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Initial-condition problem for a chiral Gross-Neveu system
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A time-dependent projection technique is used to treat the initial-value problem for self-interacting fermionic
fields. On the basis of the general dynamics of the fields, we derive formal equations of kinetic-type for the set
of one-body dynamical variables. A nonperturbative mean-field expansion can be written for these equations.
We treat this expansion in lowest order, which corresponds to the Gaussian mean-field approximation, for a
uniform system described by the chiral Gross-Neveu Hamiltonian. Standard stationary features of the model,
such as dynamical mass generation due to chiral symmetry breaking and a phenomenon analogous to dimen-
sional transmutation, are reobtained in this context. The mean-field time evolution of nonequilibrium initial
states is discussed.@S0556-2821~96!03322-X#
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I. INTRODUCTION

Over the last two decades, interest in the initial-conditi
problem for field-theoretical models has been kindled a
sustained by the needs of such apparently diverse area
cosmology@1# and several branches of many-body physi
notably in connection with the analysis of transient pheno
ena in the collision of complex nuclear systems@2#. In these
contexts one typically tries to obtain and solve equatio
describing the kinetic behavior of a particular, ‘‘relevan
subsystem or of a restricted set of ‘‘relevant’’ observables
a more comprehensive autonomous system. Such is the
e.g., of the scalar driving field in the inflationary scenario
the early Universe and of one-body densities and certain
relation functions in heavy-ion collisions. In general, the r
evant properties can be retrieved from appropriately c
structed reduced density operators in the Schro¨dinger
picture, which will evolve nonunitarily on account of corre
lation effects involving different subsystems@3,4#. The non-
unitary effects will manifest themselves through the dynam
cal evolution of the eigenvalues of the reduced densities
that particular subsystems will, in general, evolve in a no
soentropic manner@3#.

The overwhelming complexity of such a picture is co
siderably reduced whenever one is able to find phys
grounds to motivate a mean-fieldlike approximation whi
consists in assuming isoentropic evolution of a relevant s
system under effective, time-dependent Hamiltonian ope
tors for each subsystem@4#. In this case the dynamics of th
subsystem density matrix can be formulated in terms o
Liouville-von Neuman equation governed by an effecti
Hamiltonian and studied, e.g., from the point of view of th
functional field-theoretical Schro¨dinger picture, as propose
by Jackiw@4#. Unfortunately, the resulting problem still in
volves, in general, nonlinear Hamiltonians, and cannot
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solved without further approximation. In the field-theoretical
context, this has been implemented through the use of a
GaussianAnsatzfor the subsystem density functional in the
framework of a time-dependent variational principle supply-
ing the appropriate dynamical information, notably for
bosonic fields@5#.

It is not difficult to see that this last approximation
amounts to a second mean-field approximation, now at the
microscopic level of the single-field, nonlinear, isoentropic
effective dynamics. Actually, the GaussianAnsatz, having
the form of a exponential of a quadratic form in the field
operators, implies that many-point correlation functions can
be factored in terms of two-point functions. This is well
known in the context of the derivation of the Hartree-Fock
approximation to the nonrelativistic many-body problem@6#.
This factorization has been used by Chang@7# to implement
the Gaussian approximation for thelf4 theory. The dynam-
ics of the reduced two-point density then itself becomes
isoentropic, since irreducible higher-order correlation effects
are neglected.

The focus of this work is a reevaluation of this second
mean-field approximation, for fermionic fields, in terms of a
time-dependent projection approach developed earlier for the
nonrelativistic nuclear many-body dynamics by Nemes and
de Toledo Piza@8#. This approach allows for the formulation
of a mean-field expansion for the dynamics of the two-point
correlation function from which one recovers the results of
the Gaussian mean-field approximations in lowest order, i.e.,
this approach permits one to include and to evaluate higher
dynamical correction effects to the simplest Gaussian mean-
field approximation. Moreover, the expansion is energy con-
serving ~for closed system! to all orders@9#. The resulting
dynamical equations acquire the structure of kinetic equa-
tions which eliminate the isoentropic mean-field constraint
describing the effective dynamics of a selected set of observ-
ables@8#. This approach was recently applied for the solution
of the self-interactinglf4 theory in 111 dimensions@10#.
Lin and de Toledo Piza@10# find that the Gaussian mean-
field approximation fails both qualitatively and quantitatively

l
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in the description of certain field variables. These failures
partially corrected by the collisional terms. Motivated b
success obtained in description of time evolution of a o
equilibrium uniform boson~scalar field! system beyond
Gaussian mean-field approximation in quantum-field the
retical context, it becomes interesting to study the fermi
case in this approach. As a first step towards this end
consider in this paper the implementation of the Gauss
approximation to a self-interacting system of fermions. Th
is done in a framework suitable for the subsequent inclus
of collisional ~correlation! corrections along the lines devel
oped in Ref.@10# for the self-interacting bosonic field.

We consider, for simplicity and definiteness, the case
an off-equilibrium, spatially uniform, many-fermion system
described by chiral Gross-Neveu model@11#. This is an in-
teresting nontrivial, renormalizable model for which man
results are available in the literature so that it offers suita
testing ground for the proposed approach. On the basis of
general dynamics of the fields, we derive equations of kin
ictype for the set of one-body variables in lowest orde
which correspond to the Gaussian mean-field approximat
The detailed consideration of correlation corrections is d
ferred to future work.

An outline of the paper is as follows. In Sec. II we obta
the dynamical equations which describe the time evolut
of a general uniform fermion system. These equations are
groundwork for the implementation of the time-depende
projection technique. This technique and the approximat
scheme are described in Sec. III. In Sec. IV we implemen
the quantum-field theoretical context the projection tec
nique and obtain in Gaussian mean-field~isoentropic! ap-
proximation the equations which describe the effective d
namics of a off-equilibrium, spatially uniform, 111-
dimensional, self-interacting fermion system described
chiral Gross-Neveu model@11#. In Sec. V we use the static
solution of these equations in order to renormalize t
theory, leading to the well-known effective potential ob
tained by Gross and Neveu using the 1/N expansion. In this
same section, we show also that other static results wh
have been discussed in the literature, such as dynamical m
generation due to chiral symmetry breaking and a pheno
enon analogous to dimensional transmutation, can be
trieved from this formulation in a mean-field approximatio
Finally, in Sec. VI we obtain and discuss numerical solutio
for nonequilibrium initial conditions. Section VII is devote
to a final discussion and conclusions. Some points of a m
technical nature are discussed in Appendices.

II. KINETICS OF A SELF-INTERACTING
FERMIONIC FIELD

In this section, we shall describe a formal treatment of t
kinetics of a self-interacting quantum field. Although th
procedure is quite general, we will adopt the specific cont
of a spatially uniform fermion system. We will illustrate a
the relevant points of the approach and cut down inessen
technical complications. Features of more general conte
are discussed in Ref.@12#.

The idea of our approach is to focus on the time evoluti
of a set of simple observables. We argue that a large num
of relevant physical observables are one-body operat
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Consequently, the time evolution of observables which in
volve field bilinear forms such asc̄(x)c(x), c(x)c(x), . . .
is desirable. These are the observables which are kept un
direct control when one works variationally using a Gaussia
functional Ansatz, and will, therefore, be referred to as
Gaussian observables. In order to keep as close as possibl
the formulation appropriate for the many-body problem, w
work in fact with expressions which are bilinear in the cre
ation and annihilation parts of the fields in momentum spac
with periodic boundary conditions in a spatial box of length
L, defined in terms of an expansion mass parameterm. We
begin by expanding the Dirac field operatorsc(x) and
c̄(x) in Heisenberg picture as

c~x!5(
k

S mk0D
1/2Fbk,1~ t !u1~k!

eik–x

AL
1bk,2

† ~ t !u2~k!
e2 ik–x

AL G ,
~1!

c̄~x!5(
k

S mk0D
1/2Fbk,1† ~ t !ū1~k!

e2 ik–x

AL
1bk,2~ t !ū2~k!

eik–x

AL G ,
wherebk,1

† andbk,1 @bk,2
† andbk,2# are fermion creation and

annihilation operators associated with positive~negative!-
energy solutionsu1(k) @u2(k)# of Dirac’s equation. Canoni-
cal quantization demands that the creation and annihilati
operators satisfy the standard anticommutation relations
equal times

$bk,l
† ~ t !,bk8,l8~ t8!% t5t85dk,k8dl,l8 for l,l851,2,

~2!

$bk,l
† ~ t !,bk8,l8

†
~ t8!% t5t85$bk,l~ t !,bk8,l8~ t8!% t5t850.

In Eq. ~1! x denotes the spatial coordinate only and we us
the notation

~k0!
25~k!21m2 and kx5k0t2k•x.

In general, the state of the system is given in terms of
many-body density operatorF in the Heisenberg picture, a
time-independent, non-negative, Hermitian operator wit
unit trace. At this point, however, we specialize the analys
to the case of spatially uniform systems. These systems e
hibit translational invariance~homogeneity! and rotational
invariance~isotropy!. In the case of 111 dimensions this
reduces to invariance under translations and under reflecti
The possible nonvanishing mean values of bilinear forms
field operators are

Rk,l8;k,l~ t !5Tr$@bk,l8
†

~ t !bk,l~ t !#F% for l,l851,2,

~3!

Pk,l8;k,l~ t !5Tr$@b2k,l8~ t !bk,l~ t !#F% for l,l851,2,

The Hermitian matrixR and the antisymmetric matrixP are
the one-fermion density and pairing density, respectivel
Using these objects we can construct the extended one-bo
density@13#
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Rk~ t !5F Rk~ t ! Pk~ t !

2Pk* ~ t ! I 22Rk* ~ t !G
5F ^bk,l8

†
~ t !bk,l~ t !& ^b2k,l8~ t !bk,l~ t !&

^b2k,l8
†

~ t !bk,l
† ~ t !& ^bk,l8~ t !bk,l

† ~ t !&
G . ~4!

This object summarizes all information on the Gaussian o
servables and provides an adequate starting point for
kinetic treatment.

The first step is standard and consists in reducing the
tended one-body density to diagonal form. This can
achieved by subjecting the creation and annihilation ope
tors to a canonical transformation of the Bogolyubov-ty
with coefficients defined by the eigenvalue problem

Xk†~ t !Rk~ t !Xk~ t !5Qk~ t !, ~5!

where the unitary matrixXk(t) which diagonalizesRk(t) has
the structure

Xk5FXk* Yk*

Yk Xk
G , Xk†5FXk

T Yk
†

Yk
T Xk

†G , ~6!

andQk(t) is a diagonal matrix which can be written as

Qk~ t !5F nk~ t ! 0

0 I 22nk~ t !
G

5F ^bk,l8
†

~ t !bk,l~ t !& ^b2k,l8~ t !bk,l~ t !&

^b2k,l8
†

~ t !bk,l
† ~ t !& ^bk,l8~ t !bk,l

† ~ t !&
G . ~7!

The unitary conditions forXk(t) can be interpreted as or
thogonality and completeness relations for a set of natu
orbitals which diagonalize the extended one-body dens
They read

Xk†Xk5I 4 and XkXk†5I 4 , ~8!

or, more explicitly, in terms of the submatricesXk andYk
@see Eq.~6!#,

YkYk
†1XkXk

†5I2 , YkXk
T1XkYk

T502 ,
~9!

Yk
†Yk1Xk

TXk*5I2 , Yk
TXk*1Xk

†Yk502 .

The elements of the diagonal submatrixnk(t) can, on the
other hand, be interpreted as quasifermion occupation n
bers for the paired natural orbitals. Because of the assum
symmetry one must have

nk,l~ t !5n2k,l~ t !. ~10!

Finally, using Eq.~6!, we can relate the fermion operator
bk,l
† (t) and bk,l(t) to the new quasifermion operator

bk,l
† (t) andbk,l(t) for l51,2 as
b-
our

ex-
be
ra-
e

ral
ty.

m-
ed

s

F bk,1

bk,2

b2k,1
†

b2k,2
†

G5F X11 X21 Y11* Y21*

X12 X22 Y12* Y22*

Y11 Y21 X11* X21*

Y12 Y22 X12* X22*

GF bk,1

bk,2

b2k,1
†

b2k,2
†

G . ~11!

With the help of Eq.~11! it is then an easy task to express
c̄(x) andc(x), Eq. ~1!, in term ofbk,l

† (t) andbk,l(t) for
l51,2. In doing so, one finds that the plane waves of
c̄(x) and c(x) are modified by a complex, momentum-
dependent redefinition ofm involving the Bogolyubov pa-
rameters. The complex character of these parameters is actu-
ally crucial in dynamical situations, where the imaginary
parts will allow for the description of time-odd~i.e., veloci-
tylike! properties.

What we have achieved so far amounts to obtaining an
expansion of the fieldsc̄(x) andc(x) such that the mean
values inF of Gaussian observables are parametrized in
terms of the natural orbitalsXl8,l(k… andYl8,l(k… and of the
occupation numbersnk,l(t)5Tr(bk,l

† bk,lF) for l51,2. In
general, all these quantities are time dependent under the
Heisenberg dynamics of the field operators, and we now pro-
ceed to obtain the corresponding equations of motion. Tak-
ing the time derivative of Eq.~5! and using the unitarity
condition ~8!, we get

Xk†ṘkXk5Q̇k2Ẋk†XkQk2QkXk†Ẋk . ~12!

We next evaluate the left-hand side of this equation using the
Heisenberg equation of motion to obtain

iXk†ṘkXk

5F Tr~@bk,l8
† bk,l ,H#F! Tr~@b2k,l8bk,l ,H#F!

Tr~@b2k,l8
† bk,l

† ,H#F! Tr~@bk,l8bk,l
† ,H#F! G .

~13!

The right-hand side of Eq.~12! can also be evaluated explic-
itly using Eqs.~6! and ~7!:

i ~Q̇k2Ẋk†XkQk2QkXk†Ẋk!

5F i ṅk1@nk ,hk* #2 2gk*1$nk ,gk* %1

2gk1$nk ,gk%1 2 i ṅk1@nk ,hk#2

G ,
~14!

where the matriceshk andgk are given in terms ofXk and
Yk as

hk52 i ~Ẏk
TYk*1Ẋk

†Xk!,
~15!

gk52 i ~Ẏk
TXk*1Ẋk

†Yk!.

From Eqs. ~13! and ~14! we obtain dynamical equations
which describe the time evolution of our uniform fermion
system. They read
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i ṅk1@nk ,hk* #25Tr~@bk,l8
† bk,l ,H#F!,

~16!
2gk*1$nk ,gk* %15Tr~@b2k,l8bk,l ,H#F!.

Equations~16!, together with the unitarity conditions~9!,
determine the time rate of change of the Gaussian obse
ables in terms of expectation values of appropriate comm
tators. They are, however, clearly not closed equations wh
the HamiltonianH involves self-interacting fields. In this
case, in fact, the time derivatives of the Gaussian observab
are given in terms of traces which are not expressible
terms of the Gaussian observables themselves, since t
will involve also many-fermion densities. This situation ca
be dealt with in terms of the projection technique reviewe
in the next section.

III. PROJECTION TECHNIQUE AND
APPROXIMATION SCHEME

In this section we introduce the time-dependent projecti
technique@8# which permits one to obtain closed approxima
tions to the equations of motion~16!. It has been developed
rv-
u-
en

les
in
hey
n
d

on
-

earlier in the context of nonrelativistic nuclear many-body
dynamics and was recently applied in the quantum-field
theoretical context to the self-interactinglf4 theory in 111
dimensions@10#. It allows for the formulation of a mean-
field expansion for the dynamics of the two-point correlation
function from which one recovers the results of the Gaussian
mean-field approximations in lowest order. If carried to
higher orders it allows for the inclusion and evaluation of
higher dynamical correlation corrections to the simplest
mean-field approximation.

In the specific context of the equations of motion~16! we
begin by decomposing the full densityF as

F5F0~ t !1F8~ t !, ~17!

whereF0(t) is a GaussianAnsatzwhich achieves a Hartree-
Fock factorization of traces involving more than two field
operators. The Gaussian densityF0(t) is chosen as having
the form of a exponential of a bilinear, Hermitian expression
in the fields normalized to unit trace@6#. In the momentum
basis, it reads
F05
exp@(~k1 ,k2!Ak1 ,k2

bk1
† bk21Bk1 ,k2

bk1
† bk2

† 1Ck1 ,k2
bk1bk2#

Tr$exp@(~k1 ,k2!Ak1 ,k2
bk1
† bk21Bk1 ,k2

bk1
† bk2

† 1Ck1 ,k2
bk1bk2#%

. ~18!
The parameters in Eq.~18! are fixed by requiring that mean
values inF0 of expressions that are bilinear in the field
reproduce the correspondingF averages@see Eqs.~20! be-
low#. F0 is a time-dependent object, which acquires a p
ticularly simple form when expressed in terms of th
Bogolyubov quasifermion operators

F0~ t !5)
k,l

@nk,lbk,l
† ~ t !bk,l~ t !1~12nk,l!bk,l~ t !bk,l

† ~ t !#.

~19!

This is clearly a unit trace object which, in addition, satisfi

Tr~baF0!5Tr~baF!5Tr~ba
†F0!5Tr~ba

†F!50,

Tr~babbF0!5Tr~babbF!50,
~20!

Tr~ba
†bb

†F0!5Tr~ba
†bb

†F!50,

Tr~ba
†bbF0!5Tr~ba

†bbF!5nada,b ,

and

Tr~babb
†F0!5Tr~babb

†F!5~12na!da,b .

Correspondingly, the ‘‘remainder’’ densityF8(t), defined by
Eq. ~17!, is a traceless, pure correlation density. As alrea
remarked, a crucial point to observe is thatF0(t) can be
written as a time-dependent projection ofF: i.e.,

F0~ t !5P~ t !F with P~ t !P~ t !5P~ t !. ~21!
s

ar-
e

es

dy

In order to completely define this projector we require fur-
ther that it satisfies

i Ḟ0~ t !5@P~ t !,L#F5@F0~ t !,H#1P~ t !@H,F#, ~22!

whereL is the Liouvillian defined as

L•5@H,•#, ~23!

H being the Hamiltonian of the field. Equation~22! is just
the Heisenberg picture counterpart of the condition
Ṗ(t)F50 which has been used to defineP(t) in the Schro¨-
dinger picture@9#. It is possible to show that conditions~21!
and ~22! makeP(t) unique and we obtain an explicit form
for this object in terms of the quasifermion operators and of
the natural orbital occupations@3,8–10#.

The existence of the projectorP(t) allows one to obtain
an equation relating the correlation partF8(t) to the Gauss-
ian partF0(t) of the full density. This can be immediately
obtained from Eqs.~17!, ~21!, and~22! and reads

@ i ] t1P~ t !L#F8~ t !5@I2P~ t !#LF0~ t !. ~24!

This equation has the formal solution

F8~ t !5G~ t,0!F8~0!2 i E
0

t

dt8G~ t,t8!@I2P~ t8!#LF0~ t8!,

~25!
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where the first term accounts for initial correlations possib
contained inF. The object G(t,t8) is the time-ordered
Green’s function

G~ t,t8!5TS expF i E
t8

t

dtP~t!LG D . ~26!

We see thus thatF8(t), and, therefore, alsoF @see Eq.
~17!#, can be formally expressed in terms ofF0(t8) ~for
t8<t) and of initial correlationsF8(0). This allows us to
express also the dynamical equations~16! as functionals of
F0(t8) and of the initial correlations. Since, on the othe
hand, the reduced densityF0(t8) is expressed in terms of the
one-fermion densities alone, we see that the resulting eq
tions are now essentially closed equations. Note, howev
that the complicated time dependence of the field operators
explicitly probed through the memory effects present in th
expression~25! for F8(t). Approximations are, therefore,
needed for the actual evaluation of this object. A systema
expansion scheme for the memory effects has been discus
in Refs.@3,9,10#. The lowest-order correlation corrections to
the pure mean-field approximation, in whichF8 is simply
ignored, correspond to replacing the full Heisenberg tim
evolution of operators occurring in the collision integrals b
a mean-field evolution governed by

H05P†~ t !H.

Consistently, with this approximation,L is replaced in Eqs.
~25! and ~26! by L0•5@H0 ,•#. In this way correlation ef-
fects are treated to second order inH in the resulting colli-
sion integrals.

An important feature of this scheme~which holds also for
higher orders of the expansion@9#! is that the mean energy is
conserved, namely,

]

]t
^H&50,

where

^H&5TrHF0~ t !1TrHF8~ t !.

In the following sections we apply the general expression
obtained above to treat a uniform fermion system describ
by chiral Gross-Neveu model~CGNM!. We will consider
only the lowest~mean-field! approximation, corresponding
to F8(t)50. Collisional correlations will be treated else-
where.

IV. THE CHIRAL GROSS-NEVEU MODEL „CGNM …

The Hamiltonian density for the CGNM is given by

HCGNM5(
i51

N

$c̄ i@2 ig1]1#c
i%

2
g2

2 H F(
i51

N

c̄ ic i G22jF(
i51

N

c̄ ig5c
i G2J , ~27!

wherej is a constant which indicates whether the model
invariant under the discreteg5 transformation (j50) or un-
der the Abelian chiral U~1! group (j51).
y
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is
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This is a massless fermion theory in 111 dimensions with
quartic interaction. The model containsN species of fermi-
ons coupled symmetrically, wherec i is a complex Dirac
spinor transforming as the fundamental representation of S
(N) group. It is known that the actual symmetry of the
theory is not SU(N) but rather O(2N) @14#. The transforma-
tions forming this group mix not only particles but also par-
ticles with antiparticles. This model is essentially equivalen
to the Nambu–Jona-Lasinio model@15#, except for the fact
that in 111 dimensions it is renormalizable. Moreover, it is
one of the very few known field theories which are asymp-
totically free. To leading order in a 1/N expansion@11#, the
CGNM exhibits a number of interesting phenomena, such a
spontaneous symmetry breaking@16#, dynamical fermion
mass generation and dimensional transmutation. The mod
possesses an infinite number of conservation laws, and as
consequence, theSmatrix may be computed exactly@17#.

To obtain the time evolution of Bogolyubov parameters
we have to obtain the CGNM Hamiltonian@see Eq.~16!# by
integrating over one-dimensional space. This involves, in
particular, choosing a representation for theg matrices.
Here, we have to be careful, since a bad choice of represe
tation can spoil manifest reflection invariance. In Appendix
A ~see also Ref.@15#! we discuss suitable representations for
the g matrices. We choose the Pauli-Dirac representation
namely,

g05s3 , g15 is2 ,

and

g55g0g15s1 . ~28!

In this representation the spinorsu1(k) andu2(k) are given
by

u1~k!5F ~k01m!

2m G1/2F 1

k

~k01m!

G ,
u2~k!5F ~k02m!

2m G1/2F 1

k

~k02m!

G . ~29!

The resulting form for the CGNM Hamiltonian obtained us-
ing this representation is given in full in Appendix B.

We next consider the initial-condition problem for this
system. The general Bogolyubov transformation defined in
Eq. ~11! breaks both chiral and charge symmetries, but we
restrict the following development to a special Bogolyubov
transformation ~to be called the Nambu transformation!
which breaks the chiral symmetry of our system only. The
elements of this Nambu transformation, parametrized consis
tently with the unitarity conditions~9!, are given by

X115X225coswk and X125X2150,

~30!

Y1252Y215sinwke
igk and Y115Y2250 .
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In the special case of the Nambu transformation, the e
ments of the matriceshk andgk @see Eq.~15!# are given by

h115h225ġksin
2wk ,

h125h215g115g2250, ~31!

g1252g215@ i ẇk2ġksinwkcoswk#e
igk.

On the other hand, in the mean-field approximation one fin
thatF0(t) commutes with number operators

Tr$HCGNM@F0 ,bk,1
† bk,1#%5Tr$HCGNM@F0 ,bk,2

† bk,2#%50 ,
~32!

while, due to the charge conservation in the system, we h
also

Tr$@bk,1
† bk,2 ,HCGNM#F0%5Tr$@bk,2

† bk,1 ,HCGNM#F0%50
~33!

Tr$@b2k,1bk,1 ,HCGNM#F0%5Tr$@b2k,2bk,2 ,HCGNM#F0%

50 .

Substituting Eqs.~31!–~33! in Eq. ~16!, we obtain the equa-
tions which describe the time evolution of our system as

ṅk,150 and ṅk,250, ~34!

@ i ẇk1ġksinwkcoswk#e
2 igk

5
Tr~@b2k,1bk,2 ,H CGNM#F0!

~12nk,12nk,2!
. ~35!

Equation~34! shows that the occupation numbers of th
paired natural orbitals are constant, i.e., we recover the g
eral isoentropic character of the mean-field approximati
The complex equation of motion~35! describes the time evo-
lution of the Nambu parameters. Writing the CGNM Ham
tonian, given in Appendix B, in the Nambu basis using Eq
~11! and ~30!, and substituting this Hamiltonian in Eq.~35!,
we obtain the explicit form of this equation. The calculatio
of traces is lengthy but straightforward. As a result, one o
tains

i ẇk1ġk

sin2wk

2

5
~k!2

k0
sin2wk2m

uku
k0

@sin2wke
2 igk2cos2wke

igk#

1S g2m2

4p D ~j11!

k0

3Fsin2wk1
uku
m

~sin2wke
2 igk2cos2wke

igk!G~ I 11I 2!,

~36!

whereI 1 and I 2 are the divergent integrals
le-

ds

ave

e
en-
on.

il-
s.

n
b-

I 15E dk8

k08
cos2wk8~12nk8,12nk8,2!,

~37!

I 25E dk8

k08

uk8u
m

sin2wk8cosgk8~12nk8,12nk8,2!.

We takeN51 for simplicity. Splitting the complex equation
~36! into real and imaginary parts, we have

ẇk5singk

uku
k0

Fm2S g2m4p D ~j11!~ I 11I 2!G ,
ġksin2wk5

2sin2wk

k0
Fk21S g2m2

4p D ~j11!~ I 11I 2!G
12cos2wkcosgk

uku
k0

3Fm2S g2m4p D ~j11!~ I 11I 2!G . ~38!

Finally, the mean-field energy is evaluated as

^H CGNM
MF &5Tr@HCGNMF0~ t !#

5S m2

2p D ~ I 22I 3!2S g2m2

8p2 D ~j11!

2
~ I 11I 2!

2

2S g2

8p2D ~j11!

2 E dk8

3~11nk8,12nk8,2!E dk9~12nk9,11nk9,2!,

~39!

whereI 1 and I 2 are given in Eq.~37! and I 3 is given by

I 35E dk8

k08
S k8

mD 2cos2wk~12nk8,12nk8,2!. ~40!

Since all the results above contain divergent integrals,
renormalization procedure is required. This is discussed i
the next section.

V. RENORMALIZATION

In order to handle the infinities which occur in the pre-
ceding equations it is necessary to introduce a renormaliza
tion prescription that will render physical quantities finite. In
general, renormalization procedures consist in combining d
vergent terms with the bare mass and coupling constants
the theory to define new, finite~or renormalized! values of
these quantities. Thus, when one adopts a momentum cuto
to regularize divergent integrals, the bare mass and couplin
constants are chosen to be cutoff dependent in a way th
will cancel the divergences. In the present case, however, th
divergent integrals~37! and~40! involve the dynamical vari-
ables themselves in the integrand, so that even their degr
of divergence is not directly computable. In order to handle
this situation we will use a self-consistent renormalization
procedure inspired by Ref.@18#.
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The renormalization prescription we use can be based
the consideration of the static solutions of the dynami
equations~38!. They are determined by the equations

singkueqF12S g24p D ~j11!~ I 11I 2!G50, ~41!

tan2wkueq5
2ukum@12~g2/4p!~j11!~ I 11I 2!#

@~k!21~g2m2/4p!~j11!~ I 11I 2!#
cosgkueq.

~42!

We will then show explicitly that it also controls the dive
gences which appear in the kinetic regime of the mean-fi
approximation.

In order to obtain the renormalization prescription we i
troduce a momentum cutoffL and begin by assuming tha
in order to render the theory finite, the bare coupling const
g2 must approach zero for large values ofL as ~see, e.g.,
Refs.@11,19#!

g25
4p

~j11! F lnS L2

m2D G21

, ~43!

where the form of the first factor is dictated by later conv
nience. We nextassumethat the integralsI 1 and I 2 have
logarithmic divergences

I 15a1blnS L2

m2D , ~44!

I 25c1dlnS L2

m2D , ~45!

wherea, b, c, and d are finite constants. Substituting Eq
~43! and theAnsätze~44! and~45! in the static equation~42!,
we obtain

tan2wkueq5
2~21!nmuku@12~b1d!#

@~k!21m2~b1d!#
. ~46!

Finally, evaluating the integralsI 1 and I 2, Eqs. ~37!, using
Eq. ~46!, we are able to determine the constantsa, b, c, and
d self-consistently. This calculation is given in Appendix C
We find thereb51 whiled remains arbitrary. The renormal
ized static equations are then obtained by simply substitu
these values in Eq.~46!. We obtain

tan2wkueq5
~21!nmukud

@k21~11d!m2#
. ~47!

We observe that the theory involves just one free param
d. This is altogether reasonable since our starting point wa
massless fermion theory which was determined by one
mensionless coupling constantg2, and we end up with a
theory determined by one free parameterd after the self-
consistent renormalization procedure. What is needed is
interpretation of the parameterd.

To obtain this, we begin by writing the fieldsc(x) and
c̄(x) given in Eq.~1! in the Nambu quasiparticle basis usin
Eqs.~11! and~30!. We find that the new Dirac spinors in thi
basis are given by
on
al

-
eld

n-
,
ant

e-

.

.
-
ing

ter
s a
di-

an

g
s

u18~k!5coswku1~k!1sinwke
igku2~2k!,

~48!

u28~k!5coswku2~k!2sinwke
2 igku1~2k!.

From the renormalized static solution~47! we have that

coswkueq5
1

2Ak0x
@~k0x1mukud!1/21~k0x2mukud!1/2#,

~49!
sinwkueq5~21!n

1

2Ak0x
@~k0x1mukud!1/2

2~k0x2mukud!1/2#,

where x5@k21(11d)2m2#1/2. Substituting the solutions
~49! and the particle spinors~29! in Eq. ~48!, we obtain the
new spinors in quasiparticle basis. They are given as

u18~k!5F ~k0
eff1meff!

2meff
G1/2F 1

k

~k0
eff1meff!

G ,
~50!

u28~k!5F ~k0
eff2meff!

2meff
G1/2F 1

k

~k0
eff2meff!

G ,
where

~k0
eff!25~k!21~meff!

2 and meff5~11d!m. ~51!

Comparing the spinors~50! in quasiparticle basis with the
spinors ~29! in particle basis, we see in Eq.~51! what
amounts to a redefinition of the mass scale. Therefore, we
note that, unlike the situation found in connection with the
1/N expansion, the use of the GaussianAnsatz, Eq. ~19!,
parametrized by the canonical transformation leading to the
quasifermion basis, allows for the direct dynamical determi-
nation of the stable equilibrium situation of the system@see
Eqs.~41! and ~42!#, including symmetry breaking and mass
generation. Moreover, the renormalization procedure effec-
tively replaces the dimensionless coupling constantg2 by the
free parameterd associated to the mass scale@see Eq.~51!#.
This is analogous to the phenomenon of dimensional trans-
mutation found by Gross and Neveu@11# in the 1/N expan-
sion. Finally, aside from the overall mass scale~character-
ized byd) there are no free adjustable parameters.

Using Eqs.~38!, ~43!–~45!, we finally write the renormal-
ized form of the dynamical equations that describe the mean-
field time evolution of this system. As mentioned before,
they are now also finite and read
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ṅk,15 ṅk,250,

ẇk52md
uku
k0
singk ,

~52!

ġksin2wk5
2sin2wk

k0
@~k!21m2~11d!#

22md
uku
k0
cos2wkcosgk .

The first two equations express just the isoentropic chara
of the mean-field kinetics. The remaining coupled equatio
describe the kinetic behavior of the Nambu parameters
are discussed in the following section.

We conclude this section calculating the ground-st
~vacuum! energy of our system in the mean-field approxim
tion. This approximation to the ground state is obtained a
static solution of Eqs.~52!. The associated mean energy c
be obtained by takingnk,15nk,250 in Eq. ~39! and evaluat-
ing the divergent integrals~37! and~40! using the renormal-
izationAnsätze ~43!, ~44!, and~45!. We obtain

^HCGNM
MF &vacuum

L
52S 1

2p D F11S g22p D ~j11!GL2

2S 1

2p D ~11d!2m2

2 H 12 lnF ~11d!2

4 G J ,
~53!

where we used for the finite constantsa, b, andc the expre-
sions given in Appendix C. The first term, divergent
L→`, represents a vacuum background energy. The p
ence of this term has no physical consequences, and we
low the usual practice of redefining the zero of the ene
scale by simply subtracting it out. Therefore, in terms of t
effective mass given by Eq.~51!, the renormalized energy
density of the ground state of our system is given by

^HCGNM
MF &vacuum

L
52S m2

4p D Smeff

m D 2F112ln22 lnSmeff

m D 2G .
~54!

FIG. 1. Mean-field effective potential for the ground state o
uniform fermion system described by the CGNM as function
effective massmeff .
cter
ns
and

ate
a-
s a
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Figure 1 shows the renormalized ground-state energy density
as a function of effective massmeff . This figure reproduces
the well-known effective potential obtained in the case of
1/N expansion@11#.

VI. KINETICS OF ONE-FERMION DENSITIES

In this section, we discuss the solutions of the nonlinear
equations of motion of the Nambu parameterswk andgk in
terms of the values taken by the parameterd. In order to do
this, it is useful to note that these equations can be obtained
as the canonical equations of the effectivec-number Hamil-
tonian

heff5
2

k0
@k21m2~11d!#sk2

2muku
k0

dcosgk~12sk
2!1/2,

~55!

where we definedsk52cos2wk as a new momentumlike
variable canonically conjugate togk . For a general value of
d this dynamical system has equilibrium solutions given by
gkueq5np with wkueq given by Eq.~47!. A special situation
occurs, however, whend50. In this case, in fact,wk be-
comes a constant of motion (gk becomes cyclical inheff) and
ġk becomes independent ofwk .

Considering next the time-dependent solutions in the gen-
eral case (dÞ0), we see that the equilibrium solutions are
stable in the sense that small initial displacements from the
equilibrium states lead to librational behavior both inwk and
in gk . For sufficiently large displacements, however, the lat-
ter variable acquires a rotational~though nonuniform! behav-
ior while wk ~or sk) still oscillates about an equilibrium
value. A set of phase-space trajectories illustrating this be-
havior is shown in Figs. 2 and 3. As one sees in these figures,
whend is closer to the special value zero, the stability do-
mains shrink in the variablewk as the equilibrium points
approach the lineswk5mp/2. If, on the other hand, one

f a
of

FIG. 2. Phase-space of Nambu parameters foruku5m5A2 in
the case of free fermion system@(d1150) or meff50#. Initial
values: Dotted line: wk

in5(20.21np/2), gk
in52np and

wk
in5(10.21np/2), gk

in5(2n11)p; Dashed line: wk
in5(20.1

1np/2), gk
in52np and wk

in5(10.11np/2), gk
in5(2n11)p;

Solid line: wk
in5(2p/41np/2), gk

in50 and wk
in5(01np/2),

gk
in50; Dot-dashed line:wk

in5(p/81np/2), gk
in50.
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considers the kinetic equations ford50, one sees that the
solutions correspond to uniformgk rotations with fixedwk .

In order to interpret this behavior we recall thatd, to-
gether with the expansion massm, and the equilibrium val-
ues of wk and gk , define the equilibrium effective mass
meff @see Eq.~51!#. In particular, whend521, one has
meff50 and the equations of motion reduce to

ẇk5m
uku
k0
singk ,

ġksin2wk52
~k!2

k0
sin2wk12m

uku
k0
cos2wkcosgk ,

which reproduce the equations one obtains for a free~mass-
less! field, e.g., by makingg50 in the Hamiltonian density
~27!. Other values ofd will, on the other hand, correspond to
nonvanishing equilibrium values of the effective mass. Dis
placements ofwk and gk from their respective equilibrium
values will then correspond to preparing the system in a sta
having a ‘‘wrong’’ (k-dependent! effective mass~in particu-
lar, nonvanishing in the ‘‘symmetric’’ phase,d521). The
ensuing motion represents, therefore, the dynamical reacti
of the system to this situation. Several phase-space trajec
ries for off-equilibrium solutions are shown in Figs. 2 and 3

The special cased50 corresponds to choosing the equi-
librium effective massmeff itself as the expansion massm. In
this case the stability islands disappear, as the phase-sp
trajectories degenerate to straight lines. The off-equilibrium
dynamics can then be represented by the time dependence
the single parametergk .

VII. DISCUSSION AND CONCLUSIONS

We have described a treatment of the initial-value prob
lem in a quantum-field theory of self-interacting fermions in
the Gaussian approximation. Although the procedure is qui
general, we have implemented it for the vacuum of a relativ

FIG. 3. Same as Fig. 2 with (d11)50.5858. Initial values:
Dotted line: wk

in5(20.11np/2), gk
in52np and wk

in5(10.1
1np/2), gk

in5(2n11)p; Dashed line: wk
in5(20.051np/2),

gk
in52np and wk

in5(10.051np/2), gk
in5(2n11)p; Solid line:

wk
in5(2p/81np/2), gk

in50 and wk
in5(01np/2), gk

in50; Dot-
dashed line:wk

in5(3p/161np/2), gk
in50.
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istic many-fermion system described by the chiral Gross-
Neveu model~CGNM!.

We have obtained the renormalized kinetic equations
which describe the effective dynamics of Gaussian observ-
ables in the mean-field approximation for a uniform
(111)-dimensional system. We used the static solution of
these equations in order to renormalize the theory, leading to
an effective potential similar to that obtained by Gross and
Neveu using the 1/N expansion. We show also that other
static results discussed in the literature, such as dynamical
mass generation due to chiral symmetry breaking and a phe-
nomenon analogous to dimensional transmutation, can be re-
trieved from this formulation in the mean-field approxima-
tion. Finally, we obtained and discussed numerical solutions
for the time evolution of the Nambu parameters~Gaussian
variables! for nonequilibrium initial conditions.

As a final comment we note that, unlike the situation
found in connection with the 1/N expansion, the use of the
GaussianAnsatz, Eq. ~19!, parametrized by the canonical
transformation leading to the quasifermion basis, allows for
the direct dynamical determination of the stable equilibrium
situations of the system@see Eqs.~41! and ~42!#, with or
without symmetry breaking and mass generation. In the latter
case we obtain just a free, massless theory.

The present projection technique@8# can be extended to
include and to evaluate higher dynamical correlation correc-
tions to the mean-field approximation. In this case the occu-
pation numbers are no longer constant,v̇k,lÞ0, and their
time dependence affects the effective dynamics of the Gauss-
ian variables~see Ref.@10#!. A finite-matter density calcula-
tion beyond the mean-field approximation allows one to
study collisional observables such as transport coefficients
@20#. Finally, we comment on the extension to nonuniform
systems. In this case the spatial dependence of the fields
c̄(x) andc(x) are expanded in the natural orbitals through
the use of a nonhomogeneous Bogolyubov transformation
~see Ref.@9#!.
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APPENDIX A: UNIFORM SYSTEM AND THE
REPRESENTATIONS FOR THE gµ MATRICES

A ~111!-dimensional uniform system has to be invariant
under translations and under reflection. Reflection invariance
implies that the equations of motion are direction indepen-
dent, i.e., dynamical quantities should involveuku only.

Let us consider the solutions of the Dirac equations

~ i ]/2mj !c
~mj !~x!50 , j51,2, ~A1!

for two different valuesm1 andm2 of the mass:

c~m1!~x!5(
k

S m1

Lk0
~m1!D 1/2@bk,1~m1!u1

~m1!
~k!eik•x

1bk,2
~m1!†u2

~m1!
~k!e2 ik•x#, ~A2!
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c̄~m1!~x!5(
k

S m1

Lk0
~m1!D 1/2@bk,1~m1!†ū1

~m1!
~k!e2 ik•x

1bk,2
~m1!ū2

~m1!
~k!eik•x, ~A3!

and

c~m2!~x!5(
k

S m2

Lk0
~m2!D 1/2@bk,1~m2!u1

~m2!
~k!eik•x

1bk,2
~m2!†u2

~m2!
~k!e2 ik•x#, ~A4!

c̄~m2!~x!5(
k

S m2

Lk0
~m2!D 1/2@bk,1~m2!†ū1

~m2!
~k!e2 ik•x

1bk,2
~m2!ū2

~m2!
~k!eik•x#. ~A5!

By imposing~say att50) the condition

c~m1!~x!5c~m2!~x!, ~A6!

one can show that the operator sets (bk,1
(m1) ,bk,2

(m1)) and

(bk,1
(m2) ,bk,2

(m2)) are related by the canonical transformation

bk,1
~m2!

5H Sm1

m2
D 1/2S k0~m2!

k0
~m1!D 1/2ū1~m2!

~k!u1
~m1!

~k!J bk,1~m1!

1H Sm1

m2
D 1/2S k0~m2!

k0
~m1!D 1/2ū1~m2!

~k!u2
~m1!

~2k!J b2k,2
~m1!†,

~A7!

bk,2
~m2!

52H Sm1

m2
D 1/2S k0~m2!

k0
~m1!D 1/2ū2~m1!

~k!u2
~m2!

~k!J bk,2~m1!

2H Sm1

m2
D 1/2S k0~m2!

k0
~m1!D 1/2ū1~m1!

~2k!u2
~m2!

~k!J b2k,1
~m1!†.

~A8!

Reflection invariance requires that the coefficients of
canonical transformation be invariant underk→2k: i.e.,
this

ū1
~m2!

~k!u1
~m1!

~k!5ū1
~m2!

~2k!u1
~m1!

~2k!, ~A9!

ū1
~m2!

~k!u2
~m1!

~2k!5ū1
~m2!

~2k!u2
~m1!

~k!,

ū2
~m1!

~k!u2
~m2!

~k!5ū2
~m1!

~2k!u2
~m2!

~2k!,

ū1
~m1!

~2k!u2
~m2!

~k!5ū1
~m1!

~k!u2
~m2!

~2k!.

There are just two representations of thegm matrices sat-
isfying these conditions. These are the Pauli-Dirac represen-
tation

g05s3 , g15 is2 , and g55g0g15s1 ~A10!

and

g05s3 , g15 is1 , and g55g0g152s2 .
~A11!

We choose the Pauli-Dirac representation~A10! which admit
as solutions the spinors given in Eq.~29!. It should be noted,
however, that the spinors

u1~k!5S k01m

2m D 1/2F 1

k

~k01m!
G ,

u2~k!5S k01m

2m D 1/2F k

~k01m!

1
G , ~A12!

which are also solutions of Dirac’s equation in the Pauli-
Dirac representation, do not satisfy the uniformity conditions
~A9!.

APPENDIX B: THE UNIFORM CGNM HAMILTONIAN

In this appendix we give explicitly the Hamiltonian of the
chiral Gross-Neveu model in a form which preserves the
reflection invariance of the system. In the Pauli-Dirac repre-
sentation~see Appendix A! the CGNM Hamiltonian is given
in full by
HCGNM5(
i51

N

(
k8

1

@~k i8!21m2#1/2
$~k i8!2~bk

i8,1
†

bk
i8,1

2bk
i8,2
bk

i8,2
†

!2muk i8u~bki8,2b2k
i8,1

1bk
i8,1
†

b
2k

i8,2
†

!%

1S g2m2

2L D (
i , j51

N

(
~k8,k9,k-,k-8!

H 1

@~k i8!21m2#1/4@~k i9!21m2#1/4@~k j-!21m2#1/4@~k j-8!21m2#1/4J
3$bk

i8,1
†

bk
i9,1
bk

j-,1
†

bk
j-8,1@jū1~k i8!g5u1~k i9!ū1~k j-!g5u1~k j-8!2ū1~k i8!u1~k i9!ū1~k j-!u1~k j-8!#dk

i81k
j- ,k

i91k
j-8

1bk
i8,1
†

bk
i9,1
bk

j-,2
bk

j-8,2
†

@jū1~k i8!g5u1~k i9!ū2~k j-!g5u2~k j-8!2ū1~k i8!u1~k i9!ū2~k j-!u2~k j-8!#dk
i81k

j-8 ,ki91k
j-

1bk
i8,1
†

bk
i9,1
bk

j-,1
†

bk
j-8,2

†
@jū1~k i8!g5u1~k i9!ū1~k j-!g5u2~k j-8!2ū1~k i8!u1~k i9!ū1~k j-!u2~k j-8!#dk

i81k
j-1k

j-8 ,ki9

1bk
i8,1
†

bk
i9,1
bk

j-,2
bk

j-8,1@jū1~k i8!g5u1~k i9!ū2~k j-!g5u1~k j-8!2ū1~k i8!u1~k i9!ū2~k j-!u1~k j-8!#dk
i8 ,ki91k

j-1k
j-8
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1bk
i8,2
bk

i9,2
†

bk
j-,1

†
bk

j-8,1@jū2~k i8!g5u2~k i9!ū1~k j-!g5u1~k j-8!2ū2~k i8!u2~k i9!ū1~k j-!u1~k j-8!#dk
i81k

j-8 ,ki91k
j-

1bk
i8,2
bk

i9,2
†

bk
j-,2
bk

j-8,2
†

@jū2~k i8!g5u2~k i9!ū2~k j-!g5u2~k j-8!2ū2~k i8!u2~k i9!ū2~k j-!u2~k j-8!#dk
i81k

j- ,k
i91k

j-8

1bk
i8,2
bk

i9,2
†

bk
j-,1

†
bk

j-8,2
†

@jū2~k i8!g5u2~k i9!ū1~k j-!g5u2~k j-8!2ū2~k i8!u2~k i9!ū1~k j-!u2~k j-8!#dk
i8 ,ki91k

j-1k
j-8

1bk
i8,2
bk

i9,2
†

bk
j-,2
bk

j-8,1@jū2~k i8!g5u2~k i9!ū2~k j-!g5u1~k j-8!2ū2~k i8!u2~k i9!ū2~k j-!u1~k j-8!#dk
i81k

j-1k
j-8 ,ki9

1bk
i8,1
†

bk
i9,2
†

bk
j-,1

†
bk

j-8,1@jū1~k i8!g5u2~k i9!ū1~k j-!g5u1~k j-8!2ū1~k i8!u2~k i9!ū1~k j-!u1~k j-8!#dk
i81k

i9 ,k j-1k
j-8

1bk
i8,1
†

bk
i9,2
†

bk
j-,2
bk

j-8,2
†

@jū1~k i8!g5u2~k i9!ū2~k j-!g5u2~k j-8!2ū1~k i8!u2~k i9!ū2~k j-!u2~k j-8!#dk
i81k

i91k
j-8 ,k j-

1bk
i8,1
†

bk
i9,2
†

bk
j-,1

†
bk

j-8,2
†

@jū1~k i8!g5u2~k i9!ū1~k j-!g5u2~k j-8!2ū1~k i8!u2~k i9!ū1~k j-!u2~k j-8!#dk
i81k

i91k
j-1k

j-8,0

1bk
i8,1
†

bk
i9,2
†

bk
j-,2
bk

j-8,1@jū1~k i8!g5u2~k i9!ū2~k j-!g5u1~k j-8!2ū1~k i8!u2~k i9!ū2~k j-!u1~k j-8!#dk
i81k

i9 ,k j-1k
j-8

1bk
i8,2
bk

i9,1
bk

j-,1
†

bk
j-8,1@jū2~k i8!g5u1~k i9!ū1~k j-!g5u1~k j-8!2ū2~k i8!u1~k i9!ū1~k j-!u1~k j-8!#dk

i81k
i91k

j-8 ,k j-

1bk
i8,2
bk

i9,1
bk

j-,2
bk

j-8,2
†

@jū2~k i8!g5u1~k i9!ū2~k j-!g5u2~k j-8!2ū2~k i8!u1~k i9!ū2~k j-!u2~k j-8!#dk
i81k

i91k
j- ,k

j-8

1bk
i8,2
bk

i9,1
bk

j-,1
†

bk
j-8,2

†
@jū2~k i8!g5u1~k i9!ū1~k j-!g5u2~k j-8!2ū2~k i8!u1~k i9!ū1~k j-!u2~k j-8!#dk

i81k
i9 ,k j-1k

j-8

1bk
i8,2
bk

i9,1
bk

j-,2
bk

j-8,1@jū2~k i8!g5u1~k i9!ū2~k j-!g5u1~k j-8!2ū2~k i8!u1~k i9!ū2~k j-!u1~k j-8!#dk
i81k

i91k
j-1k

j-8,0%.

~B1!

This Hamiltonian is written in a particle basis. In the dynamical equations~35! we have to use the CGNM Hamiltonian in
the Nambu quasiparticle basis. The transformed Hamiltonian is obtained in a straightforward way using Eqs.~11! and ~30!.

APPENDIX C: SELF-CONSISTENT RENORMALIZATION

Using Eq.~46! we obtain sin2wkueq and cos2wkueq as

sin2wkueq5
2~21!nmuku@12~b1d!#

k0@k
21m2~b1d!2#1/2

,

~C1!

cos2wkueq5
@k21m2~b1d!#

k0@k
21m2~b1d!2#1/2

.

Substituting Eq.~C1! in I 1 and I 2 given in Eq.~37!, takingnk,15nk,250, and performing the integration, we have

I 15E
2L

1L dk

~k21m2!

@k21m2~b1d!#

@k21m2~b1d!2#
5a1blnS L2

m2D ,
a5

2d

@~11d!221#1/2
arctan@~11d!221#1/21 lnF 4

~11d!2G and b5 1 when ~11d!2.1,

~C2!

a5
d

@12~11d!2#1/2
lnF11$12~11d!2%1/2

12$12~11d!2%1/2G1 lnF 4

~11d!2G and b5 1 when ~11d!2,1,

I 25~b1d21!E
2L

L dk

~k21m2!

k2

@k21m2~b1d!2#1/2
5c1dlnS L2

m2D .
This shows thatd is not determined by self-consistency. Forb51,
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c5
22d

@~11d!221#1/2
arctan@~11d!221#1/21dlnF 4

~11d!2G when ~11d!2.1,

~C3!

c5
2d

@12~11d!2#1/2
lnF11$12~11d!2%1/2

12$12~11d!2%1/2G1dlnF 4

~11d!2G when ~11d!2,1.

This shows that theAnsätze ~44! and ~45! are self-consistent. Equations~C2! and ~C3! give the values of the constants
a, b, andc.
a
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