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Initial-condition problem for a chiral Gross-Neveu system
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A time-dependent projection technique is used to treat the initial-value problem for self-interacting fermionic
fields. On the basis of the general dynamics of the fields, we derive formal equations of kinetic-type for the set
of one-body dynamical variables. A nonperturbative mean-field expansion can be written for these equations.
We treat this expansion in lowest order, which corresponds to the Gaussian mean-field approximation, for a
uniform system described by the chiral Gross-Neveu Hamiltonian. Standard stationary features of the model,
such as dynamical mass generation due to chiral symmetry breaking and a phenomenon analogous to dimen-
sional transmutation, are reobtained in this context. The mean-field time evolution of nonequilibrium initial
states is discussef50556-282196)03322-X

PACS numbsgs): 11.30.Rd, 11.10.Kk, 11.10.Lm

I. INTRODUCTION solved without further approximation. In the field-theoretical
context, this has been implemented through the use of a
Over the last two decades, interest in the initial-conditionGaussiarAnsatzfor the subsystem density functional in the
problem for field-theoretical models has been kindled andramework of a time-dependent variational principle supply-
sustained by the needs of such apparently diverse areas iag the appropriate dynamical information, notably for
cosmology[1] and several branches of many-body physicsbosonic fieldd5].
notably in connection with the analysis of transient phenom- It is not difficult to see that this last approximation
ena in the collision of complex nuclear systef@$ In these amounts to a second mean-field approximation, now at the
contexts one typically tries to obtain and solve equationsnicroscopic level of the single-field, nonlinear, isoentropic
describing the kinetic behavior of a particular, “relevant” effective dynamics. Actually, the Gaussi@msatz having
subsystem or of a restricted set of “relevant” observables othe form of a exponential of a quadratic form in the field
a more comprehensive autonomous system. Such is the casperators, implies that many-point correlation functions can
e.g., of the scalar driving field in the inflationary scenario ofbe factored in terms of two-point functions. This is well
the early Universe and of one-body densities and certain coknown in the context of the derivation of the Hartree-Fock
relation functions in heavy-ion collisions. In general, the rel-approximation to the nonrelativistic many-body problggh
evant properties can be retrieved from appropriately conThis factorization has been used by Chagto implement
structed reduced density operators in the Sdimger the Gaussian approximation for thep* theory. The dynam-
picture, which will evolve nonunitarily on account of corre- ics of the reduced two-point density then itself becomes
lation effects involving different subsysterf3,4]. The non- isoentropic, since irreducible higher-order correlation effects
unitary effects will manifest themselves through the dynami-are neglected.
cal evolution of the eigenvalues of the reduced densities, so The focus of this work is a reevaluation of this second
that particular subsystems will, in general, evolve in a noni-mean-field approximation, for fermionic fields, in terms of a
soentropic mann€i3]. time-dependent projection approach developed earlier for the
The overwhelming complexity of such a picture is con- nonrelativistic nuclear many-body dynamics by Nemes and
siderably reduced whenever one is able to find physicatle Toledo Piz48]. This approach allows for the formulation
grounds to motivate a mean-fieldlike approximation whichof a mean-field expansion for the dynamics of the two-point
consists in assuming isoentropic evolution of a relevant subeorrelation function from which one recovers the results of
system under effective, time-dependent Hamiltonian operathe Gaussian mean-field approximations in lowest order, i.e.,
tors for each subsystefd]. In this case the dynamics of the this approach permits one to include and to evaluate higher
subsystem density matrix can be formulated in terms of alynamical correction effects to the simplest Gaussian mean-
Liouville-von Neuman equation governed by an effectivefield approximation. Moreover, the expansion is energy con-
Hamiltonian and studied, e.g., from the point of view of theserving (for closed systemto all orders[9]. The resulting
functional field-theoretical Schdinger picture, as proposed dynamical equations acquire the structure of kinetic equa-
by Jackiw[4]. Unfortunately, the resulting problem still in- tions which eliminate the isoentropic mean-field constraint
volves, in general, nonlinear Hamiltonians, and cannot belescribing the effective dynamics of a selected set of observ-
ableg[8]. This approach was recently applied for the solution
of the self-interacting\ ¢* theory in 1+1 dimensiong10].
“Present address : Departamento d&da, Universidade Estadual Lin and de Toledo Piz@10] find that the Gaussian mean-
de Londrina, Parandrazil. field approximation fails both qualitatively and quantitatively
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in the description of certain field variables. These failures ar€€onsequently, the time evolution of observables which in-
partially corrected by the collisional terms. Motivated by volve field bilinear forms such ag(x) (x), ¥(x) ¢(x), . ..
success obtained in description of time evolution of a off-is desirable. These are the observables which are kept under
equilibrium uniform boson(scalar field system beyond direct control when one works variationally using a Gaussian
Gaussian mean-field approximation in quantum-field theofunctional Ansatz and will, therefore, be referred to as
retical context, it becomes interesting to study the fermionGaussian observables. In order to keep as close as possible to
case in this approach. As a first step towards this end wehe formulation appropriate for the many-body problem, we
consider in this paper the implementation of the Gaussiaiork in fact with expressions which are bilinear in the cre-
approximation to a self-interacting system of fermions. Thisation and annihilation parts of the fields in momentum space
is done in a framework suitable for the subsequent inclusiogyith periodic boundary conditions in a spatial box of length
of collisional (correlatior) corrections along the lines devel- | defined in terms of an expansion mass parametewe
oped in Ref[10] for the self-interacting bosonic field. begin by expanding the Dirac field operatoggx) and

We consider, for simplicity and definiteness, the case Ofgz/_(x) in Heisenberg picture as
an off-equilibrium, spatially uniform, many-fermion system
described by chiral Gross-Neveu modlL]. This is an in- 172 iKex —ikex
teresting nontrivial, renormalizable model for which many (X :Z m b 1(H)uy(kK) — + b} (t)u (k)e
results are available in the literature so that it offers suitable k\K At N T N
testing ground for the proposed approach. On the basis of the
general dynamics of the fields, we derive equations of kinet- (1)
ictype for the set of one-body variables in lowest order,
which correspond to the Gaussian mean-field approximation. 12 Cikx e
The detailed consideration of correlation corrections is de=,, |, o —
ferred to future work. "[/(X)_zk“ (k_o> {bkyl(t)ul(k) JL +bk'2(t)u2(k)f

An outline of the paper is as follows. In Sec. Il we obtain
e cynamical equatons i descrbe e tme e/oUORnereb], andb oL andby ) are fermion reaton anc
groundwork for the implementation of the time-dependentgnnIh""’ltlon operators associated with positifregative-

o . . : -~ = energy solutionsiy (k) [u,(k)] of Dirac’s equation. Canoni-
projection technique. This technique and the apprommaﬂqr&al guantization demands that the creation and annihilation

scheme are de;cnbed in Sec. Il In Sec. IV we .|mp_lement Irbperators satisfy the standard anticommutation relations at
the quantum-field theoretical context the projection tech-

nigue and obtain in Gaussian mean-fi€idoentropi¢ ap- equal times
roximation the equations which describe the effective dy- , ,

gamics of a of?—equilibrium, spatially uniform, +11- g {blm(t)'bk’vk’(t Jh=vr =ik Oy for AA'=1.2,

dimensional, self-interacting fermion system described by 2

chiral Gross-Neveu mod¢lL1]. In Sec. V we use the static {b,Im(t),bT,,h,(t’)}t:t,={bm(t),bkw(t’)}t:t,=0.

solution of these equations in order to renormalize the

theory, leading to the well-known effective potential ob-|n Eq. (1) x denotes the spatial coordinate only and we use

tained by Gross and Neveu using thé&l¥xpansion. In this  the notation

same section, we show also that other static results which

have been discussed in the literature, such as dynamical mass (ko)2=(K)2+m? and kx=kgt—k-x.

generation due to chiral symmetry breaking and a phenom-

enon analogous to dimensional transmutation, can be re-

trieved from this formulation in a mean-field approximation.

Finally, in Sec. VI we obtain and discuss numerical solutionst. . . . )
o " : ; ime-independent, non-negative, Hermitian operator with
for nonequilibrium initial conditions. Section VIl is devoted

. . . . . unit trace. At this point, however, we specialize the analysis
to a final discussion and conclusions. Some points of a MOre " ihe case of spatially uniform systems. These systems ex-
technical nature are discussed in Appendices. hibi X ; . o .

ibit translational invariancéhomogeneity and rotational
invariance (isotropy). In the case of 1 dimensions this
Il. KINETICS OF A SELF-INTERACTING reduces to invariance under translations and under reflection.
FERMIONIC FIELD The possible nonvanishing mean values of bilinear forms of
field operators are
In this section, we shall describe a formal treatment of the
kinetics of a self-interacting quantum field. Although the _ T '
procedure is quite general, we will adopt the specific context R =THIby\ (Db (D]F} - for AA'=1.2,
of a spatially uniform fermion system. We will illustrate all 3
the relevant points of the approach and cut down inessential Lk x 7k a (D) =TrH{[b_ x (Db x (D ]F}  for A N"=1,2,
technical complications. Features of more general contexts
are discussed in Ref12]. The Hermitian matrix® and the antisymmetric matrid are
The idea of our approach is to focus on the time evolutiorthe one-fermion density and pairing density, respectively.
of a set of simple observables. We argue that a large numbéfsing these objects we can construct the extended one-body
of relevant physical observables are one-body operatorslensity[13]

In general, the state of the system is given in terms of a
many-body density operatdF in the Heisenberg picture, a
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This object summarizes all information on the Gaussian obWith the help of Eq.(11) it is then an easy task to express
servables and provides an adequate starting point for oup(x) and #(x), Eq. (1), in term of Bf ,(t) and By ,(t) for

kinetic treatment.

A=1,2. In doing so, one finds that the plane waves of

The first step is standard and consists in reducing the exg(x) and (x) are modified by a complex, momentum-
tended one-body density to diagonal form. This can bealependent redefinition ah involving the Bogolyubov pa-
achieved by subjecting the creation and annihilation operarameters. The complex character of these parameters is actu-
tors to a canonical transformation of the Bogolyubov-typeally crucial in dynamical situations, where the imaginary
with coefficients defined by the eigenvalue problem

XHOR(D X (D) =Q(1), (5)

where the unitary matriX)(t) which diagonalize®,(t) has

the structure

xe ve] o [XY
Xk_ y K= ’ (6)
Yk Xk Y-IE Xl

The unitary conditions forX(t) can be interpreted as or-

[ (Bl
(BT (DBEAD)

— (1)
B (D) (B_in (D) B (D)

)]
(B (DL (D)

parts will allow for the description of time-odd.e., veloci-
tylike) properties.

What we have achieved so far amounts to obtaining an
expansion of the fieldg/(x) and #(x) such that the mean
values in F of Gaussian observables are parametrized in
terms of the natural orbitals, , K(k) andY),. ,(k) and of the
occupation numbersy , (t) = Tr(,Bk ZBiaF) for Ax=1,2. In
general, all these quantities are time dependent under the
Heisenberg dynamics of the field operators, and we now pro-
ceed to obtain the corresponding equations of motion. Tak-
ing the time derivative of Eq(5) and using the unitarity
condition (8), we get

MRy Xie= Q= X X Qu— Qi X (12
We next evaluate the left-hand side of this equation using the
Heisenberg equation of motion to obtain

| X Ry X
Tr([ By r Bir HIF)  Tr([ Boicr B H1F)
T TAB  BEAHIF) T Bir Bl HIF)

thogonality and completeness relations for a set of natural

orbitals which diagonalize the extended one-body density.

13

They read

XiXe=1,

and Xk‘)(l =| 45 (8)

or, more explicitly, in terms of the submatricé&g and Y

[see Eq(6)],

Y Y+ XX =1,
YV XEXE =15,

The elements of the diagonal submatiiy(t) can, on the

Y XE+ X YE=0,,

9
YIxXE+ XY, =0 ©
k“Nk k Tk 2

The right-hand side of Ed12) can also be evaluated explic-
itly using Egs.(6) and (7):

Qi)

B hi -
— Okt {7, Ok +

i(Qx— XL X Qy—
_g: +{Vk vgﬁ}ﬁ-

—iv+[ v hid-

i v+ [ v,

(14

where the matriceb, andg, are given in terms oK, and

other hand, be interpreted as quasifermion occupation nun¥y as
bers for the paired natural orbitals. Because of the assumed
symmetry one must have

V(D= v (1). (10)

he=—1(YRYE + XXy,
_ _ (15
9= —T(YEXE +X1Y).

Flnally using Eq.(6), we can relate the fermion operators From Egs.(13) and (14) we obtain dynamical equations
b“(t) and by ,(t) to the new quasifermion operators which describe the time evolution of our uniform fermion
,8k A(t) and By, (t) for A=1,2 as

system. They read
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vt [ T =Tr o H1A), earlier in the context of nonrelativistic nuclear many-body
7t Lo (LB B HIZ) (16) dynamics and was recently applied in the quantum-field
. -. . 4 . +
— gt {1, O =T B_in Bir H1F). theoretical context to the self-interactings™ theory in 1+1

dimensions[10]. It allows for the formulation of a mean-

Equations(16), together with the unitarity condition®),  field expansion for the dynamics of the two-point correlation
determine the time rate of change of the Gaussian obsenfunction from which one recovers the results of the Gaussian
ables in terms of expectation values of appropriate commumhean-field approximations in lowest order. If carried to
tators. They are, however, C|ear|y not closed equations Whehigher orders it allows for the inclusion and evaluation of
the HamiltonianH involves self-interacting fields. In this higher dynamical correlation corrections to the simplest
case, in fact, the time derivatives of the Gaussian observablégean-field approximation.
are given in terms of traces which are not expressible in In the specific context of the equations of motid6) we
terms of the Gaussian observables themselves, since th&pgin by decomposing the full densify as
will involve also many-fermion densities. This situation can
be dealt with in terms of the projection technique reviewed F=Fo(t)+F (1), (17)
in the next section.

lll. PROJECTION TECHNIQUE AND Where]-"o(t)_ls a Gaussmmnsqtzwhl_ch achieves a Hartre_e-
APPROXIMATION SCHEME Fock factorization of traces involving more than two field
operators. The Gaussian densify(t) is chosen as having
In this section we introduce the time-dependent projectiorthe form of a exponential of a bilinear, Hermitian expression
technigug 8] which permits one to obtain closed approxima- in the fields normalized to unit tradé]. In the momentum
tions to the equations of motiai 6). It has been developed basis, it reads

- exd 2k, k,) Ak, ,kzbllbkz"' By, ,kzbllbk* Cy, k,0k, P, ]
o Tr{exqz(kl,kz)Akl,kzbllbkz"" Bkl,kzbllbl2+ Ch, k,Pk i, 1}

(18)

The parameters in E18) are fixed by requiring that mean In order to completely define this projector we require fur-
values inF, of expressions that are bilinear in the fields ther that it satisfies

reproduce the correspondirf§ averagegsee Eqs(20) be-

low]. Fy is a time-dependent object, which acquires a par- i F(D=[P(t). L1F=[ Fa(t).H1+ P H 29
ticularly simple form when expressed in terms of the oD =LPD.LIF=[Fo(O.HI+PO[H. 7], (22

Bogolyubov quasifermion operators where /L is the Liouvillian defined as

FoO =T [maBn OB D+ (1= 100 Bea (DB (D] £o=[H,] 29

19
H being the Hamiltonian of the field. Equatiq@2) is just
This is clearly a unit trace object which, in addition, satisfiesthe Heisenberg picture counterpart of the condition

_ et at N e at P(t) F=0 which has been used to defi@t) in the Schre
Tr(BaFo) =Tr(BaF) =Tr(BaFo) =Tr(Ba7) =0, dinger picturg9]. It is possible to show that conditiotig1)

_ _ and (22) makeP(t) uniqgue and we obtain an explicit form
T1(BaPoFo)=Tr(BaBof) =0, for this object in terms of the quasifermion operators and of

20 ' ' _
Tt tootom e natural orbital occupatior}8,8—10.
Tr(BaBpFo)=Tr(Bahp7)=0, The existence of the project@(t) allows one to obtain
+ _ + _ an equation relating the correlation part(t) to the Gauss-
TH(BaPoF0)=Tr(BabpF) = vadap, ian partFy(t) of the full density. This can be immediately
and obtained from Eqs(17), (21), and(22) and reads
TH(BaBFo) =TH(BaBiF) = (1= va) S [io+ P(OLIF (O)=[T-POILF(D). (24

Correspondingly, the “remainder” densit§’ (t), defined by  Thjs equation has the formal solution
Eq. (17), is a traceless, pure correlation density. As already

remarked, a crucial point to observe is thg§(t) can be ‘
written as a time-dependent projection®fi.e., ]-"(t):g(t’O)]-"(O)—if dt’ G(t,t)[Z—P(t")]LFo(t"),
0

Fo()=P()F with P)P(t)="P(t). (22) (25)
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where the first term accounts for initial correlations possibly This is a massless fermion theory ir-1 dimensions with
contained inF. The objectG(t,t’) is the time-ordered quartic interaction. The model contaihkspecies of fermi-

Green'’s function ons coupled symmetrically, wherg' is a complex Dirac
t spinor transforming as the fundamental representation of SU
tt)=T|exdi| d cll. 26 (N) group. It is known that the actual symmetry of the
gty ( F{ jt A7) ) (26) theory is not SUN) but rather O() [14]. The transforma-

tions forming this group mix not only particles but also par-

We see thus thaf’(t), and, therefore, alsg” [see Eq. ticles with antiparticles. This model is essentially equivalent
(17)], can be formally expressed in terms &j(t") (for  to the Nambu—Jona-Lasinio moddl5], except for the fact
t'<t) and of initial correlations7'(0). This allows us t0 that in 1+1 dimensions it is renormalizable. Moreover, it is
express also the dynamical equatia@$) as functionals of  one of the very few known field theories which are asymp-
Fo(t') and of the initial correlations. Since, on the othertotically free. To leading order in a l/expansior{11], the
hand, the reduced densifi(t') is expressed in terms of the CGNM exhibits a number of interesting phenomena, such as
one-fermion densities alone, we see that the resulting equgpontaneous symmetry breakiig6], dynamical fermion
tions are now essentially closed equations. Note, howevemass generation and dimensional transmutation. The model
that the complicated time dependence of the field operators jsossesses an infinite number of conservation laws, and as a
explicitly probed through the memory effects present in theconsequence, th® matrix may be computed exactf{7].
expression(25) for F'(t). Approximations are, therefore,  To obtain the time evolution of Bogolyubov parameters
needed for the actual evaluation of this object. A systematigve have to obtain the CGNM Hamiltonidsee Eq(16)] by
expansion scheme for the memory effects has been diSCUSSﬁ?‘ﬂegra’[ing over one-dimensional space. This involves, in
in Refs.[3,9,10. The lowest-order correlation corrections to particular, choosing a representation for the matrices.
the pure mean-field approximation, in whick is simply  Here, we have to be careful, since a bad choice of represen-
ignored, correspond to replacing the full Heisenberg timeation can spoil manifest reflection invariance. In Appendix
evolution of operators occurring in the collision integrals by A (see also Ref.15]) we discuss suitable representations for

a mean-field evolution governed by the y matrices. We choose the Pauli-Dirac representation,
Ho="P"(t)H. namely,
Consistently, with this approximatiot; is replaced in Egs. Yo= 03, V17102,

(25 and (26) by Ly =[Hy,-]. In this way correlation ef- and

fects are treated to second orderHnin the resulting colli-

sion integrals. V5= YoY1=071. (28)
An important feature of this schent&hich holds also for A

higher orders of the expansi8]) is that the mean energy is In this representation the spinang(k) andu,(k) are given

conserved, namely, by
d B 1 7
=0 (ko+m)]*2
uy(k)=|— Ko
where m
L (ko+m)
(HY=TrHF(t) + TrHF' ().
In the following sections we apply the general expressions 19 L
obtained above to treat a uniform fermion system described u (k):{(ko—m)} K (29)
by chiral Gross-Neveu moddlCGNM). We will consider 2 2m )
only the lowest(mean-field approximation, corresponding L (ko—m) |
to F'(t)=0. Collisional correlations will be treated else-
where. The resulting form for the CGNM Hamiltonian obtained us-
ing this representation is given in full in Appendix B.
IV. THE CHIRAL GROSS-NEVEU MODEL (CGNM) We next consider the initial-condition problem for this

o ) o system. The general Bogolyubov transformation defined in
The Hamiltonian density for the CGNM is given by Eq. (11) breaks both chiral and charge symmetries, but we
N restrict the following development to a special Bogolyubov
Hean= 2 {Ii[_ i y10:1]9'} transformation (to be called the Nambu transformatjon
i=1 which breaks the chiral symmetry of our system only. The
2 elements of this Nambu transformation, parametrized consis-
]’ 27) tently with the unitarity condition§9), are given by

RI(IRNNE N
—;HEl w‘w‘} —f{; W ysi/
X11=Xp=C0Sp  and  X;,=X»=0,

where¢ is a constant which indicates whether the model is (30)
invariant under the discrete; transformation £=0) or un- _
der the Abelian chiral () group ¢=1). Y= =Y =singe'’ and Y;;=Y,,=0.
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In the special case of the Nambu transformation, the ele- dk’
ments of the matriceb, andg, [see Eq(15)] are given by 1= f T C0s2pi (1= 1= Vi 2),
0
- (37)
h11=hp=nsirey, dk’ |k’| .
2= FWSIHZQDk,COSyk,(l—vk,'l— Vk’,Z)'
0
h12=h21=011=02,=0, (3D
We takeN=1 for simplicity. Splitting the complex equation
015= — G21=[i ¢k — ¥,SiN@, COSpy | k. (36) into real and imaginary parts, we have
2
On the other hand, in the mean-field approximation one finds ;pkzsinykm m— gm (E+1)(11+1,)],
that Fo(t) commutes with number operators Ko 4m
. 25si 22
Tr{HCGNM[fOaﬁl,lﬁk,l]}:Tr{HCGNM[fOlBE,Zﬂk,Z]}:O! YiSiN2¢p, = Sin2ex k2+(g m (E+1)(14+1,)
(32 ko A
. I k
while, due to the charge conservation in the system, we have +20052Pk008yk|k—|
also 0
2
g°m
Tr{[ﬁl,lﬁk,Z1HCGNM]fO}:Tr{[Bl,Zﬂk,1!HCGNM]}-O}:O X m—(ﬂ)(& D(l+15)]. (38
(33
TH[B-k18k,1,Hconml Fol = TH{[ B« 28k2,Hconml Fot Finally, the mean-field energy is evaluated as
=0.
(H'Cnw =T HeonmFo(t)]
Substituting Egs(31)—(33) in Eg. (16), we obtain the equa- m? g°m?\ (é+1) )
tions which describe the time evolution of our system as =l oz|(=la)—| o= | —5—(1+12)
2 8 2
11=0 and . ,=0, (34) [ 97+ f de
8m? 2

[i o+ YiSing,Cosp Je 'k

_ Tr([lg—k,lﬂk,ZuH CGNM]fo)
(1= 1= vk2) '

X(1+ Vk’,l_ Vk’,Z)J’ dk”(l_ Vk”,l+ Vk”,Z)l

(39

(39

Equation(34) shows that the occupation numbers of theWherel, andl; are given in Eq(37) and|; is given by
paired natural orbitals are constant, i.e., we recover the gen- dk’ (k' 2
eral isoentropic character of_ the mean-_field app_roximation. l3= f _,(_) c0S2p(1— vy 1— Vs ). (40)
The complex equation of motigi35) describes the time evo- ko \'m
lution of the Nambu parameters. Writing the CGNM Hamil- ) o )
tonian, given in Appendix B, in the Nambu basis using Egs. Since all the results above contain divergent integrals, a
(11) and(30), and substituting this Hamiltonian in E€B5), renormalization procedure is required. This is discussed in
we obtain the explicit form of this equation. The calculation the next section.
of traces is lengthy but straightforward. As a result, one ob-

tains V. RENORMALIZATION
sin2 In order to handle the infinities which occur in the pre-
i o+ 'yk_@k ceding equations it is necessary to introduce a renormaliza-
2 tion prescription that will render physical quantities finite. In
(k)2 K| general, renormalization procedures consist in combining di-
= —sin2¢,—m-—[sirfp e~ %k—coLp,e' k] vergent terms with the bare mass and coupling constants of
ko Ko the theory to define new, finitor renormalized values of
g2m?\ (£+1) these quantities. Thus, when one adopts a momentum cutoff
( 7] ) " to regularize divergent integrals, the bare mass and coupling
- 0

constants are chosen to be cutoff dependent in a way that
K| . . will cancel the divergences. In the present case, however, the
sin2¢p) + E(sirﬁpke"yk—coszgoke' YO |(l1,+1,), divergent integral$37) and(40) involve the dynamical vari-
ables themselves in the integrand, so that even their degree
(36 of divergence is not directly computable. In order to handle
this situation we will use a self-consistent renormalization
wherel; andl, are the divergent integrals procedure inspired by Ref18].

X
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The renormalization prescription we use can be based on uj (k) = cospu (k) + singye! ku,( — k),
the consideration of the static solutions of the dynamical (49)
equationg38). They are determined by the equations

u3(k) =cospu,(k) = singge ™ kuy (— k).

(E+1)(1,+1,)|=0, (41)

2
4m

Sin'}’k|e<{1_

K| (g2dm) (£ 1)(1 3 +1,)] From the renormalized static solutig#7) we have that
- - T 1712

18N20 0= [(1) 7 (gPmTam) (€7 1) (1, 1,)] O FHlew

1
42 co =———[(kox+ mlk|d) Y2+ (kox—m|k|d)*?],
() S‘10k|eq2\/k0—x[(0 ||) (O ||)]
We will then show explicitly that it also controls the diver- ) 1 12 (49
gences which appear in the kinetic regime of the mean-field s'”‘Pk|eq:(_1)n2\/ﬁ[(kox+m|k|d)
approximation. 0
In order to obtain the renormalization prescription we in- — (kox—m[k|d)¥?],

troduce a momentum cutoff and begin by assuming that,

in order to render the theory finite, the bare coupling constant

g? must approach zero for large values bfas (see, e.g., where x=[k2+ (1+d)?m?]*2. Substituting the solutions

Refs.[11,19) (49 and the particle spinor9) in Eq. (48), we obtain the
new spinors in quasiparticle basis. They are given as

o= A7 [ 2] 43
e M) 43
1
where the form of the first factor is dictated by later conve- (kgff+ Metr) | 2
nience. We nexiassumethat the integrald; and |, have Uy (k) =| —5—— k :
logarithmic divergences eff —F
(ko +meff)
A? (50)
[;=a+bIn| —/, (44)
m
1
A2 , ~ kgff_ meff) 1/2
l,=c+dIn W) (45) uz(k)—[ T k :
(kgﬁ_ meff)

wherea, b, ¢, andd are finite constants. Substituting Eqg.
(43) and theAnsaze(44) and(45) in the static equatiofd2),
we obtain where

—(=1)"mlk|[1-(b+d)]
@20 o= [(1)7+ m(b+ )]

(46 (KM2=(K)2+ (M2 and meg=(1+d)ym. (51)

Finally, evaluating the integrals; andl,, Egs.(37), using

Eq. (46), we are able to determine the constaat®, ¢, and  Comparing the spinoré50) in quasiparticle basis with the

d self-consistently. This calculation is given in Appendix C. spinors (29) in particle basis, we see in Ed51) what

We find thereb=1 while d remains arbitrary. The renormal- amounts to a redefinition of the mass scale. Therefore, we
ized static equations are then obtained by simply substitutingote that, unlike the situation found in connection with the

these values in Eq46). We obtain 1/N expansion, the use of the Gaussiansatz Eq. (19),
N parametrized by the canonical transformation leading to the
) _ (=1)"m|k|d 4 quasifermion basis, allows for the direct dynamical determi-
an2¢k|eq_[k2+(1+d)m2] . ( 7)

nation of the stable equilibrium situation of the systksaee
Egs.(41) and(42)], including symmetry breaking and mass
We observe that the theory involves just one free parametejeneration. Moreover, the renormalization procedure effec-
d. This is altogether reasonable since our starting point was vely replaces the dimensionless coupling constgrtty the
massless fermion theory which was determined by one difree parameted associated to the mass scpgee Eq(51)].
mensionless coupling constagf, and we end up with a This is analogous to the phenomenon of dimensional trans-
theory determined by one free parameteafter the self- mutation found by Gross and Nev§id] in the 1N expan-
consistent renormalization procedure. What is needed is agion. Finally, aside from the overall mass scétbaracter-
interpretation of the parametelr ized byd) there are no free adjustable parameters.

__To obtain this, we begin by writing the fields(x) and Using Eqs.(38), (43)—(45), we finally write the renormal-
¥(x) given in Eq.(1) in the Nambu quasiparticle basis using ized form of the dynamical equations that describe the mean-
Egs.(11) and(30). We find that the new Dirac spinors in this field time evolution of this system. As mentioned before,
basis are given by they are now also finite and read



7874 P. L. NATTI AND A. F. R. de TOLEDO PIZA 54

0
. . . O
FIG. 1. Mean-field effective potential for the ground state of a
uniform fermion system described by the CGNM as function of

effective massn. FIG. 2. Phase-space of Nambu parameters|kb=m= 2 in

the case of free fermion systepfd+1=0) or my=0]. Initial
values: Dotted line: ¢f=(—0.2+nm/2), y'=2nm and

V1= vk 2=0, ep=(+0.2+nm/2), y{=(2n+1)m; Dashed line: p{=(—0.1
+n7l2), y¢=2nm and ¢g=(+0.1+nw/2), y'=(2n+1)m;
k| Solid line: o'=(—m/4+nml2), y"=0 and ¢"=(0+nm/2),

¢ =—md —siny,
Ko

. 2sin2¢y s Figure 1 shows the renormalized ground-state energy density
Yks'nz‘#’k:k—o[(k) +mi(1+d)] as a function of effective massy,. This figure reproduces

the well-known effective potential obtained in the case of
1/N expansior11].

yi"=0; Dot-dashed linep|"= (7/8+nm/2), y\'=0.
(52

—2m d|k£|0052(pk008yk .
0
VI. KINETICS OF ONE-FERMION DENSITIES
The first two equations express just the isoentropic character
of the mean-field kinetics. The remaining coupled equations In this section, we discuss the solutions of the nonlinear
describe the kinetic behavior of the Nambu parameters angquations of motion of the Nambu parametegsand y, in
are discussed in the following section. terms of the values taken by the parameten order to do
We conclude this section calculating the ground-statdhis, it is useful to note that these equations can be obtained
(vacuun) energy of our system in the mean-field approxima-as the canonical equations of the effectoraumber Hamil-
tion. This approximation to the ground state is obtained as &onian
static solution of Eqs(52). The associated mean energy can

be obtained by taking, 1= v\ ,=0 in Eq.(39) and evaluat- 20 5 ~ 2m[K| PN
ing the divergent integralg87) and (40) using the renormal- et ko[k Fm(1+d)]oy Ko dcosy (1= ai) ™,
ization Ansdze (43), (44), and(45). We obtain (55
(HQENWV“““’“_ g2 5 where we definedr,= —cos2p, as a new momentumlike
L T l\2n 1+ o (6+1)|A variable canonically conjugate tg,. For a general value of

d this dynamical system has equilibrium solutions given by
] Yleqg= N7 With @] eq given by Eq.(47). A special situation
’ occurs, however, whed=0. In this case, in factp, be-
comes a constant of motiory{ becomes cyclical i) and

1
( 2
v becomes independent ¢f, .

where we used for the finite constaatsb, andc the expre- Considering next the time-dependent solutions in the gen-
sions given in Appendix C. The first term, divergent aseral case d+0), we see that the equilibrium solutions are
A—oo, represents a vacuum background energy. The prestable in the sense that small initial displacements from the
ence of this term has no physical consequences, and we fadquilibrium states lead to librational behavior bothgpand
low the usual practice of redefining the zero of the energyin . For sufficiently large displacements, however, the lat-
scale by simply subtracting it out. Therefore, in terms of theter variable acquires a rotation@hough nonuniformbehav-
effective mass given by Ed51), the renormalized energy ior while ¢, (or o) still oscillates about an equilibrium

(1+d)?
4

(1+d)?m?

(53

density of the ground state of our system is given by value. A set of phase-space trajectories illustrating this be-
ME  \vacuum ) 5 ) havior is shown in Figs. 2 and 3. As one sees in these figures,
(Heonm [ M7 Meg 142In2—1 Megt whend is closer to the special value zero, the stability do-
L 47/l m rteine=ini )| mains shrink in the variable, as the equilibrium points

(54) approach the linegpy=m/2. If, on the other hand, one
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’ * ' ' ' istic many-fermion system described by the chiral Gross-
Neveu modelCGNM).
1 We have obtained the renormalized kinetic equations
which describe the effective dynamics of Gaussian observ-
. ables in the mean-field approximation for a uniform
(1+1)-dimensional system. We used the static solution of
_ these equations in order to renormalize the theory, leading to
an effective potential similar to that obtained by Gross and
Neveu using the M expansion. We show also that other
static results discussed in the literature, such as dynamical
mass generation due to chiral symmetry breaking and a phe-
nomenon analogous to dimensional transmutation, can be re-
trieved from this formulation in the mean-field approxima-
B8 WA w3 0 w8 w4 sws w2 tion. Finally, we obtained and discussed numerical solutions
¢, for the time evolution of the Nambu parameté¢@aussian
variableg for nonequilibrium initial conditions.

FIG. 3. Same as Fig. 2 withd(+1)=0.5858. Initial values: As a final comment we note that, _unlike the situation
Dotted line: ¢l'=(—0.1+nw/2), y"=2n7 and ¢P'=(+0.1 found in connection with the N expansion, the use of the
+nml2), y'=(2n+1)m; Dashed line: ¢l'=(—0.05+nx/2), GaussianAnsatz Eq. (19), parametrized by the canonical
yi'=2n7 and o= (+0.05+nm/2), y"=(2n+1)m; Solid line:  transformation leading to the quasifermion basis, allows for
e=(—7/8+nm/2), y\'=0 and ¢I'=(0+nmw/2), »"=0; Dot- the direct dynamical determination of the stable equilibrium
dashed linei)'=(37/16+nm/2), y'=0. situations of the systerfsee Eqgs.(41) and (42)], with or

without symmetry breaking and mass generation. In the latter
considers the kinetic equations fde=0, one sees that the case we obtain just a free, massless theory.
solutions correspond to uniform rotations with fixede, . The present projection techniq(ig] can be extended to

In order to interpret this behavior we recall thét to-  include and to evaluate higher dynamical correlation correc-

gether with the expansion mass and the equilibrium val- tions to the mean-field approximation. In this case the occu-

ues of ¢, and y,, define the equilibrium effective mass pation numbers are no longer constamg, +0, and their
Mme [See Eq.(51)]. In particular, whend=—1, one has time dependence affects the effective dynamics of the Gauss-

2r \

Yk 0r (i

-2n /

mes=0 and the equations of motion reduce to ian variablegsee Ref[10]). A finite-matter density calcula-
tion beyond the mean-field approximation allows one to
. k| . study collisional observables such as transport coefficients
Gokzmk_os'”Yk’ [20]. Finally, we comment on the extension to nonuniform
systems. In this case the spatial dependence of the fields
. k)2 K| Y(x) and ¢(x) are expanded in the natural orbitals through
7k3|n2€0k=2k—03|n2¢k+ ZmK—OCOSZGDkCOS)’k, the use of a nonhomogeneous Bogolyubov transformation

(see Ref[9]).

which reproduce the equations one obtains for a freass-
less field, e.g., by makinggy=0 in the Hamiltonian density ACKNOWLEDGMENTS
(27). Other values ofl will, on the other hand, correspond to

nonvanishing equilibrium values of the effective mass. Dis-\a.ional de Desenvolvimento Cidiidp e Tecnolgico

placements ofp, and y, from their respective equilibrium CNPg, Brazil: and by Fund&@ de Amparo &esquisa do
values will then correspond to preparing the system in a stat stado’de E‘tai:’aulo(FAPESfi) Brazil.

having a “wrong” (k-dependenteffective masgin particu-

lar, qonvanishing in the “symmetric” phasd= —1). The . APPENDIX A: UNIFORM SYSTEM AND THE

ensuing motion represents, therefore, the dynamical reaction  peooESENTATIONS FOR THE 4% MATRICES

of the system to this situation. Several phase-space trajecto-

ries for off-equilibrium solutions are shown in Figs. 2 and 3. A (1+1)-dimensional uniform system has to be invariant
The special casd=0 corresponds to choosing the equi- under translations and under reflection. Reflection invariance

librium effective massng; itself as the expansion mass In implies that the equations of motion are direction indepen-

this case the stability islands disappear, as the phase-spatdent, i.e., dynamical quantities should invol\e only.

trajectories degenerate to straight lines. The off-equilibrium Let us consider the solutions of the Dirac equations

dynamics can then be represented by the time dependence of . ) )
the single parametey, . (iol=my) '™ (x)=0, [j=1.2, (A1)

One of the author¢P.L.N) was supported by Conselho

for two different valuesm; andm, of the mass:
VII. DISCUSSION AND CONCLUSIONS

m;
(mq)
Lk0

We have described a treatment of the initial-value prob- P M(x)= >, (
lem in a quantum-field theory of self-interacting fermions in K

the Gaussian approximation. Although the procedure is quite
general, we have implemented it for the vacuum of a relativ-

1/2 ]
) [b(k”::.l)ugml)(k)elk-x

+b(kr'n21)"‘u(2m1)(k)e—ik->(], (AZ)
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1/2
V(0= E( k<ml>) (b3 T (e

+b(m1)_('m1)(k)e|k X (A3)
and
1/2
M2 (x)= 2( k(mz)) [b(mz) (mz)(k)elkx
+b:(r22)Tu(2m2)(k)e7ik'x], (A4)

1/2
(mz)(x) 2( k(mz)) [bf(fzz)‘ra(imz)(k)eﬂkx

+ b(mz)_('mz)(k)elk X, (A5)
By imposing(say att=0) the condition
Y™ (x) = M2 (x), (A6)

one can show that the operator selrsk 1(1) b(ml)) and
(b(kmf) ,b(mZ)) are related by the canonical transformation

12/ (mp)\ 112
b(m2) my Ko
k,1 mz kéml)

G(;_mZ)(k)Ug_ml)(k)} bf('ll)

m 2/ (mp)\ 112
1 0 —tmy) (my) (my) +
(R (] moscwoms
(A7)
12/ | (my) 1/2
my Ko
b(mz) _ ot k U (my) k (ml)
k.2 m, _kéml) u™ (k)uy™ (k) b

G(;ml)( _ k)u(zmz)(k)} b(_";(ﬁl‘r

(A8)
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™ ou™ ) =u" (—ku™ (=k),  (A9)

U™ (k)ug™ (— k) =ul"? (— k)uy™ (K),

u™ (ul™ (k) =ul™ (—k)ui™ (— k),

U™ (= k) ug™ () = U™ (k) uy™ (— k).
There are just two representations of it matrices sat-

isfying these conditions. These are the Pauli-Dirac represen-

tation

and ys=7yoy1=01 (Al0)

Yo=03, 7Y1=102,

and

and  ys=1vypy1=— 0.
(A1)

We choose the Pauli-Dirac representatii0) which admit
as solutions the spinors given in E§9). It should be noted,
however, that the spinors

Yo=03, 7Y1=l01,

1
ko+m)\ 2
ui(k)=| 5 k|,
(ko+m)
k
ko+m) 2
Up(K) = Oz—m) (ko+m) (A12)
1

which are also solutions of Dirac’s equation in the Pauli-
Dirac representation, do not satisfy the uniformity conditions
(A9).

APPENDIX B: THE UNIFORM CGNM HAMILTONIAN

In this appendix we give explicitly the Hamiltonian of the
chiral Gross-Neveu model in a form which preserves the
reflection invariance of the system. In the Pauli-Dirac repre-

Reflection invariance requires that the coefficients of thissentation(see Appendix Athe CGNM Hamiltonian is given

canonical transformation be invariant under —k: i.e.,

in full by

2T m|k{ |(bki’ ,2b7ki’,1+ bli’,lbi K 2)}

1

Heonm= 2 E [(l()z—z]lm{(ki,)z(bli/ylbki’,l_ bki’,zbli/
22
g'm
+( 2L )E_ E { k’ 2 211/ K" 2 271/ K" 2 271/ K" 2 211/4
LI=1 (k! K K KM [(ki)=+m=] 1 i)°+m?] 1 i )o+me] A i )etm]
X {b bk” 1bkw

Pk al &uy (ki) ysuy (ki uy (k") ysuy(k{"") —uy (ki ug (ki yug (K ug(k]"")] Ok/ K" KK

+ by i i sy L0 (K] ) st (K7 k") Ysta(k]") — T (ks YUK ()0 i sy

b bk" 1bkw

ljrrgz[ gua (ki) ysua (k) ua (k") ysua(k"" ) —us (ki us (k) us (k) ua(k"")] 8¢ KK

+ bl{ bk i i AL EUL K] ) ysua (kT YUa(K]") ysua (K" ) = Un(kf Jus (kUK YK )1 8k sk
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01 2Dy oy Prer o €027 vz (U (K]") yauia (K] = Uk UK U (K Yua(Kf )18 i e
b1 2Dy our Dy L EK]) 752K U(K]") vz (K] = Ul (K] Uk V(K" )18 i i
01 Dy Py oy A8 752U (K]) sz ) =] kU] Uz )13y s i
+ bki’,2bli'"2bk]f”,2bkjf”’,][ gu—z(ki,)')’SUZ(kfl)u—z(ij)75u1(k]{/”)_U_Z(ki,)uz(kfl)u—z(kl{ﬂ)ul(k?”)]5ki’+ka”+ka’” K
+ bli/,1bl;.2bl;~,1bk;~u][ U3 (k) ) ysua (k) Ur(k}") ysus (k") = Us(k{ Y ua(k! YUs(K§ ) us (K" )18 ke s
+ bl{,1bl;/,2bk;~,2b:;m,2[ g1k ) ysua(k{)Uz(K]") ysua()") = Us(k{ Jua(k YU(ki ) ua(K]" )18 i
+0y Dy Py Prens A €] yatz (KU (K]") yalto (K" ) =Tk UK U (K DUz )18 w5 w1070
by Dy P i L EUL (K] ) stz (KUK ysus ()" ) =g (k] ua(k{ Y Uz(K]" us (K" )18 i s
01 i Dy i AL €U ) vz (KU (K]") s () = U] )UK U (K DU (K185 ik i
+bki’,2bk;’,1bk}”,2le{”']g[gu_Z(ki,)75ul(ki”)u_2(kjﬂ)75“2(klm’)_U_Z(ki’)ul(k;,)u_Z(k;,,)uz(kj,,,)]5ki’+ki”+k;" K
01 i by Py €] yaua (kU (K]") vauiz(K]") = Uk un (KU (K] V(K] )18 i s
+ by oD abier 2D af €] ) ysuia (K Uz(]") ysuia (") = Ua( k] Jua (k! YUK us (K" )8 ke iom i -
(B1)

This Hamiltonian is written in a particle basis. In the dynamical equatiBBswe have to use the CGNM Hamiltonian in
the Nambu quasiparticle basis. The transformed Hamiltonian is obtained in a straightforward way usiig)Eaysd (30).

APPENDIX C: SELF-CONSISTENT RENORMALIZATION

Using Eq.(46) we obtain sinzy|eq and coszy|eq as

—(=1)"m[k|[1—(b+d)]

Sin2¢k|eq:

ko[K*+m*(b+d)]"%
(CY
B [k2+m?(b+d)]
COSZ‘Pk|eq_ ko[k2+m2(b+d)2]1/2'
Substituting Eq(C1) in I, andl, given in Eq.(37), taking v, ;= v ,=0, and performing the integration, we have
(A dk [KP+mP(b+d)] o 2
1 f_A (@ md) [kCrmAbraZ] o o me)

a= ﬁ—m sarctaf(1+d)2—1]Y?+In| ———| and b=1 when (1+d)>>1

[(1+d)?—1]* (1+d)? '
(C2

= ‘ S i d b=1 when (1+d)2<1
= ara N 1— - (1rar 2 TN @z and b=1 when(l+d)y<1,
A dk K2

AZ
il

(K m) [ mbrdy e et dn

This shows thatl is not determined by self-consistency. Foe 1,



7878

-2d
c= marctarﬁ(l+d)2—l]1’2+ din

—d
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1+{1-(1+d)3?

C

TP 1 {1-(1+d)2"?

54
4
mi when (1+d)2> 1,
(C3
+din m} when (1+d)2<1.

This shows that thénsdze (44) and (45) are self-consistent. Equatioi€2) and (C3) give the values of the constants

a, b, andc.
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