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Improved Cauchy horizon stability conjecture
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An improved stability conjecture for Cauchy horizons is presented. The conjecture predicts the stability of
Cauchy horizons based upon the behavior of test fields, and in the case of instability it also predicts the nature
of the singularities produced. The results for Cauchy horizons in Reissner-Nordstro¨m, Kerr, Reissner–
Nordström–de Sitter, Kerr–de Sitter, anti–de Sitter, and a type V LRS spacetime are reviewed. A new
prediction is made for scalar fields in anti–de Sitter spacetime. The improved conjecture agrees with the
stability and singularity types in all cases for which exact back reaction solutions have been found.
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I. INTRODUCTION

A stability conjecture for Cauchy horizons was recent
shown to be incomplete@1#. Although the conjecture cor-
rectly predicts the occurrence of singularities when fields
added to a number of spacetimes containing Cauchy h
zons, it fails in a single case@anti–de Sitter# to predict the
typeof singularity formed. In this paper we modify the con
jecture to remove this discrepancy. We also use scalar fie
to further investigate the anti–de Sitter case.

We use a singularity classification scheme based on
devised by Ellis and Schmidt@2#. They classified singulari-
ties in maximal spacetimes into three basic types: quasire
lar, nonscalar curvature, and scalar curvature. The mild
singularity is quasiregular, and the strongest is scalar cur
ture. Physical quantities such as energy density and t
forces diverge for all observers who approach a scalar c
vature singularity. No observers see physical quantities
verge as they approach a quasiregular singularity, e
though their world lines end at the singularity in a finit
proper time. Finally, some but not all observers feel infin
tidal forces as they approach a nonscalar curvature singu
ity, even though no physical scalars diverge.

The classification scheme can be expressed mathem
cally. Start with a maximal spacetime with incomplete ge
desics. A singular pointq is a Ck ~or Ck2) quasiregular
singularity (k>0) if all components and appropriate deriva
tives of the Riemann tensorRabcd;e1e2•••ek

evaluated in an
orthonormal~ON! frame parallel propagated~PP! along an
incomplete geodesic ending atq areC0 ~or C02). In other
words, the Riemann-tensor components and derivatives t
to finite limits ~or are bounded!. On the other hand, a singu
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lar point q is a Ck ~or Ck2) curvaturesingularity if some
components or derivatives are not bounded in this way. If al
scalars in gab , the antisymmetric tensorhabcd, and
Rabcd;e1e2•••ek

nevertheless tend to a finite limit~or are
bounded!, the singularity isnonscalar, but if any scalar is
unbounded, the pointq is a scalar curvature singularity.

II. ORIGINAL SINGULARITY CONJECTURE

In previous papers@3–5#, we have used a stability conjec-
ture for Cauchy horizons~CH’s! which states the following.

Original conjecture. For all maximally extended space-
times with CH’s, the back reaction due to a field~whose
test-field stress-energy tensor isTmn! will affect the horizon
in the following manner:~1! If both Tm

m and TmnT
mn are

finite and if the stress-energy tensorT(ab) in all PPON
frames is finite, then the CH will remain nonsingular;~2! if
bothTm

m andTmnT
mn are finite, butT(ab) diverges in some

PPON frame, then a nonscalar curvature singularity will be
formed at the CH;~3! if eitherTm

m or TmnT
mn diverges, then

a scalar curvature singularity will be formed at the CH.
This conjecture has been applied to CH’s in Reissner

Nordström, Kerr, Reissner–Nordstro¨m–de Sitter, Kerr–de
Sitter, anti–de Sitter, and a type-V LRS spacetime. Only in
the type-V LRS spacetime is the CH predicted to be com
pletely stable@3#; all points on the CH are stable under per-
turbation by all modes of a massless scalar field. However, i
that case no exact back reaction solution, in which the field i
allowed to influence the geometry, has been carried out wit
which to compare the prediction. In the other spacetimes a
least one point on the CH is generally predicted to be un
stable to the formation of singularities. Here and in the fol-
lowing we use the word ‘‘predict’’ to indicate the application
of the test-field conjecture to a particular spacetime, whethe
or not an exact back reaction calculation has already bee
carried out.

In the Reissner-Nordstro¨m spacetime@4# the conjecture
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predicts that the addition of infalling null dust with a powe
law tail produces a nonscalar curvature singularity at the
in agreement with the exact Reissner-Nordstro¨m-Vaidya
spacetime already studied by Hiscock@6#. The conjecture
also predicts that a combination of infalling and outgo
null dust produces a scalar curvature singularity at the
This result agrees with the mass-inflation results of Pois
and Israel@7–9# and Ori@10#, and the numerical calculation
of Brady and Smith@11#. Finally, with the addition of infall-
ing scalar or electromagnetic waves, the conjecture predi
scalar curvature singularity at the CH; we have found
exact solutions with which to verify the conjecture in the
latter cases.

The Kerr spacetime@5# predictions are similar to the
Reissner-Nordstro¨m case. We have shown that under the
dition of the lowest-mode electromagnetic field, the C
should remain nonsingular, in agreement with the back re
tion calculation embodied in the Kerr-Newman solutio
With infalling null dust, a nonscalar curvature singularity
predicted unless the density falls off likee22av ~wherea is
the rotation parameter andv a null coordinate!, in which
case the CH remains nonsingular. Adding any outgoing
diation is sufficient to turn the nonscalar curvature singu
ity into a scalar curvature singularity. Although no exact
lutions exist with which to verify these predictions, a
analysis of the nonlinear instability of Kerr-type Cauchy h
rizons has been carried out by Brady and Chambers@12#;
their results agree with those of the conjecture.

Cai and Su@13# have used the conjecture to investiga
Reissner–Nordstro¨m–de Sitter black holes@14–16# when in-
falling and both infalling and outgoing null dust are adde
For purely infalling null dust, the conjecture predicts that
Cauchy horizon is stable ifki<kc , whereki and kc repre-
sent, respectively, the surface gravities of the Cauchy h
zon and the cosmological horizon. Ifki.kc , however, the
conjecture predicts that a nonscalar curvature singula
forms at the CH. Cai and Su show that this agrees with
exact solution@13#. With both infalling and outgoing nul
dust, the conjecture predicts that whenki<kc , the Cauchy
horizon is completely stable, but a scalar curvature singu
ity forms whenki.kc . This agrees with an exact back rea
tion calculation of Brady, Nunez, and Sinha@16#.

Cai and Su have also considered Kerr–de Sitter b
holes@13#. The predictions they make are similar to those
the Reissner–Nordstro¨m–de Sitter case. Using the conje
ture, they predict that the CH of Kerr–de Sitter black hole
unstable forki.kc and stable forki<kc . As in the Kerr
case, no exact back reaction calculations are available
recent linear perturbation calculations are in complete ag
ment @17#.

Finally, we have also considered the universal cover
space of anti–de Sitter spacetime~AdS! @1#. Null infinity is
timelike, and so the spacetime contains no global Cau
surfaces@18#. If one places initial data on a spacelike surfa
one cannot predict beyond its Cauchy development; there
Cauchy horizons. Since AdS is maximally symmetric, i
different spacelike surface were chosen, different Cauchy
rizons would be formed. Adding radially infalling null dus
the scalarsTm

m andTmnTmn both vanish everywhere, but in
PPON frame some componentsT(ab)→` at r50: A nonsca-
lar curvature singularity is therefore predicted to form. Ho
r-
H,
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ever, examination of an exact anti–de Sitter–Vaidya space-
time @1# shows that in fact a scalar curvature singularity
forms atr50 in the case of purely infalling null dust. The
conjecture correctly predicts a singularity, but it predicts the
wrong kind. In the presence of both infalling and outgoing
null dust, the conjecture predicts a scalar curvature singular-
ity at r50; there is, however, no exact solution with which
to compare in this case.

III. IMPROVED STABILITY CONJECTURE

The original stability conjecture correctly predicts the sta-
bility or instability of CH’s in all verifiable cases; however,
in anti-de Sitter spacetime the conjecture fails to predict the
correct singularity type atr50 in the presence of infalling
null dust. Further study of scalars in the Riemann, Ricci, and
Weyl tensors show that it is the Weyl portion of the curva-
ture which is causing the divergence atr50. Because the
conjecture inspects test-field stress-energy tensors, which can
be related to the Ricci tensor through the field equations, it is
not surprising that the conjecture can only predict diver-
gences in the Ricci tensor and not the Weyl tensor portion of
the curvature.

The conjecture must be altered. In the anti–de Sitter case,
it is easy to see that a finite-density shell of null dust
achieves infinite density~an infinite concentration of dust!
when it reachesr50. Thus, by examining a physical scalar
quantity in the test field~i.e., the dust density!, one can cor-
rectly predict the type of singularity in the anti–de Sitter
case.

The improved version of the stability conjecture therefore
reads as follows.

Improved conjecture. For all maximally extended space-
times with CH’s, the back reaction due to a field~whose
test-field stress-energy tensor isTmn) will affect the horizon
in the following manner:~1! If both Tm

m and TmnTmn are
finite, if no scalar physical field or matter quantity~e.g., den-
sity! diverges, and if the stress-energy tensorT(ab) in all
PPON frames is finite, then the CH will remain nonsingular.
~2! If Tm

m , T
mnTmn , and physical scalar quantities are finite,

but T(ab) diverges in some PPON frame, then a nonscalar
curvature singularity will be formed at the CH.~3! If one of
Tm

m , T
mnTmn , or a physical scalar diverges, then a scalar

curvature singularity will be formed at the CH.
This improved conjecture works in all of the cases tested,

in particular the anti-de Sitter case for which the original
conjecture fails.

IV. SCALAR WAVES ON ANTI –de SITTER SPACETIME

It is useful to study the interesting anti–de Sitter case
more fully. Here we look at the effect of massless scalar
waves on an anti–de Sitter background and study the predic-
tions of the conjecture.

In Einstein universe coordinates, the metric for anti–de
Sitter spacetime is@1#

ds25~acosc!22~2dt21dc21sin2cdV2!, ~1!

where dV25du21sin2udf2, 0<c,p/2, 0<u<p, and
0<f,2p. In ordinary anti–de Sitter space,t is restricted to
2p<t<p, the topology is S13R3, and there are closed
timelike lines. In the universal covering space AdS~which
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we consider here!, the space is unwrapped S1 to R, giving an
R24 topology with2`,t,` and no closed timelike lines.

Massless minimally coupled scalar waves obey the eq
tion @19#

hF5gmnF,mn1g21/2~g1/2gmn!,nF,m50. ~2!

From Eqs.~1! and ~2! we find

~2F ,001F ,11!1csc2c~F ,221csc2uF ,33!12cscFseccF ,1

1csc2ccotuF ,250, ~3!

where~0, 1, 2, 3! 5 (t,c,uf). Mode solutions have the form

F~ t,c,u,f!5C~c!Yl m~u,f!eivt ~4!

in terms of spherical harmonicsYl m , whereC(c) obeys the
equation

~sin2c!C912tancC81@v2sin2c2l ~ l 11!#C50.
~5!

We try solutions of the form

C5~sinc! l ~cosc!lP~x!, ~6!

wherex5cosbc, with b a constant, andP(x) obeys

~12x2!P9

1S 2x2
2

b
A12x2~ l cotc2ltanc1secccscc! DP8

1
1

b2 @2l 222ll 1l2tan2c23lsec2c1v2#P50,

~7!

where the derivatives are with respect tox. With the choice
b52, l53, the equation becomes

~12x2!P91@12l 2x~ l 14!#P81 1
4 @2~ l 13!21v2#P

50, ~8!

which is the equation for Jacobi functions@13#. Solutions are
the Jacobi polynomialsPn

l 11/2,3/2(x) and the Jacobi functions
of the second kind Qn

l 11/2,3/2(x), where the index
n51/2(2l 236v). We must discard the Jacobi function
of the second kind to ensure finite data at all points on
initial spacelike slice. The Jacobi polynomials form a com
plete set of functions, and so any finite initial data can
expressed in terms of them.

The scalar wave mode solutions are thus

Fvl m5~sinc! l ~cosc!3Pn
l 11/2,3/2~cos2c!Yl m~u,f!eivt,

~9!

wheren50,1,2, . . . , andv56(2n1l 13). Each mode is
finite for 0<c,p/2, the full range ofc. The total solution
is the sum

F5 (
v,l ,m

Nvl mFvl m ~10!
ua-

s
an
-
be

in terms of constantsNvl m , which are arbitrary except that
those constants with equal but oppositev ’s are related to
keepF real.

The stress-energy tensor for a massless minimally
coupled scalar field is

Tmn5
1

4p
@F,mF,n2 1

2gmnS#, ~11!

whereS5gabF ,aF ,b . The scalars are

Tm
m52S, ~12!

TmnT
mn5S2, ~13!

where

S52a2cos2cF ,tF ,t1a2cos2cF ,cF ,c1a2cot2cF ,uF ,u

1a2cot2ccsc2uF ,fF ,f . ~14!

The only term inS which can give a possible divergence
is the second term, which involvesF ,c . Thev,l ,m mode
of F has the derivative

F ,c5H @ l ~sinc! l 21~cosc!4

23~sinc! l 11~cosc!2#Pn
l 11/2,3/2~cos2c!

2
~sinc! l 21~cosc!2

@2n1l 12#

3@n~ l 21!2~2n1l 12!cos2c#Pn
l 11/2,3/2~cos2c!

12~n1l 11/2!~n13/2!Pn21
l 11/2,3/2~cos2c!J

3Yl m~u,f!eivt. ~15!

This quantity diverges atc50 only if l 50. That is, only
the spherically symmetric (l 50) modes cause the stress-
energy scalars to diverge atc50.

Zeros of the radial coordinater5a21tanc occur at
c50, and so the spherically symmetric scalar field modes
diverge atr50. The conjecture thus predicts thatr50 on
the CH ~and in fact the entirer50 world line! becomes a
scalar curvature singularity if anyl 50 modes are intro-
duced. On the other hand, if onlyl Þ0 modes are added, no
singularity will from on the CH~or, in fact, anywhere in the
spacetime!.

This result agrees with the null dust results reviewed in
Sec. II: Spherically symmetric infalling and outgoing null
dust was predicted to produce a scalar curvature singularity
at r50. This scalar field case is interesting because it clearly
points out the necessity of the spherically symmetric con-
straint. Fields which are not spherically symmetric are not
focused ontor50 and do not lead to any singularity forma-
tion.

It is interesting to note that these results really have noth-
ing to do with the existence or nonexistence of CH’s in a
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spacetime. Consider a spherically symmetric shell of infa
ing dust in Minkowski space. It too will form a scalar cur
vature singularity atr50. The exact back reaction solution
which illustrates this shell-focusing singularity is the Vaidy
solution ~albeit with infalling, rather than outgoing, radia
tion!. However, since the CH in the anti–de Sitter spacetim
contains anr50 point, any Cauchy horizon stability conjec
ture must account for these results. Our improved Cauc
horizon stability conjecture does so.

V. CONCLUSION

An improved Cauchy horizon stability conjecture holds i
all the special cases examined. Why is the conjecture imp
tant? Its usefulness arises from the fact that while we need
ll-
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-
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to

understand the stability of Cauchy horizons, it is seldom pos-
sible to find exact back reaction solutions. The conjecture is
often relatively simple to apply, at the very least suggesting
what we expect to happen in a given case. Our hope is that
eventually the conjecture can be proved; it could then be
used to definitely test the stability of Cauchy horizons and
determine the resulting singularity types.
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