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Summation over histories for the Friedmann universe
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An explicit path-integral treatment of the Friedmann minisuperspace model with minimally coupled mass-
less scalar fields is presented. Unlike the usual approach where a semiclassical approximation is used, an ex
path integration is performed.@S0556-2821~96!04022-2#
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I. INTRODUCTION

Feynman’s summation over histories, or path integratio
has commonly been employed@1–5# to quantize gravity
most especially in minisuperspace models where all degr
of freedom are ‘‘frozen’’ except the one selected to be qua
tized @2–6#. To evaluate the path integral, however, variou
authors either reduce the path integral to its correspond
differential equation@2,3#, or apply a semiclassical approxi-
mation@3–5# and, consequently, no explicit path integratio
is performed. In this paper, we evaluate the Friedma
minisuperspace model with minimally coupled massless s
lar fields by directly path integrating the system from whic
a closed form for the propagator is obtained.

In the path-integral approach to quantize gravity, on
evaluates the propagator of the form

K5E exp$~ i /\!S%D@gmn#D@f#, ~1.1!

wheregmn is the spacetime metric, andf a scalar field. The
action, S5Sg1Sm , for the system we will consider here
consists of the gravitational part given by

Sg5~1/16pG!E RA2gd4x ~1.2!

and the action for the matter fields of the form

Sm5E 1
2 @gmn~]mf!~]nf!2m2f2#A2gd4x. ~1.3!

Our task, therefore, is to evaluate Eq.~1.1! given Eqs.
~1.2! and~1.3!. In Sec. II, we briefly discuss the specific form
of the action when we consider the Friedmann universe, a
in Sec. III, an explicit path-integral calculation will be car
ried out for the case where the scalar fields are massless.
propagator for a Friedmann universe coupled to a scalar fi
is then obtained. Section IV contains the conclusions.

II. THE ACTION FOR THE FRIEDMANN UNIVERSE
WITH SCALAR FIELDS

In order to get a suitable form for the gravitational actio
~1.2!, we note that a spacetime metric may be written loca
in the form
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ds252~N22NiN
i !dt212Nidx

idt1hi j dx
idxj , ~2.1!

where the three-metric is denoted byhi j ( i , j51,2,3). With
Eq. ~2.1!, the gravitational action~1.2! can be written as

Sg5~1/16pG!E ~Ki jK
i j2K21 ~3!R!NAhd4x, ~2.2!

where terms corresponding to total derivatives have be
dropped@6#. Here,h5det(hi j ),

(3)R is the scalar curvature
constructed fromhi j , and

Ki j5~1/2N!@2~]hi j /]t !1Ni ; j1Nj ; i #, ~2.3a!

K5hi j Ki j , ~2.3b!

where the semicolon denotes covariant differentiation ba
on the three-metrichi j .

Let us now consider a homogeneous, isotropic, clos
universe with a metric of the form

ds252dt21a2~ t !dV3
2, ~2.4!

wherea(t) is the time-varying radius and,dV 3
25V i j

0dxidxj

( i , j51,2,3), forV i j
0 a metric of a three-sphere of unit ra

dius. With Eq.~2.4! the gravitational action~2.2! becomes

Sg5~3p/4G!E @2a~da/dt!21a#dt. ~2.5!

In this minisuperspace model@6# described by Eq.~2.5!, we
have frozen all degrees of freedom except the time-vary
parts like the spherical radiusa(t), and the integral of the
volume of the Friedmann universe given by 2p2a3, as well
as (3)R56/a2, have been used.

The action for the scalar field~1.3!, on the other hand, for
this Friedmann minisuperspace model becomes

Sm5p2E @2~df/dt!22m2f2#a~ t !3dt. ~2.6!

Note that, having frozen all degrees of freedom except
time-dependent parts, we have (] if)50, in Eq. ~1.3! and
with the factora(t)3 in Eq. ~2.6!, which comes from the
volume integral of the Friedmann universe, the matter fie
does not completely decouple from the gravitational part.

With Eqs.~2.5! and ~2.6!, the total action becomes
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S5E $~3p/4G!@2a~da/dt!21a#

1p2@2~df/dt!22m2f2#a~ t !3%dt. ~2.7!

To facilitate the path integration of Eq.~1.1! for the action
~2.7!, we introduce a rescaled timedt defined by

dt5dt/a~ t !, ~2.8!

which allows us to write Eq.~2.7! as

S5E $2 1
2m~da/dt!21 1

2ma22p2a2~df/dt!2

2p2m2a4f2%dt, ~2.9!

wherem56p/4G. We note that the rescaling of the form
~2.8! was also used by the authors of Ref.@3# @e.g. Eq.
~5.16!#. The case discussed in Ref.@3#, however, has an ac-
tion where the matter fields completely decouple, or se
rate, from the gravitational part and, hence, differs from o
case. With Eq.~2.9!, we shall now evaluate the path integr
~1.1! in the next section.

III. SUMMATION OVER HISTORIES

Using Eq.~2.9!, the path integral~1.1! now becomes

K~a9,f9;a8,f8!5E expF ~ i /\!E $2 1
2m~da/dt!2

1 1
2ma22p2a2~df/dt!2

2p2m2a4f2%dt GD@a#D@f#. ~3.1!

In Eq. ~3.1!, we haveD[a] instead ofD[gmn] since quanti-
zation has been restricted to the time-varyinga(t) having
frozen the other degrees of freedom. TheK(a9,f9;a8,f8)
gives the probability amplitude for the variablesa andf to
have values ofa8, f8 at timet8, anda9, f9 at timet9. This
propagator may be used to study the quantum evolution
the system where the wave function at timet9 is obtained
from the relation

C~a9,f9!5E K~a9,f9;a8,f8!C~a8,f8!d@a8,f8#.

~3.2!

Note that the integral in Eq.~3.2! may be carried out given a
choice of the initial wave functionC(a8,f8). For example,
an initial wave function may be chosen to be a Gauss
wave packet@7# or, alternatively, the no-boundary propos
of Ref. @3# may be adopted.

Let us now proceed to evaluate the path integral~3.1! by
writing it as

K~a9,f9;a8,f8!5E expF ~ i /\!E $2 1
2m~da/dt!2

1 1
2ma2%dt GK~f9,f8!D@a#, ~3.3!

where the integral overf involves the expression
a-
ur
l

of

an
l

K~f9,f8!5E expF ~ i /\!E $2p2a2~df/dt!2

2p2m2a4f2%dt GD@f#. ~3.4!

At this stage, an exact path-integral treatment will be done
for the case wherem50. Using Feynman’s prescription, we
divide the time into N subintervals: i.e.,
(t92t8)/N5« j5t j2t j21, and defining aj5a(t j ),
f j5f(t j ), and Df j5f j2f j21 for j51,...,N, Eq. ~3.4!
becomes

K~f9,f8!5 lim
N→`

E )
j51

N

exp$2 ip2â j
2~Df j !

2/\« j%

3)
j51

N

@2pâ j
2/ i\« j #

1/2)
j51

N21

d~f j !, ~3.5!

whereâ j
25(ajaj21), and we definedD[f] with normaliza-

tion factors as

D@f#5 lim
N→`

)
j51

N

@2pâ j
2/ i\« j #

1/2)
j51

N21

d~f j !. ~3.6!

If we next introduce a new time variable given by

s j52« j /â j
2, ~3.7!

Eq. ~3.5! can be written as

K~f9,f8!5 lim
N→`

E )
j51

N

exp$ ip2~Df j !
2/\s j%

3)
j51

N

@p/ i\s j #
1/2)

j51

N21

d~f j !. ~3.8!

Equation~3.8! for the path integration overf, where2`,f
,1`, is analogous to the time-sliced propagator for a free
particle@8# evolving ins time and can then be easily evalu-
ated with the result

K~f9,f8!5~1/2p!E
2`

1`

dp exp$ ip~f92f8!

2 i ~p2/4p2!\s%, ~3.9!

wheres5( js j . We note from Eq.~3.7! thats contains the
variablea and this term in the exponential must be included
when path integration over thea variable is carried out. With
Eq. ~3.9!, Eq. ~3.3! becomes

K~a9,f9;a8,f8!5~1/2p!E
2`

1`

dp exp@ ip~f92f8!#

3K~a9,a8!, ~3.10!
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where thea-dependent part,K(a9,a8), in time-sliced form
appears as

K~a9,a8!5 lim
N→`

E )
j51

N

exp$@2 im~Daj !
2/2\« j #

1@ imaj
2« j /2\#1@ ip2\« j /4p2â j

2#%

3)
j51

N

@2m/2p i\« j #
1/2)

j51

N21

d~aj !. ~3.11!
Equation~3.11! is a one-dimensional path integral over thea
variable where we defined theD[a], with normalization fac-
tors as

D@a#5 lim
N→`

)
j51

N

@2m/2p i\« j #
1/2)

j51

N21

d~aj !. ~3.12!

If we allow the time-varying radiusa to have the range 0<a
,`, we can evaluate Eq.~3.11! by using results from path
integration in spherical polar coordinates where the radial
path integral has the form@9#
E expH ~ i /\!E @ 1
2mṙ22~n22 1

4 !/2mr22 1
2mv2r 2#dtJD@r #52 i ~r 8r 9!1/2mv csc~vt!exp@~1/2\!imv~r 821r 92!cot~vt!#

3I n@2 imvr 8r 9 csc~vt!/\# ~3.13!

for Re~n!.21. Equation~3.11! when written in the unsliced-time form~and takingt→2t! appears as

K~a9,a8!5E expH ~ i /\!E @ 1
2mȧ22~n22 1

4 !/2ma22 1
2mv2a2#dtJD@a#, ~3.14!

which is identical to the left-hand side of Eq.~3.13! wheren5 1
2 [11(3p2\2/pG)] 1/2 andv51. Hence the path integral over

the variablea with the help of Eq.~3.13! yields the result

K~a9,a8!52 i ~a8a9!1/2m csc~t!exp@~1/2\!im~a821a92!cot~t!#I n@2 ima8a9 csc~t!/\#. ~3.15!

An alternative form for Eq.~3.15! can be obtained using the relation

@1/i\ sin~t!#exp$~ i /2\!~r821r92!cot~t!%I n@r8r9 csc~t!/ i\#

52\2~n11!~r8r9!n exp$2~1/2\!~r821r92!% (
n50

`

$@n!/G~n1n11!#Ln
n~r82/\!Ln

n~r92/\!exp@2 i t~2n1n11!#%,

~3.16!
e-

e

-

d
r
l

q.
where L n
n(x) are the generalized Laguerre polynomia

which allows us to write Eq.~3.15! as

K~a9,a8!5 (
n50

`

Rnl~r8!Rnl~r9!exp@2 i ~2n1n11!t#,

~3.17!

wherer5Ama5(6p/4G)1/2a, and

Rnl~r!5~m\22n!1/4A2n!/G~n1n11!rn11/2

3exp~2r2/2\!Ln
n~r2/\!. ~3.18!

With Eq. ~3.17!, we arrive at a closed form for the full propa
gator, Eq.~3.1! or ~3.10!, given by

K~a9,f9;a8,f8!5 (
n50

` E
2`

1`

dp B~f9,a9!B~f8,a8!*

3exp@2 i ~2n1n11!t#, ~3.19!

with n5 1
2 [11(3p2\2/pG)] 1/2, and from Eq.~2.8!, t5*dt/

a(t), and where
ls,

-

B~f,a!5~1/A2p!exp~ ipf!Rnl~Ama!. ~3.20!

The Friedmann universe with massless scalar fields, ther
fore, provides an example of an exactly path-integrable
minisuperspace model.

IV. CONCLUSIONS

In this paper, a path-integral treatment of the Friedmann
minisuperspace model with scalar fields was presented. Th
treatment differs from those normally found in the literature
where a semiclassical approximation is employed@3–5#, or
the corresponding differential equation of the path integral is
resorted to@2,3,6# when handling the Friedmann universe
with matter fields. Moreover, the present approach also dif
fers from the one found for example in Ref.@3# in two other
ways:~a! We did not use a Euclidean action for gravity, but
employed instead a Minkowski signature action as advocate
in Ref. @4#; and ~b! the model discussed here has a scala
field that does not completely separate from the gravitationa
part.

We also note that since an integral equation such as E
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~3.2! includes a boundary condition, it appears to be m
powerful than the differential equation, i.e., the Wheele
DeWitt equation, which arises from the constraints in t
canonical quantization approach. General investigations
the relation between the path-integral approach and
Wheeler-DeWitt equation, however, has been made@3,10#
and a further examination of this connection will be a
dressed elsewhere.

Lastly, exact path integration of the variables to be qu
tized was made possible in this paper by taking advantag
its similarity to the path-integral formalism for quantum rel
tivistic particles in curved spacetime where exact path in
re
r-
he
on
the

d-

n-
e of
-
te-

gration can also be carried out@11#. One hopes that the tech-
niques developed to path integrate relativistic particles in
curved spacetime would also be useful in solving othe
minisuperspace models. In particular, the path-integral trea
ment of the Friedmann universe withmÞ0 for the scalar
field is currently under investigation.
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