyg, at a c.m. anglé=90° decreases
from a high energy value oRyp/pp~1/2.7, down toRp;,,,~1/28, compatible with experimental data at
moderate energies. This sizable fall in the ratio seems to be characteristic of the Landshoff mechanism, in
which changes at the quark level have a strong effect precisely because the hadronic process occurs via
multiple quark scatterings. The effect of color randomization on the angular distribution of proton-proton
elastic scattering and the cross section r&ig,,, is also discussedS0556-282(96)00811-9

PACS numbdps): 13.60.Fz, 13.85.Dz

I. INTRODUCTION tree graphs for §— 6q scattering[2]. Moreover, the inclu-
sion of higher order radiative corrections and the implemen-
The analysis of exclusive hadronic processes within théation of the factorization of infrared singularities make this
framework of perturbative QCIOPQCD remains conceptu- approach unyielding. Alternatively, and long before the
ally as well as computationally challenging. In the case ofabove complications were studied in such detail, two distinct
hadronic elastic scattering at high energy and wide c.mscattering mechanisms had been considered. The first is the
angle, the formalism for the treatment of the amplitude hasjuark interchange modéQIM) [3], in which the scattering
been developed in the kinematic region of momentum transis assumed to proceed via the exchange of a pair of quarks
fer |t| much larger than the hadronic mass scales. The lonbetween the scattering hadrons. The second is the indepen-
distance dynamics of the hadronic bound state factorize frordent scattering(Landshofj mechanism[4], in which the
the short distance scattering of the constituent quarks. Sp&uarks from each initial hadron scatter pairwise and indepen-
cifically, for baryon-baryon elastic scattering the amplitudedently up to logarithmic radiative corrections. From the
takes the factorized forii] PQCD point of view, both QIM and Landshoff-type dia-
. grams originate as particular pinch singularities of the single
) hard scattering diagrams, although the two sets are distinct
(st hy) = iﬂl LAXT; i (Xm,i \Ami D) [5].
The experimental studies of wide-angle elastic scattering
><MH(§”- Nmi i), (1) at moderate energies suggest that the process is mainly
driven by the QIM mechanisi6,7]. In particular, QIM is
wherei,j=1,2,3,4 are the baryon labets,n=1,2,3 are the  consistent with the dimensional counting scaling behavior of

constituent quark labels, and the elastic baryon cross section
J [dx]-Efldx idXp;d%3; 0 1—23: X i do®® 1
i 0 LM A2 A ] n,ij- TN @f(e), (2)

The hard scattering amplitudéH(éij yAm,i;m) describes the
scattering of nearly collinear constituent quarks with helici-
ties ;. It depends on the quark invariarﬁ§ but not on
the hadronic mass scales. At lowest ordetin M, is equal
to the Born amplitude with, in principle, calculable higher
order corrections. The quark distribution amplitudes
®i(Xm,i Ami.hi;u) describe the three-valence quark com-
ponent of the baryon wave function with helicttly and it is
evaluated at factorization scale?=0O(|t|), with calculable  On the other hand, the Landshoff mechanism seems to have
Int corrections. In the single hard scattering mechanismnegligible contribution to the elastic scattering. This fact re-
where all constituents scatter together in a small space-timeains a puzzle since, within PQCD, independent quark scat-
region, the calculation oMy, at lowest orderO(a2(u)), tering, beingO(a3(u)) modulo radiative corrections, is an-
requires the evaluation of approximately 300 000 distincticipated to contribute. Indeed, Bottf8] has studied
numerically the Landshoff mechanism with Sudakov-
resummed radiative corrections. With reasonable choices for
*Electronic address: mgs@hep.phys.soton.ac.uk the end point and infrared cutoff parameters, he has con-

its dependence on the c.m. an@eas given by the function
f(#), as well as its flavor and crossing properties manifested
by the cross section ratios such as

doPP/dt
Roprpp(S:0) = Goprrgt &
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cluded that Landshoff-type contributions to the cross section P,
are non-negligible and must be included in the phenomenol-
ogy of elastic scattering.
In this paper we consider the above puzzle. Specifically,
we reexamine the Landshoff mechanism and study to what
extent it can account for certain features of the elastic baryon
cross sections such as their angular dependence and the ra-
tios Rpp/pp(S: ) andRp,50(S, 0) in the moderate energy re-
gime where measurements are available. Recent experiments
at the BNL Alternate Gradient SynchrotréAGS) [7] have
measureRypp,~ 1/40 aty/s=3.59 GeV andd=90°. This .
measurement is near the beginning of the scaling region as 2
given by Eqg.(2). Of course, the energy here is not high
enough for a fully self-consistent perturbative treatment of
the process in terms of independent hard scatterings. Never-
theless, in a constituent quark modety,,, is largely deter-
mined by the flavor flows, i.e., the number of possible rout-
ings of the quarks among the participating hadrons, and the
color factors arising from combining the color structure of
the hard scatterings with the color singlet external hadrons.
Expecting this ratio to be less sensitive than the elastic cross
section itself to the factorization assumptions, we compute it
using the formalism of PQCD. In a sense, the treatment pre-
sented below supplies a QCD-motivated model which real-
izes the observation that elastic scattering is dominated by
quark interchange. We emphasize again that order by order
in perturbation theory the diagrams contributing to the QIM
and Landshoff mechanisms are topologically different as fa
as gluon exchange is concerned. However, the Landsho
mechanism, which is considered here, does contain contribu- ) ) ) as
tions in which quarks are interchanged between the scatteflOns- This gives an asymptotic rati&,,,,~1/2.7 at
ing hadrons, as explained further in the following section. 0=90. In the color randomization model suggested for sub-
Our starting point is the factorized form of the elastic asymptotic energies, we finﬂ%a{,',dpp% 1/28. The effect of
amplitude in the Landshoff mechanism, which we briefly color randomization on the angular distribution of proton-
review in Sec. Il. In Sec. lll the idea of color randomization proton elastic scattering and the raiq,, is also consid-
is presented and its effect on the crossing properties of thered. We end by discussing these results.
elastic amplitude is illustrated by considering a toy model of
scalar quarkS. The main pOint |Sthat there is always SOft Il. THE LANDSHOFF MECHANISM IN PQCD
gluon exchange among the constituent quarks in the initial
and final states which cannot be factored into the hadronic The structure of the elastic amplitude via independent
wave functions and mixes the quark color. In the asymptotigjuark scattering$4] is shown in Fig. 1 fopp—pp. Only
high energy regime, where soft radiation can be treated pethe three-valence quark part of the proton wave function is
turbatively, it is possible to relate the color of the quarks atconsidered andvi*,M?, and M? represent on-shell quark-
the hadronization region with their color at the hard scatterquark scatterings. In leading twist factorization, the hard
ing region by computing color traces order by orderain scatteringsM™, m=1,2,3, depend only on the longitudinal
But for moderate energies, where a perturbative expansioquark momentx,,;P;, that scale withys in the proton c.m.
for soft gluon exchange is not self-consistent, we suggedrame. The longitudinal momentum fractions are character-
that the effect of soft radiation is to decorrelate the color ofized by both a hadronic labeland a scattering labeh. The
the constituent quarks at hadronization from the color thekinematics of on-shellj-q scattering requires that quarks
have when they participate in the hard scatterings. In otheparticipating in the same hard scattering have equal momen-
words, by the time the quarks enter the hard scattering retum fractions, i.e.,
gion, their color has been randomized by soft gluon ex-
change. We express this color randomization by requiring X1j=%1=0, Xp;=X%=0, Xgj=1—X%X;—X%,=0, (4)
that all quark channel combinations, i.e. direttt), total
interchange uu), and single and double interchangesfor everyi=1,2,3,4 up toO(1/\/s) corrections. Dependence
(ttu, tuu), contribute with the same color coefficients when on transverse momentum and hadronic mass scales resides in
summed in the calculation of the elastic proton-proton amthe hadronic wave functions.
plitude. In Sec. IV we compute thep, pp, andnp elastic The hard scatterings lie along the spacelike direction
amplitudes in the helicity basis and at lowest ordewrirfor n*, perpendicular to the scattering plane. This is the line of
the hard scatterings. At asymptotically high energies, we exintersection of the Lorentz contracted wave functions of the
pect color flow to be dominated by lowest order contribu-incoming and outgoing protons. We denotellgy the posi-

©

FIG. 1. Proton-proton elastic scattering in the Landshoff mecha-
nism and inequivalent flavor routings. The dashed lines represent
ed quarks. All momenta flow from left to right.
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tions of the hard scatteringd ™ along then* direction and k, k,
by b, their mutual transverse separations defined as a, ay
Elzbz_b3, Bzzbl_bg, ’53:’52_’51. (5) a2 9y

k2 k4

The three-quark component of the proton wave function is
obtained as a Fourier transform of the three-quark operator

[9]

i (\/EE)UZ d4y1 ik - d4y2 iKo- .
Y opy(K1,K2;Ph)= NI (271_)46' 1 yl(an-)“el 2'Y2

X (0| TLU3 (Y1) Uz(y2)d5(0)]IP,h) €apc,
(6) © G
whereE is the energy of the fast moving proton ahdts
helicity. The wave function is decomposed in terms of va- FIG- 2. Exchange channels for quark-quag and (b) and

lence quark spinors with definite helicity. Defining the di- @ntiquark-quarkc) and(d) scattering.
mensionless structur¢40]

(a) (b)

In the asymptotic energy limitf,J 1,3 becomes symmetric
Y =(EE,Es) "YU (Ky, +)Ug(k,, — upon permutation of its arguments. The asymptotic light-
Papy= (B1E2Es) ok, F)ug(kz, ) cone distribution amplitude is
Xdy(P_kl_kz,‘i‘),
Pad X1,X2,X3) = 120K 1 XoX3. (12)

= (E1E2Eg) MU (ky, —)ug(ky, +)

@By For subasymptotic energies, model-dependgist [11] are
Xd,(P—ky—ky,+), 7) more suitable for reproducing the overall normalization of
the exclusive process in which the proton participates. Fi-
u%fﬁ)y: —(E1E2E3) "YU, (Ky, +)Ug(Ky, +) nally, the color structure of the hadronic wave function is of
the forme,y..
xd,(P—ki—ksy,—), The main feature of the Landshoff mechanism for elastic

scattering is that the hard subprocéds in Eq. (1) is ap-
whereE,, E,, andEj; are the energies of the twoquarks  proximated by the product of three quark amplitudég.
and thed quark, respectively, we obtain the helicity decom- For qq scattering bottt andu channels are available, Figs.
position of the wave function. In impact parametdr-)( 2(a) and 2b), and forqq there aret ands channels, Figs.

space and foh=+ this is 2(c) and Zd). Given the above classification, there are four
_ o channel combinations that contribute pp or np elastic
Y apy(X1,X2,X3,01,05,h=+) scattering, namely, the directtf), Fig. 3a), single inter-

change fuu+ permutations), Fig. ®), double interchange

21 D @ 3 (tuu+permutations), and total interchangeu@). Simi-
:8Nc! [(P128 % apyt P 013 apyt 27123 W apyls (8) larly, for pp the four possible combinations are obtained

from the above by crossing from interchange to annihilation
where channels —s).
The color structure of the quark scatterings can be decom-
posed along a two-dimensional color flow bastﬁ)gai},

1 .
7128~ 5 (P 1a2t 7 230, © =12 Forqg—qg, we choose the basis
and 7 ,5=X1,X2,X3 ;Bl ,52) is the proton wave function e, ‘ e
projected along thep* direction. Its dependence on the U ,,,,,, o - u._. :
transverse separatiobg, can be computed perturbatively via & —-{{ —_—_—_———— ¢
soft gluon resummation and results in a Sudakov exponentto — ([ | RS EOS i
be specified below. The connection @fto the usual light- i O NEsR N
cone distribution amplitudeé is given in perturbation theory & — / R - ———¢
via 1 S
X1, X2,X3,01—0,0,—05u) = Fy(w) d(X1,X2,X35 1) @ ®
+O(as(n)), (10) FIG. 3. Soft gluon exchange and color mixing for the direct
(ttt), (@), and the single interchangett) channel,(b), in baryon-
wherefy(u) is an overall normalization parameter: baryon elastic scattering. Hard gluons are not shown. Interpreted as

color graphs, these diagrams represent contributioris,tg, (a),
fa(p=1 GeV)=(5.2-0.3)x10°2 Ge\V2.  (11)  andU,y, (b).
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(Cl){ai}: 5ala4ga2331 (CZ){ai}: 5ala35a2a4- (13 . 5S 2 1
My(++;++)=—-2¢g GCU—Zg co(012) (O
At lowest order inag, the color decomposition of the direct

and interchange channels is My(+—;+-)=0, (20

(Ct){ai}: (Tm)a3al(Tm)a4a2: Al(cl){ai}+A2(C2){ai} , ) sin2( 0/2)

t
e =202—_-C =
(14) Myt =3 =) =297 Cu=20" argm) Cu:

The qg t channel amplitudes are as in Eq49) but with
The color matrices T, are normalized as ff(,T,)  Opposite sign and the annihilation channel is the u
=(1/2)6y,, and the color decomposition coefficients are  crossed version of Eqs20), i.e.,

(Cu){ai}: (Tm)a4a1(Tm)a3a2: AZ(Cl){ai}+Al(C2){ai} .

1 Mg(++;++)=0,

A]_: _NCAZZE' (15)

u— J—
o My(+—;+ —)=—29?-C,=2g%cos(6/2)C,, (21)
For qg—qq, we choose thei—s crossed basis S

—  _ —  _ ( o
(Cl){ai} é\t’:llz:125a3a14- (CZ){ai} 5ala35a2a4a (16) M s( +——+ ) _ 292§Cs: _ 2925“,]2( 0/2)05_
and the lowest order color decomposition of the direct and )
annihilation channels is So far, we have presented all the structures that determine
the hadronic elastic amplitude at lowest order. Before giving
(C_t){a}:(Tm)a a(Tr)aa :Al(c_l){a}+A2(C_2){a} its factorized form we discuss the effect of radiative correc-
i 193 492 i i’

1 tions. In the formalism of Botts and StermpiB], these are
— (17) divided into two sets. The first set contains gluon exchange

(Coiay = (Tmaya,(Tmaga, = A2(Ci)jay + Ar(Ca)fay » among quarks in the same hadron, which is factored into the
. . ) hadronic wave functions. The second set contains soft gluon
with coefficients as in Eq(15). exchange among quarks from different hadrons, i.e., wave

Si?cte tr:‘e aﬁplimdes will be git\_/en in tr(‘je helicity basish, function irreducible corrections. These are factored into the
we state here the two approximations made concemning hes | r-mixina tensorU (B Ba). which has the
licity. The first is that the total baryon helicity is the sum of ‘N9 ~ {aibicia; ¢}(P1.b2),

the helicities of the valence constituents, E&. and (8).  Perturbative expansion

This is a consequence of leading twist factorization. Trans- 4
verse momenta of the valence quarks are neglected relative U=TT 640800 8ccr +O(ag(1b,)). (22)
to the hard scal®©(|t|) and the quarks are assumed to be TR R s

almost collinear and moving in the direction of the parent

hadron. The second approximation is helicity conservation if°rimed indices are the color indices of the quark lines enter-
the quark amplitudesV™, m=1,2,3, up toO(mq/\/W) ing the hard scatterm_gs qnd ur_lpnmed are the color indices of
corrections which can be neglected for light constituents ange quarks at hadronization, Fig. 3. Therefore, the quark am-
high momentum transfers. Then, the quark amplitudes arglitudes carry primed color indices and the hadronic wave
scaleless and depend only on the c.m. angjl@ecause of functions unprimed ones. At lowest ord@{ayg), U, de-
helicity conservation at the baryon and quark levels, the onlyotedU(® below, simply describes the absence of soft gluon

nonvanishing helicity baryon amplitudes are exchange.
Radiative corrections lead to logarithmic dependence on
A E )= A=), s/u?, t/u?, andb2/u?, wherepy is the factorization scale.
Logarithmic corrections can be resummed into exponential
A+ E )= A ), (18)  factors exptS), the Sudakov suppression factors. The
Sudakov exponerf}; corresponding to a certain hard scatter-
A+ — =)= A=+ + ). ing M™ with color flow along the directioh=1,2, is[14,13
The qq helicity Born amplitude$12] for thet channel are ~  8Ce In(Qm/A)
S1(Qm.bm) = —5~IN(Qp/A)IN——=——+(NL),,
S , 1 o In(1/]by|A)
My(+ 5+ +) == 20° C=20 oo G (23

where Q2= 0(x2t|) is the hard scale oM™ and A is the

Mi(+—14—)=2 2 s ,COS(6/2) 19 QCD scale parameter. In the axial gauge, the leading loga-
t : CAERIE sir(6/2) v rithmic corrections describe the perturbative evolution of the
wave function with the hard scal® and the nonleading
M(+—;—+)=0, logarithmic corrections (NL) are generated by the wave

function irreducible soft gluon exchange and depend on the
and, for theu channel, color flow | of the hard scattering.
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We introduce the following notation. Given color tensor and the color-mixing factord),;x generated by soft gluon
Cia b, .c;} i=1,2,3,4, we denote by {IC) the contraction exchange. This distinction is important for the model we

of the indices ofC with the color structure of the baryon Present below.

wave functions: i.e., The lowest order color-mixing tens&H® has decompo-
sition
4
tre(C)=11 2 €apcCra.bi.cy- (24) Uy
SRR URSUD=36, URSUS=—2 @D
Then the factorized form of the elastic amplitude in impact
parameter space [43] which yields
N dxgdxy [~ ~ 10 2
/ N )= — —_— /),(f)
A(s,t;hy) stuEf fo xix%x%f db,db,. 7% ng)IBfﬁfuzga B0=B0) =~ 5- (32)

Ing2pn3 _cl_2_ 3
XU (UMM M%) exp(— S5~ 5%, Note that the single and double interchange coefficients are

(25  (—1/15 times the direct or total interchange. Higher order in
soft gluon exchange coefficien®™ can be _constructed
from the perturbative expansion tf to O(a2(1/b,,)). This

6 expansion has a clear meaning in the asymptotic region

= 5T (26) s~|t|—o where the Sudakov suppression ex®y forces

(Net) the hard scatterings close together, so thdg,1¢an be
treated as a perturbative scile3]. Botts[8], however, finds
That the onset of asymptopia where the process is dominated
gy these perturbative contributions occurs at very high ener-
gies, Ing/sp))~8, sp=1 Ge\2. This suggests that at moder-
ate energies, where measurements are available, the Sudakov
suppression becomes far less effective bind beyond per-
turbative control. We suggest that the effect of soft gluon
exchange in this region is to decorrelate the color configura-

where

is a numerical constant depending on the normalization co
vention for the wave function, E¢g8), and =; takes into
account all the quark-scattering channel combinations. Th
channel index in the quark amplitud&s™ has been left im-
plicit. .%2(") is a fourth degree homogeneous polynomial of
the hadronic wave function®.

Iil. COLOR MIXING AND RANDOMIZATION tions of the constituent quarks in the initial and final states
The decomposition of the color-mixing tensur in the ~ from the color configurations they have when they partic-
basis €)' defined in Eq(13) is ipate in the hard scatterings. In other words, because of

strong color-mixing, the color indices of the quark lines, Fig.
3, have been randomized hy by the time they enter the
hard scatterings. We build this into the formalism by requir-

Since the color structure of the quark amplitudes factorizedd the color-mixing tensob) ;¢ to be totally symmetric in
from their helicity dependence, we can readily separate thEe bases of Eq$13) and(16) and to satisfy
color coefficients through which each channel combination

U k=tre(Ucicyck). (27)

contributes to the amplitudeZ in Eq. (25) and express them URT=US= U= Uy (33
in terms of the above color-mixing tensor. For the direct
channel the color coefficient is Compare this with Eq(31) and note that the above relation
is not assumed to be valid order by orderdn. It is a
By =tr.(UC:C,C,) statement about color flow in the nonperturbative regime.
3 3 ) ) The color randomization conditioi33) yields, via Egs.
=AU 111+ AU 200+ 3ATAU 1151 3A1AU 195, (28)—(30),
28
0 B B B B 9

for the single interchange it is
This relation holds independently of the specific value of the

Buu=1tre(UGCCy) hard color coefficient#\;,A,. It means that the color struc-
= A2A0U 11+ A AU ootk (A3+ 2A.A2) U ture of the.sho.rt distance subprpcess pecomes irrelevant for
Aol 1t AAgUnoot (Ar+ 280 A2) U the determination of the hadronic amplitude exactly because
+(A§+ 2A§A2)U122, (29 it is unstable under soft gluon exchange over large space-
time scales.Since all channel configurations contribute with
and for double and total interchange they are the same color coefficients in the Landshoff mechanism, the
Bruu= Bttu|Al<—»A21 Buuu= Bttt|A1<—>A2- (30

ISimilar ideas have been suggested in the context of diffractive
The above expressions distinguish explicitly between theleep inelastic scatterin@!S) and heavy quarkonium production in
color structure of the hard scattering containedAin A,, Refs.[15,16], respectively.
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elastic scattering will be dominated by the interchange chaneontribution to thepp amplitude than in lowest order in

nels as they are more numerous. PQCD. In the next section we shall see that this feature of
In order to demonstrate the combined effect of flavorLandshoff scattering persists after the inclusion of the spin of

flows and color factors without the complications of spin wethe quarks.

consider a toy model where the constituent quarks are sca-

lars. The quark Born amplitudes, Fig. 2, are
IV. ELASTIC SCATTERING IN THE HELICITY BASIS

In this section we compute the baryon-baryqp( pp,
andnp) elastic amplitudes for wide-angle scattering both in
the asymptotic energy limit and for moderate energies, where

1 s—t the assumption of color randomization is believed to be rel-
M,=0°=(ky+Kyq) - (Kp+ k3)(Cu){ai}=gz<—)(Cu){ai}, evant. According to Eq(25) the elastic amplitude for given
u u baryon helicities is obtained by summing over all quark-
scattering channels that are allowed by helicity conservation,
weighed by the appropriate wave function facto#s and
color traced after contraction with the color-mixing tensor
(35 U. For very large momentum transfgf, the dependence of
o the Sudakov exponerfs; on the color flow of the corre-
The pp andpp amplitudes are determined by simply count- sponding hard scattering enters as nonleading logarithmic
ing the available channel combinations: dependence om, Eg. (23). It has been argued that these
nonleading logarithmic corrections can give rise to non-

21 2 S—u
Mi=g ?(k1+k3)'(k2+k4)(ct){ai}=g T (Coiay

,1 LU=t} —
Ms=g g(kl_k2)'(k3_k4)(cs){ai}:g s (Cs){ai}-

op N 3 trivial phase structure in the amplitude that may account for
sgalar gt VB(Mi+ M) its oscillatory behavior with energil 7,18. In the following

we are going to neglect them because, although our model

+6(Mt2+ Mﬁ)(MtJr M) 17, (36) retains the flavor and crossing structure of PQCD, it is sug-

gested to be valid in an energy region where the perturbative
expansion of radiative corrections is not applicable. In this

_ N .
AL o EJtrc{u[3(|\/|t+ M) f(?szeerv(_\)/e will actually set the whole Sudakov exponent equal
+6(M2+M2)(M+Mg)]L7. 37) The decomposition of the hadronic state in terms of quark

helicities is given by Eq(8). The results are given in terms
of a general”;,3, whose explicit form is determined by

The first term in Eq(36) comes from the contributions of .,nsidering specific models for the proton wave function
Fig. 1(a) and the second from Figs(l) and Xc). The flavor- [10,11. The pp and pp amplitudes can be expressed in

inequivalent reorderings of the hard scatterings have beefd;ms of the following five wave function combinations:
taken into account. The factor contains the integrations

over momentum fractions and impact parameters as in Eq. B -
(25) and depends on the hadronic mass scalesfA80°, Ro=P ozt P p1at 16715t (13) +(23),
annihilation channels do not contribut®(=0) and direct
and interchange channels are equal up to their respective =22 SR R 2 R 2

. : Ty =2 g5/ 15t B 2pa T ant 875137 20t (153
color structure. Then the amplitude ratio depends only onthe ' 1237213 1207125+ 872197 Togt (123)

color coefficientsB: +(203),
PP | 9By |
7 - - (39 Ty =25 R 5 2720575 5+ 8T 51375 41
P oy |9Bt 9Byt 15B T 15Byy | 1 223510 27 5t 875197 0 (4D)

At asymptotically high energies, the lowest perturbative or- +87%1,7 o5t (152) +(13),

der coefficientB(?) of Egs.(32) give

012 1 Ry =272 PRt B2T 20 T2t (145 2) + (15 3),
as = N=| — = —

R (s, 6=90°) (16 e (39

Hy=1671937"1327 1237 132+ (12 2) + (1 3).
At moderate energies, where color randomization is assumed
to occur, the color coefficient8™", Eq. (34), yield The additional terms generated by the permutations shown in
the above equations are because of the flavor inequivalent
. relabelings of the three hard scatteriid§'. .72, contributes
):@' 40 o the diagram Fig. @), the three.2’’s contribute to the
diagrams Figs. (b) and Xc), and.7, contributes to all three
Color randomization results in a smaller ratio because theliagrams Figs. ()—1(c).
interchange channels in E(B6) give much bigger relative The pp helicity amplitudes are

1
Rip (5,6=90°)= 5 RE(s, 6=90
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N(87)3 [1dx,dx
PP+ 44 +)=— (87) f 212 §f dbydb,ad(w)exp — St— - S°)
stu  Jo X{X5X3
S st st?
Bt'[t(z'jO) t3+ +Bttt(j1+‘/ol+/)2) t3 +— u
7 3 3 7 1 su st
+Bttu(4'/‘/20) t—zﬂ‘l'az +Bttu('7gl+'/’32) TZ+GZ , (42)
N(87)°% (1dx,dx
APP(+ =+ =)= (8) f 212 §f dbydbyad(w)exp — St—S2—S3)
ol s
X Bttt(zt%)}o)t_s + Bttt(.%))l"_./&)l"’_ kﬁz)t_a
2 t 2
+Buu(2.72,+.721) 2+Bttu(ﬁ1+/)3) u tu (43

and
APP(+ == )= PP+~ + =) (44)

The pp helicity amplitudes are obtained from the abqve
amplitudes via the following crossings:

APP(H 4 )= PP+ =+ =) s

the asymmetric distribution of the longitudinal momentum
among the valence quark9,11]. Because of the permuta-
tions of the arguments in Eq&1), though, the wave func-
tion model dependence of the cross section ratios and the
angular distribution is expected to be minin&l. Conse-
quently, to computeRy;,, We use the totally symmetric

P1.3= s, @nd the above wave function combinations be-

come
APP(+ =+ =)= PP+ ) sy, (45)
B o Ro=547h  F =547
APP(+ == )= AP+ = = ) s (46)
Finally, thenp helicity amplitudes are given in the Appen- 6(1/§S, Fp= 102/)35' *%)‘52487)33'
dix.

The observables we are considering here do not depenthe above forms for the wave function combinations and
significantly on the specific form of the hadronic wave func-Eqgs. (42)—(45) reproduce the results of Farrar and Wu in
tion. Model light-cone distribution amplitudes affect the Ref. [19] up to an overall normalization factor. The ratio
overall normalization of the hadronic amplitudes because oRp is given in the helicity basis by

| ZPP(+ 44+ +) |24 | APP(+ — 4+ =) |24 | 2PP(+ —; — +)|?2
PPIPP™ | ZPP( 4 4+ )2+ | APP(+ —;+ — )|+ ] APP(+ —; — +)|? “7)

Using the lowest perturbative order color coefficieBt® in

1
Eq. (32), we obtain the result RN (s,0=909~ ==, (49

Pp/pp 277

Ras

pp,pp(s,9=90°)~

(48)  Color randomization yields a ratio one order of magnitude
smaller than the asymptotic case and close in value to the
scalar quark toy model of the previous section. The corre-

This result, although definitely less than unity, is much largersponding results fonp elastic scattering are obtained by

than the experimental valu®g,,,~1/40, measured at using the helicity amplitudes given in the Appendix:

Js=3.59 GeV[7]. For the color randomization model, we

computeRp,pp USINg again the asymptotic wave functions

of Eq. (46), and the color factorB™"of Eq. (34). The result RAp/pp(S: 0=90°)~0.30, RLapr}%p(s,6=90°)~O.36.

is (50

2.68
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T T T T occur because the color of the constituent quarks is totally
: D randomized by soft gluon exchange. By implementing this in
| the expressions for the hadronic helicity amplitudes we ob-

; / tain a cross section rati;p,, Which is an order of magni-
asymptotic - i / tude smaller than the asymptotic value and compatible with
cowr fandom. -~ / the experimental measuremenf$,7]. This feature of

! Rppipp IS because of the nature of the Landshoff mechanism.
Because in this picture the elastic process occurs via inde-
pendent quark scattering, a change in the relative contribu-
tion between channels at the quark level has a sizable effect
in the hadronic cross section. Color randomization leads to
softening of the angular distribution ipp scattering, al-
though we found that away from the central region it is still
steeper than what experiment suggests.

On the theoretical side, the separation of gluons into hard
and soft becomes less clear away from asymptopia, because
of the small momentum transfers involved. Moreover, con-
servation of color and color randomization require to include
components of the hadronic wave function beyond the lead-
ing twist three-quark part. Another set of approximations we

cos & made has to do with helicity conservation. In the moderate
energy regime, quark mass and intrinsic transverse momen-

FIG. 4. Angular distribution for proton-proton elastic scattering. tum corrections can be important. This is the reason why we
The data fit is from Ref[19]. did not reproduce the-s~ 1 scaling of the elastic cross sec-

tion. We considered instead observables which are less sen-
Color randomization gives slightly bigger ratio fop/pp  sitive to the specific form of the hadronic wave function or
elastic scattering unlike the case pp/pp. Both values of the factorization assumptions and mainly determined by the
Rnpipp. though, are compatible with the experimental valueflavor.routing of the cor)stituent quarks. Cross sectipn ratios
[20] Ry ppp=0.34*0.05 measured over an energy range 3.10nvolving meson scattering, where data are also available, are
GeV < \s< 4.75 GeV. currently under st_udy_. Moreover, it would be of interest to
Finally, we examine the effect of color randomization on analyze the contribution of the Landshoff mechanism rela-

the angular distribution opp elastic scattering. To this end tive to the QIM mechqnls_m, as in Re@1], by taking into
we plot the differential cross section normalizeddat 90° account color randomization.

vs co9), Fig. 4. Landshoff scattering in the asymptotic limit
yields a steeply rising angular distribution, approximately of
the form (1-cos'e) *% Color randomization softens this  The author would like to thank George Sterman for many
distribution to an approximate form icos¥) ‘% This  insightful discussions and suggestions.

is to be compared with the fit to the experimental data

(1—cog6)~ " given by Farrar and Wu ifiL9]. In all cases the APPENDIX

angular distribution is independent of the c.m. energy. The

color randomization distribution is in relatively good agree- Because of isospin symmetry the wave function for the
ment with the experimental fit for co®0.3 but it becomes neutron is obtained from the corresponding one for the pro-

20

[do™/dt(s,8)]/[do™ /dt(s,90%)]

T 1T 1 | T T 7T | T T 71 | T 1T 1T T ‘ T 1T

N
L
o

2 3 4 5

(=)
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much steeper away from the central region. ton via the substitution— —d andd—u in Egs.(7) and(8).
For np elastic scattering, apart from the wave function com-
V. SUMMARY binations given in Eq(42), an additional one is needed:
namely,

We have considered wide-angle elastic scattering in the
Landshoff mechanism and organized the calculation making.72, = 87,3715/ °317 130+ 8713573137 °0137 123+ (1—2)
explicit the effect of color. For scattering at moderate ener-
gies we have suggested a PQCD-motivated model which re- +(1—3). (A1)
alizes the observation that the elastic scattering is dominated
by quark interchange among the hadrons. This is assumed fdhe np helicity amplitudes are

N(8m)3 [1dxdx, [ ~ ~
AP(+ 4+ +)=— 3 —Sl-g?—
st s S s _.su St
X| Bytt(2.7%0) t_3+W+tu_2 +Bttt(<7gl+ygl+'%’)2)t_3+Bttu‘%/)lt_2+Bttu(2v%*)3)?y (A2)
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N(87)3 [1dx,dx
AP+ =+ —)= (W)f L2

- AR 3 _cl_2_ 3
stu 0 X%nggf dbldbzas(,u)exﬁ S S S )
3 2u

, U 7 B! D! S
X Bm(zk%o)t_a + Bttt(k%l+'ﬁl+'ﬁz)t_3 (A3)

2

! ! S o P Sz t
+ Bttu(v%gl‘F 2%32)1:—2 + Bttu(~ﬁ2+ ﬁa)

— 4+ —
tu u

, (A4)

and

AP+ ——+)=— (AB)

N(8m)® [1dxd¥, [ ~ —~ L o s st st
o f e 3f db;dbyad(p)expl — S~ 82— §°)Byy #4| 207 + oo+ ¢

0 X1XoX3
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