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Summation over histories for the Friedmann universe
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An explicit path-integral treatment of the Friedmann minisuperspace model with minimally coupled mass-
less scalar fields is presented. Unlike the usual approach where a semiclassical approximation is used, an exact
path integration is performefiS0556-282(96)04022-3
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. INTRODUCTION ds?= — (N?—N;N")dt?+ 2N;dx'dt+ h;;dx'dx!, (2.1)

Feynman’s summation over histories, or path integrationyhere the three-metric is denoted by (i,j=1,2,3). With
has commonly been employdd—5] to quantize gravity Eq. (2.1, the gravitational actiori1.2) can be written as
most especially in minisuperspace models where all degrees
of freedom are “frozen” except the one selected to be quan-
tized[2—6]. To evaluate the path integral, however, various
authors either reduce the path integral to its corresponding
differential equatiori2,3], or apply a semiclassical approxi- Where terms corresponding to total derivatives have been
mation[3—5] and, consequently, no explicit path integration dropped[6]. Here,h=det(;), ®R is the scalar curvature
is performed. In this paper, we evaluate the Friedmanrfonstructed fronh;;, and
minisuperspace model with minimally coupled massless sca-

sg:(lllene)f (KijKT=K2+CR)NVhd*x, (2.2

lar fields by directly path integrating the system from which Kij=(1/2N)[ = (ohij/dt) + Ni;j+Nj;i],  (2.39
a closed form for the propagator is obtained. i
In the path-integral approach to quantize gravity, one K=h"Kjj, (2.30

evaluates the propagator of the form where the semicolon denotes covariant differentiation based

on the three-metrity;; .
K=J’ exp{(i/4)S}D[g,,]D[ ¢], (1.1 Let us now consider a homogeneous, isotropic, closed
universe with a metric of the form

whereg,,, is the spacetime metric, angla scalar field. The d?= —dt?+a%(t)dQ2 (2.4
action, S=Sy+S,,, for the system we will consider here ’ '
consists of the gravitational part given by wherea(t) is the time-varying radius and 5= dx'dx!
(1,j=1,2,3), forQ?j a metric of a three-sphere of unit ra-
Sg=(1/167rG)f R\/—_gd“x (1.2 dius. With Eq.(2.4) the gravitational actiori2.2) becomes
and the action for the matter fields of the form 592(3”/4G)J [—a(da/dt)*+a]dt. (2.9

, In this minisuperspace modgd] described by Eq(2.5), we
Sm:f %[gw,((?“gb)(a ¢)—m?¢?]—gd'x. (L3 have frozen all degrees of freedom except the time-varying
parts like the spherical radiws(t), and the integral of the
Our task, therefore, is to evaluate Ed.1) given Egs. volume of the Friedmann universe given by-%a®, as well
(1.2 and(1.3). In Sec. I, we briefly discuss the specific form as ¥)R=6/a?, have been used.
of the action when we consider the Friedmann universe, and, The action for the scalar field..3), on the other hand, for
in Sec. lll, an explicit path-integral calculation will be car- this Friedmann minisuperspace model becomes
ried out for the case where the scalar fields are massless. The
propagator for a Friedmann universe coupled to a scalar field 5 2 2,2 3
is then obtained. Section IV contains the conclusions. Sm=1 J [—(dg/dt)>*—m?p°la(t)’dt.  (2.6)

Note that, having frozen all degrees of freedom except the
time-dependent parts, we haveé'$)=0, in Eq. (1.3) and
with the factora(t)® in Eq. (2.6), which comes from the

In order to get a suitable form for the gravitational actionvolume integral of the Friedmann universe, the matter field
(1.2), we note that a spacetime metric may be written locallydoes not completely decouple from the gravitational part.
in the form With Egs. (2.5 and(2.6), the total action becomes

Il. THE ACTION FOR THE FRIEDMANN UNIVERSE
WITH SCALAR FIELDS
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s:f{(sw/4e)[—a(da/dt)2+a] K(¢”,¢’)=J exp[(i/h)f {—7%a?(d¢/dr)?
+ [ — (dp/dt)?>— mPp?]a(t)3}dt. 2.
=~ (dgldy’~m’¢Ja(t)’) (2.7 I 34
To facilitate the path integration of E¢l.1) for the action
(2.7), we introduce a rescaled tinter defined by At this stage, an exact path-integral treatment will be done
_ for the case wheren=0. Using Feynman’s prescription, we
dr=dva(t), 2.8 divide the time into N  subintervals: ie.,
which allows us to write Eq(2.7) as 7'—7')IN=g;=7—7_;, and defining a;=a(r),
¢J: ¢(TJ), and A¢]: d)]_ (ﬁj,l for 1= 1,...,N, Eq (34)
becomes
S= f {—3u(da/dr)?+ 3 ua®— m?a’(d¢/dr)?
N
—m’m2a*¢?ldr, (2.9 K(¢",¢')= lim f 11 exp{ —i m2al(A )% hie;}
N— o =1

where u=6m/4G. We note that the rescaling of the form N
(2.8) was also used by the authors of REB] [e.g. Eq. A2

(5.16]. The case discussed in REB], however, has an ac- lejl [_Waj/'ﬁsj]llzjﬂl d(¢)), (3.9
tion where the matter fields completely decouple, or sepa-

rate, from the gravitational part and, hence, differs from OURyherea?=(a;a;_,), and we defined|[ ¢] with normaliza-
case. With Eq(2.9), we shall now evaluate the path integral tjon factors as

(1.2) in the next section.

N—-1

N N—-1
Ill. SUMMATION OVER HISTORIES D[ ¢]= lim _]_[1 [—wéf/iﬁsj]l’zﬂl d(¢;). (3.6
=

N—oo) =
Using Eq.(2.9), the path integra{1.1) now becomes
If we next introduce a new time variable given by

K(a”,g/)”;a’,(ﬁ’):f ex;{(i/ﬁ)f{—%,u(da/dr)2

+iua’— ma?(d¢ldr)?

o= —¢;la;, (3.7

Eq. (3.5 can be written as

—m’m2a*¢?ldr|D[a]D[ ¢]. (3.1)
N
In Eq. (3.1), we haveD[a] instead ofD[g,,] since quanti- K(¢", ¢ )=1lm | T explim®(A¢))?to;}
zation has been restricted to the time-varyend) having N 1=1
frozen the other degrees of freedom. TKéa",¢";a’,¢") N N-1
gives the probability amplitude for the variablasand ¢ to % H [W/iﬁO"]lIZH d( ). (3.9
have values o&', ¢’ at time 7, anda”, ¢" at time . This =1 Yo

propagator may be used to study the quantum evolution of

the system where the wave function at tirdeis obtained Equation(3.8) for the path integration ovep, where—o<g¢
from the relation <+, is analogous to the time-sliced propagator for a free
particle[8] evolving in o time and can then be easily evalu-
ated with the result

‘I,(a.//,(ﬁ//):JA K(a”,(ﬁ”;a,,(ﬁ,)\l,(a,,(ﬁ’)d[a’,(ﬁ’].

(3.2
+ oo
Note that the integral in Ed3.2) may be carried out given a K(¢" ¢')= (1/277)f dp explip(¢”— ')
choice of the initial wave functiof’(a’,¢'). For example, -
an initial wave function may be chosen to be a Gaussian —i(p2/4772)ﬁa'} (3.9

wave packef7] or, alternatively, the no-boundary proposal
of Ref. [3] may be adopted.

Let us now proceed to evaluate the path integal) by
writing it as

whereo=Z;0;. We note from Eq(3.7) that o contains the
variablea and this term in the exponential must be included
when path integration over tteevariable is carried out. With
Eq. (3.9, Eq. (3.3 becomes
K(a”,¢>”:a’.¢’)=f eXp[(i/ﬁ)f {—zun(da/dr)?

+3ipa’ldr|K(¢",¢")D[a], (3.3 K(a",¢";a’,¢")=(1/2m) Jf:dp exdip(¢”"—¢')]

where the integral ove involves the expression xK(a",a"), (3.10
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where thea-dependent part{(a”,a’), in time-sliced form  Equation(3.11) is a one-dimensional path integral over the

appears as variable where we defined th&[a], with normalization fac-
tors as
N
K(a”,a')= lim f IT expl[—in(Aa))?/2he;] N N-1
N—eed I Dlal= lim [] [~ w/2mitie;)2]] d(a). (3.12
N—oo J=1 =1

+[ipale l2h]+[ip%hel4m®al]}
If we allow the time-varying radiua to have the range€a
N N—1 <o, we can evaluate Eq3.11) by using results from path
% — u2mite 1211 dea). (3.1 integration in spherical polar coordinates where the radial
lel [=piomite,] lel (8y). (313 path integral has the forif®]

f exp[(i/ﬁ)f [%m'rz—(vz—%)/Zmrz—%mwzrz]dr}D[r]=—i(r’r”)1’2mw csdwr)exd (1/27)imw(r'2+r"?)cot( wT)]

Xl [—imor'r” csdw)/i] (3.13

for Re(v)>—1. Equation(3.11) when written in the unsliced-time foritand takingr— —7) appears as

K(a"a)= f eXp[(i/ﬁ) J [3ua’—(v*=3)/2ua’~ ;po’a’ldr Dlal, 314

which is identical to the left-hand side of E@.13 wherev=1[1+ (3p?%42/wG)]Y? andw=1. Hence the path integral over
the variablea with the help of Eq(3.13 yields the result

K(a",a')=—i(a'a")*u csd r)exd (1/2%)iuw(a’2+a"?)cot(7)]I [ —iua’a” csd 7)/h]. (3.15
An alternative form for Eq(3.15 can be obtained using the relation

[1% sin(7)]expl(i/24)(p'2+ p"?)cot )} [ p’p" csd 7)/ih]

=27~ (D (! p"yY exp{—(1/2ﬁ)(p’2+p”2)}n§o {[NYT(n+ v+ 1)L p X)L (p"2h)exd —i 7(2n+ v+ )]},
(3.16

where L (x) are the generalized Laguerre polynomials, B(¢,a)=(1\2mexpipd)Ry(Vua).  (3.20
which allows us to write Eq(3.15 as
The Friedmann universe with massless scalar fields, there-

K(a”,a’)=2 Ru(p )Ry(p"Yexd —i(2n+v+1)7], fo_re_, provides an example of an exactly path-integrable
n=0 minisuperspace model.

(3.17
Wherep: \/ﬁa=(617/4G)1’2a, and IV. CONCLUSIONS
_ In this paper, a path-integral treatment of the Friedmann
— 2v 1/4\/— v+1/2
Rai(p) = (uh =) Vanl/T(n+ v+ 1)p minisuperspace model with scalar fields was presented. The
X exp( — p22h)L2(p%Hh). (3.19 treatment differs from those normally found in the literature

where a semiclassical approximation is employ@d5s|, or
With Eq.(3.17), we arrive at a closed form for the full propa- the corresponding differential equation of the path integral is
gator, Eq.(3.1) or (3.10, given by resorted t0[2,3,6 when handling the Friedmann universe

with matter fields. Moreover, the present approach also dif-

® 4w fers from the one found for example in R3] in two other
K(@",¢"a',¢')= Z J dp B(¢",a")B(¢",a")* ways: (a) We did not use a Euclidean action for gravity, but

n=0 o= employed instead a Minkowski signature action as advocated

xexd —i(2n+v+1)7], (3.19 in Ref. [4]; and (b) the model discussed here has a scalar

field that does not completely separate from the gravitational
with v=31[1+ (3p?4£%/ #G)]Y? and from Eq(2.8), 7=[dt/  part.
a(t), and where We also note that since an integral equation such as Eq.
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(3.2 includes a boundary condition, it appears to be moregration can also be carried ditl]. One hopes that the tech-

powerful than the differential equation, i.e., the Wheeler-niques developed to path integrate relativistic particles in
DeWitt equation, which arises from the constraints in thecurved spacetime would also be useful in solving other
canonical quantization approach. General investigations ominisuperspace models. In particular, the path-integral treat-

the relation between the path-integral approach and thghent of the Friedmann universe with+#0 for the scalar
Wheeler-DeWitt equation, however, has been mgi@0l  field is currently under investigation.

and a further examination of this connection will be ad-
dressed elsewhere.

Lastly, exact path integration of the variables to be quan-
tized was made possible in this paper by taking advantage of
its similarity to the path-integral formalism for quantum rela- A research grant provided by the University of the Phil-
tivistic particles in curved spacetime where exact path inteippines is gratefully acknowledged.
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