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Improved Cauchy horizon stability conjecture
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An improved stability conjecture for Cauchy horizons is presented. The conjecture predicts the stability of
Cauchy horizons based upon the behavior of test fields, and in the case of instability it also predicts the nature
of the singularities produced. The results for Cauchy horizons in Reissner-Nonggkerr, Reissner—
Nordstran—de Sitter, Kerr—de Sitter, anti—de Sitter, and a type V LRS spacetime are reviewed. A new
prediction is made for scalar fields in anti—de Sitter spacetime. The improved conjecture agrees with the
stability and singularity types in all cases for which exact back reaction solutions have been found.
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l. INTRODUCTION lar pointq is a C* (or C*7) curvature singularity if some
components or derivatives are not bounded in this way. If all

A Stablllty ConjeCtUre for CaUChy horizons was receﬂtlysca|ars in Oab» the antisymmetric tensornabcd' and
shown to be incompletgl]. Although the conjecture cor- Rabcdee,--¢, Nevertheless tend to a finite limior are
rectly predicts the occurrence of singularities when fields ¢ ounded, the singularity isnonscalar but if any scalar is
added to a number of spacetimes containing Cauchy horyynpounded, the poirg is ascalar curvature singularity.
zons, it fails in a single cas@nti—de Sitte} to predict the
type of singularity formed. In this paper we modify the con-
jecture to remove this discrepancy. We also use scalar fields II. ORIGINAL SINGULARITY CONJECTURE
to further investigate the anti—de Sitter case. ] - ]

We use a singularity classification scheme based on one N previous paperf3-5|, we have used a stability conjec-
devised by Ellis and Schmid®]. They classified singulari- ture for Cauchy horizongCH's) which states the following.
ties in maximal spacetimes into three basic types: quasiregy- Original conjecture For all maximally extended space-
lar, nonscalar curvature, and scalar curvature. The mildediMes with CH's, the back reaction .due toa f|e(ldhose
singularity is quasiregular, and the strongest is scalar curva{?St'f'eId stre_ss-energy tgnsor‘ﬁgv) W'IIIL affect the hMoVrlzon
ture. Physical quantities such as energy density and tid p'the folloyvmg manner{(1) If both T¥, anq Ty, T are
forces diverge for all observers who approach a scalar cur-Inlte ar_ld .'f. the stress-energy tenst_(ab) In _aII PPO_N

frames is finite, then the CH will remain nonsingul&) if

vature singularity. No observers see physical quantities d'both T#, andT,,T# are finite, butT ) diverges in some

verge as they approach a quasiregular singularity, EVeBpoN frame, then a nonscalar curvature singularity will be

though their world lines end at the singularity in a finite ¢, o the CH(3) if either T#, or T,,, T#" diverges, then
proper time. Finally, some but not all observers feel |nf|n|tea scalar curvature singularity will be formed at the CH.

fcidal forces as they apprqach a nonscglar curvature singular- This conjecture has been applied to CH’s in Reissner-
ity, even though no physical scalars diverge. Nordstran, Kerr, Reissner—Nordstno—de Sitter, Kerr—de
The classification scheme can be expressed mathematier anti—de Sitter, and a type-V LRS spacetime. Only in
cally. Start Wlth a ma>§|ma_l spacEtlme V\gth mcomplete 9€0-the type-V LRS spacetime is the CH predicted to be com-
desics. A singular poing is a C* (or C*") quasiregular  petely stablg3]; all points on the CH are stable under per-
singularity (=0) if all components and appropriate deriva- y,rpation by all modes of a massless scalar field. However, in
tives of the Riemann tensdapcge e, . -¢, €Valuated in an  that case no exact back reaction solution, in which the field is
orthonormal(ON) frame parallel propagated®P along an  allowed to influence the geometry, has been carried out with
incomplete geodesic ending atare C, (or C°7). In other  which to compare the prediction. In the other spacetimes at
words, the Riemann-tensor components and derivatives teridast one point on the CH is generally predicted to be un-
to finite limits (or are bounded On the other hand, a singu- stable to the formation of singularities. Here and in the fol-
lowing we use the word “predict” to indicate the application
of the test-field conjecture to a particular spacetime, whether
*Electronic  address: D.A.Konkowski@gmw.ac.uk  or or not an exact back reaction calculation has already been
dak@sma.usna.navy.mil carried out.
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predicts that the addition of infalling null dust with a power- ever, examination of an exact anti—-de Sitter—Vaidya space-
law tail produces a nonscalar curvature singularity at the CHtime [1] shows that in fact a scalar curvature singularity
in agreement with the exact Reissner-Nordsk'daidya forms atr=0 in the case of purely infalling null dust. The
spacetime already studied by Hiscop]. The conjecture conjecture correctly predicts a singularity, but it predicts the
also predicts that a combination of infalling and outgoingwrong kind. In the presence of both infalling and outgoing
null dust produces a scalar curvature singularity at the cHnull dust, the conjecture predicts a scalar curvature singular-
This result agrees with the mass-inflation results of PoissofYy at r=0; there is, however, no exact solution with which
and Israe[7—9] and Ori[10], and the numerical calculations @ compare in this case.
of Brady and Smitj11]. Finally, with the addition of infall-
ing scalar or electromagnetic waves, the conjecture predicts a
scalar curvature singularity at the CH; we have found no The original stability conjecture correctly predicts the sta-
exact solutions with which to verify the conjecture in theseyjjity or instability of CH's in all verifiable cases; however,
latter cases. _ o o in anti-de Sitter spacetime the conjecture fails to predict the
The Kerr spacetimg5] predictions are similar to the correct singularity type at=0 in the presence of infalling
Reissner-Nordstro case. We have shown that under the ady| dust. Further study of scalars in the Riemann, Ricci, and
dition of the lowest-mode electromagnetic field, the CHweyl tensors show that it is the Weyl portion of the curva-
should remain nonsingular, in agreement with the back reaGyre which is causing the divergencerat0. Because the
tion calculation embodied in the Kerr-Newman solution. conjecture inspects test-field stress-energy tensors, which can
With infalling null dust, a nonscalar curvature singularity is pe related to the Ricci tensor through the field equations, it is
predicted unless the density falls off like >** (wherea is  not surprising that the conjecture can only predict diver-
the rotation parameter ang a null coordinat in which  gences in the Ricci tensor and not the Weyl tensor portion of
case the CH remains nonsingular. Adding any outgoing rathe curvature.
diation is sufficient to turn the nonscalar curvature singular- The conjecture must be altered. In the anti—de Sitter case,
ity into a scalar curvature singularity. Although no exact so-jt is easy to see that a finite-density shell of null dust
lutions exist with which to verify these predictions, an gchieves infinite densityan infinite concentration of dust
analysis of the nonlinear instability of Kerr-type Cauchy ho-\yhen it reaches=0. Thus, by examining a physical scalar
rizons has been carried out by Brady and Chambe®;  guantity in the test fieldi.e., the dust densily one can cor-

Ill. IMPROVED STABILITY CONJECTURE

their results agree with those of the conjecture. ~rectly predict the type of singularity in the anti—de Sitter
Cai and Su13] have used the conjecture to investigatecage,
Reissner—Nordstro—de Sitter black holelsi4—16 when in- The improved version of the stability conjecture therefore

falling and both infalling and outgoing null dust are added. gads as follows.

For purely infalling null dust, the conjecture predicts that the Improved conjectureFor all maximally extended space-
Cauchy horizon is stable Kj<k., wherek; andk repre-  times with CH's, the back reaction due to a figldhose
sent, respectively, the _surface_ gravities of the Cauchy horitast-field stress-energy tensorTis,) will affect the horizon
zon and the cosmological horizon. kf>k;, however, the i the following manner(1) If both T#, and T#*T,,, are
conjecture predicts Fhat a nonscalar curvature singglarityqnite’ if no scalar physical field or matter quantig.g., den-
forms at thg CH. Cai 'and Su ;hovy that this agrees with aRity) diverges, and if the stress-energy tendoyy, in all
exact solution[13]. With both infalling and outgoing null  ppoN frames is finite, then the CH will remain nonsingular.
dust, the conjecture predicts that whiersk,., the Cauchy (2) If T#,, T#*T,,, and physical scalar quantities are finite,
horizon is completely stable, but a scalar curvature singularg ¢ T(ab)“diverggs in some PPON frame, then a nonscalar
ity forms whenk; >k . This agrees with an exact back reac- ¢,rvature singularity will be formed at the CKB) If one of

tion calculation of Brady, Nunez, and Sinfi6]. T#,, T#'T,,, or a physical scalar diverges, then a scalar
Cai and Su have also considered Kerr—de Sitter blackyryature singularity will be formed at the CH.

hoIes[l;]. The predictions the_y make are si_milar to thOS.e N This improved conjecture works in all of the cases tested,
the Reissner—Nordstno-de Sitter case. Using the conjec- iy particular the anti-de Sitter case for which the original
ture, they predict that the CH of Kerr—de Sitter black holes iSconjecture fails.

unstable fork;>k. and stable forkij<k.. As in the Kerr

case, no exact back reaction calculations are available, buly. SCALAR WAVES ON ANTI —de SITTER SPACETIME

recent linear perturbation calculations are in complete agree- ) ) . )
ment[17]. It is useful to study the interesting anti—de Sitter case

Finally, we have also considered the universal coveringnore fully. Here we look at the effect of massless scalar
space of anti—de Sitter spacetir®&dS) [1]. Null infinity is waves on an an_tl—de Sitter background and study the predic-
timelike, and so the spacetime contains no global Cauch{jons of the conjecture. . _ _
surface§18]. If one places initial data on a spacelike surface, In Einstein universe coordinates, the metric for anti-de
one cannot predict beyond its Cauchy development; there ar@itter spacetime ifl]

Cauchy horizons. Since AdS is maximally symmetric, if a _ —2/ _ 442 2 o 2

different spacelike surface were chosen, different Cauchy ho- ds*=(acos))"*(~dt*+dy?+siyd0), @)
rizons would be formed. Adding radially infalling null dust, where dQ?=d#?+sirf6d¢?, 0<y<m/2, 0<f<m, and
the scalarg*, andT#"T,, both vanish everywhere, butina 0<¢<2s. In ordinary anti—de Sitter spaceis restricted to
PPON frame some componefftg,,)— atr=0: Anonsca- —w<t<r, the topology is $xR3 and there are closed
lar curvature singularity is therefore predicted to form. How-timelike lines. In the universal covering space A@&hich
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we consider hepethe space is unwrapped ® R, giving an  in terms of constantsl,,, which are arbitrary except that
R?* topology with —oo<t<o and no closed timelike lines. those constants with equal but opposii&s are related to
Massless minimally coupled scalar waves obey the equékeep® real.
tion [19] The stress-energy tensor for a massless minimally
coupled scalar field is
O®=g~®,,,+g9 *(g"g""),,®,,=0. 2
) 1
From Egs.(1) and(2) we find TW:E[q),Mq),V— %gws], (11)

(—® oot D 17) + CSCY(P 55+ CSEOD 59 + 2csePsesd ;
whereS=g**® ,® ;. The scalars are

+ cséycotdd ,=0, 3
where(0, 1, 2, 3 = (t,4,6¢). Mode solutions have the form Tu=-5, (12)
D(t,1,0,8) =V (Y)Y (0, )€ 4 T, TH'=8 (13

in terms of spherical harmoni®s,,,, whereW () obeys the \where
equation

S=—a’cosy® (@ + a’cosyd D ,+ a’cofyd P ,
5 +a?cofycsé o 4D 4. (14)

(SirPy)®"+ 2tany ¥’ +[ w’sinfyy—/ (/' +1)]¥ =0.

w luti f the fi . . . . .
€ try solutions of the form The only term inS which can give a possible divergence

W = (sing)” (cosp)*P(x), (6) is the second term, which involveB ,. The w,”,m mode
of ® has the derivative
wherex=cosB¢, with 8 a constant, ané(x) obeys

(1—x2)P" q>,¢=([/(sin¢)/—1(coap)4
2 .
+| —x= 5T/ coty— tany+ seasesay) | P —3(sing)” *!(cosp)?IP;, " # ¥ cos2p)
L _ (sing)” ~*(cosp)®
+ Ez[—/z—zxﬂr \2tarfy— 3nsely+ w?]P=0, [2n+/+2]
@ X[n(/—1)—(2n+/+2)cos2y] P, 237 cos2y)
where the derivatives are with respecttoWith the choice +2(n+/+1/2)(n+3/2) P, 1233 cos2y))

B=2, A=3, the equation becomes

XY (0, p)e . 15
(1=X)P"+[1—/ —X(/+4)P'+ L[~ (/+3)2+ w?]P sl 6:9) (19
=0, (8) This quantity diverges agy=0 only if /=0. That is, only

the spherically symmetric/(=0) modes cause the stress-
which is the equation for Jacobi functioffs3]. Solutions are  energy scalars to diverge gt=0.

the Jacobi polynomialB/, * 234 x) and the Jacobi functions ~ Zeros of the radial coordinate=a"'tany occur at

of the second kind Q/"*>%qx), where the index %=0, and so the spherically symmetric scalar field modes

n=1/2(—/—3* ). We must discard the Jacobi functions diverge atr=0. The conjecture thus predicts tat0 on

of the second kind to ensure finite data at all points on arthe CH(and in fact the entire =0 world line) becomes a
initial spacelike slice. The Jacobi polynomials form a com-scalar curvature singularity if any’=0 modes are intro-
plete set of functions, and so any finite initial data can beduced. On the other hand, if only#0 modes are added, no

expressed in terms of them. singularity will from on the CH(or, in fact, anywhere in the
The scalar wave mode solutions are thus spacetimg _ _ _
This result agrees with the null dust results reviewed in
D, m=(sing)” (cosp) P’ V238 cos2p) Y (6, )€, Sec. II: Spherically symmetric infalling and outgoing null

9 dust was predicted to produce a scalar curvature singularity
atr=0. This scalar field case is interesting because it clearly

wheren=0,12 ..., ando=*(2n+/+3). Each mode is points out the necessity of the spherically symmetric con-
finite for O<y<m/2, the full range ofiy. The total solution  straint. Fields which are not spherically symmetric are not
is the sum focused onta =0 and do not lead to any singularity forma-
tion.
_ It is interesting to note that these results really have noth-
b= Ny, m® 10 . ; . . :
me o/mFesm (10 ing to do with the existence or nonexistence of CH’s in a
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spacetime. Consider a spherically symmetric shell of infall-understand the stability of Cauchy horizons, it is seldom pos-

ing dust in Minkowski space. It too will form a scalar cur- sible to find exact back reaction solutions. The conjecture is
vature singularity at =0. The exact back reaction solution often relatively simple to apply, at the very least suggesting

which illustrates this shell-focusing singularity is the Vaidya what we expect to happen in a given case. Our hope is that
solution (albeit with infalling, rather than outgoing, radia- eventually the conjecture can be proved; it could then be

tion). However, since the CH in the anti—de Sitter spacetimeused to definitely test the stability of Cauchy horizons and

contains arr =0 point, any Cauchy horizon stability conjec- determine the resulting singularity types.

ture must account for these results. Our improved Cauchy

horizon stability conjecture does so. ACKNOWLEDGMENTS
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V. CONCLUSION
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